1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2024-12-28 20:53:54 +02:00
FFmpeg/libavfilter/vf_lut3d.c
Andreas Rheinhardt a04ad248a0 avfilter: Constify all AVFilters
This is possible now that the next-API is gone.

Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
Signed-off-by: James Almer <jamrial@gmail.com>
2021-04-27 11:48:05 -03:00

2301 lines
98 KiB
C

/*
* Copyright (c) 2013 Clément Bœsch
* Copyright (c) 2018 Paul B Mahol
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* 3D Lookup table filter
*/
#include "float.h"
#include "libavutil/opt.h"
#include "libavutil/file.h"
#include "libavutil/intreadwrite.h"
#include "libavutil/intfloat.h"
#include "libavutil/avassert.h"
#include "libavutil/pixdesc.h"
#include "libavutil/avstring.h"
#include "avfilter.h"
#include "drawutils.h"
#include "formats.h"
#include "framesync.h"
#include "internal.h"
#include "video.h"
#define R 0
#define G 1
#define B 2
#define A 3
enum interp_mode {
INTERPOLATE_NEAREST,
INTERPOLATE_TRILINEAR,
INTERPOLATE_TETRAHEDRAL,
INTERPOLATE_PYRAMID,
INTERPOLATE_PRISM,
NB_INTERP_MODE
};
struct rgbvec {
float r, g, b;
};
/* 3D LUT don't often go up to level 32, but it is common to have a Hald CLUT
* of 512x512 (64x64x64) */
#define MAX_LEVEL 256
#define PRELUT_SIZE 65536
typedef struct Lut3DPreLut {
int size;
float min[3];
float max[3];
float scale[3];
float* lut[3];
} Lut3DPreLut;
typedef struct LUT3DContext {
const AVClass *class;
int interpolation; ///<interp_mode
char *file;
uint8_t rgba_map[4];
int step;
avfilter_action_func *interp;
struct rgbvec scale;
struct rgbvec *lut;
int lutsize;
int lutsize2;
Lut3DPreLut prelut;
#if CONFIG_HALDCLUT_FILTER
uint8_t clut_rgba_map[4];
int clut_step;
int clut_bits;
int clut_planar;
int clut_float;
int clut_width;
FFFrameSync fs;
#endif
} LUT3DContext;
typedef struct ThreadData {
AVFrame *in, *out;
} ThreadData;
#define OFFSET(x) offsetof(LUT3DContext, x)
#define FLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM
#define TFLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM|AV_OPT_FLAG_RUNTIME_PARAM
#define COMMON_OPTIONS \
{ "interp", "select interpolation mode", OFFSET(interpolation), AV_OPT_TYPE_INT, {.i64=INTERPOLATE_TETRAHEDRAL}, 0, NB_INTERP_MODE-1, TFLAGS, "interp_mode" }, \
{ "nearest", "use values from the nearest defined points", 0, AV_OPT_TYPE_CONST, {.i64=INTERPOLATE_NEAREST}, 0, 0, TFLAGS, "interp_mode" }, \
{ "trilinear", "interpolate values using the 8 points defining a cube", 0, AV_OPT_TYPE_CONST, {.i64=INTERPOLATE_TRILINEAR}, 0, 0, TFLAGS, "interp_mode" }, \
{ "tetrahedral", "interpolate values using a tetrahedron", 0, AV_OPT_TYPE_CONST, {.i64=INTERPOLATE_TETRAHEDRAL}, 0, 0, TFLAGS, "interp_mode" }, \
{ "pyramid", "interpolate values using a pyramid", 0, AV_OPT_TYPE_CONST, {.i64=INTERPOLATE_PYRAMID}, 0, 0, TFLAGS, "interp_mode" }, \
{ "prism", "interpolate values using a prism", 0, AV_OPT_TYPE_CONST, {.i64=INTERPOLATE_PRISM}, 0, 0, TFLAGS, "interp_mode" }, \
{ NULL }
#define EXPONENT_MASK 0x7F800000
#define MANTISSA_MASK 0x007FFFFF
#define SIGN_MASK 0x80000000
static inline float sanitizef(float f)
{
union av_intfloat32 t;
t.f = f;
if ((t.i & EXPONENT_MASK) == EXPONENT_MASK) {
if ((t.i & MANTISSA_MASK) != 0) {
// NAN
return 0.0f;
} else if (t.i & SIGN_MASK) {
// -INF
return -FLT_MAX;
} else {
// +INF
return FLT_MAX;
}
}
return f;
}
static inline float lerpf(float v0, float v1, float f)
{
return v0 + (v1 - v0) * f;
}
static inline struct rgbvec lerp(const struct rgbvec *v0, const struct rgbvec *v1, float f)
{
struct rgbvec v = {
lerpf(v0->r, v1->r, f), lerpf(v0->g, v1->g, f), lerpf(v0->b, v1->b, f)
};
return v;
}
#define NEAR(x) ((int)((x) + .5))
#define PREV(x) ((int)(x))
#define NEXT(x) (FFMIN((int)(x) + 1, lut3d->lutsize - 1))
/**
* Get the nearest defined point
*/
static inline struct rgbvec interp_nearest(const LUT3DContext *lut3d,
const struct rgbvec *s)
{
return lut3d->lut[NEAR(s->r) * lut3d->lutsize2 + NEAR(s->g) * lut3d->lutsize + NEAR(s->b)];
}
/**
* Interpolate using the 8 vertices of a cube
* @see https://en.wikipedia.org/wiki/Trilinear_interpolation
*/
static inline struct rgbvec interp_trilinear(const LUT3DContext *lut3d,
const struct rgbvec *s)
{
const int lutsize2 = lut3d->lutsize2;
const int lutsize = lut3d->lutsize;
const int prev[] = {PREV(s->r), PREV(s->g), PREV(s->b)};
const int next[] = {NEXT(s->r), NEXT(s->g), NEXT(s->b)};
const struct rgbvec d = {s->r - prev[0], s->g - prev[1], s->b - prev[2]};
const struct rgbvec c000 = lut3d->lut[prev[0] * lutsize2 + prev[1] * lutsize + prev[2]];
const struct rgbvec c001 = lut3d->lut[prev[0] * lutsize2 + prev[1] * lutsize + next[2]];
const struct rgbvec c010 = lut3d->lut[prev[0] * lutsize2 + next[1] * lutsize + prev[2]];
const struct rgbvec c011 = lut3d->lut[prev[0] * lutsize2 + next[1] * lutsize + next[2]];
const struct rgbvec c100 = lut3d->lut[next[0] * lutsize2 + prev[1] * lutsize + prev[2]];
const struct rgbvec c101 = lut3d->lut[next[0] * lutsize2 + prev[1] * lutsize + next[2]];
const struct rgbvec c110 = lut3d->lut[next[0] * lutsize2 + next[1] * lutsize + prev[2]];
const struct rgbvec c111 = lut3d->lut[next[0] * lutsize2 + next[1] * lutsize + next[2]];
const struct rgbvec c00 = lerp(&c000, &c100, d.r);
const struct rgbvec c10 = lerp(&c010, &c110, d.r);
const struct rgbvec c01 = lerp(&c001, &c101, d.r);
const struct rgbvec c11 = lerp(&c011, &c111, d.r);
const struct rgbvec c0 = lerp(&c00, &c10, d.g);
const struct rgbvec c1 = lerp(&c01, &c11, d.g);
const struct rgbvec c = lerp(&c0, &c1, d.b);
return c;
}
static inline struct rgbvec interp_pyramid(const LUT3DContext *lut3d,
const struct rgbvec *s)
{
const int lutsize2 = lut3d->lutsize2;
const int lutsize = lut3d->lutsize;
const int prev[] = {PREV(s->r), PREV(s->g), PREV(s->b)};
const int next[] = {NEXT(s->r), NEXT(s->g), NEXT(s->b)};
const struct rgbvec d = {s->r - prev[0], s->g - prev[1], s->b - prev[2]};
const struct rgbvec c000 = lut3d->lut[prev[0] * lutsize2 + prev[1] * lutsize + prev[2]];
const struct rgbvec c111 = lut3d->lut[next[0] * lutsize2 + next[1] * lutsize + next[2]];
struct rgbvec c;
if (d.g > d.r && d.b > d.r) {
const struct rgbvec c001 = lut3d->lut[prev[0] * lutsize2 + prev[1] * lutsize + next[2]];
const struct rgbvec c010 = lut3d->lut[prev[0] * lutsize2 + next[1] * lutsize + prev[2]];
const struct rgbvec c011 = lut3d->lut[prev[0] * lutsize2 + next[1] * lutsize + next[2]];
c.r = c000.r + (c111.r - c011.r) * d.r + (c010.r - c000.r) * d.g + (c001.r - c000.r) * d.b +
(c011.r - c001.r - c010.r + c000.r) * d.g * d.b;
c.g = c000.g + (c111.g - c011.g) * d.r + (c010.g - c000.g) * d.g + (c001.g - c000.g) * d.b +
(c011.g - c001.g - c010.g + c000.g) * d.g * d.b;
c.b = c000.b + (c111.b - c011.b) * d.r + (c010.b - c000.b) * d.g + (c001.b - c000.b) * d.b +
(c011.b - c001.b - c010.b + c000.b) * d.g * d.b;
} else if (d.r > d.g && d.b > d.g) {
const struct rgbvec c001 = lut3d->lut[prev[0] * lutsize2 + prev[1] * lutsize + next[2]];
const struct rgbvec c100 = lut3d->lut[next[0] * lutsize2 + prev[1] * lutsize + prev[2]];
const struct rgbvec c101 = lut3d->lut[next[0] * lutsize2 + prev[1] * lutsize + next[2]];
c.r = c000.r + (c100.r - c000.r) * d.r + (c111.r - c101.r) * d.g + (c001.r - c000.r) * d.b +
(c101.r - c001.r - c100.r + c000.r) * d.r * d.b;
c.g = c000.g + (c100.g - c000.g) * d.r + (c111.g - c101.g) * d.g + (c001.g - c000.g) * d.b +
(c101.g - c001.g - c100.g + c000.g) * d.r * d.b;
c.b = c000.b + (c100.b - c000.b) * d.r + (c111.b - c101.b) * d.g + (c001.b - c000.b) * d.b +
(c101.b - c001.b - c100.b + c000.b) * d.r * d.b;
} else {
const struct rgbvec c010 = lut3d->lut[prev[0] * lutsize2 + next[1] * lutsize + prev[2]];
const struct rgbvec c110 = lut3d->lut[next[0] * lutsize2 + next[1] * lutsize + prev[2]];
const struct rgbvec c100 = lut3d->lut[next[0] * lutsize2 + prev[1] * lutsize + prev[2]];
c.r = c000.r + (c100.r - c000.r) * d.r + (c010.r - c000.r) * d.g + (c111.r - c110.r) * d.b +
(c110.r - c100.r - c010.r + c000.r) * d.r * d.g;
c.g = c000.g + (c100.g - c000.g) * d.r + (c010.g - c000.g) * d.g + (c111.g - c110.g) * d.b +
(c110.g - c100.g - c010.g + c000.g) * d.r * d.g;
c.b = c000.b + (c100.b - c000.b) * d.r + (c010.b - c000.b) * d.g + (c111.b - c110.b) * d.b +
(c110.b - c100.b - c010.b + c000.b) * d.r * d.g;
}
return c;
}
static inline struct rgbvec interp_prism(const LUT3DContext *lut3d,
const struct rgbvec *s)
{
const int lutsize2 = lut3d->lutsize2;
const int lutsize = lut3d->lutsize;
const int prev[] = {PREV(s->r), PREV(s->g), PREV(s->b)};
const int next[] = {NEXT(s->r), NEXT(s->g), NEXT(s->b)};
const struct rgbvec d = {s->r - prev[0], s->g - prev[1], s->b - prev[2]};
const struct rgbvec c000 = lut3d->lut[prev[0] * lutsize2 + prev[1] * lutsize + prev[2]];
const struct rgbvec c010 = lut3d->lut[prev[0] * lutsize2 + next[1] * lutsize + prev[2]];
const struct rgbvec c101 = lut3d->lut[next[0] * lutsize2 + prev[1] * lutsize + next[2]];
const struct rgbvec c111 = lut3d->lut[next[0] * lutsize2 + next[1] * lutsize + next[2]];
struct rgbvec c;
if (d.b > d.r) {
const struct rgbvec c001 = lut3d->lut[prev[0] * lutsize2 + prev[1] * lutsize + next[2]];
const struct rgbvec c011 = lut3d->lut[prev[0] * lutsize2 + next[1] * lutsize + next[2]];
c.r = c000.r + (c001.r - c000.r) * d.b + (c101.r - c001.r) * d.r + (c010.r - c000.r) * d.g +
(c000.r - c010.r - c001.r + c011.r) * d.b * d.g +
(c001.r - c011.r - c101.r + c111.r) * d.r * d.g;
c.g = c000.g + (c001.g - c000.g) * d.b + (c101.g - c001.g) * d.r + (c010.g - c000.g) * d.g +
(c000.g - c010.g - c001.g + c011.g) * d.b * d.g +
(c001.g - c011.g - c101.g + c111.g) * d.r * d.g;
c.b = c000.b + (c001.b - c000.b) * d.b + (c101.b - c001.b) * d.r + (c010.b - c000.b) * d.g +
(c000.b - c010.b - c001.b + c011.b) * d.b * d.g +
(c001.b - c011.b - c101.b + c111.b) * d.r * d.g;
} else {
const struct rgbvec c110 = lut3d->lut[next[0] * lutsize2 + next[1] * lutsize + prev[2]];
const struct rgbvec c100 = lut3d->lut[next[0] * lutsize2 + prev[1] * lutsize + prev[2]];
c.r = c000.r + (c101.r - c100.r) * d.b + (c100.r - c000.r) * d.r + (c010.r - c000.r) * d.g +
(c100.r - c110.r - c101.r + c111.r) * d.b * d.g +
(c000.r - c010.r - c100.r + c110.r) * d.r * d.g;
c.g = c000.g + (c101.g - c100.g) * d.b + (c100.g - c000.g) * d.r + (c010.g - c000.g) * d.g +
(c100.g - c110.g - c101.g + c111.g) * d.b * d.g +
(c000.g - c010.g - c100.g + c110.g) * d.r * d.g;
c.b = c000.b + (c101.b - c100.b) * d.b + (c100.b - c000.b) * d.r + (c010.b - c000.b) * d.g +
(c100.b - c110.b - c101.b + c111.b) * d.b * d.g +
(c000.b - c010.b - c100.b + c110.b) * d.r * d.g;
}
return c;
}
/**
* Tetrahedral interpolation. Based on code found in Truelight Software Library paper.
