1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2024-12-28 20:53:54 +02:00
FFmpeg/libavfilter/f_ebur128.c
Andreas Rheinhardt b4f5201967 avfilter: Replace query_formats callback with union of list and callback
If one looks at the many query_formats callbacks in existence,
one will immediately recognize that there is one type of default
callback for video and a slightly different default callback for
audio: It is "return ff_set_common_formats_from_list(ctx, pix_fmts);"
for video with a filter-specific pix_fmts list. For audio, it is
the same with a filter-specific sample_fmts list together with
ff_set_common_all_samplerates() and ff_set_common_all_channel_counts().

This commit allows to remove the boilerplate query_formats callbacks
by replacing said callback with a union consisting the old callback
and pointers for pixel and sample format arrays. For the not uncommon
case in which these lists only contain a single entry (besides the
sentinel) enum AVPixelFormat and enum AVSampleFormat fields are also
added to the union to store them directly in the AVFilter,
thereby avoiding a relocation.

The state of said union will be contained in a new, dedicated AVFilter
field (the nb_inputs and nb_outputs fields have been shrunk to uint8_t
in order to create a hole for this new field; this is no problem, as
the maximum of all the nb_inputs is four; for nb_outputs it is only
two).

The state's default value coincides with the earlier default of
query_formats being unset, namely that the filter accepts all formats
(and also sample rates and channel counts/layouts for audio)
provided that these properties agree coincide for all inputs and
outputs.

By using different union members for audio and video filters
the type-unsafety of using the same functions for audio and video
lists will furthermore be more confined to formats.c than before.

When the new fields are used, they will also avoid allocations:
Currently something nearly equivalent to ff_default_query_formats()
is called after every successful call to a query_formats callback;
yet in the common case that the newly allocated AVFilterFormats
are not used at all (namely if there are no free links) these newly
allocated AVFilterFormats are freed again without ever being used.
Filters no longer using the callback will not exhibit this any more.

Reviewed-by: Paul B Mahol <onemda@gmail.com>
Reviewed-by: Nicolas George <george@nsup.org>
Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
2021-10-05 17:48:25 +02:00

1034 lines
44 KiB
C

/*
* Copyright (c) 2012 Clément Bœsch
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* EBU R.128 implementation
* @see http://tech.ebu.ch/loudness
* @see https://www.youtube.com/watch?v=iuEtQqC-Sqo "EBU R128 Introduction - Florian Camerer"
* @todo implement start/stop/reset through filter command injection
*/
#include <math.h>
#include "libavutil/avassert.h"
#include "libavutil/avstring.h"
#include "libavutil/channel_layout.h"
#include "libavutil/dict.h"
#include "libavutil/ffmath.h"
#include "libavutil/xga_font_data.h"
#include "libavutil/opt.h"
#include "libavutil/timestamp.h"
#include "libswresample/swresample.h"
#include "audio.h"
#include "avfilter.h"
#include "formats.h"
#include "internal.h"
#define MAX_CHANNELS 63
#define ABS_THRES -70 ///< silence gate: we discard anything below this absolute (LUFS) threshold
#define ABS_UP_THRES 10 ///< upper loud limit to consider (ABS_THRES being the minimum)
#define HIST_GRAIN 100 ///< defines histogram precision
#define HIST_SIZE ((ABS_UP_THRES - ABS_THRES) * HIST_GRAIN + 1)
/**
* A histogram is an array of HIST_SIZE hist_entry storing all the energies
* recorded (with an accuracy of 1/HIST_GRAIN) of the loudnesses from ABS_THRES
* (at 0) to ABS_UP_THRES (at HIST_SIZE-1).
* This fixed-size system avoids the need of a list of energies growing
* infinitely over the time and is thus more scalable.
*/
struct hist_entry {
int count; ///< how many times the corresponding value occurred
double energy; ///< E = 10^((L + 0.691) / 10)
double loudness; ///< L = -0.691 + 10 * log10(E)
};
struct integrator {
double *cache[MAX_CHANNELS]; ///< window of filtered samples (N ms)
int cache_pos; ///< focus on the last added bin in the cache array
int cache_size;
double sum[MAX_CHANNELS]; ///< sum of the last N ms filtered samples (cache content)
int filled; ///< 1 if the cache is completely filled, 0 otherwise
double rel_threshold; ///< relative threshold
double sum_kept_powers; ///< sum of the powers (weighted sums) above absolute threshold
int nb_kept_powers; ///< number of sum above absolute threshold
struct hist_entry *histogram; ///< histogram of the powers, used to compute LRA and I
};
struct rect { int x, y, w, h; };
typedef struct EBUR128Context {
const AVClass *class; ///< AVClass context for log and options purpose
/* peak metering */
int peak_mode; ///< enabled peak modes
double *true_peaks; ///< true peaks per channel
double *sample_peaks; ///< sample peaks per channel
double *true_peaks_per_frame; ///< true peaks in a frame per channel
#if CONFIG_SWRESAMPLE
SwrContext *swr_ctx; ///< over-sampling context for true peak metering
double *swr_buf; ///< resampled audio data for true peak metering
int swr_linesize;
#endif
/* video */
int do_video; ///< 1 if video output enabled, 0 otherwise
int w, h; ///< size of the video output
struct rect text; ///< rectangle for the LU legend on the left
struct rect graph; ///< rectangle for the main graph in the center
struct rect gauge; ///< rectangle for the gauge on the right
AVFrame *outpicref; ///< output picture reference, updated regularly
int meter; ///< select a EBU mode between +9 and +18
int scale_range; ///< the range of LU values according to the meter
int y_zero_lu; ///< the y value (pixel position) for 0 LU
int y_opt_max; ///< the y value (pixel position) for 1 LU
int y_opt_min; ///< the y value (pixel position) for -1 LU
int *y_line_ref; ///< y reference values for drawing the LU lines in the graph and the gauge
/* audio */
int nb_channels; ///< number of channels in the input
double *ch_weighting; ///< channel weighting mapping
int sample_count; ///< sample count used for refresh frequency, reset at refresh
/* Filter caches.
