1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2024-12-07 11:13:41 +02:00
FFmpeg/libavcodec/lpc.c
Michael Niedermayer 59eb12faff Merge remote branch 'qatar/master'
* qatar/master: (30 commits)
  AVOptions: make default_val a union, as proposed in AVOption2.
  arm/h264pred: add missing argument type.
  h264dsp_mmx: place bracket outside #if/#endif block.
  lavf/utils: fix ff_interleave_compare_dts corner case.
  fate: add 10-bit H264 tests.
  h264: do not print "too many references" warning for intra-only.
  Enable decoding of high bit depth h264.
  Adds 8-, 9- and 10-bit versions of some of the functions used by the h264 decoder.
  Add support for higher QP values in h264.
  Add the notion of pixel size in h264 related functions.
  Make the h264 loop filter bit depth aware.
  Template dsputil_template.c with respect to pixel size, etc.
  Template h264idct_template.c with respect to pixel size, etc.
  Preparatory patch for high bit depth h264 decoding support.
  Move some functions in dsputil.c into a new file dsputil_template.c.
  Move the functions in h264idct into a new file h264idct_template.c.
  Move the functions in h264pred.c into a new file h264pred_template.c.
  Preparatory patch for high bit depth h264 decoding support.
  Add pixel formats for 9- and 10-bit yuv420p.
  Choose h264 chroma dc dequant function dynamically.
  ...

Conflicts:
	doc/APIchanges
	ffmpeg.c
	ffplay.c
	libavcodec/alpha/dsputil_alpha.c
	libavcodec/arm/dsputil_init_arm.c
	libavcodec/arm/dsputil_init_armv6.c
	libavcodec/arm/dsputil_init_neon.c
	libavcodec/arm/dsputil_iwmmxt.c
	libavcodec/arm/h264pred_init_arm.c
	libavcodec/bfin/dsputil_bfin.c
	libavcodec/dsputil.c
	libavcodec/h264.c
	libavcodec/h264.h
	libavcodec/h264_cabac.c
	libavcodec/h264_cavlc.c
	libavcodec/h264_loopfilter.c
	libavcodec/h264_ps.c
	libavcodec/h264_refs.c
	libavcodec/h264dsp.c
	libavcodec/h264idct.c
	libavcodec/h264pred.c
	libavcodec/mlib/dsputil_mlib.c
	libavcodec/options.c
	libavcodec/ppc/dsputil_altivec.c
	libavcodec/ppc/dsputil_ppc.c
	libavcodec/ppc/h264_altivec.c
	libavcodec/ps2/dsputil_mmi.c
	libavcodec/sh4/dsputil_align.c
	libavcodec/sh4/dsputil_sh4.c
	libavcodec/sparc/dsputil_vis.c
	libavcodec/utils.c
	libavcodec/version.h
	libavcodec/x86/dsputil_mmx.c
	libavformat/options.c
	libavformat/utils.c
	libavutil/pixfmt.h
	libswscale/swscale.c
	libswscale/swscale_internal.h
	libswscale/swscale_template.c
	tests/ref/seek/lavf_avi