* @see http://www.filmlight.ltd.uk/pdf/whitepapers/FL-TL-TN-0057-SoftwareLib.pdf
*/
static inline struct rgbvec interp_tetrahedral(const LUT3DContext *lut3d,
const struct rgbvec *s)
{
const int lutsize2 = lut3d->lutsize2;
const int lutsize = lut3d->lutsize;
const int prev[] = {PREV(s->r), PREV(s->g), PREV(s->b)};
const int next[] = {NEXT(s->r), NEXT(s->g), NEXT(s->b)};
const struct rgbvec d = {s->r - prev[0], s->g - prev[1], s->b - prev[2]};
const struct rgbvec c000 = lut3d->lut[prev[0] * lutsize2 + prev[1] * lutsize + prev[2]];
const struct rgbvec c111 = lut3d->lut[next[0] * lutsize2 + next[1] * lutsize + next[2]];
struct rgbvec c;
if (d.r > d.g) {
if (d.g > d.b) {
const struct rgbvec c100 = lut3d->lut[next[0] * lutsize2 + prev[1] * lutsize + prev[2]];
const struct rgbvec c110 = lut3d->lut[next[0] * lutsize2 + next[1] * lutsize + prev[2]];
c.r = (1-d.r) * c000.r + (d.r-d.g) * c100.r + (d.g-d.b) * c110.r + (d.b) * c111.r;
c.g = (1-d.r) * c000.g + (d.r-d.g) * c100.g + (d.g-d.b) * c110.g + (d.b) * c111.g;
c.b = (1-d.r) * c000.b + (d.r-d.g) * c100.b + (d.g-d.b) * c110.b + (d.b) * c111.b;
} else if (d.r > d.b) {
const struct rgbvec c100 = lut3d->lut[next[0] * lutsize2 + prev[1] * lutsize + prev[2]];
const struct rgbvec c101 = lut3d->lut[next[0] * lutsize2 + prev[1] * lutsize + next[2]];
c.r = (1-d.r) * c000.r + (d.r-d.b) * c100.r + (d.b-d.g) * c101.r + (d.g) * c111.r;
c.g = (1-d.r) * c000.g + (d.r-d.b) * c100.g + (d.b-d.g) * c101.g + (d.g) * c111.g;
c.b = (1-d.r) * c000.b + (d.r-d.b) * c100.b + (d.b-d.g) * c101.b + (d.g) * c111.b;
} else {
const struct rgbvec c001 = lut3d->lut[prev[0] * lutsize2 + prev[1] * lutsize + next[2]];
const struct rgbvec c101 = lut3d->lut[next[0] * lutsize2 + prev[1] * lutsize + next[2]];
c.r = (1-d.b) * c000.r + (d.b-d.r) * c001.r + (d.r-d.g) * c101.r + (d.g) * c111.r;
c.g = (1-d.b) * c000.g + (d.b-d.r) * c001.g + (d.r-d.g) * c101.g + (d.g) * c111.g;
c.b = (1-d.b) * c000.b + (d.b-d.r) * c001.b + (d.r-d.g) * c101.b + (d.g) * c111.b;
}
} else {
if (d.b > d.g) {
const struct rgbvec c001 = lut3d->lut[prev[0] * lutsize2 + prev[1] * lutsize + next[2]];
const struct rgbvec c011 = lut3d->lut[prev[0] * lutsize2 + next[1] * lutsize + next[2]];
c.r = (1-d.b) * c000.r + (d.b-d.g) * c001.r + (d.g-d.r) * c011.r + (d.r) * c111.r;
c.g = (1-d.b) * c000.g + (d.b-d.g) * c001.g + (d.g-d.r) * c011.g + (d.r) * c111.g;
c.b = (1-d.b) * c000.b + (d.b-d.g) * c001.b + (d.g-d.r) * c011.b + (d.r) * c111.b;
} else if (d.b > d.r) {
const struct rgbvec c010 = lut3d->lut[prev[0] * lutsize2 + next[1] * lutsize + prev[2]];
const struct rgbvec c011 = lut3d->lut[prev[0] * lutsize2 + next[1] * lutsize + next[2]];
c.r = (1-d.g) * c000.r + (d.g-d.b) * c010.r + (d.b-d.r) * c011.r + (d.r) * c111.r;
c.g = (1-d.g) * c000.g + (d.g-d.b) * c010.g + (d.b-d.r) * c011.g + (d.r) * c111.g;
c.b = (1-d.g) * c000.b + (d.g-d.b) * c010.b + (d.b-d.r) * c011.b + (d.r) * c111.b;
} else {
const struct rgbvec c010 = lut3d->lut[prev[0] * lutsize2 + next[1] * lutsize + prev[2]];
const struct rgbvec c110 = lut3d->lut[next[0] * lutsize2 + next[1] * lutsize + prev[2]];
c.r = (1-d.g) * c000.r + (d.g-d.r) * c010.r + (d.r-d.b) * c110.r + (d.b) * c111.r;
c.g = (1-d.g) * c000.g + (d.g-d.r) * c010.g + (d.r-d.b) * c110.g + (d.b) * c111.g;
c.b = (1-d.g) * c000.b + (d.g-d.r) * c010.b + (d.r-d.b) * c110.b + (d.b) * c111.b;
}
}
return c;
}
static inline float prelut_interp_1d_linear(const Lut3DPreLut *prelut,
int idx, const float s)
{
const int lut_max = prelut->size - 1;
const float scaled = (s - prelut->min[idx]) * prelut->scale[idx];
const float x = av_clipf(scaled, 0.0f, lut_max);
const int prev = PREV(x);
const int next = FFMIN((int)(x) + 1, lut_max);
const float p = prelut->lut[idx][prev];
const float n = prelut->lut[idx][next];
const float d = x - (float)prev;
return lerpf(p, n, d);
}
static inline struct rgbvec apply_prelut(const Lut3DPreLut *prelut,
const struct rgbvec *s)
{
struct rgbvec c;
if (prelut->size <= 0)
return *s;
c.r = prelut_interp_1d_linear(prelut, 0, s->r);
c.g = prelut_interp_1d_linear(prelut, 1, s->g);
c.b = prelut_interp_1d_linear(prelut, 2, s->b);
return c;
}
#define DEFINE_INTERP_FUNC_PLANAR(name, nbits, depth) \
static int interp_##nbits##_##name##_p##depth(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) \
{ \
int x, y; \
const LUT3DContext *lut3d = ctx->priv; \
const Lut3DPreLut *prelut = &lut3d->prelut; \
const ThreadData *td = arg; \
const AVFrame *in = td->in; \
const AVFrame *out = td->out; \
const int direct = out == in; \
const int slice_start = (in->height * jobnr ) / nb_jobs; \
const int slice_end = (in->height * (jobnr+1)) / nb_jobs; \
uint8_t *grow = out->data[0] + slice_start * out->linesize[0]; \
uint8_t *brow = out->data[1] + slice_start * out->linesize[1]; \
uint8_t *rrow = out->data[2] + slice_start * out->linesize[2]; \
uint8_t *arow = out->data[3] + slice_start * out->linesize[3]; \
const uint8_t *srcgrow = in->data[0] + slice_start * in->linesize[0]; \
const uint8_t *srcbrow = in->data[1] + slice_start * in->linesize[1]; \
const uint8_t *srcrrow = in->data[2] + slice_start * in->linesize[2]; \
const uint8_t *srcarow = in->data[3] + slice_start * in->linesize[3]; \
const float lut_max = lut3d->lutsize - 1; \
const float scale_f = 1.0f / ((1<<depth) - 1); \
const float scale_r = lut3d->scale.r * lut_max; \
const float scale_g = lut3d->scale.g * lut_max; \
const float scale_b = lut3d->scale.b * lut_max; \
\
for (y = slice_start; y < slice_end; y++) { \
uint##nbits##_t *dstg = (uint##nbits##_t *)grow; \
uint##nbits##_t *dstb = (uint##nbits##_t *)brow; \
uint##nbits##_t *dstr = (uint##nbits##_t *)rrow; \
uint##nbits##_t *dsta = (uint##nbits##_t *)arow; \
const uint##nbits##_t *srcg = (const uint##nbits##_t *)srcgrow; \
const uint##nbits##_t *srcb = (const uint##nbits##_t *)srcbrow; \
const uint##nbits##_t *srcr = (const uint##nbits##_t *)srcrrow; \
const uint##nbits##_t *srca = (const uint##nbits##_t *)srcarow; \
for (x = 0; x < in->width; x++) { \
const struct rgbvec rgb = {srcr[x] * scale_f, \
srcg[x] * scale_f, \
srcb[x] * scale_f}; \
const struct rgbvec prelut_rgb = apply_prelut(prelut, &rgb); \
const struct rgbvec scaled_rgb = {av_clipf(prelut_rgb.r * scale_r, 0, lut_max), \
av_clipf(prelut_rgb.g * scale_g, 0, lut_max), \
av_clipf(prelut_rgb.b * scale_b, 0, lut_max)}; \
struct rgbvec vec = interp_##name(lut3d, &scaled_rgb); \
dstr[x] = av_clip_uintp2(vec.r * (float)((1<<depth) - 1), depth); \
dstg[x] = av_clip_uintp2(vec.g * (float)((1<<depth) - 1), depth); \
dstb[x] = av_clip_uintp2(vec.b * (float)((1<<depth) - 1), depth); \
if (!direct && in->linesize[3]) \
dsta[x] = srca[x]; \
} \
grow += out->linesize[0]; \
brow += out->linesize[1]; \
rrow += out->linesize[2]; \
arow += out->linesize[3]; \
srcgrow += in->linesize[0]; \
srcbrow += in->linesize[1]; \
srcrrow += in->linesize[2]; \
srcarow += in->linesize[3]; \
} \
return 0; \
}
DEFINE_INTERP_FUNC_PLANAR(nearest, 8, 8)
DEFINE_INTERP_FUNC_PLANAR(trilinear, 8, 8)
DEFINE_INTERP_FUNC_PLANAR(tetrahedral, 8, 8)
DEFINE_INTERP_FUNC_PLANAR(pyramid, 8, 8)
DEFINE_INTERP_FUNC_PLANAR(prism, 8, 8)
DEFINE_INTERP_FUNC_PLANAR(nearest, 16, 9)
DEFINE_INTERP_FUNC_PLANAR(trilinear, 16, 9)
DEFINE_INTERP_FUNC_PLANAR(tetrahedral, 16, 9)
DEFINE_INTERP_FUNC_PLANAR(pyramid, 16, 9)
DEFINE_INTERP_FUNC_PLANAR(prism, 16, 9)
DEFINE_INTERP_FUNC_PLANAR(nearest, 16, 10)
DEFINE_INTERP_FUNC_PLANAR(trilinear, 16, 10)
DEFINE_INTERP_FUNC_PLANAR(tetrahedral, 16, 10)
DEFINE_INTERP_FUNC_PLANAR(pyramid, 16, 10)
DEFINE_INTERP_FUNC_PLANAR(prism, 16, 10)
DEFINE_INTERP_FUNC_PLANAR(nearest, 16, 12)
DEFINE_INTERP_FUNC_PLANAR(trilinear, 16, 12)
DEFINE_INTERP_FUNC_PLANAR(tetrahedral, 16, 12)
DEFINE_INTERP_FUNC_PLANAR(pyramid, 16, 12)
DEFINE_INTERP_FUNC_PLANAR(prism, 16, 12)
