1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2025-01-19 05:49:09 +02:00
FFmpeg/libavcodec/vvc/thread.c
Frank Plowman c917c423e0 lavc/vvc: Don't discard return codes
Signed-off-by: Frank Plowman <post@frankplowman.com>
2024-06-27 20:36:13 +08:00

820 lines
23 KiB
C

/*
* VVC thread logic
*
* Copyright (C) 2023 Nuo Mi
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <stdatomic.h>
#include "libavutil/executor.h"
#include "libavutil/mem.h"
#include "libavutil/thread.h"
#include "thread.h"
#include "ctu.h"
#include "filter.h"
#include "inter.h"
#include "intra.h"
#include "refs.h"
typedef struct ProgressListener {
VVCProgressListener l;
struct VVCTask *task;
VVCContext *s;
} ProgressListener;
typedef enum VVCTaskStage {
VVC_TASK_STAGE_PARSE,
VVC_TASK_STAGE_INTER,
VVC_TASK_STAGE_RECON,
VVC_TASK_STAGE_LMCS,
VVC_TASK_STAGE_DEBLOCK_V,
VVC_TASK_STAGE_DEBLOCK_H,
VVC_TASK_STAGE_SAO,
VVC_TASK_STAGE_ALF,
VVC_TASK_STAGE_LAST
} VVCTaskStage;
typedef struct VVCTask {
union {
struct VVCTask *next; //for executor debug only
AVTask task;
} u;
VVCTaskStage stage;
// ctu x, y, and raster scan order
int rx, ry, rs;
VVCFrameContext *fc;
ProgressListener col_listener;
ProgressListener listener[2][VVC_MAX_REF_ENTRIES];
// for parse task only
SliceContext *sc;
EntryPoint *ep;
int ctu_idx; //ctu idx in the current slice
// tasks with target scores met are ready for scheduling
atomic_uchar score[VVC_TASK_STAGE_LAST];
atomic_uchar target_inter_score;
} VVCTask;
typedef struct VVCRowThread {
atomic_int col_progress[VVC_PROGRESS_LAST];
} VVCRowThread;
typedef struct VVCFrameThread {
// error return for tasks
atomic_int ret;
VVCRowThread *rows;
VVCTask *tasks;
int ctu_size;
int ctu_width;
int ctu_height;
int ctu_count;
//protected by lock
atomic_int nb_scheduled_tasks;
atomic_int nb_scheduled_listeners;
int row_progress[VVC_PROGRESS_LAST];
AVMutex lock;
AVCond cond;
} VVCFrameThread;
static void add_task(VVCContext *s, VVCTask *t)
{
VVCFrameThread *ft = t->fc->ft;
atomic_fetch_add(&ft->nb_scheduled_tasks, 1);
av_executor_execute(s->executor, &t->u.task);
}
static void task_init(VVCTask *t, VVCTaskStage stage, VVCFrameContext *fc, const int rx, const int ry)
{
memset(t, 0, sizeof(*t));
t->stage = stage;
t->fc = fc;
t->rx = rx;
t->ry = ry;
t->rs = ry * fc->ft->ctu_width + rx;
for (int i = 0; i < FF_ARRAY_ELEMS(t->score); i++)
atomic_store(t->score + i, 0);
atomic_store(&t->target_inter_score, 0);
}
static int task_init_parse(VVCTask *t, SliceContext *sc, EntryPoint *ep, const int ctu_idx)
{
if (t->sc) {
// the task already inited, error bitstream
return AVERROR_INVALIDDATA;
}
t->sc = sc;
t->ep = ep;
t->ctu_idx = ctu_idx;
return 0;
}
static uint8_t task_add_score(VVCTask *t, const VVCTaskStage stage)
{
return atomic_fetch_add(&t->score[stage], 1) + 1;
}