* The mult by 3 in the following is for X[i], X[i-1] and X[i-2] */
double x[MAX_CHANNELS * 3]; ///< 3 input samples cache for each channel
double y[MAX_CHANNELS * 3]; ///< 3 pre-filter samples cache for each channel
double z[MAX_CHANNELS * 3]; ///< 3 RLB-filter samples cache for each channel
double pre_b[3]; ///< pre-filter numerator coefficients
double pre_a[3]; ///< pre-filter denominator coefficients
double rlb_b[3]; ///< rlb-filter numerator coefficients
double rlb_a[3]; ///< rlb-filter denominator coefficients
struct integrator i400; ///< 400ms integrator, used for Momentary loudness (M), and Integrated loudness (I)
struct integrator i3000; ///< 3s integrator, used for Short term loudness (S), and Loudness Range (LRA)
/* I and LRA specific */
double integrated_loudness; ///< integrated loudness in LUFS (I)
double loudness_range; ///< loudness range in LU (LRA)
double lra_low, lra_high; ///< low and high LRA values
/* misc */
int loglevel; ///< log level for frame logging
int metadata; ///< whether or not to inject loudness results in frames
int dual_mono; ///< whether or not to treat single channel input files as dual-mono
double pan_law; ///< pan law value used to calculate dual-mono measurements
int target; ///< target level in LUFS used to set relative zero LU in visualization
int gauge_type; ///< whether gauge shows momentary or short
int scale; ///< display scale type of statistics
} EBUR128Context;
enum {
PEAK_MODE_NONE = 0,
PEAK_MODE_SAMPLES_PEAKS = 1<<1,
PEAK_MODE_TRUE_PEAKS = 1<<2,
};
enum {
GAUGE_TYPE_MOMENTARY = 0,
GAUGE_TYPE_SHORTTERM = 1,
};
enum {
SCALE_TYPE_ABSOLUTE = 0,
SCALE_TYPE_RELATIVE = 1,
};
#define OFFSET(x) offsetof(EBUR128Context, x)
#define A AV_OPT_FLAG_AUDIO_PARAM
#define V AV_OPT_FLAG_VIDEO_PARAM
#define F AV_OPT_FLAG_FILTERING_PARAM
static const AVOption ebur128_options[] = {
{ "video", "set video output", OFFSET(do_video), AV_OPT_TYPE_BOOL, {.i64 = 0}, 0, 1, V|F },
{ "size", "set video size", OFFSET(w), AV_OPT_TYPE_IMAGE_SIZE, {.str = "640x480"}, 0, 0, V|F },
{ "meter", "set scale meter (+9 to +18)", OFFSET(meter), AV_OPT_TYPE_INT, {.i64 = 9}, 9, 18, V|F },
{ "framelog", "force frame logging level", OFFSET(loglevel), AV_OPT_TYPE_INT, {.i64 = -1}, INT_MIN, INT_MAX, A|V|F, "level" },
{ "info", "information logging level", 0, AV_OPT_TYPE_CONST, {.i64 = AV_LOG_INFO}, INT_MIN, INT_MAX, A|V|F, "level" },
{ "verbose", "verbose logging level", 0, AV_OPT_TYPE_CONST, {.i64 = AV_LOG_VERBOSE}, INT_MIN, INT_MAX, A|V|F, "level" },
{ "metadata", "inject metadata in the filtergraph", OFFSET(metadata), AV_OPT_TYPE_BOOL, {.i64 = 0}, 0, 1, A|V|F },
{ "peak", "set peak mode", OFFSET(peak_mode), AV_OPT_TYPE_FLAGS, {.i64 = PEAK_MODE_NONE}, 0, INT_MAX, A|F, "mode" },
{ "none", "disable any peak mode", 0, AV_OPT_TYPE_CONST, {.i64 = PEAK_MODE_NONE}, INT_MIN, INT_MAX, A|F, "mode" },
{ "sample", "enable peak-sample mode", 0, AV_OPT_TYPE_CONST, {.i64 = PEAK_MODE_SAMPLES_PEAKS}, INT_MIN, INT_MAX, A|F, "mode" },
{ "true", "enable true-peak mode", 0, AV_OPT_TYPE_CONST, {.i64 = PEAK_MODE_TRUE_PEAKS}, INT_MIN, INT_MAX, A|F, "mode" },
{ "dualmono", "treat mono input files as dual-mono", OFFSET(dual_mono), AV_OPT_TYPE_BOOL, {.i64 = 0}, 0, 1, A|F },
{ "panlaw", "set a specific pan law for dual-mono files", OFFSET(pan_law), AV_OPT_TYPE_DOUBLE, {.dbl = -3.01029995663978}, -10.0, 0.0, A|F },
{ "target", "set a specific target level in LUFS (-23 to 0)", OFFSET(target), AV_OPT_TYPE_INT, {.i64 = -23}, -23, 0, V|F },
{ "gauge", "set gauge display type", OFFSET(gauge_type), AV_OPT_TYPE_INT, {.i64 = 0 }, GAUGE_TYPE_MOMENTARY, GAUGE_TYPE_SHORTTERM, V|F, "gaugetype" },
{ "momentary", "display momentary value", 0, AV_OPT_TYPE_CONST, {.i64 = GAUGE_TYPE_MOMENTARY}, INT_MIN, INT_MAX, V|F, "gaugetype" },
{ "m", "display momentary value", 0, AV_OPT_TYPE_CONST, {.i64 = GAUGE_TYPE_MOMENTARY}, INT_MIN, INT_MAX, V|F, "gaugetype" },
{ "shortterm", "display short-term value", 0, AV_OPT_TYPE_CONST, {.i64 = GAUGE_TYPE_SHORTTERM}, INT_MIN, INT_MAX, V|F, "gaugetype" },
{ "s", "display short-term value", 0, AV_OPT_TYPE_CONST, {.i64 = GAUGE_TYPE_SHORTTERM}, INT_MIN, INT_MAX, V|F, "gaugetype" },
{ "scale", "sets display method for the stats", OFFSET(scale), AV_OPT_TYPE_INT, {.i64 = 0}, SCALE_TYPE_ABSOLUTE, SCALE_TYPE_RELATIVE, V|F, "scaletype" },
{ "absolute", "display absolute values (LUFS)", 0, AV_OPT_TYPE_CONST, {.i64 = SCALE_TYPE_ABSOLUTE}, INT_MIN, INT_MAX, V|F, "scaletype" },
{ "LUFS", "display absolute values (LUFS)", 0, AV_OPT_TYPE_CONST, {.i64 = SCALE_TYPE_ABSOLUTE}, INT_MIN, INT_MAX, V|F, "scaletype" },
{ "relative", "display values relative to target (LU)", 0, AV_OPT_TYPE_CONST, {.i64 = SCALE_TYPE_RELATIVE}, INT_MIN, INT_MAX, V|F, "scaletype" },