DEFINE_INTERP_FUNC_PLANAR(nearest, 16, 14)
DEFINE_INTERP_FUNC_PLANAR(trilinear, 16, 14)
DEFINE_INTERP_FUNC_PLANAR(tetrahedral, 16, 14)
DEFINE_INTERP_FUNC_PLANAR(pyramid, 16, 14)
DEFINE_INTERP_FUNC_PLANAR(prism, 16, 14)
DEFINE_INTERP_FUNC_PLANAR(nearest, 16, 16)
DEFINE_INTERP_FUNC_PLANAR(trilinear, 16, 16)
DEFINE_INTERP_FUNC_PLANAR(tetrahedral, 16, 16)
DEFINE_INTERP_FUNC_PLANAR(pyramid, 16, 16)
DEFINE_INTERP_FUNC_PLANAR(prism, 16, 16)
#define DEFINE_INTERP_FUNC_PLANAR_FLOAT(name, depth) \
static int interp_##name##_pf##depth(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) \
{ \
int x, y; \
const LUT3DContext *lut3d = ctx->priv; \
const Lut3DPreLut *prelut = &lut3d->prelut; \
const ThreadData *td = arg; \
const AVFrame *in = td->in; \
const AVFrame *out = td->out; \
const int direct = out == in; \
const int slice_start = (in->height * jobnr ) / nb_jobs; \
const int slice_end = (in->height * (jobnr+1)) / nb_jobs; \
uint8_t *grow = out->data[0] + slice_start * out->linesize[0]; \
uint8_t *brow = out->data[1] + slice_start * out->linesize[1]; \
uint8_t *rrow = out->data[2] + slice_start * out->linesize[2]; \
uint8_t *arow = out->data[3] + slice_start * out->linesize[3]; \
const uint8_t *srcgrow = in->data[0] + slice_start * in->linesize[0]; \
const uint8_t *srcbrow = in->data[1] + slice_start * in->linesize[1]; \
const uint8_t *srcrrow = in->data[2] + slice_start * in->linesize[2]; \
const uint8_t *srcarow = in->data[3] + slice_start * in->linesize[3]; \
const float lut_max = lut3d->lutsize - 1; \
const float scale_r = lut3d->scale.r * lut_max; \
const float scale_g = lut3d->scale.g * lut_max; \
const float scale_b = lut3d->scale.b * lut_max; \
\
for (y = slice_start; y < slice_end; y++) { \
float *dstg = (float *)grow; \
float *dstb = (float *)brow; \
float *dstr = (float *)rrow; \
float *dsta = (float *)arow; \
const float *srcg = (const float *)srcgrow; \
const float *srcb = (const float *)srcbrow; \
const float *srcr = (const float *)srcrrow; \
const float *srca = (const float *)srcarow; \
for (x = 0; x < in->width; x++) { \
const struct rgbvec rgb = {sanitizef(srcr[x]), \
sanitizef(srcg[x]), \
sanitizef(srcb[x])}; \
const struct rgbvec prelut_rgb = apply_prelut(prelut, &rgb); \
const struct rgbvec scaled_rgb = {av_clipf(prelut_rgb.r * scale_r, 0, lut_max), \
av_clipf(prelut_rgb.g * scale_g, 0, lut_max), \
av_clipf(prelut_rgb.b * scale_b, 0, lut_max)}; \
struct rgbvec vec = interp_##name(lut3d, &scaled_rgb); \
dstr[x] = vec.r; \
dstg[x] = vec.g; \
dstb[x] = vec.b; \
if (!direct && in->linesize[3]) \
dsta[x] = srca[x]; \
} \
grow += out->linesize[0]; \
brow += out->linesize[1]; \
rrow += out->linesize[2]; \
arow += out->linesize[3]; \
srcgrow += in->linesize[0]; \
srcbrow += in->linesize[1]; \
srcrrow += in->linesize[2]; \
srcarow += in->linesize[3]; \
} \
return 0; \
}
DEFINE_INTERP_FUNC_PLANAR_FLOAT(nearest, 32)
DEFINE_INTERP_FUNC_PLANAR_FLOAT(trilinear, 32)
DEFINE_INTERP_FUNC_PLANAR_FLOAT(tetrahedral, 32)
DEFINE_INTERP_FUNC_PLANAR_FLOAT(pyramid, 32)
DEFINE_INTERP_FUNC_PLANAR_FLOAT(prism, 32)
#define DEFINE_INTERP_FUNC(name, nbits) \
static int interp_##nbits##_##name(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) \
{ \
int x, y; \
const LUT3DContext *lut3d = ctx->priv; \
const Lut3DPreLut *prelut = &lut3d->prelut; \
const ThreadData *td = arg; \
const AVFrame *in = td->in; \
const AVFrame *out = td->out; \
const int direct = out == in; \
const int step = lut3d->step; \
const uint8_t r = lut3d->rgba_map[R]; \
const uint8_t g = lut3d->rgba_map[G]; \
const uint8_t b = lut3d->rgba_map[B]; \
const uint8_t a = lut3d->rgba_map[A]; \
const int slice_start = (in->height * jobnr ) / nb_jobs; \
const int slice_end = (in->height * (jobnr+1)) / nb_jobs; \
uint8_t *dstrow = out->data[0] + slice_start * out->linesize[0]; \
const uint8_t *srcrow = in ->data[0] + slice_start * in ->linesize[0]; \
const float lut_max = lut3d->lutsize - 1; \
const float scale_f = 1.0f / ((1<<nbits) - 1); \
const float scale_r = lut3d->scale.r * lut_max; \
const float scale_g = lut3d->scale.g * lut_max; \
const float scale_b = lut3d->scale.b * lut_max; \
\
for (y = slice_start; y < slice_end; y++) { \
uint##nbits##_t *dst = (uint##nbits##_t *)dstrow; \
const uint##nbits##_t *src = (const uint##nbits##_t *)srcrow; \
for (x = 0; x < in->width * step; x += step) { \
const struct rgbvec rgb = {src[x + r] * scale_f, \
src[x + g] * scale_f, \
src[x + b] * scale_f}; \
const struct rgbvec prelut_rgb = apply_prelut(prelut, &rgb); \
const struct rgbvec scaled_rgb = {av_clipf(prelut_rgb.r * scale_r, 0, lut_max), \
av_clipf(prelut_rgb.g * scale_g, 0, lut_max), \
av_clipf(prelut_rgb.b * scale_b, 0, lut_max)}; \
struct rgbvec vec = interp_##name(lut3d, &scaled_rgb); \
dst[x + r] = av_clip_uint##nbits(vec.r * (float)((1<<nbits) - 1)); \
dst[x + g] = av_clip_uint##nbits(vec.g * (float)((1<<nbits) - 1)); \
dst[x + b] = av_clip_uint##nbits(vec.b * (float)((1<<nbits) - 1)); \
if (!direct && step == 4) \
dst[x + a] = src[x + a]; \
} \
dstrow += out->linesize[0]; \
srcrow += in ->linesize[0]; \
} \
return 0; \
}
DEFINE_INTERP_FUNC(nearest, 8)
DEFINE_INTERP_FUNC(trilinear, 8)
DEFINE_INTERP_FUNC(tetrahedral, 8)
DEFINE_INTERP_FUNC(pyramid, 8)
DEFINE_INTERP_FUNC(prism, 8)
DEFINE_INTERP_FUNC(nearest, 16)
DEFINE_INTERP_FUNC(trilinear, 16)
DEFINE_INTERP_FUNC(tetrahedral, 16)
DEFINE_INTERP_FUNC(pyramid, 16)
DEFINE_INTERP_FUNC(prism, 16)
#define MAX_LINE_SIZE 512
static int skip_line(const char *p)
{
while (*p && av_isspace(*p))
p++;
return !*p || *p == '#';
}
static char* fget_next_word(char* dst, int max, FILE* f)
{
int c;
char *p = dst;
/* for null */
max--;
/* skip until next non whitespace char */
while ((c = fgetc(f)) != EOF) {
if (av_isspace(c))
continue;
*p++ = c;
max--;
break;
}
/* get max bytes or up until next whitespace char */
for (; max > 0; max--) {
if ((c = fgetc(f)) == EOF)
break;
if (av_isspace(c))
break;
*p++ = c;
}
*p = 0;
if (p == dst)
return NULL;
return p;
}
#define NEXT_LINE(loop_cond) do { \
if (!fgets(line, sizeof(line), f)) { \
av_log(ctx, AV_LOG_ERROR, "Unexpected EOF\n"); \
return AVERROR_INVALIDDATA; \
} \
} while (loop_cond)
#define NEXT_LINE_OR_GOTO(loop_cond, label) do { \
if (!fgets(line, sizeof(line), f)) { \
av_log(ctx, AV_LOG_ERROR, "Unexpected EOF\n"); \
ret = AVERROR_INVALIDDATA; \
goto label; \
} \
} while (loop_cond)
static int allocate_3dlut(AVFilterContext *ctx, int lutsize, int prelut)
{
LUT3DContext *lut3d = ctx->priv;
int i;
if (lutsize < 2 || lutsize > MAX_LEVEL) {
av_log(ctx, AV_LOG_ERROR, "Too large or invalid 3D LUT size\n");
return AVERROR(EINVAL);
}
av_freep(&lut3d->lut);
lut3d->lut = av_malloc_array(lutsize * lutsize * lutsize, sizeof(*lut3d->lut));
if (!lut3d->lut)
return AVERROR(ENOMEM);
if (prelut) {
lut3d->prelut.size = PRELUT_SIZE;
for (i = 0; i < 3; i++) {
av_freep(&lut3d->prelut.lut[i]);
lut3d->prelut.lut[i] = av_malloc_array(PRELUT_SIZE, sizeof(*lut3d->prelut.lut[0]));
if (!lut3d->prelut.lut[i])
return AVERROR(ENOMEM);
}
} else {
lut3d->prelut.size = 0;
for (i = 0; i < 3; i++) {
av_freep(&lut3d->prelut.lut[i]);
}
}
lut3d->lutsize = lutsize;
lut3d->lutsize2 = lutsize * lutsize;
return 0;
}
/* Basically r g and b float values on each line, with a facultative 3DLUTSIZE
* directive; seems to be generated by Davinci */
static int parse_dat(AVFilterContext *ctx, FILE *f)
{
LUT3DContext *lut3d = ctx->priv;
char line[MAX_LINE_SIZE];
int ret, i, j, k, size, size2;
lut3d->lutsize = size = 33;
size2 = size * size;
NEXT_LINE(skip_line(line));
if (!strncmp(line, "3DLUTSIZE ", 10)) {
size = strtol(line + 10, NULL, 0);
NEXT_LINE(skip_line(line));
}
ret = allocate_3dlut(ctx, size, 0);
if (ret < 0)
return ret;
for (k = 0; k < size; k++) {
for (j = 0; j < size; j++) {
for (i = 0; i < size; i++) {
