1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2025-01-03 05:10:03 +02:00
FFmpeg/libavfilter/af_crystalizer.c
Andreas Rheinhardt 8be701d9f7 avfilter/avfilter: Add numbers of (in|out)pads directly to AVFilter
Up until now, an AVFilter's lists of input and output AVFilterPads
were terminated by a sentinel and the only way to get the length
of these lists was by using avfilter_pad_count(). This has two
drawbacks: first, sizeof(AVFilterPad) is not negligible
(i.e. 64B on 64bit systems); second, getting the size involves
a function call instead of just reading the data.

This commit therefore changes this. The sentinels are removed and new
private fields nb_inputs and nb_outputs are added to AVFilter that
contain the number of elements of the respective AVFilterPad array.

Given that AVFilter.(in|out)puts are the only arrays of zero-terminated
AVFilterPads an API user has access to (AVFilterContext.(in|out)put_pads
are not zero-terminated and they already have a size field) the argument
to avfilter_pad_count() is always one of these lists, so it just has to
find the filter the list belongs to and read said number. This is slower
than before, but a replacement function that just reads the internal numbers
that users are expected to switch to will be added soon; and furthermore,
avfilter_pad_count() is probably never called in hot loops anyway.

This saves about 49KiB from the binary; notice that these sentinels are
not in .bss despite being zeroed: they are in .data.rel.ro due to the
non-sentinels.

Reviewed-by: Nicolas George <george@nsup.org>
Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
2021-08-20 12:53:58 +02:00

