mirror of
https://github.com/FFmpeg/FFmpeg.git
synced 2025-01-08 13:22:53 +02:00
790f793844
There are lots of files that don't need it: The number of object files that actually need it went down from 2011 to 884 here. Keep it for external users in order to not cause breakages. Also improve the other headers a bit while just at it. Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
532 lines
17 KiB
C
532 lines
17 KiB
C
/*
|
|
* Copyright (C) 2007 Vitor Sessak <vitor1001@gmail.com>
|
|
*
|
|
* This file is part of FFmpeg.
|
|
*
|
|
* FFmpeg is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*
|
|
* FFmpeg is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with FFmpeg; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
|
|
/**
|
|
* @file
|
|
* Codebook Generator using the ELBG algorithm
|
|
*/
|
|
|
|
#include <string.h>
|
|
|
|
#include "libavutil/avassert.h"
|
|
#include "libavutil/common.h"
|
|
#include "libavutil/lfg.h"
|
|
#include "libavutil/mem.h"
|
|
#include "elbg.h"
|
|
|
|
#define DELTA_ERR_MAX 0.1 ///< Precision of the ELBG algorithm (as percentage error)
|
|
|
|
/**
|
|
* In the ELBG jargon, a cell is the set of points that are closest to a
|
|
* codebook entry. Not to be confused with a RoQ Video cell. */
|
|
typedef struct cell_s {
|
|
int index;
|
|
struct cell_s *next;
|
|
} cell;
|
|
|
|
/**
|
|
* ELBG internal data
|
|
*/
|
|
typedef struct ELBGContext {
|
|
int error;
|
|
int dim;
|
|
int num_cb;
|
|
int *codebook;
|
|
cell **cells;
|
|
int *utility;
|
|
int *utility_inc;
|
|
int *nearest_cb;
|
|
int *points;
|
|
int *temp_points;
|
|
int *size_part;
|
|
AVLFG *rand_state;
|
|
int *scratchbuf;
|
|
cell *cell_buffer;
|
|
|
|
/* Sizes for the buffers above. Pointers without such a field
|
|
* are not allocated by us and only valid for the duration
|
|
* of a single call to avpriv_elbg_do(). */
|
|
unsigned utility_allocated;
|
|
unsigned utility_inc_allocated;
|
|
unsigned size_part_allocated;
|
|
unsigned cells_allocated;
|
|
unsigned scratchbuf_allocated;
|
|
unsigned cell_buffer_allocated;
|
|
unsigned temp_points_allocated;
|
|
} ELBGContext;
|
|
|
|
static inline int distance_limited(int *a, int *b, int dim, int limit)
|
|
{
|
|
int i, dist=0;
|
|
for (i=0; i<dim; i++) {
|
|
int64_t distance = a[i] - b[i];
|
|
|
|
distance *= distance;
|
|
if (dist >= limit - distance)
|
|
return limit;
|
|
dist += distance;
|
|
}
|
|
|
|
return dist;
|
|
}
|
|
|
|
static inline void vect_division(int *res, int *vect, int div, int dim)
|
|
{
|
|
int i;
|
|
if (div > 1)
|
|
for (i=0; i<dim; i++)
|
|
res[i] = ROUNDED_DIV(vect[i],div);
|
|
else if (res != vect)
|
|
memcpy(res, vect, dim*sizeof(int));
|
|
|
|
}
|
|
|
|
static int eval_error_cell(ELBGContext *elbg, int *centroid, cell *cells)
|
|
{
|
|
int error=0;
|
|
for (; cells; cells=cells->next) {
|
|
int distance = distance_limited(centroid, elbg->points + cells->index*elbg->dim, elbg->dim, INT_MAX);
|
|
if (error >= INT_MAX - distance)
|
|
return INT_MAX;
|
|
error += distance;
|
|
}
|
|
|
|
return error;
|
|
}
|
|
|
|
static int get_closest_codebook(ELBGContext *elbg, int index)
|
|
{
|
|
int pick = 0;
|
|
for (int i = 0, diff_min = INT_MAX; i < elbg->num_cb; i++)
|
|
if (i != index) {
|
|
int diff;
|
|