{ "LU", "display values relative to target (LU)", 0, AV_OPT_TYPE_CONST, {.i64 = SCALE_TYPE_RELATIVE}, INT_MIN, INT_MAX, V|F, "scaletype" },
{ NULL },
};
AVFILTER_DEFINE_CLASS(ebur128);
static const uint8_t graph_colors[] = {
0xdd, 0x66, 0x66, // value above 1LU non reached below -1LU (impossible)
0x66, 0x66, 0xdd, // value below 1LU non reached below -1LU
0x96, 0x33, 0x33, // value above 1LU reached below -1LU (impossible)
0x33, 0x33, 0x96, // value below 1LU reached below -1LU
0xdd, 0x96, 0x96, // value above 1LU line non reached below -1LU (impossible)
0x96, 0x96, 0xdd, // value below 1LU line non reached below -1LU
0xdd, 0x33, 0x33, // value above 1LU line reached below -1LU (impossible)
0x33, 0x33, 0xdd, // value below 1LU line reached below -1LU
0xdd, 0x66, 0x66, // value above 1LU non reached above -1LU
0x66, 0xdd, 0x66, // value below 1LU non reached above -1LU
0x96, 0x33, 0x33, // value above 1LU reached above -1LU
0x33, 0x96, 0x33, // value below 1LU reached above -1LU
0xdd, 0x96, 0x96, // value above 1LU line non reached above -1LU
0x96, 0xdd, 0x96, // value below 1LU line non reached above -1LU
0xdd, 0x33, 0x33, // value above 1LU line reached above -1LU
0x33, 0xdd, 0x33, // value below 1LU line reached above -1LU
};
static const uint8_t *get_graph_color(const EBUR128Context *ebur128, int v, int y)
{
const int above_opt_max = y > ebur128->y_opt_max;
const int below_opt_min = y < ebur128->y_opt_min;
const int reached = y >= v;
const int line = ebur128->y_line_ref[y] || y == ebur128->y_zero_lu;
const int colorid = 8*below_opt_min+ 4*line + 2*reached + above_opt_max;
return graph_colors + 3*colorid;
}
static inline int lu_to_y(const EBUR128Context *ebur128, double v)
{
v += 2 * ebur128->meter; // make it in range [0;...]
v = av_clipf(v, 0, ebur128->scale_range); // make sure it's in the graph scale
v = ebur128->scale_range - v; // invert value (y=0 is on top)
return v * ebur128->graph.h / ebur128->scale_range; // rescale from scale range to px height
}
#define FONT8 0
#define FONT16 1
static const uint8_t font_colors[] = {
0xdd, 0xdd, 0x00,
0x00, 0x96, 0x96,
};
static void drawtext(AVFrame *pic, int x, int y, int ftid, const uint8_t *color, const char *fmt, ...)
{
int i;
char buf[128] = {0};
const uint8_t *font;
int font_height;
va_list vl;
if (ftid == FONT16) font = avpriv_vga16_font, font_height = 16;
else if (ftid == FONT8) font = avpriv_cga_font, font_height = 8;
else return;
va_start(vl, fmt);
vsnprintf(buf, sizeof(buf), fmt, vl);
va_end(vl);
for (i = 0; buf[i]; i++) {
int char_y, mask;
uint8_t *p = pic->data[0] + y*pic->linesize[0] + (x + i*8)*3;
for (char_y = 0; char_y < font_height; char_y++) {
for (mask = 0x80; mask; mask >>= 1) {
if (font[buf[i] * font_height + char_y] & mask)
memcpy(p, color, 3);
else
memcpy(p, "\x00\x00\x00", 3);
p += 3;
}
p += pic->linesize[0] - 8*3;
}
}
}
static void drawline(AVFrame *pic, int x, int y, int len, int step)
{
int i;
uint8_t *p = pic->data[0] + y*pic->linesize[0] + x*3;
for (i = 0; i < len; i++) {
memcpy(p, "\x00\xff\x00", 3);
p += step;
}
}
static int config_video_output(AVFilterLink *outlink)
{
int i, x, y;
uint8_t *p;
AVFilterContext *ctx = outlink->src;
EBUR128Context *ebur128 = ctx->priv;
AVFrame *outpicref;
/* check if there is enough space to represent everything decently */
if (ebur128->w < 640 || ebur128->h < 480) {
av_log(ctx, AV_LOG_ERROR, "Video size %dx%d is too small, "
"minimum size is 640x480\n", ebur128->w, ebur128->h);
return AVERROR(EINVAL);
}
outlink->w = ebur128->w;
outlink->h = ebur128->h;
outlink->sample_aspect_ratio = (AVRational){1,1};
#define PAD 8
/* configure text area position and size */
ebur128->text.x = PAD;
ebur128->text.y = 40;
ebur128->text.w = 3 * 8; // 3 characters
ebur128->text.h = ebur128->h - PAD - ebur128->text.y;
/* configure gauge position and size */
ebur128->gauge.w = 20;
ebur128->gauge.h = ebur128->text.h;
ebur128->gauge.x = ebur128->w - PAD - ebur128->gauge.w;
ebur128->gauge.y = ebur128->text.y;
/* configure graph position and size */
ebur128->graph.x = ebur128->text.x + ebur128->text.w + PAD;
ebur128->graph.y = ebur128->gauge.y;
ebur128->graph.w = ebur128->gauge.x - ebur128->graph.x - PAD;
ebur128->graph.h = ebur128->gauge.h;
/* graph and gauge share the LU-to-pixel code */
av_assert0(ebur128->graph.h == ebur128->gauge.h);
/* prepare the initial picref buffer */
av_frame_free(&ebur128->outpicref);
ebur128->outpicref = outpicref =
ff_get_video_buffer(outlink, outlink->w, outlink->h);
if (!outpicref)
return AVERROR(ENOMEM);
outpicref->sample_aspect_ratio = (AVRational){1,1};
/* init y references values (to draw LU lines) */