static uint8_t task_get_score(VVCTask *t, const VVCTaskStage stage)
{
return atomic_load(&t->score[stage]);
}
//first row in tile or slice
static int is_first_row(const VVCFrameContext *fc, const int rx, const int ry)
{
const VVCFrameThread *ft = fc->ft;
const VVCPPS *pps = fc->ps.pps;
if (ry != pps->ctb_to_row_bd[ry]) {
const int rs = ry * ft->ctu_width + rx;
return fc->tab.slice_idx[rs] != fc->tab.slice_idx[rs - ft->ctu_width];
}
return 1;
}
static int task_has_target_score(VVCTask *t, const VVCTaskStage stage, const uint8_t score)
{
// l:left, r:right, t: top, b: bottom
static const uint8_t target_score[] =
{
2, //VVC_TASK_STAGE_RECON, need l + rt recon
3, //VVC_TASK_STAGE_LMCS, need r + b + rb recon
1, //VVC_TASK_STAGE_DEBLOCK_V, need l deblock v
2, //VVC_TASK_STAGE_DEBLOCK_H, need r deblock v + t deblock h
5, //VVC_TASK_STAGE_SAO, need l + r + lb + b + rb deblock h
8, //VVC_TASK_STAGE_ALF, need sao around the ctu
};
uint8_t target = 0;
VVCFrameContext *fc = t->fc;
if (stage == VVC_TASK_STAGE_PARSE) {
const H266RawSPS *rsps = fc->ps.sps->r;
const int wpp = rsps->sps_entropy_coding_sync_enabled_flag && !is_first_row(fc, t->rx, t->ry);
target = 2 + wpp - 1; //left parse + colocation + wpp - no previous stage
} else if (stage == VVC_TASK_STAGE_INTER) {
target = atomic_load(&t->target_inter_score);
} else {
target = target_score[stage - VVC_TASK_STAGE_RECON];
}
//+1 for previous stage
av_assert0(score <= target + 1);
return score == target + 1;
}
static void frame_thread_add_score(VVCContext *s, VVCFrameThread *ft,
const int rx, const int ry, const VVCTaskStage stage)
{
VVCTask *t = ft->tasks + ft->ctu_width * ry + rx;
uint8_t score;
if (rx < 0 || rx >= ft->ctu_width || ry < 0 || ry >= ft->ctu_height)
return;
score = task_add_score(t, stage);
if (task_has_target_score(t, stage, score)) {
av_assert0(s);
av_assert0(stage == t->stage);
add_task(s, t);
}
}
static void sheduled_done(VVCFrameThread *ft, atomic_int *scheduled)
{
if (atomic_fetch_sub(scheduled, 1) == 1) {
ff_mutex_lock(&ft->lock);
ff_cond_signal(&ft->cond);
ff_mutex_unlock(&ft->lock);
}
}
static void progress_done(VVCProgressListener *_l, const int type)
{
const ProgressListener *l = (ProgressListener *)_l;
const VVCTask *t = l->task;
VVCFrameThread *ft = t->fc->ft;
frame_thread_add_score(l->s, ft, t->rx, t->ry, type);
sheduled_done(ft, &ft->nb_scheduled_listeners);
}
static void pixel_done(VVCProgressListener *l)
{
progress_done(l, VVC_TASK_STAGE_INTER);
}
static void mv_done(VVCProgressListener *l)
{
progress_done(l, VVC_TASK_STAGE_PARSE);
}
static void listener_init(ProgressListener *l, VVCTask *t, VVCContext *s, const VVCProgress vp, const int y)
{
const int is_inter = vp == VVC_PROGRESS_PIXEL;
l->task = t;
l->s = s;
l->l.vp = vp;
l->l.y = y;
l->l.progress_done = is_inter ? pixel_done : mv_done;