struct rgbvec *vec = &lut3d->lut[k * size2 + j * size + i];
if (k != 0 || j != 0 || i != 0)
NEXT_LINE(skip_line(line));
if (av_sscanf(line, "%f %f %f", &vec->r, &vec->g, &vec->b) != 3)
return AVERROR_INVALIDDATA;
}
}
}
return 0;
}
/* Iridas format */
static int parse_cube(AVFilterContext *ctx, FILE *f)
{
LUT3DContext *lut3d = ctx->priv;
char line[MAX_LINE_SIZE];
float min[3] = {0.0, 0.0, 0.0};
float max[3] = {1.0, 1.0, 1.0};
while (fgets(line, sizeof(line), f)) {
if (!strncmp(line, "LUT_3D_SIZE", 11)) {
int ret, i, j, k;
const int size = strtol(line + 12, NULL, 0);
const int size2 = size * size;
ret = allocate_3dlut(ctx, size, 0);
if (ret < 0)
return ret;
for (k = 0; k < size; k++) {
for (j = 0; j < size; j++) {
for (i = 0; i < size; i++) {
struct rgbvec *vec = &lut3d->lut[i * size2 + j * size + k];
do {
try_again:
NEXT_LINE(0);
if (!strncmp(line, "DOMAIN_", 7)) {
float *vals = NULL;
if (!strncmp(line + 7, "MIN ", 4)) vals = min;
else if (!strncmp(line + 7, "MAX ", 4)) vals = max;
if (!vals)
return AVERROR_INVALIDDATA;
av_sscanf(line + 11, "%f %f %f", vals, vals + 1, vals + 2);
av_log(ctx, AV_LOG_DEBUG, "min: %f %f %f | max: %f %f %f\n",
min[0], min[1], min[2], max[0], max[1], max[2]);
goto try_again;
} else if (!strncmp(line, "TITLE", 5)) {
goto try_again;
}
} while (skip_line(line));
if (av_sscanf(line, "%f %f %f", &vec->r, &vec->g, &vec->b) != 3)
return AVERROR_INVALIDDATA;
}
}
}
break;
}
}
lut3d->scale.r = av_clipf(1. / (max[0] - min[0]), 0.f, 1.f);
lut3d->scale.g = av_clipf(1. / (max[1] - min[1]), 0.f, 1.f);
lut3d->scale.b = av_clipf(1. / (max[2] - min[2]), 0.f, 1.f);
return 0;
}
/* Assume 17x17x17 LUT with a 16-bit depth
* FIXME: it seems there are various 3dl formats */
static int parse_3dl(AVFilterContext *ctx, FILE *f)
{
char line[MAX_LINE_SIZE];
LUT3DContext *lut3d = ctx->priv;
int ret, i, j, k;
const int size = 17;
const int size2 = 17 * 17;
const float scale = 16*16*16;
lut3d->lutsize = size;
ret = allocate_3dlut(ctx, size, 0);
if (ret < 0)
return ret;
NEXT_LINE(skip_line(line));
for (k = 0; k < size; k++) {
for (j = 0; j < size; j++) {
for (i = 0; i < size; i++) {
int r, g, b;
struct rgbvec *vec = &lut3d->lut[k * size2 + j * size + i];
NEXT_LINE(skip_line(line));
if (av_sscanf(line, "%d %d %d", &r, &g, &b) != 3)
return AVERROR_INVALIDDATA;
vec->r = r / scale;
vec->g = g / scale;
vec->b = b / scale;
}
}
}
return 0;
}
/* Pandora format */
static int parse_m3d(AVFilterContext *ctx, FILE *f)
{
LUT3DContext *lut3d = ctx->priv;
float scale;
int ret, i, j, k, size, size2, in = -1, out = -1;
char line[MAX_LINE_SIZE];
uint8_t rgb_map[3] = {0, 1, 2};
while (fgets(line, sizeof(line), f)) {
if (!strncmp(line, "in", 2)) in = strtol(line + 2, NULL, 0);
else if (!strncmp(line, "out", 3)) out = strtol(line + 3, NULL, 0);
else if (!strncmp(line, "values", 6)) {
const char *p = line + 6;
#define SET_COLOR(id) do { \
while (av_isspace(*p)) \
p++; \
switch (*p) { \
case 'r': rgb_map[id] = 0; break; \
case 'g': rgb_map[id] = 1; break; \
case 'b': rgb_map[id] = 2; break; \
} \
while (*p && !av_isspace(*p)) \
p++; \
} while (0)
SET_COLOR(0);
SET_COLOR(1);
SET_COLOR(2);
break;
}
}
if (in == -1 || out == -1) {
av_log(ctx, AV_LOG_ERROR, "in and out must be defined\n");
return AVERROR_INVALIDDATA;
}
if (in < 2 || out < 2 ||
in > MAX_LEVEL*MAX_LEVEL*MAX_LEVEL ||
out > MAX_LEVEL*MAX_LEVEL*MAX_LEVEL) {
av_log(ctx, AV_LOG_ERROR, "invalid in (%d) or out (%d)\n", in, out);
return AVERROR_INVALIDDATA;
}
for (size = 1; size*size*size < in; size++);
lut3d->lutsize = size;
size2 = size * size;
ret = allocate_3dlut(ctx, size, 0);
if (ret < 0)
return ret;
scale = 1. / (out - 1);
for (k = 0; k < size; k++) {
for (j = 0; j < size; j++) {
for (i = 0; i < size; i++) {
struct rgbvec *vec = &lut3d->lut[k * size2 + j * size + i];
float val[3];
NEXT_LINE(0);
if (av_sscanf(line, "%f %f %f", val, val + 1, val + 2) != 3)
return AVERROR_INVALIDDATA;
vec->r = val[rgb_map[0]] * scale;
vec->g = val[rgb_map[1]] * scale;
vec->b = val[rgb_map[2]] * scale;
}
}
}
return 0;
}
static int nearest_sample_index(float *data, float x, int low, int hi)
{
int mid;
if (x < data[low])
return low;
if (x > data[hi])
return hi;
for (;;) {
av_assert0(x >= data[low]);
av_assert0(x <= data[hi]);
av_assert0((hi-low) > 0);
if (hi - low == 1)
return low;
mid = (low + hi) / 2;
if (x < data[mid])
hi = mid;
else
low = mid;
}
return 0;
}
#define NEXT_FLOAT_OR_GOTO(value, label) \
if (!fget_next_word(line, sizeof(line) ,f)) { \
ret = AVERROR_INVALIDDATA; \
goto label; \
} \
if (av_sscanf(line, "%f", &value) != 1) { \
ret = AVERROR_INVALIDDATA; \
goto label; \
}
static int parse_cinespace(AVFilterContext *ctx, FILE *f)
{
LUT3DContext *lut3d = ctx->priv;
char line[MAX_LINE_SIZE];
float in_min[3] = {0.0, 0.0, 0.0};
float in_max[3] = {1.0, 1.0, 1.0};
float out_min[3] = {0.0, 0.0, 0.0};
float out_max[3] = {1.0, 1.0, 1.0};
int inside_metadata = 0, size, size2;
int prelut = 0;
int ret = 0;
int prelut_sizes[3] = {0, 0, 0};
float *in_prelut[3] = {NULL, NULL, NULL};
float *out_prelut[3] = {NULL, NULL, NULL};
NEXT_LINE_OR_GOTO(skip_line(line), end);
if (strncmp(line, "CSPLUTV100", 10)) {
av_log(ctx, AV_LOG_ERROR, "Not cineSpace LUT format\n");
ret = AVERROR(EINVAL);
goto end;
}
NEXT_LINE_OR_GOTO(skip_line(line), end);
if (strncmp(line, "3D", 2)) {
av_log(ctx, AV_LOG_ERROR, "Not 3D LUT format\n");
ret = AVERROR(EINVAL);
goto end;
}
while (1) {
NEXT_LINE_OR_GOTO(skip_line(line), end);
if (!strncmp(line, "BEGIN METADATA", 14)) {
inside_metadata = 1;
continue;
}
if (!strncmp(line, "END METADATA", 12)) {
inside_metadata = 0;
continue;
}
if (inside_metadata == 0) {
int size_r, size_g, size_b;
for (int i = 0; i < 3; i++) {
int npoints = strtol(line, NULL, 0);
if (npoints > 2) {
float v,last;
if (npoints > PRELUT_SIZE) {
av_log(ctx, AV_LOG_ERROR, "Prelut size too large.\n");
ret = AVERROR_INVALIDDATA;
goto end;
}
if (in_prelut[i] || out_prelut[i]) {
av_log(ctx, AV_LOG_ERROR, "Invalid file has multiple preluts.\n");
ret = AVERROR_INVALIDDATA;
goto end;
}
in_prelut[i] = (float*)av_malloc(npoints * sizeof(float));
out_prelut[i] = (float*)av_malloc(npoints * sizeof(float));
if (!in_prelut[i] || !out_prelut[i]) {
ret = AVERROR(ENOMEM);
goto end;
}
prelut_sizes[i] = npoints;
in_min[i] = FLT_MAX;
in_max[i] = -FLT_MAX;
out_min[i] = FLT_MAX;
out_max[i] = -FLT_MAX;
for (int j = 0; j < npoints; j++) {
NEXT_FLOAT_OR_GOTO(v, end)
in_min[i] = FFMIN(in_min[i], v);
in_max[i] = FFMAX(in_max[i], v);
in_prelut[i][j] = v;
if (j > 0 && v < last) {
av_log(ctx, AV_LOG_ERROR, "Invalid file, non increasing prelut.\n");
ret = AVERROR(ENOMEM);
goto end;
}
last = v;
}
for (int j = 0; j < npoints; j++) {
NEXT_FLOAT_OR_GOTO(v, end)
out_min[i] = FFMIN(out_min[i], v);
out_max[i] = FFMAX(out_max[i], v);
out_prelut[i][j] = v;
}
} else if (npoints == 2) {
NEXT_LINE_OR_GOTO(skip_line(line), end);
if (av_sscanf(line, "%f %f", &in_min[i], &in_max[i]) != 2) {
ret = AVERROR_INVALIDDATA;
goto end;
}
NEXT_LINE_OR_GOTO(skip_line(line), end);
if (av_sscanf(line, "%f %f", &out_min[i], &out_max[i]) != 2) {
ret = AVERROR_INVALIDDATA;
goto end;
}
} else {
av_log(ctx, AV_LOG_ERROR, "Unsupported number of pre-lut points.\n");
ret = AVERROR_PATCHWELCOME;
goto end;
}
NEXT_LINE_OR_GOTO(skip_line(line), end);
}
if (av_sscanf(line, "%d %d %d", &size_r, &size_g, &size_b) != 3) {
ret = AVERROR(EINVAL);
goto end;
}
if (size_r != size_g || size_r != size_b) {
av_log(ctx, AV_LOG_ERROR, "Unsupported size combination: %dx%dx%d.\n", size_r, size_g, size_b);
ret = AVERROR_PATCHWELCOME;
goto end;
}
size = size_r;
size2 = size * size;
if (prelut_sizes[0] && prelut_sizes[1] && prelut_sizes[2])
prelut = 1;
ret = allocate_3dlut(ctx, size, prelut);
if (ret < 0)
return ret;
for (int k = 0; k < size; k++) {
for (int j = 0; j < size; j++) {