ebur128->y_line_ref = av_calloc(ebur128->graph.h + 1, sizeof(*ebur128->y_line_ref));
if (!ebur128->y_line_ref)
return AVERROR(ENOMEM);
/* black background */
memset(outpicref->data[0], 0, ebur128->h * outpicref->linesize[0]);
/* draw LU legends */
drawtext(outpicref, PAD, PAD+16, FONT8, font_colors+3, " LU");
for (i = ebur128->meter; i >= -ebur128->meter * 2; i--) {
y = lu_to_y(ebur128, i);
x = PAD + (i < 10 && i > -10) * 8;
ebur128->y_line_ref[y] = i;
y -= 4; // -4 to center vertically
drawtext(outpicref, x, y + ebur128->graph.y, FONT8, font_colors+3,
"%c%d", i < 0 ? '-' : i > 0 ? '+' : ' ', FFABS(i));
}
/* draw graph */
ebur128->y_zero_lu = lu_to_y(ebur128, 0);
ebur128->y_opt_max = lu_to_y(ebur128, 1);
ebur128->y_opt_min = lu_to_y(ebur128, -1);
p = outpicref->data[0] + ebur128->graph.y * outpicref->linesize[0]
+ ebur128->graph.x * 3;
for (y = 0; y < ebur128->graph.h; y++) {
const uint8_t *c = get_graph_color(ebur128, INT_MAX, y);
for (x = 0; x < ebur128->graph.w; x++)
memcpy(p + x*3, c, 3);
p += outpicref->linesize[0];
}
/* draw fancy rectangles around the graph and the gauge */
#define DRAW_RECT(r) do { \
drawline(outpicref, r.x, r.y - 1, r.w, 3); \
drawline(outpicref, r.x, r.y + r.h, r.w, 3); \
drawline(outpicref, r.x - 1, r.y, r.h, outpicref->linesize[0]); \
drawline(outpicref, r.x + r.w, r.y, r.h, outpicref->linesize[0]); \
} while (0)
DRAW_RECT(ebur128->graph);
DRAW_RECT(ebur128->gauge);
return 0;
}
static int config_audio_input(AVFilterLink *inlink)
{
AVFilterContext *ctx = inlink->dst;
EBUR128Context *ebur128 = ctx->priv;
/* Unofficial reversed parametrization of PRE
* and RLB from 48kHz */
double f0 = 1681.974450955533;
double G = 3.999843853973347;
double Q = 0.7071752369554196;
double K = tan(M_PI * f0 / (double)inlink->sample_rate);
double Vh = pow(10.0, G / 20.0);
double Vb = pow(Vh, 0.4996667741545416);
double a0 = 1.0 + K / Q + K * K;
ebur128->pre_b[0] = (Vh + Vb * K / Q + K * K) / a0;
ebur128->pre_b[1] = 2.0 * (K * K - Vh) / a0;
ebur128->pre_b[2] = (Vh - Vb * K / Q + K * K) / a0;
ebur128->pre_a[1] = 2.0 * (K * K - 1.0) / a0;
ebur128->pre_a[2] = (1.0 - K / Q + K * K) / a0;
f0 = 38.13547087602444;
Q = 0.5003270373238773;
K = tan(M_PI * f0 / (double)inlink->sample_rate);
ebur128->rlb_b[0] = 1.0;
ebur128->rlb_b[1] = -2.0;
ebur128->rlb_b[2] = 1.0;
ebur128->rlb_a[1] = 2.0 * (K * K - 1.0) / (1.0 + K / Q + K * K);
ebur128->rlb_a[2] = (1.0 - K / Q + K * K) / (1.0 + K / Q + K * K);
/* Force 100ms framing in case of metadata injection: the frames must have
* a granularity of the window overlap to be accurately exploited.
* As for the true peaks mode, it just simplifies the resampling buffer
* allocation and the lookup in it (since sample buffers differ in size, it
* can be more complex to integrate in the one-sample loop of
* filter_frame()). */
if (ebur128->metadata || (ebur128->peak_mode & PEAK_MODE_TRUE_PEAKS))
inlink->min_samples =
inlink->max_samples = inlink->sample_rate / 10;
return 0;
}
static int config_audio_output(AVFilterLink *outlink)
{
int i;
AVFilterContext *ctx = outlink->src;
EBUR128Context *ebur128 = ctx->priv;
const int nb_channels = av_get_channel_layout_nb_channels(outlink->channel_layout);
#define BACK_MASK (AV_CH_BACK_LEFT |AV_CH_BACK_CENTER |AV_CH_BACK_RIGHT| \
AV_CH_TOP_BACK_LEFT|AV_CH_TOP_BACK_CENTER|AV_CH_TOP_BACK_RIGHT| \
AV_CH_SIDE_LEFT |AV_CH_SIDE_RIGHT| \
AV_CH_SURROUND_DIRECT_LEFT |AV_CH_SURROUND_DIRECT_RIGHT)
ebur128->nb_channels = nb_channels;
ebur128->ch_weighting = av_calloc(nb_channels, sizeof(*ebur128->ch_weighting));
if (!ebur128->ch_weighting)
return AVERROR(ENOMEM);
#define I400_BINS(x) ((x) * 4 / 10)
#define I3000_BINS(x) ((x) * 3)
for (i = 0; i < nb_channels; i++) {
/* channel weighting */
const uint64_t chl = av_channel_layout_extract_channel(outlink->channel_layout, i);
if (chl & (AV_CH_LOW_FREQUENCY|AV_CH_LOW_FREQUENCY_2)) {
ebur128->ch_weighting[i] = 0;
} else if (chl & BACK_MASK) {
ebur128->ch_weighting[i] = 1.41;
} else {
ebur128->ch_weighting[i] = 1.0;
}
if (!ebur128->ch_weighting[i])
continue;
/* bins buffer for the two integration window (400ms and 3s) */
ebur128->i400.cache_size = I400_BINS(outlink->sample_rate);
ebur128->i3000.cache_size = I3000_BINS(outlink->sample_rate);
ebur128->i400.cache[i] = av_calloc(ebur128->i400.cache_size, sizeof(*ebur128->i400.cache[0]));
ebur128->i3000.cache[i] = av_calloc(ebur128->i3000.cache_size, sizeof(*ebur128->i3000.cache[0]));
if (!ebur128->i400.cache[i] || !ebur128->i3000.cache[i])
return AVERROR(ENOMEM);
}
#if CONFIG_SWRESAMPLE
if (ebur128->peak_mode & PEAK_MODE_TRUE_PEAKS) {
int ret;
ebur128->swr_buf = av_malloc_array(nb_channels, 19200 * sizeof(double));