if (is_inter)
atomic_fetch_add(&t->target_inter_score, 1);
}
static void add_progress_listener(VVCFrame *ref, ProgressListener *l,
VVCTask *t, VVCContext *s, const VVCProgress vp, const int y)
{
VVCFrameThread *ft = t->fc->ft;
atomic_fetch_add(&ft->nb_scheduled_listeners, 1);
listener_init(l, t, s, vp, y);
ff_vvc_add_progress_listener(ref, (VVCProgressListener*)l);
}
static void schedule_next_parse(VVCContext *s, VVCFrameContext *fc, const SliceContext *sc, const VVCTask *t)
{
VVCFrameThread *ft = fc->ft;
EntryPoint *ep = t->ep;
const VVCSPS *sps = fc->ps.sps;
if (sps->r->sps_entropy_coding_sync_enabled_flag) {
if (t->rx == fc->ps.pps->ctb_to_col_bd[t->rx]) {
EntryPoint *next = ep + 1;
if (next < sc->eps + sc->nb_eps && !is_first_row(fc, t->rx, t->ry + 1)) {
memcpy(next->cabac_state, ep->cabac_state, sizeof(next->cabac_state));
ff_vvc_ep_init_stat_coeff(next, sps->bit_depth, sps->r->sps_persistent_rice_adaptation_enabled_flag);
}
}
if (t->ry + 1 < ft->ctu_height && !is_first_row(fc, t->rx, t->ry + 1))
frame_thread_add_score(s, ft, t->rx, t->ry + 1, VVC_TASK_STAGE_PARSE);
}
if (t->ctu_idx + 1 < t->ep->ctu_end) {
const int next_rs = sc->sh.ctb_addr_in_curr_slice[t->ctu_idx + 1];
const int next_rx = next_rs % ft->ctu_width;
const int next_ry = next_rs / ft->ctu_width;
frame_thread_add_score(s, ft, next_rx, next_ry, VVC_TASK_STAGE_PARSE);
}
}
static void schedule_inter(VVCContext *s, VVCFrameContext *fc, const SliceContext *sc, VVCTask *t, const int rs)
{
const VVCSH *sh = &sc->sh;
if (!IS_I(sh->r)) {
CTU *ctu = fc->tab.ctus + rs;
for (int lx = 0; lx < 2; lx++) {
for (int i = 0; i < sh->r->num_ref_idx_active[lx]; i++) {
int y = ctu->max_y[lx][i];
VVCRefPic *refp = sc->rpl[lx].refs + i;
VVCFrame *ref = refp->ref;
if (ref && y >= 0) {
if (refp->is_scaled)
y = y * refp->scale[1] >> 14;
add_progress_listener(ref, &t->listener[lx][i], t, s, VVC_PROGRESS_PIXEL, y + LUMA_EXTRA_AFTER);
}
}
}
}
}
static void parse_task_done(VVCContext *s, VVCFrameContext *fc, const int rx, const int ry)
{
VVCFrameThread *ft = fc->ft;
const int rs = ry * ft->ctu_width + rx;
const int slice_idx = fc->tab.slice_idx[rs];
VVCTask *t = ft->tasks + rs;
const SliceContext *sc = fc->slices[slice_idx];
schedule_next_parse(s, fc, sc, t);
schedule_inter(s, fc, sc, t, rs);
}
static void task_stage_done(const VVCTask *t, VVCContext *s)
{
VVCFrameContext *fc = t->fc;
VVCFrameThread *ft = fc->ft;
const VVCTaskStage stage = t->stage;
#define ADD(dx, dy, stage) frame_thread_add_score(s, ft, t->rx + (dx), t->ry + (dy), stage)
//this is a reserve map of ready_score, ordered by zigzag
if (stage == VVC_TASK_STAGE_PARSE) {
parse_task_done(s, fc, t->rx, t->ry);
} else if (stage == VVC_TASK_STAGE_RECON) {
ADD(-1, 1, VVC_TASK_STAGE_RECON);
ADD( 1, 0, VVC_TASK_STAGE_RECON);
ADD(-1, -1, VVC_TASK_STAGE_LMCS);