Merged-by: Michael Niedermayer <michaelni@gmx.at>
2011-05-11 05:47:02 +02:00

272 lines
7.8 KiB
C

/**
* LPC utility code
* Copyright (c) 2006 Justin Ruggles <justin.ruggles@gmail.com>
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "libavutil/lls.h"
#define LPC_USE_DOUBLE
#include "lpc.h"
/**
* Apply Welch window function to audio block
*/
static void lpc_apply_welch_window_c(const int32_t *data, int len,
double *w_data)
{
int i, n2;
double w;
double c;
assert(!(len&1)); //the optimization in r11881 does not support odd len
//if someone wants odd len extend the change in r11881
n2 = (len >> 1);
c = 2.0 / (len - 1.0);
w_data+=n2;
data+=n2;
for(i=0; i<n2; i++) {
w = c - n2 + i;
w = 1.0 - (w * w);
w_data[-i-1] = data[-i-1] * w;
w_data[+i ] = data[+i ] * w;
}
}
/**
* Calculate autocorrelation data from audio samples
* A Welch window function is applied before calculation.
*/
static void lpc_compute_autocorr_c(const double *data, int len, int lag,
double *autoc)
{
int i, j;
for(j=0; j<lag; j+=2){
double sum0 = 1.0, sum1 = 1.0;
for(i=j; i<len; i++){
sum0 += data[i] * data[i-j];
sum1 += data[i] * data[i-j-1];
}
autoc[j ] = sum0;
autoc[j+1] = sum1;
}
if(j==lag){
double sum = 1.0;
for(i=j-1; i<len; i+=2){
sum += data[i ] * data[i-j ]
+ data[i+1] * data[i-j+1];
}
autoc[j] = sum;
}
}
/**
* Quantize LPC coefficients
*/
static void quantize_lpc_coefs(double *lpc_in, int order, int precision,
int32_t *lpc_out, int *shift, int max_shift, int zero_shift)
{
int i;
double cmax, error;
int32_t qmax;
int sh;
/* define maximum levels */
qmax = (1 << (precision - 1)) - 1;
/* find maximum coefficient value */
cmax = 0.0;
for(i=0; i<order; i++) {
cmax= FFMAX(cmax, fabs(lpc_in[i]));
}
/* if maximum value quantizes to zero, return all zeros */
if(cmax * (1 << max_shift) < 1.0) {
*shift = zero_shift;
memset(lpc_out, 0, sizeof(int32_t) * order);
return;
}
/* calculate level shift which scales max coeff to available bits */
sh = max_shift;
while((cmax * (1 << sh) > qmax) && (sh > 0)) {
sh--;
}
/* since negative shift values are unsupported in decoder, scale down
coefficients instead */
if(sh == 0 && cmax > qmax) {
double scale = ((double)qmax) / cmax;
for(i=0; i<order; i++) {
lpc_in[i] *= scale;
}
}
/* output quantized coefficients and level shift */
error=0;
for(i=0; i<order; i++) {
error -= lpc_in[i] * (1 << sh);
lpc_out[i] = av_clip(lrintf(error), -qmax, qmax);
error -= lpc_out[i];
}
*shift = sh;
}
static int estimate_best_order(double *ref, int min_order, int max_order)
{
int i, est;
est = min_order;
for(i=max_order-1; i>=min_order-1; i--) {
if(ref[i] > 0.10) {
est = i+1;
break;
}
}
return est;
}
/**
* Calculate LPC coefficients for multiple orders
*
* @param use_lpc LPC method for determining coefficients
* 0 = LPC with fixed pre-defined coeffs
* 1 = LPC with coeffs determined by Levinson-Durbin recursion
* 2+ = LPC with coeffs determined by Cholesky factorization using (use_lpc-1) passes.
*/
int ff_lpc_calc_coefs(LPCContext *s,
const int32_t *samples, int blocksize, int min_order,
int max_order, int precision,
int32_t coefs[][MAX_LPC_ORDER], int *shift,
enum FFLPCType lpc_type, int lpc_passes,
int omethod, int max_shift, int zero_shift)
{
double autoc[MAX_LPC_ORDER+1];
double ref[MAX_LPC_ORDER];
double lpc[MAX_LPC_ORDER][MAX_LPC_ORDER];
int i, j, pass;
int opt_order;
assert(max_order >= MIN_LPC_ORDER && max_order <= MAX_LPC_ORDER &&
lpc_type > FF_LPC_TYPE_FIXED);
/* reinit LPC context if parameters have changed */
if (blocksize != s->blocksize || max_order != s->max_order ||
lpc_type != s->lpc_type) {
ff_lpc_end(s);
ff_lpc_init(s, blocksize, max_order, lpc_type);
}
if (lpc_type == FF_LPC_TYPE_LEVINSON) {
double *windowed_samples = s->windowed_samples + max_order;
s->lpc_apply_welch_window(samples, blocksize, windowed_samples);
s->lpc_compute_autocorr(windowed_samples, blocksize, max_order, autoc);
compute_lpc_coefs(autoc, max_order, &lpc[0][0], MAX_LPC_ORDER, 0, 1);
for(i=0; i<max_order; i++)
ref[i] = fabs(lpc[i][i]);
} else if (lpc_type == FF_LPC_TYPE_CHOLESKY) {
LLSModel m[2];
double var[MAX_LPC_ORDER+1], av_uninit(weight);
for(pass=0; pass<lpc_passes; pass++){
av_init_lls(&m[pass&1], max_order);
weight=0;
for(i=max_order; i<blocksize; i++){
for(j=0; j<=max_order; j++)
var[j]= samples[i-j];
if(pass){
double eval, inv, rinv;
eval= av_evaluate_lls(&m[(pass-1)&1], var+1, max_order-1);
eval= (512>>pass) + fabs(eval - var[0]);
inv = 1/eval;
rinv = sqrt(inv);
for(j=0; j<=max_order; j++)
var[j] *= rinv;
weight += inv;
}else
weight++;
av_update_lls(&m[pass&1], var, 1.0);
}
av_solve_lls(&m[pass&1], 0.001, 0);
}
for(i=0; i<max_order; i++){
for(j=0; j<max_order; j++)
lpc[i][j]=-m[(pass-1)&1].coeff[i][j];
ref[i]= sqrt(m[(pass-1)&1].variance[i] / weight) * (blocksize - max_order) / 4000;
}
for(i=max_order-1; i>0; i--)
ref[i] = ref[i-1] - ref[i];
}
opt_order = max_order;
if(omethod == ORDER_METHOD_EST) {
opt_order = estimate_best_order(ref, min_order, max_order);
i = opt_order-1;
quantize_lpc_coefs(lpc[i], i+1, precision, coefs[i], &shift[i], max_shift, zero_shift);
} else {
for(i=min_order-1; i<max_order; i++) {
quantize_lpc_coefs(lpc[i], i+1, precision, coefs[i], &shift[i], max_shift, zero_shift);
}
}
return opt_order;
}
av_cold int ff_lpc_init(LPCContext *s, int blocksize, int max_order,
enum FFLPCType lpc_type)
{
s->blocksize = blocksize;
s->max_order = max_order;
s->lpc_type = lpc_type;
if (lpc_type == FF_LPC_TYPE_LEVINSON) {
s->windowed_samples = av_mallocz((blocksize + max_order + 2) *
sizeof(*s->windowed_samples));
if (!s->windowed_samples)
return AVERROR(ENOMEM);
} else {
s->windowed_samples = NULL;
}
s->lpc_apply_welch_window = lpc_apply_welch_window_c;
s->lpc_compute_autocorr = lpc_compute_autocorr_c;
if (HAVE_MMX)
ff_lpc_init_x86(s);
return 0;
}
av_cold void ff_lpc_end(LPCContext *s)
{
av_freep(&s->windowed_samples);
}