diff = distance_limited(elbg->codebook + i*elbg->dim, elbg->codebook + index*elbg->dim, elbg->dim, diff_min);
|
|
if (diff < diff_min) {
|
|
pick = i;
|
|
diff_min = diff;
|
|
}
|
|
}
|
|
return pick;
|
|
}
|
|
|
|
static int get_high_utility_cell(ELBGContext *elbg)
|
|
{
|
|
int i=0;
|
|
/* Using linear search, do binary if it ever turns to be speed critical */
|
|
uint64_t r;
|
|
|
|
if (elbg->utility_inc[elbg->num_cb - 1] < INT_MAX) {
|
|
r = av_lfg_get(elbg->rand_state) % (unsigned int)elbg->utility_inc[elbg->num_cb - 1] + 1;
|
|
} else {
|
|
r = av_lfg_get(elbg->rand_state);
|
|
r = (av_lfg_get(elbg->rand_state) + (r<<32)) % elbg->utility_inc[elbg->num_cb - 1] + 1;
|
|
}
|
|
|
|
while (elbg->utility_inc[i] < r) {
|
|
i++;
|
|
}
|
|
|
|
av_assert2(elbg->cells[i]);
|
|
|
|
return i;
|
|
}
|
|
|
|
/**
|
|
* Implementation of the simple LBG algorithm for just two codebooks
|
|
*/
|
|
static int simple_lbg(ELBGContext *elbg,
|
|
int dim,
|
|
int *centroid[3],
|
|
int newutility[3],
|
|
int *points,
|
|
cell *cells)
|
|
{
|
|
int i, idx;
|
|
int numpoints[2] = {0,0};
|
|
int *newcentroid[2] = {
|
|
elbg->scratchbuf + 3*dim,
|
|
elbg->scratchbuf + 4*dim
|
|
};
|
|
cell *tempcell;
|
|
|
|
memset(newcentroid[0], 0, 2 * dim * sizeof(*newcentroid[0]));
|
|
|
|
newutility[0] =
|
|
newutility[1] = 0;
|
|
|
|
for (tempcell = cells; tempcell; tempcell=tempcell->next) {
|
|
idx = distance_limited(centroid[0], points + tempcell->index*dim, dim, INT_MAX)>=
|
|
distance_limited(centroid[1], points + tempcell->index*dim, dim, INT_MAX);
|
|
numpoints[idx]++;
|
|
for (i=0; i<dim; i++)
|
|
newcentroid[idx][i] += points[tempcell->index*dim + i];
|
|
}
|
|
|
|
vect_division(centroid[0], newcentroid[0], numpoints[0], dim);
|
|
vect_division(centroid[1], newcentroid[1], numpoints[1], dim);
|
|
|
|
for (tempcell = cells; tempcell; tempcell=tempcell->next) {
|
|
int dist[2] = {distance_limited(centroid[0], points + tempcell->index*dim, dim, INT_MAX),
|
|
distance_limited(centroid[1], points + tempcell->index*dim, dim, INT_MAX)};
|
|
int idx = dist[0] > dist[1];
|
|
if (newutility[idx] >= INT_MAX - dist[idx])
|
|
newutility[idx] = INT_MAX;
|
|
else
|
|
newutility[idx] += dist[idx];
|
|
}
|
|
|
|
return (newutility[0] >= INT_MAX - newutility[1]) ? INT_MAX : newutility[0] + newutility[1];
|
|
}
|
|
|
|
static void get_new_centroids(ELBGContext *elbg, int huc, int *newcentroid_i,
|
|
int *newcentroid_p)
|
|
{
|
|
cell *tempcell;
|
|
int *min = newcentroid_i;
|
|
int *max = newcentroid_p;
|
|
int i;
|
|
|
|
for (i=0; i< elbg->dim; i++) {
|
|
min[i]=INT_MAX;
|
|
max[i]=0;
|
|
}
|
|
|
|
for (tempcell = elbg->cells[huc]; tempcell; tempcell = tempcell->next)
|
|
for(i=0; i<elbg->dim; i++) {
|
|
min[i]=FFMIN(min[i], elbg->points[tempcell->index*elbg->dim + i]);
|
|
max[i]=FFMAX(max[i], elbg->points[tempcell->index*elbg->dim + i]);
|
|
}
|
|
|
|
for (i=0; i<elbg->dim; i++) {
|
|
int ni = min[i] + (max[i] - min[i])/3;
|
|
int np = min[i] + (2*(max[i] - min[i]))/3;
|
|
newcentroid_i[i] = ni;
|
|
newcentroid_p[i] = np;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Add the points in the low utility cell to its closest cell. Split the high
|
|
* utility cell, putting the separated points in the (now empty) low utility
|
|
* cell.