for (int i = 0; i < size; i++) {
struct rgbvec *vec = &lut3d->lut[i * size2 + j * size + k];
NEXT_LINE_OR_GOTO(skip_line(line), end);
if (av_sscanf(line, "%f %f %f", &vec->r, &vec->g, &vec->b) != 3) {
ret = AVERROR_INVALIDDATA;
goto end;
}
vec->r *= out_max[0] - out_min[0];
vec->g *= out_max[1] - out_min[1];
vec->b *= out_max[2] - out_min[2];
}
}
}
break;
}
}
if (prelut) {
for (int c = 0; c < 3; c++) {
lut3d->prelut.min[c] = in_min[c];
lut3d->prelut.max[c] = in_max[c];
lut3d->prelut.scale[c] = (1.0f / (float)(in_max[c] - in_min[c])) * (lut3d->prelut.size - 1);
for (int i = 0; i < lut3d->prelut.size; ++i) {
float mix = (float) i / (float)(lut3d->prelut.size - 1);
float x = lerpf(in_min[c], in_max[c], mix), a, b;
int idx = nearest_sample_index(in_prelut[c], x, 0, prelut_sizes[c]-1);
av_assert0(idx + 1 < prelut_sizes[c]);
a = out_prelut[c][idx + 0];
b = out_prelut[c][idx + 1];
mix = x - in_prelut[c][idx];
lut3d->prelut.lut[c][i] = sanitizef(lerpf(a, b, mix));
}
}
lut3d->scale.r = 1.00f;
lut3d->scale.g = 1.00f;
lut3d->scale.b = 1.00f;
} else {
lut3d->scale.r = av_clipf(1. / (in_max[0] - in_min[0]), 0.f, 1.f);
lut3d->scale.g = av_clipf(1. / (in_max[1] - in_min[1]), 0.f, 1.f);
lut3d->scale.b = av_clipf(1. / (in_max[2] - in_min[2]), 0.f, 1.f);
}
end:
for (int c = 0; c < 3; c++) {
av_freep(&in_prelut[c]);
av_freep(&out_prelut[c]);
}
return ret;
}
static int set_identity_matrix(AVFilterContext *ctx, int size)
{
LUT3DContext *lut3d = ctx->priv;
int ret, i, j, k;
const int size2 = size * size;
const float c = 1. / (size - 1);
ret = allocate_3dlut(ctx, size, 0);
if (ret < 0)
return ret;
for (k = 0; k < size; k++) {
for (j = 0; j < size; j++) {
for (i = 0; i < size; i++) {
struct rgbvec *vec = &lut3d->lut[k * size2 + j * size + i];
vec->r = k * c;
vec->g = j * c;
vec->b = i * c;
}
}
}
return 0;
}
static int query_formats(AVFilterContext *ctx)
{
static const enum AVPixelFormat pix_fmts[] = {
AV_PIX_FMT_RGB24, AV_PIX_FMT_BGR24,
AV_PIX_FMT_RGBA, AV_PIX_FMT_BGRA,
AV_PIX_FMT_ARGB, AV_PIX_FMT_ABGR,
AV_PIX_FMT_0RGB, AV_PIX_FMT_0BGR,
AV_PIX_FMT_RGB0, AV_PIX_FMT_BGR0,
AV_PIX_FMT_RGB48, AV_PIX_FMT_BGR48,
AV_PIX_FMT_RGBA64, AV_PIX_FMT_BGRA64,
AV_PIX_FMT_GBRP, AV_PIX_FMT_GBRAP,
AV_PIX_FMT_GBRP9,
AV_PIX_FMT_GBRP10, AV_PIX_FMT_GBRAP10,
AV_PIX_FMT_GBRP12, AV_PIX_FMT_GBRAP12,
AV_PIX_FMT_GBRP14,
AV_PIX_FMT_GBRP16, AV_PIX_FMT_GBRAP16,
AV_PIX_FMT_GBRPF32, AV_PIX_FMT_GBRAPF32,
AV_PIX_FMT_NONE
};
AVFilterFormats *fmts_list = ff_make_format_list(pix_fmts);
if (!fmts_list)
return AVERROR(ENOMEM);
return ff_set_common_formats(ctx, fmts_list);
}
static int config_input(AVFilterLink *inlink)
{
int depth, is16bit, isfloat, planar;
LUT3DContext *lut3d = inlink->dst->priv;
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(inlink->format);
depth = desc->comp[0].depth;
is16bit = desc->comp[0].depth > 8;
planar = desc->flags & AV_PIX_FMT_FLAG_PLANAR;
isfloat = desc->flags & AV_PIX_FMT_FLAG_FLOAT;
ff_fill_rgba_map(lut3d->rgba_map, inlink->format);
lut3d->step = av_get_padded_bits_per_pixel(desc) >> (3 + is16bit);
#define SET_FUNC(name) do { \
if (planar && !isfloat) { \
switch (depth) { \
case 8: lut3d->interp = interp_8_##name##_p8; break; \
case 9: lut3d->interp = interp_16_##name##_p9; break; \
case 10: lut3d->interp = interp_16_##name##_p10; break; \
case 12: lut3d->interp = interp_16_##name##_p12; break; \
case 14: lut3d->interp = interp_16_##name##_p14; break; \
case 16: lut3d->interp = interp_16_##name##_p16; break; \
} \
} else if (isfloat) { lut3d->interp = interp_##name##_pf32; \
} else if (is16bit) { lut3d->interp = interp_16_##name; \
} else { lut3d->interp = interp_8_##name; } \
} while (0)
switch (lut3d->interpolation) {
case INTERPOLATE_NEAREST: SET_FUNC(nearest); break;
case INTERPOLATE_TRILINEAR: SET_FUNC(trilinear); break;
case INTERPOLATE_TETRAHEDRAL: SET_FUNC(tetrahedral); break;
case INTERPOLATE_PYRAMID: SET_FUNC(pyramid); break;
case INTERPOLATE_PRISM: SET_FUNC(prism); break;
default:
av_assert0(0);
}
return 0;
}
static AVFrame *apply_lut(AVFilterLink *inlink, AVFrame *in)
{
AVFilterContext *ctx = inlink->dst;
LUT3DContext *lut3d = ctx->priv;
AVFilterLink *outlink = inlink->dst->outputs[0];
AVFrame *out;
ThreadData td;
if (av_frame_is_writable(in)) {
out = in;
} else {
out = ff_get_video_buffer(outlink, outlink->w, outlink->h);
if (!out) {
av_frame_free(&in);
return NULL;
}
av_frame_copy_props(out, in);
}
td.in = in;
td.out = out;
ctx->internal->execute(ctx, lut3d->interp, &td, NULL, FFMIN(outlink->h, ff_filter_get_nb_threads(ctx)));
if (out != in)
av_frame_free(&in);
return out;
}
static int filter_frame(AVFilterLink *inlink, AVFrame *in)
{
AVFilterLink *outlink = inlink->dst->outputs[0];
AVFrame *out = apply_lut(inlink, in);
if (!out)
return AVERROR(ENOMEM);
return ff_filter_frame(outlink, out);
}
static int process_command(AVFilterContext *ctx, const char *cmd, const char *args,
char *res, int res_len, int flags)
{
int ret;
ret = ff_filter_process_command(ctx, cmd, args, res, res_len, flags);
if (ret < 0)
return ret;
return config_input(ctx->inputs[0]);
}
#if CONFIG_LUT3D_FILTER
static const AVOption lut3d_options[] = {
{ "file", "set 3D LUT file name", OFFSET(file), AV_OPT_TYPE_STRING, {.str=NULL}, .flags = FLAGS },
COMMON_OPTIONS
};
AVFILTER_DEFINE_CLASS(lut3d);
static av_cold int lut3d_init(AVFilterContext *ctx)
{
int ret;
FILE *f;
const char *ext;
LUT3DContext *lut3d = ctx->priv;
lut3d->scale.r = lut3d->scale.g = lut3d->scale.b = 1.f;
if (!lut3d->file) {
return set_identity_matrix(ctx, 32);
}
f = av_fopen_utf8(lut3d->file, "r");
if (!f) {
ret = AVERROR(errno);
av_log(ctx, AV_LOG_ERROR, "%s: %s\n", lut3d->file, av_err2str(ret));
return ret;
}
ext = strrchr(lut3d->file, '.');
if (!ext) {
av_log(ctx, AV_LOG_ERROR, "Unable to guess the format from the extension\n");
ret = AVERROR_INVALIDDATA;
goto end;
}
ext++;
if (!av_strcasecmp(ext, "dat")) {
ret = parse_dat(ctx, f);
} else if (!av_strcasecmp(ext, "3dl")) {
ret = parse_3dl(ctx, f);
} else if (!av_strcasecmp(ext, "cube")) {
ret = parse_cube(ctx, f);
} else if (!av_strcasecmp(ext, "m3d")) {
ret = parse_m3d(ctx, f);
} else if (!av_strcasecmp(ext, "csp")) {
ret = parse_cinespace(ctx, f);
} else {
av_log(ctx, AV_LOG_ERROR, "Unrecognized '.%s' file type\n", ext);
ret = AVERROR(EINVAL);
}
if (!ret && !lut3d->lutsize) {
av_log(ctx, AV_LOG_ERROR, "3D LUT is empty\n");
ret = AVERROR_INVALIDDATA;
}
end:
fclose(f);
return ret;
}
static av_cold void lut3d_uninit(AVFilterContext *ctx)
{
LUT3DContext *lut3d = ctx->priv;
int i;
av_freep(&lut3d->lut);
for (i = 0; i < 3; i++) {
av_freep(&lut3d->prelut.lut[i]);
}
}
static const AVFilterPad lut3d_inputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_VIDEO,
.filter_frame = filter_frame,
.config_props = config_input,
},
{ NULL }
};
static const AVFilterPad lut3d_outputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_VIDEO,
},
{ NULL }
};
const AVFilter ff_vf_lut3d = {
.name = "lut3d",
.description = NULL_IF_CONFIG_SMALL("Adjust colors using a 3D LUT."),
.priv_size = sizeof(LUT3DContext),
.init = lut3d_init,
.uninit = lut3d_uninit,
.query_formats = query_formats,
.inputs = lut3d_inputs,
.outputs = lut3d_outputs,
.priv_class = &lut3d_class,
.flags = AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC | AVFILTER_FLAG_SLICE_THREADS,
.process_command = process_command,
};
#endif
#if CONFIG_HALDCLUT_FILTER
static void update_clut_packed(LUT3DContext *lut3d, const AVFrame *frame)
{
const uint8_t *data = frame->data[0];
const int linesize = frame->linesize[0];
const int w = lut3d->clut_width;
const int step = lut3d->clut_step;
const uint8_t *rgba_map = lut3d->clut_rgba_map;
const int level = lut3d->lutsize;
const int level2 = lut3d->lutsize2;
#define LOAD_CLUT(nbits) do { \
int i, j, k, x = 0, y = 0; \
\