458 lines
12 KiB
C

/*
* Copyright (c) 2016 The FFmpeg Project
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "libavutil/channel_layout.h"
#include "libavutil/opt.h"
#include "avfilter.h"
#include "audio.h"
#include "formats.h"
typedef struct CrystalizerContext {
const AVClass *class;
float mult;
int clip;
AVFrame *prev;
int (*filter)(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs);
} CrystalizerContext;
#define OFFSET(x) offsetof(CrystalizerContext, x)
#define A AV_OPT_FLAG_AUDIO_PARAM|AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_RUNTIME_PARAM
static const AVOption crystalizer_options[] = {
{ "i", "set intensity", OFFSET(mult), AV_OPT_TYPE_FLOAT, {.dbl=2.0},-10, 10, A },
{ "c", "enable clipping", OFFSET(clip), AV_OPT_TYPE_BOOL, {.i64=1}, 0, 1, A },
{ NULL }
};
AVFILTER_DEFINE_CLASS(crystalizer);
static int query_formats(AVFilterContext *ctx)
{
static const enum AVSampleFormat sample_fmts[] = {
AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_FLTP,
AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_DBLP,
AV_SAMPLE_FMT_NONE
};
int ret = ff_set_common_formats_from_list(ctx, sample_fmts);
if (ret < 0)
return ret;
ret = ff_set_common_all_channel_counts(ctx);
if (ret < 0)
return ret;
return ff_set_common_all_samplerates(ctx);
}
typedef struct ThreadData {
void **d;
void **p;
const void **s;
int nb_samples;
int channels;
float mult;
int clip;
} ThreadData;
static int filter_flt(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
{
ThreadData *td = arg;
void **d = td->d;
void **p = td->p;
const void **s = td->s;
const int nb_samples = td->nb_samples;
const int channels = td->channels;
const float mult = td->mult;
const int clip = td->clip;
const int start = (channels * jobnr) / nb_jobs;
const int end = (channels * (jobnr+1)) / nb_jobs;
float *prv = p[0];
int n, c;
for (c = start; c < end; c++) {
const float *src = s[0];
float *dst = d[0];
for (n = 0; n < nb_samples; n++) {
float current = src[c];
dst[c] = current + (current - prv[c]) * mult;
prv[c] = current;
if (clip) {
dst[c] = av_clipf(dst[c], -1, 1);
}
dst += channels;
src += channels;
}
}
return 0;
}
static int filter_dbl(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
{
ThreadData *td = arg;
void **d = td->d;
void **p = td->p;
const void **s = td->s;
const int nb_samples = td->nb_samples;
const int channels = td->channels;
double mult = td->mult;
const int clip = td->clip;
const int start = (channels * jobnr) / nb_jobs;
const int end = (channels * (jobnr+1)) / nb_jobs;
double *prv = p[0];
int n, c;
for (c = start; c < end; c++) {
const double *src = s[0];
double *dst = d[0];
for (n = 0; n < nb_samples; n++) {
double current = src[c];
dst[c] = current + (current - prv[c]) * mult;
prv[c] = current;
if (clip) {
dst[c] = av_clipd(dst[c], -1, 1);
}
dst += channels;
src += channels;
}
}
return 0;
}
static int filter_fltp(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
{
ThreadData *td = arg;
void **d = td->d;
void **p = td->p;
const void **s = td->s;
const int nb_samples = td->nb_samples;
const int channels = td->channels;
float mult = td->mult;
const int clip = td->clip;
const int start = (channels * jobnr) / nb_jobs;
const int end = (channels * (jobnr+1)) / nb_jobs;
int n, c;
for (c = start; c < end; c++) {
const float *src = s[c];
float *dst = d[c];
float *prv = p[c];
for (n = 0; n < nb_samples; n++) {
float current = src[n];
dst[n] = current + (current - prv[0]) * mult;
prv[0] = current;
if (clip) {
dst[n] = av_clipf(dst[n], -1, 1);
}
}
}
return 0;
}
static int filter_dblp(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
{
ThreadData *td = arg;
void **d = td->d;
void **p = td->p;
const void **s = td->s;
const int nb_samples = td->nb_samples;
const int channels = td->channels;
const double mult = td->mult;
const int clip = td->clip;
const int start = (channels * jobnr) / nb_jobs;
const int end = (channels * (jobnr+1)) / nb_jobs;
int n, c;
for (c = start; c < end; c++) {
const double *src = s[c];
double *dst = d[c];
double *prv = p[c];
for (n = 0; n < nb_samples; n++) {
double current = src[n];
dst[n] = current + (current - prv[0]) * mult;
prv[0] = current;
if (clip) {
dst[n] = av_clipd(dst[n], -1, 1);
}
}
}
return 0;
}
static int ifilter_flt(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
{
ThreadData *td = arg;
void **d = td->d;
void **p = td->p;
const void **s = td->s;
const int nb_samples = td->nb_samples;
const int channels = td->channels;
const float mult = -td->mult;
const float div = -td->mult + 1.f;
const int clip = td->clip;
const int start = (channels * jobnr) / nb_jobs;
const int end = (channels * (jobnr+1)) / nb_jobs;
float *prv = p[0];
int n, c;
for (c = start; c < end; c++) {
const float *src = s[0];
float *dst = d[0];
for (n = 0; n < nb_samples; n++) {
float current = src[c];
dst[c] = (current + prv[c] * mult) / div;