|
|
*
|
|
* @param elbg Internal elbg data
|
|
* @param indexes {luc, huc, cluc}
|
|
* @param newcentroid A vector with the position of the new centroids
|
|
*/
|
|
static void shift_codebook(ELBGContext *elbg, int *indexes,
|
|
int *newcentroid[3])
|
|
{
|
|
cell *tempdata;
|
|
cell **pp = &elbg->cells[indexes[2]];
|
|
|
|
while(*pp)
|
|
pp= &(*pp)->next;
|
|
|
|
*pp = elbg->cells[indexes[0]];
|
|
|
|
elbg->cells[indexes[0]] = NULL;
|
|
tempdata = elbg->cells[indexes[1]];
|
|
elbg->cells[indexes[1]] = NULL;
|
|
|
|
while(tempdata) {
|
|
cell *tempcell2 = tempdata->next;
|
|
int idx = distance_limited(elbg->points + tempdata->index*elbg->dim,
|
|
newcentroid[0], elbg->dim, INT_MAX) >
|
|
distance_limited(elbg->points + tempdata->index*elbg->dim,
|
|
newcentroid[1], elbg->dim, INT_MAX);
|
|
|
|
tempdata->next = elbg->cells[indexes[idx]];
|
|
elbg->cells[indexes[idx]] = tempdata;
|
|
tempdata = tempcell2;
|
|
}
|
|
}
|
|
|
|
static void evaluate_utility_inc(ELBGContext *elbg)
|
|
{
|
|
int64_t inc=0;
|
|
|
|
for (int i = 0; i < elbg->num_cb; i++) {
|
|
if (elbg->num_cb * (int64_t)elbg->utility[i] > elbg->error)
|
|
inc += elbg->utility[i];
|
|
elbg->utility_inc[i] = FFMIN(inc, INT_MAX);
|
|
}
|
|
}
|
|
|
|
|
|
static void update_utility_and_n_cb(ELBGContext *elbg, int idx, int newutility)
|
|
{
|
|
cell *tempcell;
|
|
|
|
elbg->utility[idx] = newutility;
|
|
for (tempcell=elbg->cells[idx]; tempcell; tempcell=tempcell->next)
|
|
elbg->nearest_cb[tempcell->index] = idx;
|
|
}
|
|
|
|
/**
|
|
* Evaluate if a shift lower the error. If it does, call shift_codebooks
|
|
* and update elbg->error, elbg->utility and elbg->nearest_cb.