for (k = 0; k < level; k++) { \
for (j = 0; j < level; j++) { \
for (i = 0; i < level; i++) { \
const uint##nbits##_t *src = (const uint##nbits##_t *) \
(data + y*linesize + x*step); \
struct rgbvec *vec = &lut3d->lut[i * level2 + j * level + k]; \
vec->r = src[rgba_map[0]] / (float)((1<<(nbits)) - 1); \
vec->g = src[rgba_map[1]] / (float)((1<<(nbits)) - 1); \
vec->b = src[rgba_map[2]] / (float)((1<<(nbits)) - 1); \
if (++x == w) { \
x = 0; \
y++; \
} \
} \
} \
} \
} while (0)
switch (lut3d->clut_bits) {
case 8: LOAD_CLUT(8); break;
case 16: LOAD_CLUT(16); break;
}
}
static void update_clut_planar(LUT3DContext *lut3d, const AVFrame *frame)
{
const uint8_t *datag = frame->data[0];
const uint8_t *datab = frame->data[1];
const uint8_t *datar = frame->data[2];
const int glinesize = frame->linesize[0];
const int blinesize = frame->linesize[1];
const int rlinesize = frame->linesize[2];
const int w = lut3d->clut_width;
const int level = lut3d->lutsize;
const int level2 = lut3d->lutsize2;
#define LOAD_CLUT_PLANAR(nbits, depth) do { \
int i, j, k, x = 0, y = 0; \
\
for (k = 0; k < level; k++) { \
for (j = 0; j < level; j++) { \
for (i = 0; i < level; i++) { \
const uint##nbits##_t *gsrc = (const uint##nbits##_t *) \
(datag + y*glinesize); \
const uint##nbits##_t *bsrc = (const uint##nbits##_t *) \
(datab + y*blinesize); \
const uint##nbits##_t *rsrc = (const uint##nbits##_t *) \
(datar + y*rlinesize); \
struct rgbvec *vec = &lut3d->lut[i * level2 + j * level + k]; \
vec->r = gsrc[x] / (float)((1<<(depth)) - 1); \
vec->g = bsrc[x] / (float)((1<<(depth)) - 1); \
vec->b = rsrc[x] / (float)((1<<(depth)) - 1); \
if (++x == w) { \
x = 0; \
y++; \
} \
} \
} \
} \
} while (0)
switch (lut3d->clut_bits) {
case 8: LOAD_CLUT_PLANAR(8, 8); break;
case 9: LOAD_CLUT_PLANAR(16, 9); break;
case 10: LOAD_CLUT_PLANAR(16, 10); break;
case 12: LOAD_CLUT_PLANAR(16, 12); break;
case 14: LOAD_CLUT_PLANAR(16, 14); break;
case 16: LOAD_CLUT_PLANAR(16, 16); break;
}
}
static void update_clut_float(LUT3DContext *lut3d, const AVFrame *frame)
{
const uint8_t *datag = frame->data[0];
const uint8_t *datab = frame->data[1];
const uint8_t *datar = frame->data[2];
const int glinesize = frame->linesize[0];
const int blinesize = frame->linesize[1];
const int rlinesize = frame->linesize[2];
const int w = lut3d->clut_width;
const int level = lut3d->lutsize;
const int level2 = lut3d->lutsize2;
int i, j, k, x = 0, y = 0;
for (k = 0; k < level; k++) {
for (j = 0; j < level; j++) {
for (i = 0; i < level; i++) {
const float *gsrc = (const float *)(datag + y*glinesize);
const float *bsrc = (const float *)(datab + y*blinesize);
const float *rsrc = (const float *)(datar + y*rlinesize);
struct rgbvec *vec = &lut3d->lut[i * level2 + j * level + k];
vec->r = rsrc[x];
vec->g = gsrc[x];
vec->b = bsrc[x];
if (++x == w) {
x = 0;
y++;
}
}
}
}
}
static int config_output(AVFilterLink *outlink)
{
AVFilterContext *ctx = outlink->src;
LUT3DContext *lut3d = ctx->priv;
int ret;
ret = ff_framesync_init_dualinput(&lut3d->fs, ctx);
if (ret < 0)
return ret;
outlink->w = ctx->inputs[0]->w;
outlink->h = ctx->inputs[0]->h;
outlink->time_base = ctx->inputs[0]->time_base;
if ((ret = ff_framesync_configure(&lut3d->fs)) < 0)
return ret;
return 0;
}
static int activate(AVFilterContext *ctx)
{
LUT3DContext *s = ctx->priv;
return ff_framesync_activate(&s->fs);
}
static int config_clut(AVFilterLink *inlink)
{
int size, level, w, h;
AVFilterContext *ctx = inlink->dst;
LUT3DContext *lut3d = ctx->priv;
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(inlink->format);
av_assert0(desc);
lut3d->clut_bits = desc->comp[0].depth;
lut3d->clut_planar = av_pix_fmt_count_planes(inlink->format) > 1;
lut3d->clut_float = desc->flags & AV_PIX_FMT_FLAG_FLOAT;
lut3d->clut_step = av_get_padded_bits_per_pixel(desc) >> 3;
ff_fill_rgba_map(lut3d->clut_rgba_map, inlink->format);
if (inlink->w > inlink->h)
av_log(ctx, AV_LOG_INFO, "Padding on the right (%dpx) of the "
"Hald CLUT will be ignored\n", inlink->w - inlink->h);
else if (inlink->w < inlink->h)
av_log(ctx, AV_LOG_INFO, "Padding at the bottom (%dpx) of the "
"Hald CLUT will be ignored\n", inlink->h - inlink->w);
lut3d->clut_width = w = h = FFMIN(inlink->w, inlink->h);
for (level = 1; level*level*level < w; level++);
size = level*level*level;
if (size != w) {
av_log(ctx, AV_LOG_WARNING, "The Hald CLUT width does not match the level\n");
return AVERROR_INVALIDDATA;
}
av_assert0(w == h && w == size);
level *= level;
if (level > MAX_LEVEL) {
const int max_clut_level = sqrt(MAX_LEVEL);
const int max_clut_size = max_clut_level*max_clut_level*max_clut_level;
av_log(ctx, AV_LOG_ERROR, "Too large Hald CLUT "
"(maximum level is %d, or %dx%d CLUT)\n",
max_clut_level, max_clut_size, max_clut_size);
return AVERROR(EINVAL);
}
return allocate_3dlut(ctx, level, 0);
}
static int update_apply_clut(FFFrameSync *fs)
{
AVFilterContext *ctx = fs->parent;
LUT3DContext *lut3d = ctx->priv;
AVFilterLink *inlink = ctx->inputs[0];
AVFrame *master, *second, *out;
int ret;
ret = ff_framesync_dualinput_get(fs, &master, &second);
if (ret < 0)
return ret;
if (!second)
return ff_filter_frame(ctx->outputs[0], master);
if (lut3d->clut_float)
update_clut_float(ctx->priv, second);
else if (lut3d->clut_planar)
update_clut_planar(ctx->priv, second);
else
update_clut_packed(ctx->priv, second);
out = apply_lut(inlink, master);
return ff_filter_frame(ctx->outputs[0], out);
}
static av_cold int haldclut_init(AVFilterContext *ctx)
{
LUT3DContext *lut3d = ctx->priv;
lut3d->scale.r = lut3d->scale.g = lut3d->scale.b = 1.f;
lut3d->fs.on_event = update_apply_clut;
return 0;
}
static av_cold void haldclut_uninit(AVFilterContext *ctx)
{
LUT3DContext *lut3d = ctx->priv;
ff_framesync_uninit(&lut3d->fs);
av_freep(&lut3d->lut);
}
static const AVOption haldclut_options[] = {
COMMON_OPTIONS
};
FRAMESYNC_DEFINE_CLASS(haldclut, LUT3DContext, fs);
static const AVFilterPad haldclut_inputs[] = {
{
.name = "main",
.type = AVMEDIA_TYPE_VIDEO,
.config_props = config_input,
},{
.name = "clut",
.type = AVMEDIA_TYPE_VIDEO,
.config_props = config_clut,
},
{ NULL }
};
static const AVFilterPad haldclut_outputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_VIDEO,
.config_props = config_output,
},
{ NULL }
};
const AVFilter ff_vf_haldclut = {
.name = "haldclut",
.description = NULL_IF_CONFIG_SMALL("Adjust colors using a Hald CLUT."),
.priv_size = sizeof(LUT3DContext),
.preinit = haldclut_framesync_preinit,
.init = haldclut_init,
.uninit = haldclut_uninit,
.query_formats = query_formats,
.activate = activate,
.inputs = haldclut_inputs,
.outputs = haldclut_outputs,
.priv_class = &haldclut_class,
.flags = AVFILTER_FLAG_SUPPORT_TIMELINE_INTERNAL | AVFILTER_FLAG_SLICE_THREADS,
.process_command = process_command,
};
#endif
#if CONFIG_LUT1D_FILTER
enum interp_1d_mode {
INTERPOLATE_1D_NEAREST,
INTERPOLATE_1D_LINEAR,
INTERPOLATE_1D_CUBIC,
INTERPOLATE_1D_COSINE,
INTERPOLATE_1D_SPLINE,
NB_INTERP_1D_MODE
};
#define MAX_1D_LEVEL 65536
typedef struct LUT1DContext {
const AVClass *class;
char *file;
int interpolation; ///<interp_1d_mode
struct rgbvec scale;
uint8_t rgba_map[4];
int step;
float lut[3][MAX_1D_LEVEL];
int lutsize;
avfilter_action_func *interp;
} LUT1DContext;
#undef OFFSET
#define OFFSET(x) offsetof(LUT1DContext, x)
static void set_identity_matrix_1d(LUT1DContext *lut1d, int size)
{
const float c = 1. / (size - 1);
int i;
lut1d->lutsize = size;
for (i = 0; i < size; i++) {
lut1d->lut[0][i] = i * c;
lut1d->lut[1][i] = i * c;
lut1d->lut[2][i] = i * c;
}
}
static int parse_cinespace_1d(AVFilterContext *ctx, FILE *f)
{
LUT1DContext *lut1d = ctx->priv;
char line[MAX_LINE_SIZE];
float in_min[3] = {0.0, 0.0, 0.0};
float in_max[3] = {1.0, 1.0, 1.0};
float out_min[3] = {0.0, 0.0, 0.0};
float out_max[3] = {1.0, 1.0, 1.0};