ADD( 0, -1, VVC_TASK_STAGE_LMCS);
ADD(-1, 0, VVC_TASK_STAGE_LMCS);
} else if (stage == VVC_TASK_STAGE_DEBLOCK_V) {
ADD( 1, 0, VVC_TASK_STAGE_DEBLOCK_V);
ADD(-1, 0, VVC_TASK_STAGE_DEBLOCK_H);
} else if (stage == VVC_TASK_STAGE_DEBLOCK_H) {
ADD( 0, 1, VVC_TASK_STAGE_DEBLOCK_H);
ADD(-1, -1, VVC_TASK_STAGE_SAO);
ADD( 0, -1, VVC_TASK_STAGE_SAO);
ADD(-1, 0, VVC_TASK_STAGE_SAO);
ADD( 1, -1, VVC_TASK_STAGE_SAO);
ADD( 1, 0, VVC_TASK_STAGE_SAO);
} else if (stage == VVC_TASK_STAGE_SAO) {
ADD(-1, -1, VVC_TASK_STAGE_ALF);
ADD( 0, -1, VVC_TASK_STAGE_ALF);
ADD(-1, 0, VVC_TASK_STAGE_ALF);
ADD( 1, -1, VVC_TASK_STAGE_ALF);
ADD(-1, 1, VVC_TASK_STAGE_ALF);
ADD( 1, 0, VVC_TASK_STAGE_ALF);
ADD( 0, 1, VVC_TASK_STAGE_ALF);
ADD( 1, 1, VVC_TASK_STAGE_ALF);
}
}
static int task_is_stage_ready(VVCTask *t, int add)
{
const VVCTaskStage stage = t->stage;
uint8_t score;
if (stage > VVC_TASK_STAGE_ALF)
return 0;
score = task_get_score(t, stage) + add;
return task_has_target_score(t, stage, score);
}
static int task_ready(const AVTask *_t, void *user_data)
{
VVCTask *t = (VVCTask*)_t;
return task_is_stage_ready(t, 0);
}
#define CHECK(a, b) \
do { \
if ((a) != (b)) \
return (a) < (b); \
} while (0)
static int task_priority_higher(const AVTask *_a, const AVTask *_b)
{
const VVCTask *a = (const VVCTask*)_a;
const VVCTask *b = (const VVCTask*)_b;
CHECK(a->fc->decode_order, b->fc->decode_order); //decode order
if (a->stage == VVC_TASK_STAGE_PARSE || b->stage == VVC_TASK_STAGE_PARSE) {
CHECK(a->stage, b->stage);
CHECK(a->ry, b->ry);
return a->rx < b->rx;
}
CHECK(a->rx + a->ry + a->stage, b->rx + b->ry + b->stage); //zigzag with type
CHECK(a->rx + a->ry, b->rx + b->ry); //zigzag
return a->ry < b->ry;
}
static void report_frame_progress(VVCFrameContext *fc,
const int ry, const VVCProgress idx)
{
VVCFrameThread *ft = fc->ft;
const int ctu_size = ft->ctu_size;
int old;
if (atomic_fetch_add(&ft->rows[ry].col_progress[idx], 1) == ft->ctu_width - 1) {
int y;
ff_mutex_lock(&ft->lock);
y = old = ft->row_progress[idx];
while (y < ft->ctu_height && atomic_load(&ft->rows[y].col_progress[idx]) == ft->ctu_width)
y++;
if (old != y) {
const int progress = y == ft->ctu_height ? INT_MAX : y * ctu_size;
ft->row_progress[idx] = y;
ff_vvc_report_progress(fc->ref, idx, progress);
}
ff_mutex_unlock(&ft->lock);
}
}
static int run_parse(VVCContext *s, VVCLocalContext *lc, VVCTask *t)
{
int ret;
VVCFrameContext *fc = lc->fc;
const int rs = t->rs;
const CTU *ctu = fc->tab.ctus + rs;
lc->ep = t->ep;
ret = ff_vvc_coding_tree_unit(lc, t->ctu_idx, rs, t->rx, t->ry);
if (ret < 0)
return ret;
if (!ctu->has_dmvr)
report_frame_progress(lc->fc, t->ry, VVC_PROGRESS_MV);
return 0;
}
static int run_inter(VVCContext *s, VVCLocalContext *lc, VVCTask *t)
{
VVCFrameContext *fc = lc->fc;
const CTU *ctu = fc->tab.ctus + t->rs;