|
|
*
|
|
* @param elbg Internal elbg data
|
|
* @param idx {luc (low utility cell, huc (high utility cell), cluc (closest cell to low utility cell)}
|
|
*/
|
|
static void try_shift_candidate(ELBGContext *elbg, int idx[3])
|
|
{
|
|
int j, k, cont=0, tmp;
|
|
int64_t olderror=0, newerror;
|
|
int newutility[3];
|
|
int *newcentroid[3] = {
|
|
elbg->scratchbuf,
|
|
elbg->scratchbuf + elbg->dim,
|
|
elbg->scratchbuf + 2*elbg->dim
|
|
};
|
|
cell *tempcell;
|
|
|
|
for (j=0; j<3; j++)
|
|
olderror += elbg->utility[idx[j]];
|
|
|
|
memset(newcentroid[2], 0, elbg->dim*sizeof(int));
|
|
|
|
for (k=0; k<2; k++)
|
|
for (tempcell=elbg->cells[idx[2*k]]; tempcell; tempcell=tempcell->next) {
|
|
cont++;
|
|
for (j=0; j<elbg->dim; j++)
|
|
newcentroid[2][j] += elbg->points[tempcell->index*elbg->dim + j];
|
|
}
|
|
|
|
vect_division(newcentroid[2], newcentroid[2], cont, elbg->dim);
|
|
|
|
get_new_centroids(elbg, idx[1], newcentroid[0], newcentroid[1]);
|
|
|
|
newutility[2] = eval_error_cell(elbg, newcentroid[2], elbg->cells[idx[0]]);
|
|
tmp = eval_error_cell(elbg, newcentroid[2], elbg->cells[idx[2]]);
|
|
newutility[2] = (tmp >= INT_MAX - newutility[2]) ? INT_MAX : newutility[2] + tmp;
|
|
|
|
newerror = newutility[2];
|
|
|
|
tmp = simple_lbg(elbg, elbg->dim, newcentroid, newutility, elbg->points,
|
|
elbg->cells[idx[1]]);
|
|
if (tmp >= INT_MAX - newerror)
|
|
newerror = INT_MAX;
|
|
else
|
|
newerror += tmp;
|
|
|
|
if (olderror > newerror) {
|
|
shift_codebook(elbg, idx, newcentroid);
|
|
|
|
elbg->error += newerror - olderror;
|
|
|
|
for (j=0; j<3; j++)
|
|
update_utility_and_n_cb(elbg, idx[j], newutility[j]);
|
|
|
|
evaluate_utility_inc(elbg);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Implementation of the ELBG block
|
|
*/
|
|
static void do_shiftings(ELBGContext *elbg)
|
|
{
|
|
int idx[3];
|
|
|
|
evaluate_utility_inc(elbg);
|
|
|
|
for (idx[0]=0; idx[0] < elbg->num_cb; idx[0]++)
|
|
if (elbg->num_cb * (int64_t)elbg->utility[idx[0]] < elbg->error) {
|
|
if (elbg->utility_inc[elbg->num_cb - 1] == 0)
|
|
return;
|
|
|
|
idx[1] = get_high_utility_cell(elbg);
|
|
idx[2] = get_closest_codebook(elbg, idx[0]);
|
|
|
|
if (idx[1] != idx[0] && idx[1] != idx[2])
|
|
try_shift_candidate(elbg, idx);
|
|
}
|
|
}
|
|
|
|
static void do_elbg(ELBGContext *restrict elbg, int *points, int numpoints,
|
|
int max_steps)
|
|
{
|
|
int *const size_part = elbg->size_part;
|
|
int i, j, steps = 0;
|
|
int best_idx = 0;
|
|
int last_error;
|
|
|
|
elbg->error = INT_MAX;
|
|
elbg->points = points;
|
|
|
|
do {
|
|
cell *free_cells = elbg->cell_buffer;
|
|
last_error = elbg->error;
|
|
steps++;
|
|
memset(elbg->utility, 0, elbg->num_cb * sizeof(*elbg->utility));
|
|
memset(elbg->cells, 0, elbg->num_cb * sizeof(*elbg->cells));
|
|
|
|
elbg->error = 0;
|
|
|
|
/* This loop evaluate the actual Voronoi partition. It is the most
|
|
costly part of the algorithm. */
|
|
for (i=0; i < numpoints; i++) {
|
|
int best_dist = distance_limited(elbg->points + i * elbg->dim,
|
|
elbg->codebook + best_idx * elbg->dim,
|
|
elbg->dim, INT_MAX);
|
|
for (int k = 0; k < elbg->num_cb; k++) {
|
|
int dist = distance_limited(elbg->points + i * elbg->dim,
|
|
elbg->codebook + k * elbg->dim,
|
|
elbg->dim, best_dist);
|
|
if (dist < best_dist) {
|
|
best_dist = dist;
|
|
best_idx = k;
|
|
}
|
|
}
|
|
elbg->nearest_cb[i] = best_idx;
|
|
elbg->error = (elbg->error >= INT_MAX - best_dist) ? INT_MAX : elbg->error + best_dist;
|
|
elbg->utility[elbg->nearest_cb[i]] = (elbg->utility[elbg->nearest_cb[i]] >= INT_MAX - best_dist) ?