ebur128->true_peaks = av_calloc(nb_channels, sizeof(*ebur128->true_peaks));
ebur128->true_peaks_per_frame = av_calloc(nb_channels, sizeof(*ebur128->true_peaks_per_frame));
ebur128->swr_ctx = swr_alloc();
if (!ebur128->swr_buf || !ebur128->true_peaks ||
!ebur128->true_peaks_per_frame || !ebur128->swr_ctx)
return AVERROR(ENOMEM);
av_opt_set_int(ebur128->swr_ctx, "in_channel_layout", outlink->channel_layout, 0);
av_opt_set_int(ebur128->swr_ctx, "in_sample_rate", outlink->sample_rate, 0);
av_opt_set_sample_fmt(ebur128->swr_ctx, "in_sample_fmt", outlink->format, 0);
av_opt_set_int(ebur128->swr_ctx, "out_channel_layout", outlink->channel_layout, 0);
av_opt_set_int(ebur128->swr_ctx, "out_sample_rate", 192000, 0);
av_opt_set_sample_fmt(ebur128->swr_ctx, "out_sample_fmt", outlink->format, 0);
ret = swr_init(ebur128->swr_ctx);
if (ret < 0)
return ret;
}
#endif
if (ebur128->peak_mode & PEAK_MODE_SAMPLES_PEAKS) {
ebur128->sample_peaks = av_calloc(nb_channels, sizeof(*ebur128->sample_peaks));
if (!ebur128->sample_peaks)
return AVERROR(ENOMEM);
}
return 0;
}
#define ENERGY(loudness) (ff_exp10(((loudness) + 0.691) / 10.))
#define LOUDNESS(energy) (-0.691 + 10 * log10(energy))
#define DBFS(energy) (20 * log10(energy))
static struct hist_entry *get_histogram(void)
{
int i;
struct hist_entry *h = av_calloc(HIST_SIZE, sizeof(*h));
if (!h)
return NULL;
for (i = 0; i < HIST_SIZE; i++) {
h[i].loudness = i / (double)HIST_GRAIN + ABS_THRES;
h[i].energy = ENERGY(h[i].loudness);
}
return h;
}
static av_cold int init(AVFilterContext *ctx)
{
EBUR128Context *ebur128 = ctx->priv;
AVFilterPad pad;
int ret;
if (ebur128->loglevel != AV_LOG_INFO &&
ebur128->loglevel != AV_LOG_VERBOSE) {
if (ebur128->do_video || ebur128->metadata)
ebur128->loglevel = AV_LOG_VERBOSE;
else
ebur128->loglevel = AV_LOG_INFO;
}
if (!CONFIG_SWRESAMPLE && (ebur128->peak_mode & PEAK_MODE_TRUE_PEAKS)) {
av_log(ctx, AV_LOG_ERROR,
"True-peak mode requires libswresample to be performed\n");
return AVERROR(EINVAL);
}
// if meter is +9 scale, scale range is from -18 LU to +9 LU (or 3*9)
// if meter is +18 scale, scale range is from -36 LU to +18 LU (or 3*18)
ebur128->scale_range = 3 * ebur128->meter;
ebur128->i400.histogram = get_histogram();
ebur128->i3000.histogram = get_histogram();
if (!ebur128->i400.histogram || !ebur128->i3000.histogram)
return AVERROR(ENOMEM);
ebur128->integrated_loudness = ABS_THRES;
ebur128->loudness_range = 0;
/* insert output pads */
if (ebur128->do_video) {
pad = (AVFilterPad){
.name = "out0",
.type = AVMEDIA_TYPE_VIDEO,
.config_props = config_video_output,
};
ret = ff_append_outpad(ctx, &pad);
if (ret < 0)
return ret;
}
pad = (AVFilterPad){
.name = ebur128->do_video ? "out1" : "out0",
.type = AVMEDIA_TYPE_AUDIO,
.config_props = config_audio_output,
};
ret = ff_append_outpad(ctx, &pad);
if (ret < 0)
return ret;
/* summary */
av_log(ctx, AV_LOG_VERBOSE, "EBU +%d scale\n", ebur128->meter);
return 0;
}
#define HIST_POS(power) (int)(((power) - ABS_THRES) * HIST_GRAIN)
/* loudness and power should be set such as loudness = -0.691 +
* 10*log10(power), we just avoid doing that calculus two times */
static int gate_update(struct integrator *integ, double power,
double loudness, int gate_thres)
{
int ipower;
double relative_threshold;
int gate_hist_pos;
/* update powers histograms by incrementing current power count */
ipower = av_clip(HIST_POS(loudness), 0, HIST_SIZE - 1);
integ->histogram[ipower].count++;
/* compute relative threshold and get its position in the histogram */
integ->sum_kept_powers += power;
integ->nb_kept_powers++;
relative_threshold = integ->sum_kept_powers / integ->nb_kept_powers;
if (!relative_threshold)
relative_threshold = 1e-12;
integ->rel_threshold = LOUDNESS(relative_threshold) + gate_thres;
gate_hist_pos = av_clip(HIST_POS(integ->rel_threshold), 0, HIST_SIZE - 1);
return gate_hist_pos;
}
static int filter_frame(AVFilterLink *inlink, AVFrame *insamples)
{
int i, ch, idx_insample;
AVFilterContext *ctx = inlink->dst;
EBUR128Context *ebur128 = ctx->priv;
const int nb_channels = ebur128->nb_channels;
const int nb_samples = insamples->nb_samples;
const double *samples = (double *)insamples->data[0];
AVFrame *pic = ebur128->outpicref;
#if CONFIG_SWRESAMPLE
if (ebur128->peak_mode & PEAK_MODE_TRUE_PEAKS) {
const double *swr_samples = ebur128->swr_buf;
int ret = swr_convert(ebur128->swr_ctx, (uint8_t**)&ebur128->swr_buf, 19200,
(const uint8_t **)insamples->data, nb_samples);
if (ret < 0)
return ret;
for (ch = 0; ch < nb_channels; ch++)
ebur128->true_peaks_per_frame[ch] = 0.0;
for (idx_insample = 0; idx_insample < ret; idx_insample++) {
for (ch = 0; ch < nb_channels; ch++) {