int ret;
ret = ff_vvc_predict_inter(lc, t->rs);
if (ret < 0)
return ret;
if (ctu->has_dmvr)
report_frame_progress(fc, t->ry, VVC_PROGRESS_MV);
return 0;
}
static int run_recon(VVCContext *s, VVCLocalContext *lc, VVCTask *t)
{
return ff_vvc_reconstruct(lc, t->rs, t->rx, t->ry);
}
static int run_lmcs(VVCContext *s, VVCLocalContext *lc, VVCTask *t)
{
VVCFrameContext *fc = lc->fc;
VVCFrameThread *ft = fc->ft;
const int ctu_size = ft->ctu_size;
const int x0 = t->rx * ctu_size;
const int y0 = t->ry * ctu_size;
ff_vvc_lmcs_filter(lc, x0, y0);
return 0;
}
static int run_deblock_v(VVCContext *s, VVCLocalContext *lc, VVCTask *t)
{
VVCFrameContext *fc = lc->fc;
VVCFrameThread *ft = fc->ft;
const int ctb_size = ft->ctu_size;
const int x0 = t->rx * ctb_size;
const int y0 = t->ry * ctb_size;
if (!lc->sc->sh.r->sh_deblocking_filter_disabled_flag) {
ff_vvc_decode_neighbour(lc, x0, y0, t->rx, t->ry, t->rs);
ff_vvc_deblock_vertical(lc, x0, y0, t->rs);
}
return 0;
}
static int run_deblock_h(VVCContext *s, VVCLocalContext *lc, VVCTask *t)
{
VVCFrameContext *fc = lc->fc;
VVCFrameThread *ft = fc->ft;
const int ctb_size = ft->ctu_size;
const int x0 = t->rx * ctb_size;
const int y0 = t->ry * ctb_size;
if (!lc->sc->sh.r->sh_deblocking_filter_disabled_flag) {
ff_vvc_decode_neighbour(lc, x0, y0, t->rx, t->ry, t->rs);
ff_vvc_deblock_horizontal(lc, x0, y0, t->rs);
}
if (fc->ps.sps->r->sps_sao_enabled_flag)
ff_vvc_sao_copy_ctb_to_hv(lc, t->rx, t->ry, t->ry == ft->ctu_height - 1);
return 0;
}
static int run_sao(VVCContext *s, VVCLocalContext *lc, VVCTask *t)
{
VVCFrameContext *fc = lc->fc;
VVCFrameThread *ft = fc->ft;
const int ctb_size = ft->ctu_size;
const int x0 = t->rx * ctb_size;
const int y0 = t->ry * ctb_size;
if (fc->ps.sps->r->sps_sao_enabled_flag) {
ff_vvc_decode_neighbour(lc, x0, y0, t->rx, t->ry, t->rs);
ff_vvc_sao_filter(lc, x0, y0);
}
if (fc->ps.sps->r->sps_alf_enabled_flag)
ff_vvc_alf_copy_ctu_to_hv(lc, x0, y0);
return 0;
}
static int run_alf(VVCContext *s, VVCLocalContext *lc, VVCTask *t)
{
VVCFrameContext *fc = lc->fc;
VVCFrameThread *ft = fc->ft;
const int ctu_size = ft->ctu_size;
const int x0 = t->rx * ctu_size;
const int y0 = t->ry * ctu_size;
if (fc->ps.sps->r->sps_alf_enabled_flag) {
ff_vvc_decode_neighbour(lc, x0, y0, t->rx, t->ry, t->rs);
ff_vvc_alf_filter(lc, x0, y0);
}
report_frame_progress(fc, t->ry, VVC_PROGRESS_PIXEL);
return 0;
}
#define VVC_THREAD_DEBUG
#ifdef VVC_THREAD_DEBUG
const static char* task_name[] = {
"P",
"I",
"R",
"L",
"V",
"H",
"S",
"A"
};
#endif
typedef int (*run_func)(VVCContext *s, VVCLocalContext *lc, VVCTask *t);
static void task_run_stage(VVCTask *t, VVCContext *s, VVCLocalContext *lc)
{
int ret;
VVCFrameContext *fc = t->fc;
VVCFrameThread *ft = fc->ft;
const VVCTaskStage stage = t->stage;
run_func run[] = {
run_parse,
run_inter,