|
|
INT_MAX : elbg->utility[elbg->nearest_cb[i]] + best_dist;
|
|
free_cells->index = i;
|
|
free_cells->next = elbg->cells[elbg->nearest_cb[i]];
|
|
elbg->cells[elbg->nearest_cb[i]] = free_cells;
|
|
free_cells++;
|
|
}
|
|
|
|
do_shiftings(elbg);
|
|
|
|
memset(size_part, 0, elbg->num_cb * sizeof(*size_part));
|
|
|
|
memset(elbg->codebook, 0, elbg->num_cb * elbg->dim * sizeof(*elbg->codebook));
|
|
|
|
for (i=0; i < numpoints; i++) {
|
|
size_part[elbg->nearest_cb[i]]++;
|
|
for (j=0; j < elbg->dim; j++)
|
|
elbg->codebook[elbg->nearest_cb[i]*elbg->dim + j] +=
|
|
elbg->points[i*elbg->dim + j];
|
|
}
|
|
|
|
for (int i = 0; i < elbg->num_cb; i++)
|
|
vect_division(elbg->codebook + i*elbg->dim,
|
|
elbg->codebook + i*elbg->dim, size_part[i], elbg->dim);
|
|
|
|
} while(((last_error - elbg->error) > DELTA_ERR_MAX*elbg->error) &&
|
|
(steps < max_steps));
|
|
}
|
|
|
|
#define BIG_PRIME 433494437LL
|
|
|
|
/**
|
|
* Initialize the codebook vector for the elbg algorithm.
|
|
* If numpoints <= 24 * num_cb this function fills codebook with random numbers.
|
|
* If not, it calls do_elbg for a (smaller) random sample of the points in
|
|
* points.