ebur128->true_peaks[ch] = FFMAX(ebur128->true_peaks[ch], fabs(*swr_samples));
ebur128->true_peaks_per_frame[ch] = FFMAX(ebur128->true_peaks_per_frame[ch],
fabs(*swr_samples));
swr_samples++;
}
}
}
#endif
for (idx_insample = 0; idx_insample < nb_samples; idx_insample++) {
const int bin_id_400 = ebur128->i400.cache_pos;
const int bin_id_3000 = ebur128->i3000.cache_pos;
#define MOVE_TO_NEXT_CACHED_ENTRY(time) do { \
ebur128->i##time.cache_pos++; \
if (ebur128->i##time.cache_pos == \
ebur128->i##time.cache_size) { \
ebur128->i##time.filled = 1; \
ebur128->i##time.cache_pos = 0; \
} \
} while (0)
MOVE_TO_NEXT_CACHED_ENTRY(400);
MOVE_TO_NEXT_CACHED_ENTRY(3000);
for (ch = 0; ch < nb_channels; ch++) {
double bin;
if (ebur128->peak_mode & PEAK_MODE_SAMPLES_PEAKS)
ebur128->sample_peaks[ch] = FFMAX(ebur128->sample_peaks[ch], fabs(*samples));
ebur128->x[ch * 3] = *samples++; // set X[i]
if (!ebur128->ch_weighting[ch])
continue;
/* Y[i] = X[i]*b0 + X[i-1]*b1 + X[i-2]*b2 - Y[i-1]*a1 - Y[i-2]*a2 */
#define FILTER(Y, X, NUM, DEN) do { \
double *dst = ebur128->Y + ch*3; \
double *src = ebur128->X + ch*3; \
dst[2] = dst[1]; \
dst[1] = dst[0]; \
dst[0] = src[0]*NUM[0] + src[1]*NUM[1] + src[2]*NUM[2] \
- dst[1]*DEN[1] - dst[2]*DEN[2]; \
} while (0)
// TODO: merge both filters in one?
FILTER(y, x, ebur128->pre_b, ebur128->pre_a); // apply pre-filter
ebur128->x[ch * 3 + 2] = ebur128->x[ch * 3 + 1];
ebur128->x[ch * 3 + 1] = ebur128->x[ch * 3 ];
FILTER(z, y, ebur128->rlb_b, ebur128->rlb_a); // apply RLB-filter
bin = ebur128->z[ch * 3] * ebur128->z[ch * 3];
/* add the new value, and limit the sum to the cache size (400ms or 3s)
* by removing the oldest one */
ebur128->i400.sum [ch] = ebur128->i400.sum [ch] + bin - ebur128->i400.cache [ch][bin_id_400];
ebur128->i3000.sum[ch] = ebur128->i3000.sum[ch] + bin - ebur128->i3000.cache[ch][bin_id_3000];
/* override old cache entry with the new value */
ebur128->i400.cache [ch][bin_id_400 ] = bin;
ebur128->i3000.cache[ch][bin_id_3000] = bin;
}
/* For integrated loudness, gating blocks are 400ms long with 75%
* overlap (see BS.1770-2 p5), so a re-computation is needed each 100ms
* (4800 samples at 48kHz). */
if (++ebur128->sample_count == inlink->sample_rate / 10) {
double loudness_400, loudness_3000;
double power_400 = 1e-12, power_3000 = 1e-12;
AVFilterLink *outlink = ctx->outputs[0];
const int64_t pts = insamples->pts +
av_rescale_q(idx_insample, (AVRational){ 1, inlink->sample_rate },
outlink->time_base);
ebur128->sample_count = 0;
#define COMPUTE_LOUDNESS(m, time) do { \
if (ebur128->i##time.filled) { \
/* weighting sum of the last <time> ms */ \
for (ch = 0; ch < nb_channels; ch++) \
power_##time += ebur128->ch_weighting[ch] * ebur128->i##time.sum[ch]; \
power_##time /= I##time##_BINS(inlink->sample_rate); \
} \
loudness_##time = LOUDNESS(power_##time); \
} while (0)
COMPUTE_LOUDNESS(M, 400);
COMPUTE_LOUDNESS(S, 3000);
/* Integrated loudness */
#define I_GATE_THRES -10 // initially defined to -8 LU in the first EBU standard
if (loudness_400 >= ABS_THRES) {
double integrated_sum = 0;
int nb_integrated = 0;
int gate_hist_pos = gate_update(&ebur128->i400, power_400,
loudness_400, I_GATE_THRES);
/* compute integrated loudness by summing the histogram values
* above the relative threshold */
for (i = gate_hist_pos; i < HIST_SIZE; i++) {
const int nb_v = ebur128->i400.histogram[i].count;
nb_integrated += nb_v;
integrated_sum += nb_v * ebur128->i400.histogram[i].energy;
}
if (nb_integrated) {
ebur128->integrated_loudness = LOUDNESS(integrated_sum / nb_integrated);
/* dual-mono correction */
if (nb_channels == 1 && ebur128->dual_mono) {
ebur128->integrated_loudness -= ebur128->pan_law;
}
}
}
/* LRA */
#define LRA_GATE_THRES -20
#define LRA_LOWER_PRC 10
#define LRA_HIGHER_PRC 95
/* XXX: example code in EBU 3342 is ">=" but formula in BS.1770
* specs is ">" */
if (loudness_3000 >= ABS_THRES) {
int nb_powers = 0;
int gate_hist_pos = gate_update(&ebur128->i3000, power_3000,
loudness_3000, LRA_GATE_THRES);
for (i = gate_hist_pos; i < HIST_SIZE; i++)
nb_powers += ebur128->i3000.histogram[i].count;
if (nb_powers) {
int n, nb_pow;
/* get lower loudness to consider */
n = 0;
nb_pow = LRA_LOWER_PRC * nb_powers / 100. + 0.5;
for (i = gate_hist_pos; i < HIST_SIZE; i++) {
n += ebur128->i3000.histogram[i].count;
if (n >= nb_pow) {
ebur128->lra_low = ebur128->i3000.histogram[i].loudness;
break;
}
}
/* get higher loudness to consider */
n = nb_powers;
nb_pow = LRA_HIGHER_PRC * nb_powers / 100. + 0.5;
for (i = HIST_SIZE - 1; i >= 0; i--) {
n -= ebur128->i3000.histogram[i].count;
if (n < nb_pow) {
ebur128->lra_high = ebur128->i3000.histogram[i].loudness;
break;
}
}
// XXX: show low & high on the graph?