int inside_metadata = 0, size;
NEXT_LINE(skip_line(line));
if (strncmp(line, "CSPLUTV100", 10)) {
av_log(ctx, AV_LOG_ERROR, "Not cineSpace LUT format\n");
return AVERROR(EINVAL);
}
NEXT_LINE(skip_line(line));
if (strncmp(line, "1D", 2)) {
av_log(ctx, AV_LOG_ERROR, "Not 1D LUT format\n");
return AVERROR(EINVAL);
}
while (1) {
NEXT_LINE(skip_line(line));
if (!strncmp(line, "BEGIN METADATA", 14)) {
inside_metadata = 1;
continue;
}
if (!strncmp(line, "END METADATA", 12)) {
inside_metadata = 0;
continue;
}
if (inside_metadata == 0) {
for (int i = 0; i < 3; i++) {
int npoints = strtol(line, NULL, 0);
if (npoints != 2) {
av_log(ctx, AV_LOG_ERROR, "Unsupported number of pre-lut points.\n");
return AVERROR_PATCHWELCOME;
}
NEXT_LINE(skip_line(line));
if (av_sscanf(line, "%f %f", &in_min[i], &in_max[i]) != 2)
return AVERROR_INVALIDDATA;
NEXT_LINE(skip_line(line));
if (av_sscanf(line, "%f %f", &out_min[i], &out_max[i]) != 2)
return AVERROR_INVALIDDATA;
NEXT_LINE(skip_line(line));
}
size = strtol(line, NULL, 0);
if (size < 2 || size > MAX_1D_LEVEL) {
av_log(ctx, AV_LOG_ERROR, "Too large or invalid 1D LUT size\n");
return AVERROR(EINVAL);
}
lut1d->lutsize = size;
for (int i = 0; i < size; i++) {
NEXT_LINE(skip_line(line));
if (av_sscanf(line, "%f %f %f", &lut1d->lut[0][i], &lut1d->lut[1][i], &lut1d->lut[2][i]) != 3)
return AVERROR_INVALIDDATA;
lut1d->lut[0][i] *= out_max[0] - out_min[0];
lut1d->lut[1][i] *= out_max[1] - out_min[1];
lut1d->lut[2][i] *= out_max[2] - out_min[2];
}
break;
}
}
lut1d->scale.r = av_clipf(1. / (in_max[0] - in_min[0]), 0.f, 1.f);
lut1d->scale.g = av_clipf(1. / (in_max[1] - in_min[1]), 0.f, 1.f);
lut1d->scale.b = av_clipf(1. / (in_max[2] - in_min[2]), 0.f, 1.f);
return 0;
}
static int parse_cube_1d(AVFilterContext *ctx, FILE *f)
{
LUT1DContext *lut1d = ctx->priv;
char line[MAX_LINE_SIZE];
float min[3] = {0.0, 0.0, 0.0};
float max[3] = {1.0, 1.0, 1.0};
while (fgets(line, sizeof(line), f)) {
if (!strncmp(line, "LUT_1D_SIZE", 11)) {
const int size = strtol(line + 12, NULL, 0);
int i;
if (size < 2 || size > MAX_1D_LEVEL) {
av_log(ctx, AV_LOG_ERROR, "Too large or invalid 1D LUT size\n");
return AVERROR(EINVAL);
}
lut1d->lutsize = size;
for (i = 0; i < size; i++) {
do {
try_again:
NEXT_LINE(0);
if (!strncmp(line, "DOMAIN_", 7)) {
float *vals = NULL;
if (!strncmp(line + 7, "MIN ", 4)) vals = min;
else if (!strncmp(line + 7, "MAX ", 4)) vals = max;
if (!vals)
return AVERROR_INVALIDDATA;
av_sscanf(line + 11, "%f %f %f", vals, vals + 1, vals + 2);
av_log(ctx, AV_LOG_DEBUG, "min: %f %f %f | max: %f %f %f\n",
min[0], min[1], min[2], max[0], max[1], max[2]);
goto try_again;
} else if (!strncmp(line, "LUT_1D_INPUT_RANGE ", 19)) {
av_sscanf(line + 19, "%f %f", min, max);
min[1] = min[2] = min[0];
max[1] = max[2] = max[0];
goto try_again;
} else if (!strncmp(line, "TITLE", 5)) {
goto try_again;
}
} while (skip_line(line));
if (av_sscanf(line, "%f %f %f", &lut1d->lut[0][i], &lut1d->lut[1][i], &lut1d->lut[2][i]) != 3)
return AVERROR_INVALIDDATA;
}
break;
}
}
lut1d->scale.r = av_clipf(1. / (max[0] - min[0]), 0.f, 1.f);
lut1d->scale.g = av_clipf(1. / (max[1] - min[1]), 0.f, 1.f);
lut1d->scale.b = av_clipf(1. / (max[2] - min[2]), 0.f, 1.f);
return 0;
}
static const AVOption lut1d_options[] = {
{ "file", "set 1D LUT file name", OFFSET(file), AV_OPT_TYPE_STRING, {.str=NULL}, .flags = TFLAGS },
{ "interp", "select interpolation mode", OFFSET(interpolation), AV_OPT_TYPE_INT, {.i64=INTERPOLATE_1D_LINEAR}, 0, NB_INTERP_1D_MODE-1, TFLAGS, "interp_mode" },
{ "nearest", "use values from the nearest defined points", 0, AV_OPT_TYPE_CONST, {.i64=INTERPOLATE_1D_NEAREST}, 0, 0, TFLAGS, "interp_mode" },
{ "linear", "use values from the linear interpolation", 0, AV_OPT_TYPE_CONST, {.i64=INTERPOLATE_1D_LINEAR}, 0, 0, TFLAGS, "interp_mode" },
{ "cosine", "use values from the cosine interpolation", 0, AV_OPT_TYPE_CONST, {.i64=INTERPOLATE_1D_COSINE}, 0, 0, TFLAGS, "interp_mode" },
{ "cubic", "use values from the cubic interpolation", 0, AV_OPT_TYPE_CONST, {.i64=INTERPOLATE_1D_CUBIC}, 0, 0, TFLAGS, "interp_mode" },
{ "spline", "use values from the spline interpolation", 0, AV_OPT_TYPE_CONST, {.i64=INTERPOLATE_1D_SPLINE}, 0, 0, TFLAGS, "interp_mode" },
{ NULL }
};
AVFILTER_DEFINE_CLASS(lut1d);
static inline float interp_1d_nearest(const LUT1DContext *lut1d,
int idx, const float s)
{
return lut1d->lut[idx][NEAR(s)];
}
#define NEXT1D(x) (FFMIN((int)(x) + 1, lut1d->lutsize - 1))
static inline float interp_1d_linear(const LUT1DContext *lut1d,
int idx, const float s)
{
const int prev = PREV(s);
const int next = NEXT1D(s);
const float d = s - prev;
const float p = lut1d->lut[idx][prev];
const float n = lut1d->lut[idx][next];
return lerpf(p, n, d);
}
static inline float interp_1d_cosine(const LUT1DContext *lut1d,
int idx, const float s)
{
const int prev = PREV(s);
const int next = NEXT1D(s);
const float d = s - prev;
const float p = lut1d->lut[idx][prev];
const float n = lut1d->lut[idx][next];
const float m = (1.f - cosf(d * M_PI)) * .5f;
return lerpf(p, n, m);
}
static inline float interp_1d_cubic(const LUT1DContext *lut1d,
int idx, const float s)
{
const int prev = PREV(s);
const int next = NEXT1D(s);
const float mu = s - prev;
float a0, a1, a2, a3, mu2;
float y0 = lut1d->lut[idx][FFMAX(prev - 1, 0)];
float y1 = lut1d->lut[idx][prev];
float y2 = lut1d->lut[idx][next];
float y3 = lut1d->lut[idx][FFMIN(next + 1, lut1d->lutsize - 1)];
mu2 = mu * mu;
a0 = y3 - y2 - y0 + y1;
a1 = y0 - y1 - a0;
a2 = y2 - y0;
a3 = y1;
return a0 * mu * mu2 + a1 * mu2 + a2 * mu + a3;
}
static inline float interp_1d_spline(const LUT1DContext *lut1d,
int idx, const float s)
{
const int prev = PREV(s);
const int next = NEXT1D(s);
const float x = s - prev;
float c0, c1, c2, c3;
float y0 = lut1d->lut[idx][FFMAX(prev - 1, 0)];
float y1 = lut1d->lut[idx][prev];
float y2 = lut1d->lut[idx][next];
float y3 = lut1d->lut[idx][FFMIN(next + 1, lut1d->lutsize - 1)];
c0 = y1;
c1 = .5f * (y2 - y0);
c2 = y0 - 2.5f * y1 + 2.f * y2 - .5f * y3;
c3 = .5f * (y3 - y0) + 1.5f * (y1 - y2);
return ((c3 * x + c2) * x + c1) * x + c0;
}
#define DEFINE_INTERP_FUNC_PLANAR_1D(name, nbits, depth) \
static int interp_1d_##nbits##_##name##_p##depth(AVFilterContext *ctx, \
void *arg, int jobnr, \
int nb_jobs) \
{ \
int x, y; \
const LUT1DContext *lut1d = ctx->priv; \
const ThreadData *td = arg; \
const AVFrame *in = td->in; \
const AVFrame *out = td->out; \
const int direct = out == in; \
const int slice_start = (in->height * jobnr ) / nb_jobs; \
const int slice_end = (in->height * (jobnr+1)) / nb_jobs; \
uint8_t *grow = out->data[0] + slice_start * out->linesize[0]; \
uint8_t *brow = out->data[1] + slice_start * out->linesize[1]; \
uint8_t *rrow = out->data[2] + slice_start * out->linesize[2]; \
uint8_t *arow = out->data[3] + slice_start * out->linesize[3]; \
const uint8_t *srcgrow = in->data[0] + slice_start * in->linesize[0]; \
const uint8_t *srcbrow = in->data[1] + slice_start * in->linesize[1]; \
const uint8_t *srcrrow = in->data[2] + slice_start * in->linesize[2]; \
const uint8_t *srcarow = in->data[3] + slice_start * in->linesize[3]; \
const float factor = (1 << depth) - 1; \
const float scale_r = (lut1d->scale.r / factor) * (lut1d->lutsize - 1); \
const float scale_g = (lut1d->scale.g / factor) * (lut1d->lutsize - 1); \
const float scale_b = (lut1d->scale.b / factor) * (lut1d->lutsize - 1); \
\
for (y = slice_start; y < slice_end; y++) { \
uint##nbits##_t *dstg = (uint##nbits##_t *)grow; \
uint##nbits##_t *dstb = (uint##nbits##_t *)brow; \
uint##nbits##_t *dstr = (uint##nbits##_t *)rrow; \
uint##nbits##_t *dsta = (uint##nbits##_t *)arow; \
const uint##nbits##_t *srcg = (const uint##nbits##_t *)srcgrow; \
const uint##nbits##_t *srcb = (const uint##nbits##_t *)srcbrow; \