|
|
*/
|
|
static void init_elbg(ELBGContext *restrict elbg, int *points, int *temp_points,
|
|
int numpoints, int max_steps)
|
|
{
|
|
int dim = elbg->dim;
|
|
|
|
if (numpoints > 24LL * elbg->num_cb) {
|
|
/* ELBG is very costly for a big number of points. So if we have a lot
|
|
of them, get a good initial codebook to save on iterations */
|
|
for (int i = 0; i < numpoints / 8; i++) {
|
|
int k = (i*BIG_PRIME) % numpoints;
|
|
memcpy(temp_points + i*dim, points + k*dim, dim * sizeof(*temp_points));
|
|
}
|
|
|
|
/* If anything is changed in the recursion parameters,
|
|
* the allocated size of temp_points will also need to be updated. */
|
|
init_elbg(elbg, temp_points, temp_points + numpoints / 8 * dim,
|
|
numpoints / 8, 2 * max_steps);
|
|
do_elbg(elbg, temp_points, numpoints / 8, 2 * max_steps);
|
|
} else // If not, initialize the codebook with random positions
|
|
for (int i = 0; i < elbg->num_cb; i++)
|
|
memcpy(elbg->codebook + i * dim, points + ((i*BIG_PRIME)%numpoints)*dim,
|
|
dim * sizeof(*elbg->codebook));
|
|
}
|
|
|
|
int avpriv_elbg_do(ELBGContext **elbgp, int *points, int dim, int numpoints,
|
|
int *codebook, int num_cb, int max_steps,
|
|
int *closest_cb, AVLFG *rand_state, uintptr_t flags)
|
|
{
|
|
ELBGContext *const restrict elbg = *elbgp ? *elbgp : av_mallocz(sizeof(*elbg));
|
|
|
|
if (!elbg)
|
|
return AVERROR(ENOMEM);
|
|
*elbgp = elbg;
|
|
|
|
elbg->nearest_cb = closest_cb;
|
|
elbg->rand_state = rand_state;
|
|
elbg->codebook = codebook;
|
|
elbg->num_cb = num_cb;
|
|
elbg->dim = dim;
|
|
|
|
#define ALLOCATE_IF_NECESSARY(field, new_elements, multiplicator) \
|
|
if (elbg->field ## _allocated < new_elements) { \
|
|
av_freep(&elbg->field); \
|
|
elbg->field = av_malloc_array(new_elements, \
|
|
multiplicator * sizeof(*elbg->field)); \
|
|
if (!elbg->field) { \
|
|
elbg->field ## _allocated = 0; \
|
|
return AVERROR(ENOMEM); \
|
|
} \
|
|
elbg->field ## _allocated = new_elements; \
|
|
}
|
|
/* Allocating the buffers for do_elbg() here once relies
|
|
* on their size being always the same even when do_elbg()
|
|
* is called from init_elbg(). It also relies on do_elbg()
|
|
* never calling itself recursively. */
|
|
ALLOCATE_IF_NECESSARY(cells, num_cb, 1)
|
|
ALLOCATE_IF_NECESSARY(utility, num_cb, 1)
|
|
ALLOCATE_IF_NECESSARY(utility_inc, num_cb, 1)
|
|
ALLOCATE_IF_NECESSARY(size_part, num_cb, 1)
|
|
ALLOCATE_IF_NECESSARY(cell_buffer, numpoints, 1)
|
|
ALLOCATE_IF_NECESSARY(scratchbuf, dim, 5)
|
|
if (numpoints > 24LL * elbg->num_cb) {
|
|
/* The first step in the recursion in init_elbg() needs a buffer with
|
|
* (numpoints / 8) * dim elements; the next step needs numpoints / 8 / 8
|
|
* * dim elements etc. The geometric series leads to an upper bound of
|
|
* numpoints / 8 * 8 / 7 * dim elements. */
|
|
uint64_t prod = dim * (uint64_t)(numpoints / 7U);
|
|
if (prod > INT_MAX)
|
|
return AVERROR(ERANGE);
|
|
ALLOCATE_IF_NECESSARY(temp_points, prod, 1)
|
|
}
|
|
|
|
init_elbg(elbg, points, elbg->temp_points, numpoints, max_steps);
|
|
do_elbg (elbg, points, numpoints, max_steps);
|
|
return 0;
|
|
}
|
|
|
|
av_cold void avpriv_elbg_free(ELBGContext **elbgp)
|
|
{
|
|
ELBGContext *elbg = *elbgp;
|
|
if (!elbg)
|
|
return;
|
|
|
|
av_freep(&elbg->size_part);
|
|
av_freep(&elbg->utility);
|
|
av_freep(&elbg->cell_buffer);
|
|
av_freep(&elbg->cells);
|
|
av_freep(&elbg->utility_inc);
|
|
av_freep(&elbg->scratchbuf);
|
|
av_freep(&elbg->temp_points);
|
|
|
|
av_freep(elbgp);
|
|
}
|