ebur128->loudness_range = ebur128->lra_high - ebur128->lra_low;
}
}
/* dual-mono correction */
if (nb_channels == 1 && ebur128->dual_mono) {
loudness_400 -= ebur128->pan_law;
loudness_3000 -= ebur128->pan_law;
}
#define LOG_FMT "TARGET:%d LUFS M:%6.1f S:%6.1f I:%6.1f %s LRA:%6.1f LU"
/* push one video frame */
if (ebur128->do_video) {
AVFrame *clone;
int x, y, ret;
uint8_t *p;
double gauge_value;
int y_loudness_lu_graph, y_loudness_lu_gauge;
if (ebur128->gauge_type == GAUGE_TYPE_MOMENTARY) {
gauge_value = loudness_400 - ebur128->target;
} else {
gauge_value = loudness_3000 - ebur128->target;
}
y_loudness_lu_graph = lu_to_y(ebur128, loudness_3000 - ebur128->target);
y_loudness_lu_gauge = lu_to_y(ebur128, gauge_value);
/* draw the graph using the short-term loudness */
p = pic->data[0] + ebur128->graph.y*pic->linesize[0] + ebur128->graph.x*3;
for (y = 0; y < ebur128->graph.h; y++) {
const uint8_t *c = get_graph_color(ebur128, y_loudness_lu_graph, y);
memmove(p, p + 3, (ebur128->graph.w - 1) * 3);
memcpy(p + (ebur128->graph.w - 1) * 3, c, 3);
p += pic->linesize[0];
}
/* draw the gauge using either momentary or short-term loudness */
p = pic->data[0] + ebur128->gauge.y*pic->linesize[0] + ebur128->gauge.x*3;
for (y = 0; y < ebur128->gauge.h; y++) {
const uint8_t *c = get_graph_color(ebur128, y_loudness_lu_gauge, y);
for (x = 0; x < ebur128->gauge.w; x++)
memcpy(p + x*3, c, 3);
p += pic->linesize[0];
}
/* draw textual info */
if (ebur128->scale == SCALE_TYPE_ABSOLUTE) {
drawtext(pic, PAD, PAD - PAD/2, FONT16, font_colors,
LOG_FMT " ", // padding to erase trailing characters
ebur128->target, loudness_400, loudness_3000,
ebur128->integrated_loudness, "LUFS", ebur128->loudness_range);
} else {
drawtext(pic, PAD, PAD - PAD/2, FONT16, font_colors,
LOG_FMT " ", // padding to erase trailing characters
ebur128->target, loudness_400-ebur128->target, loudness_3000-ebur128->target,
ebur128->integrated_loudness-ebur128->target, "LU", ebur128->loudness_range);
}
/* set pts and push frame */
pic->pts = pts;
clone = av_frame_clone(pic);
if (!clone)
return AVERROR(ENOMEM);
ret = ff_filter_frame(outlink, clone);
if (ret < 0)
return ret;
}
if (ebur128->metadata) { /* happens only once per filter_frame call */
char metabuf[128];
#define META_PREFIX "lavfi.r128."