run_recon,
run_lmcs,
run_deblock_v,
run_deblock_h,
run_sao,
run_alf,
};
#ifdef VVC_THREAD_DEBUG
av_log(s->avctx, AV_LOG_DEBUG, "frame %5d, %s(%3d, %3d)\r\n", (int)t->fc->decode_order, task_name[stage], t->rx, t->ry);
#endif
lc->sc = t->sc;
if (!atomic_load(&ft->ret)) {
if ((ret = run[stage](s, lc, t)) < 0) {
#ifdef COMPAT_ATOMICS_WIN32_STDATOMIC_H
intptr_t zero = 0;
#else
int zero = 0;
#endif
atomic_compare_exchange_strong(&ft->ret, &zero, ret);
av_log(s->avctx, AV_LOG_ERROR,
"frame %5d, %s(%3d, %3d) failed with %d\r\n",
(int)fc->decode_order, task_name[stage], t->rx, t->ry, ret);
}
}
task_stage_done(t, s);
return;
}
static int task_run(AVTask *_t, void *local_context, void *user_data)
{
VVCTask *t = (VVCTask*)_t;
VVCContext *s = (VVCContext *)user_data;
VVCLocalContext *lc = local_context;
VVCFrameThread *ft = t->fc->ft;
lc->fc = t->fc;
do {
task_run_stage(t, s, lc);
t->stage++;
} while (task_is_stage_ready(t, 1));
if (t->stage != VVC_TASK_STAGE_LAST)
frame_thread_add_score(s, ft, t->rx, t->ry, t->stage);
sheduled_done(ft, &ft->nb_scheduled_tasks);
return 0;
}
AVExecutor* ff_vvc_executor_alloc(VVCContext *s, const int thread_count)
{
AVTaskCallbacks callbacks = {
s,
sizeof(VVCLocalContext),
task_priority_higher,
task_ready,
task_run,
};
return av_executor_alloc(&callbacks, thread_count);
}
void ff_vvc_executor_free(AVExecutor **e)
{
av_executor_free(e);
}
void ff_vvc_frame_thread_free(VVCFrameContext *fc)
{
VVCFrameThread *ft = fc->ft;
if (!ft)
return;
ff_mutex_destroy(&ft->lock);
ff_cond_destroy(&ft->cond);
av_freep(&ft->rows);
av_freep(&ft->tasks);
av_freep(&ft);
}
static void frame_thread_init_score(VVCFrameContext *fc)
{
const VVCFrameThread *ft = fc->ft;
VVCTask task;
task_init(&task, VVC_TASK_STAGE_RECON, fc, 0, 0);
for (int i = VVC_TASK_STAGE_RECON; i < VVC_TASK_STAGE_LAST; i++) {
task.stage = i;
for (task.rx = -1; task.rx <= ft->ctu_width; task.rx++) {
task.ry = -1; //top
task_stage_done(&task, NULL);
task.ry = ft->ctu_height; //bottom
task_stage_done(&task, NULL);
}
for (task.ry = 0; task.ry < ft->ctu_height; task.ry++) {
task.rx = -1; //left
task_stage_done(&task, NULL);
task.rx = ft->ctu_width; //right
task_stage_done(&task, NULL);
}
}
}
int ff_vvc_frame_thread_init(VVCFrameContext *fc)
{
const VVCSPS *sps = fc->ps.sps;
const VVCPPS *pps = fc->ps.pps;
VVCFrameThread *ft = fc->ft;
int ret;
if (!ft || ft->ctu_width != pps->ctb_width ||
ft->ctu_height != pps->ctb_height ||
ft->ctu_size != sps->ctb_size_y) {
ff_vvc_frame_thread_free(fc);
ft = av_calloc(1, sizeof(*fc->ft));
if (!ft)
return AVERROR(ENOMEM);
ft->ctu_width = fc->ps.pps->ctb_width;
ft->ctu_height = fc->ps.pps->ctb_height;
ft->ctu_count = fc->ps.pps->ctb_count;
ft->ctu_size = fc->ps.sps->ctb_size_y;
ft->rows = av_calloc(ft->ctu_height, sizeof(*ft->rows));
if (!ft->rows)
goto fail;