prv[c] = dst[c];
if (clip) {
dst[c] = av_clipf(dst[c], -1, 1);
}
dst += channels;
src += channels;
}
}
return 0;
}
static int ifilter_dbl(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
{
ThreadData *td = arg;
void **d = td->d;
void **p = td->p;
const void **s = td->s;
const int nb_samples = td->nb_samples;
const int channels = td->channels;
const double mult = -td->mult;
const double div = -td->mult + 1.f;
const int clip = td->clip;
const int start = (channels * jobnr) / nb_jobs;
const int end = (channels * (jobnr+1)) / nb_jobs;
double *prv = p[0];
int n, c;
for (c = start; c < end; c++) {
const double *src = s[0];
double *dst = d[0];
for (n = 0; n < nb_samples; n++) {
double current = src[c];
dst[c] = (current + prv[c] * mult) / div;
prv[c] = dst[c];
if (clip) {
dst[c] = av_clipd(dst[c], -1, 1);
}
dst += channels;
src += channels;
}
}
return 0;
}
static int ifilter_fltp(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
{
ThreadData *td = arg;
void **d = td->d;
void **p = td->p;
const void **s = td->s;
const int nb_samples = td->nb_samples;
const int channels = td->channels;
const float mult = -td->mult;
const float div = -td->mult + 1.f;
const int clip = td->clip;
const int start = (channels * jobnr) / nb_jobs;
const int end = (channels * (jobnr+1)) / nb_jobs;
int n, c;
for (c = start; c < end; c++) {
const float *src = s[c];
float *dst = d[c];
float *prv = p[c];
for (n = 0; n < nb_samples; n++) {
float current = src[n];
dst[n] = (current + prv[0] * mult) / div;
prv[0] = dst[n];
if (clip) {
dst[n] = av_clipf(dst[n], -1, 1);
}
}
}
return 0;
}
static int ifilter_dblp(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
{
ThreadData *td = arg;
void **d = td->d;
void **p = td->p;
const void **s = td->s;
const int nb_samples = td->nb_samples;
const int channels = td->channels;
const double mult = -td->mult;
const double div = -td->mult + 1.f;
const int clip = td->clip;
const int start = (channels * jobnr) / nb_jobs;
const int end = (channels * (jobnr+1)) / nb_jobs;
int n, c;
for (c = start; c < end; c++) {
const double *src = s[c];
double *dst = d[c];
double *prv = p[c];
for (n = 0; n < nb_samples; n++) {
double current = src[n];
dst[n] = (current + prv[0] * mult) / div;
prv[0] = dst[n];
if (clip) {
dst[n] = av_clipd(dst[n], -1, 1);
}
}
}
return 0;
}
static int config_input(AVFilterLink *inlink)
{
AVFilterContext *ctx = inlink->dst;
CrystalizerContext *s = ctx->priv;
switch (inlink->format) {
case AV_SAMPLE_FMT_FLT: s->filter = s->mult >= 0.f ? filter_flt : ifilter_flt; break;
case AV_SAMPLE_FMT_DBL: s->filter = s->mult >= 0.f ? filter_dbl : ifilter_dbl; break;
case AV_SAMPLE_FMT_FLTP: s->filter = s->mult >= 0.f ? filter_fltp : ifilter_fltp; break;
case AV_SAMPLE_FMT_DBLP: s->filter = s->mult >= 0.f ? filter_dblp : ifilter_dblp; break;
}
return 0;
}
static int filter_frame(AVFilterLink *inlink, AVFrame *in)
{
AVFilterContext *ctx = inlink->dst;
AVFilterLink *outlink = ctx->outputs[0];
CrystalizerContext *s = ctx->priv;
AVFrame *out;
ThreadData td;
if (!s->prev) {
s->prev = ff_get_audio_buffer(inlink, 1);
if (!s->prev) {
av_frame_free(&in);
return AVERROR(ENOMEM);
}
}
if (av_frame_is_writable(in)) {
out = in;
} else {
out = ff_get_audio_buffer(outlink, in->nb_samples);
if (!out) {
av_frame_free(&in);
return AVERROR(ENOMEM);
}
av_frame_copy_props(out, in);
}
td.d = (void **)out->extended_data;
td.s = (const void **)in->extended_data;
td.p = (void **)s->prev->extended_data;
td.nb_samples = in->nb_samples;
td.channels = in->channels;
td.mult = ctx->is_disabled ? 0.f : s->mult;
td.clip = s->clip;
ff_filter_execute(ctx, s->filter, &td, NULL,
FFMIN(inlink->channels, ff_filter_get_nb_threads(ctx)));
if (out != in)
av_frame_free(&in);
return ff_filter_frame(outlink, out);
}
static av_cold void uninit(AVFilterContext *ctx)
{
CrystalizerContext *s = ctx->priv;
av_frame_free(&s->prev);
}
static int process_command(AVFilterContext *ctx, const char *cmd, const char *args,
char *res, int res_len, int flags)
{
int ret;
ret = ff_filter_process_command(ctx, cmd, args, res, res_len, flags);
if (ret < 0)
return ret;
return config_input(ctx->inputs[0]);
}
static const AVFilterPad inputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_AUDIO,
.filter_frame = filter_frame,
.config_props = config_input,
},
};
static const AVFilterPad outputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_AUDIO,
},
};
const AVFilter ff_af_crystalizer = {
.name = "crystalizer",
.description = NULL_IF_CONFIG_SMALL("Simple audio noise sharpening filter."),
.query_formats = query_formats,
.priv_size = sizeof(CrystalizerContext),
.priv_class = &crystalizer_class,
.uninit = uninit,
FILTER_INPUTS(inputs),
FILTER_OUTPUTS(outputs),
.process_command = process_command,
.flags = AVFILTER_FLAG_SUPPORT_TIMELINE_INTERNAL |
AVFILTER_FLAG_SLICE_THREADS,
};