#define SET_META(name, var) do { \
snprintf(metabuf, sizeof(metabuf), "%.3f", var); \
av_dict_set(&insamples->metadata, name, metabuf, 0); \
} while (0)
#define SET_META_PEAK(name, ptype) do { \
if (ebur128->peak_mode & PEAK_MODE_ ## ptype ## _PEAKS) { \
char key[64]; \
for (ch = 0; ch < nb_channels; ch++) { \
snprintf(key, sizeof(key), \
META_PREFIX AV_STRINGIFY(name) "_peaks_ch%d", ch); \
SET_META(key, ebur128->name##_peaks[ch]); \
} \
} \
} while (0)
SET_META(META_PREFIX "M", loudness_400);
SET_META(META_PREFIX "S", loudness_3000);
SET_META(META_PREFIX "I", ebur128->integrated_loudness);
SET_META(META_PREFIX "LRA", ebur128->loudness_range);
SET_META(META_PREFIX "LRA.low", ebur128->lra_low);
SET_META(META_PREFIX "LRA.high", ebur128->lra_high);
SET_META_PEAK(sample, SAMPLES);
SET_META_PEAK(true, TRUE);
}
if (ebur128->scale == SCALE_TYPE_ABSOLUTE) {
av_log(ctx, ebur128->loglevel, "t: %-10s " LOG_FMT,
av_ts2timestr(pts, &outlink->time_base),
ebur128->target, loudness_400, loudness_3000,
ebur128->integrated_loudness, "LUFS", ebur128->loudness_range);
} else {
av_log(ctx, ebur128->loglevel, "t: %-10s " LOG_FMT,
av_ts2timestr(pts, &outlink->time_base),
ebur128->target, loudness_400-ebur128->target, loudness_3000-ebur128->target,
ebur128->integrated_loudness-ebur128->target, "LU", ebur128->loudness_range);
}
#define PRINT_PEAKS(str, sp, ptype) do { \
if (ebur128->peak_mode & PEAK_MODE_ ## ptype ## _PEAKS) { \
av_log(ctx, ebur128->loglevel, " " str ":"); \
for (ch = 0; ch < nb_channels; ch++) \
av_log(ctx, ebur128->loglevel, " %5.1f", DBFS(sp[ch])); \
av_log(ctx, ebur128->loglevel, " dBFS"); \
} \
} while (0)
PRINT_PEAKS("SPK", ebur128->sample_peaks, SAMPLES);
PRINT_PEAKS("FTPK", ebur128->true_peaks_per_frame, TRUE);
PRINT_PEAKS("TPK", ebur128->true_peaks, TRUE);
av_log(ctx, ebur128->loglevel, "\n");
}
}
return ff_filter_frame(ctx->outputs[ebur128->do_video], insamples);
}
static int query_formats(AVFilterContext *ctx)
{
EBUR128Context *ebur128 = ctx->priv;
AVFilterFormats *formats;
AVFilterChannelLayouts *layouts;
AVFilterLink *inlink = ctx->inputs[0];
AVFilterLink *outlink = ctx->outputs[0];
int ret;
static const enum AVSampleFormat sample_fmts[] = { AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_NONE };
static const enum AVPixelFormat pix_fmts[] = { AV_PIX_FMT_RGB24, AV_PIX_FMT_NONE };
/* set optional output video format */
if (ebur128->do_video) {
formats = ff_make_format_list(pix_fmts);
if ((ret = ff_formats_ref(formats, &outlink->incfg.formats)) < 0)
return ret;
outlink = ctx->outputs[1];
}
/* set input and output audio formats
* Note: ff_set_common_* functions are not used because they affect all the
* links, and thus break the video format negotiation */
formats = ff_make_format_list(sample_fmts);
if ((ret = ff_formats_ref(formats, &inlink->outcfg.formats)) < 0 ||
(ret = ff_formats_ref(formats, &outlink->incfg.formats)) < 0)
return ret;
layouts = ff_all_channel_layouts();
if ((ret = ff_channel_layouts_ref(layouts, &inlink->outcfg.channel_layouts)) < 0 ||
(ret = ff_channel_layouts_ref(layouts, &outlink->incfg.channel_layouts)) < 0)
return ret;
formats = ff_all_samplerates();
if ((ret = ff_formats_ref(formats, &inlink->outcfg.samplerates)) < 0 ||
(ret = ff_formats_ref(formats, &outlink->incfg.samplerates)) < 0)
return ret;
return 0;
}
static av_cold void uninit(AVFilterContext *ctx)
{
int i;
EBUR128Context *ebur128 = ctx->priv;
/* dual-mono correction */
if (ebur128->nb_channels == 1 && ebur128->dual_mono) {
ebur128->i400.rel_threshold -= ebur128->pan_law;
ebur128->i3000.rel_threshold -= ebur128->pan_law;
ebur128->lra_low -= ebur128->pan_law;
ebur128->lra_high -= ebur128->pan_law;
}
av_log(ctx, AV_LOG_INFO, "Summary:\n\n"
" Integrated loudness:\n"
" I: %5.1f LUFS\n"
" Threshold: %5.1f LUFS\n\n"
" Loudness range:\n"
" LRA: %5.1f LU\n"
" Threshold: %5.1f LUFS\n"
" LRA low: %5.1f LUFS\n"
" LRA high: %5.1f LUFS",
ebur128->integrated_loudness, ebur128->i400.rel_threshold,
ebur128->loudness_range, ebur128->i3000.rel_threshold,
ebur128->lra_low, ebur128->lra_high);
#define PRINT_PEAK_SUMMARY(str, sp, ptype) do { \
int ch; \
double maxpeak; \
maxpeak = 0.0; \
if (ebur128->peak_mode & PEAK_MODE_ ## ptype ## _PEAKS) { \
for (ch = 0; ch < ebur128->nb_channels; ch++) \
maxpeak = FFMAX(maxpeak, sp[ch]); \
av_log(ctx, AV_LOG_INFO, "\n\n " str " peak:\n" \
" Peak: %5.1f dBFS", \
DBFS(maxpeak)); \
} \
} while (0)
PRINT_PEAK_SUMMARY("Sample", ebur128->sample_peaks, SAMPLES);
PRINT_PEAK_SUMMARY("True", ebur128->true_peaks, TRUE);
av_log(ctx, AV_LOG_INFO, "\n");
av_freep(&ebur128->y_line_ref);
av_freep(&ebur128->ch_weighting);
av_freep(&ebur128->true_peaks);
av_freep(&ebur128->sample_peaks);
av_freep(&ebur128->true_peaks_per_frame);
av_freep(&ebur128->i400.histogram);
av_freep(&ebur128->i3000.histogram);
for (i = 0; i < ebur128->nb_channels; i++) {
av_freep(&ebur128->i400.cache[i]);
av_freep(&ebur128->i3000.cache[i]);
}
av_frame_free(&ebur128->outpicref);
#if CONFIG_SWRESAMPLE
av_freep(&ebur128->swr_buf);
swr_free(&ebur128->swr_ctx);
#endif
}
static const AVFilterPad ebur128_inputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_AUDIO,
.filter_frame = filter_frame,
.config_props = config_audio_input,
},
};
const AVFilter ff_af_ebur128 = {
.name = "ebur128",
.description = NULL_IF_CONFIG_SMALL("EBU R128 scanner."),
.priv_size = sizeof(EBUR128Context),
.init = init,
.uninit = uninit,
FILTER_INPUTS(ebur128_inputs),
.outputs = NULL,
FILTER_QUERY_FUNC(query_formats),
.priv_class = &ebur128_class,
.flags = AVFILTER_FLAG_DYNAMIC_OUTPUTS,
};