ft->tasks = av_malloc(ft->ctu_count * sizeof(*ft->tasks));
if (!ft->tasks)
goto fail;
if ((ret = ff_cond_init(&ft->cond, NULL)))
goto fail;
if ((ret = ff_mutex_init(&ft->lock, NULL))) {
ff_cond_destroy(&ft->cond);
goto fail;
}
}
fc->ft = ft;
ft->ret = 0;
for (int y = 0; y < ft->ctu_height; y++) {
VVCRowThread *row = ft->rows + y;
memset(row->col_progress, 0, sizeof(row->col_progress));
}
for (int rs = 0; rs < ft->ctu_count; rs++) {
VVCTask *t = ft->tasks + rs;
task_init(t, VVC_TASK_STAGE_PARSE, fc, rs % ft->ctu_width, rs / ft->ctu_width);
}
memset(&ft->row_progress[0], 0, sizeof(ft->row_progress));
frame_thread_init_score(fc);
return 0;
fail:
if (ft) {
av_freep(&ft->rows);
av_freep(&ft->tasks);
av_freep(&ft);
}
return AVERROR(ENOMEM);
}
static void check_colocation(VVCContext *s, VVCTask *t)
{
const VVCFrameContext *fc = t->fc;
if (fc->ps.ph.r->ph_temporal_mvp_enabled_flag || fc->ps.sps->r->sps_sbtmvp_enabled_flag) {
VVCFrame *col = fc->ref->collocated_ref;
const int first_col = t->rx == fc->ps.pps->ctb_to_col_bd[t->rx];
if (col && first_col) {
//we depend on bottom and right boundary, do not - 1 for y
const int y = (t->ry << fc->ps.sps->ctb_log2_size_y);
add_progress_listener(col, &t->col_listener, t, s, VVC_PROGRESS_MV, y);
return;
}
}
frame_thread_add_score(s, fc->ft, t->rx, t->ry, VVC_TASK_STAGE_PARSE);
}
static void submit_entry_point(VVCContext *s, VVCFrameThread *ft, SliceContext *sc, EntryPoint *ep)
{
const int rs = sc->sh.ctb_addr_in_curr_slice[ep->ctu_start];
VVCTask *t = ft->tasks + rs;
frame_thread_add_score(s, ft, t->rx, t->ry, VVC_TASK_STAGE_PARSE);
}
int ff_vvc_frame_submit(VVCContext *s, VVCFrameContext *fc)
{
VVCFrameThread *ft = fc->ft;
// We'll handle this in two passes:
// Pass 0 to initialize tasks with parser, this will help detect bit stream error
// Pass 1 to shedule location check and submit the entry point
for (int pass = 0; pass < 2; pass++) {
for (int i = 0; i < fc->nb_slices; i++) {
SliceContext *sc = fc->slices[i];
for (int j = 0; j < sc->nb_eps; j++) {
EntryPoint *ep = sc->eps + j;
for (int k = ep->ctu_start; k < ep->ctu_end; k++) {
const int rs = sc->sh.ctb_addr_in_curr_slice[k];
VVCTask *t = ft->tasks + rs;
if (pass) {
check_colocation(s, t);
} else {
const int ret = task_init_parse(t, sc, ep, k);
if (ret < 0)
return ret;
}
}
if (pass)
submit_entry_point(s, ft, sc, ep);
}
}
}
return 0;
}
int ff_vvc_frame_wait(VVCContext *s, VVCFrameContext *fc)
{
VVCFrameThread *ft = fc->ft;
ff_mutex_lock(&ft->lock);
while (atomic_load(&ft->nb_scheduled_tasks) || atomic_load(&ft->nb_scheduled_listeners))
ff_cond_wait(&ft->cond, &ft->lock);
ff_mutex_unlock(&ft->lock);
ff_vvc_report_frame_finished(fc->ref);
#ifdef VVC_THREAD_DEBUG
av_log(s->avctx, AV_LOG_DEBUG, "frame %5d done\r\n", (int)fc->decode_order);
#endif
return ft->ret;
}