const uint##nbits##_t *srcr = (const uint##nbits##_t *)srcrrow; \
const uint##nbits##_t *srca = (const uint##nbits##_t *)srcarow; \
for (x = 0; x < in->width; x++) { \
float r = srcr[x] * scale_r; \
float g = srcg[x] * scale_g; \
float b = srcb[x] * scale_b; \
r = interp_1d_##name(lut1d, 0, r); \
g = interp_1d_##name(lut1d, 1, g); \
b = interp_1d_##name(lut1d, 2, b); \
dstr[x] = av_clip_uintp2(r * factor, depth); \
dstg[x] = av_clip_uintp2(g * factor, depth); \
dstb[x] = av_clip_uintp2(b * factor, depth); \
if (!direct && in->linesize[3]) \
dsta[x] = srca[x]; \
} \
grow += out->linesize[0]; \
brow += out->linesize[1]; \
rrow += out->linesize[2]; \
arow += out->linesize[3]; \
srcgrow += in->linesize[0]; \
srcbrow += in->linesize[1]; \
srcrrow += in->linesize[2]; \
srcarow += in->linesize[3]; \
} \
return 0; \
}
DEFINE_INTERP_FUNC_PLANAR_1D(nearest, 8, 8)
DEFINE_INTERP_FUNC_PLANAR_1D(linear, 8, 8)
DEFINE_INTERP_FUNC_PLANAR_1D(cosine, 8, 8)
DEFINE_INTERP_FUNC_PLANAR_1D(cubic, 8, 8)
DEFINE_INTERP_FUNC_PLANAR_1D(spline, 8, 8)
DEFINE_INTERP_FUNC_PLANAR_1D(nearest, 16, 9)
DEFINE_INTERP_FUNC_PLANAR_1D(linear, 16, 9)
DEFINE_INTERP_FUNC_PLANAR_1D(cosine, 16, 9)
DEFINE_INTERP_FUNC_PLANAR_1D(cubic, 16, 9)
DEFINE_INTERP_FUNC_PLANAR_1D(spline, 16, 9)
DEFINE_INTERP_FUNC_PLANAR_1D(nearest, 16, 10)
DEFINE_INTERP_FUNC_PLANAR_1D(linear, 16, 10)
DEFINE_INTERP_FUNC_PLANAR_1D(cosine, 16, 10)
DEFINE_INTERP_FUNC_PLANAR_1D(cubic, 16, 10)
DEFINE_INTERP_FUNC_PLANAR_1D(spline, 16, 10)
DEFINE_INTERP_FUNC_PLANAR_1D(nearest, 16, 12)
DEFINE_INTERP_FUNC_PLANAR_1D(linear, 16, 12)
DEFINE_INTERP_FUNC_PLANAR_1D(cosine, 16, 12)
DEFINE_INTERP_FUNC_PLANAR_1D(cubic, 16, 12)
DEFINE_INTERP_FUNC_PLANAR_1D(spline, 16, 12)
DEFINE_INTERP_FUNC_PLANAR_1D(nearest, 16, 14)
DEFINE_INTERP_FUNC_PLANAR_1D(linear, 16, 14)
DEFINE_INTERP_FUNC_PLANAR_1D(cosine, 16, 14)
DEFINE_INTERP_FUNC_PLANAR_1D(cubic, 16, 14)
DEFINE_INTERP_FUNC_PLANAR_1D(spline, 16, 14)
DEFINE_INTERP_FUNC_PLANAR_1D(nearest, 16, 16)
DEFINE_INTERP_FUNC_PLANAR_1D(linear, 16, 16)
DEFINE_INTERP_FUNC_PLANAR_1D(cosine, 16, 16)
DEFINE_INTERP_FUNC_PLANAR_1D(cubic, 16, 16)
DEFINE_INTERP_FUNC_PLANAR_1D(spline, 16, 16)
#define DEFINE_INTERP_FUNC_PLANAR_1D_FLOAT(name, depth) \
static int interp_1d_##name##_pf##depth(AVFilterContext *ctx, \
void *arg, int jobnr, \
int nb_jobs) \
{ \
int x, y; \
const LUT1DContext *lut1d = ctx->priv; \
const ThreadData *td = arg; \
const AVFrame *in = td->in; \
const AVFrame *out = td->out; \
const int direct = out == in; \
const int slice_start = (in->height * jobnr ) / nb_jobs; \
const int slice_end = (in->height * (jobnr+1)) / nb_jobs; \
uint8_t *grow = out->data[0] + slice_start * out->linesize[0]; \
uint8_t *brow = out->data[1] + slice_start * out->linesize[1]; \
uint8_t *rrow = out->data[2] + slice_start * out->linesize[2]; \
uint8_t *arow = out->data[3] + slice_start * out->linesize[3]; \
const uint8_t *srcgrow = in->data[0] + slice_start * in->linesize[0]; \
const uint8_t *srcbrow = in->data[1] + slice_start * in->linesize[1]; \
const uint8_t *srcrrow = in->data[2] + slice_start * in->linesize[2]; \
const uint8_t *srcarow = in->data[3] + slice_start * in->linesize[3]; \
const float lutsize = lut1d->lutsize - 1; \
const float scale_r = lut1d->scale.r * lutsize; \
const float scale_g = lut1d->scale.g * lutsize; \
const float scale_b = lut1d->scale.b * lutsize; \
\
for (y = slice_start; y < slice_end; y++) { \
float *dstg = (float *)grow; \
float *dstb = (float *)brow; \
float *dstr = (float *)rrow; \
float *dsta = (float *)arow; \
const float *srcg = (const float *)srcgrow; \
const float *srcb = (const float *)srcbrow; \
const float *srcr = (const float *)srcrrow; \
const float *srca = (const float *)srcarow; \
for (x = 0; x < in->width; x++) { \
float r = av_clipf(sanitizef(srcr[x]) * scale_r, 0.0f, lutsize); \
float g = av_clipf(sanitizef(srcg[x]) * scale_g, 0.0f, lutsize); \
float b = av_clipf(sanitizef(srcb[x]) * scale_b, 0.0f, lutsize); \
r = interp_1d_##name(lut1d, 0, r); \
g = interp_1d_##name(lut1d, 1, g); \
b = interp_1d_##name(lut1d, 2, b); \
dstr[x] = r; \
dstg[x] = g; \
dstb[x] = b; \
if (!direct && in->linesize[3]) \
dsta[x] = srca[x]; \
} \
grow += out->linesize[0]; \
brow += out->linesize[1]; \
rrow += out->linesize[2]; \
arow += out->linesize[3]; \
srcgrow += in->linesize[0]; \
srcbrow += in->linesize[1]; \
srcrrow += in->linesize[2]; \
srcarow += in->linesize[3]; \
} \
return 0; \
}
DEFINE_INTERP_FUNC_PLANAR_1D_FLOAT(nearest, 32)
DEFINE_INTERP_FUNC_PLANAR_1D_FLOAT(linear, 32)
DEFINE_INTERP_FUNC_PLANAR_1D_FLOAT(cosine, 32)
DEFINE_INTERP_FUNC_PLANAR_1D_FLOAT(cubic, 32)
DEFINE_INTERP_FUNC_PLANAR_1D_FLOAT(spline, 32)
#define DEFINE_INTERP_FUNC_1D(name, nbits) \
static int interp_1d_##nbits##_##name(AVFilterContext *ctx, void *arg, \
int jobnr, int nb_jobs) \
{ \
int x, y; \
const LUT1DContext *lut1d = ctx->priv; \
const ThreadData *td = arg; \
const AVFrame *in = td->in; \
const AVFrame *out = td->out; \
const int direct = out == in; \
const int step = lut1d->step; \
const uint8_t r = lut1d->rgba_map[R]; \
const uint8_t g = lut1d->rgba_map[G]; \
const uint8_t b = lut1d->rgba_map[B]; \
const uint8_t a = lut1d->rgba_map[A]; \
const int slice_start = (in->height * jobnr ) / nb_jobs; \
const int slice_end = (in->height * (jobnr+1)) / nb_jobs; \
uint8_t *dstrow = out->data[0] + slice_start * out->linesize[0]; \
const uint8_t *srcrow = in ->data[0] + slice_start * in ->linesize[0]; \
const float factor = (1 << nbits) - 1; \
const float scale_r = (lut1d->scale.r / factor) * (lut1d->lutsize - 1); \
const float scale_g = (lut1d->scale.g / factor) * (lut1d->lutsize - 1); \
const float scale_b = (lut1d->scale.b / factor) * (lut1d->lutsize - 1); \
\
for (y = slice_start; y < slice_end; y++) { \
uint##nbits##_t *dst = (uint##nbits##_t *)dstrow; \
const uint##nbits##_t *src = (const uint##nbits##_t *)srcrow; \
for (x = 0; x < in->width * step; x += step) { \
float rr = src[x + r] * scale_r; \
float gg = src[x + g] * scale_g; \
float bb = src[x + b] * scale_b; \
rr = interp_1d_##name(lut1d, 0, rr); \
gg = interp_1d_##name(lut1d, 1, gg); \
bb = interp_1d_##name(lut1d, 2, bb); \
dst[x + r] = av_clip_uint##nbits(rr * factor); \
dst[x + g] = av_clip_uint##nbits(gg * factor); \
dst[x + b] = av_clip_uint##nbits(bb * factor); \
if (!direct && step == 4) \
dst[x + a] = src[x + a]; \
} \
dstrow += out->linesize[0]; \
srcrow += in ->linesize[0]; \
} \
return 0; \
}
DEFINE_INTERP_FUNC_1D(nearest, 8)
DEFINE_INTERP_FUNC_1D(linear, 8)
DEFINE_INTERP_FUNC_1D(cosine, 8)
DEFINE_INTERP_FUNC_1D(cubic, 8)
DEFINE_INTERP_FUNC_1D(spline, 8)
DEFINE_INTERP_FUNC_1D(nearest, 16)
DEFINE_INTERP_FUNC_1D(linear, 16)
DEFINE_INTERP_FUNC_1D(cosine, 16)
DEFINE_INTERP_FUNC_1D(cubic, 16)
DEFINE_INTERP_FUNC_1D(spline, 16)
static int config_input_1d(AVFilterLink *inlink)
{
int depth, is16bit, isfloat, planar;
LUT1DContext *lut1d = inlink->dst->priv;
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(inlink->format);
depth = desc->comp[0].depth;
is16bit = desc->comp[0].depth > 8;
planar = desc->flags & AV_PIX_FMT_FLAG_PLANAR;
isfloat = desc->flags & AV_PIX_FMT_FLAG_FLOAT;
ff_fill_rgba_map(lut1d->rgba_map, inlink->format);
lut1d->step = av_get_padded_bits_per_pixel(desc) >> (3 + is16bit);
#define SET_FUNC_1D(name) do { \
if (planar && !isfloat) { \
switch (depth) { \
case 8: lut1d->interp = interp_1d_8_##name##_p8; break; \
case 9: lut1d->interp = interp_1d_16_##name##_p9; break; \
case 10: lut1d->interp = interp_1d_16_##name##_p10; break; \
case 12: lut1d->interp = interp_1d_16_##name##_p12; break; \
case 14: lut1d->interp = interp_1d_16_##name##_p14; break; \
case 16: lut1d->interp = interp_1d_16_##name##_p16; break; \
} \
} else if (isfloat) { lut1d->interp = interp_1d_##name##_pf32; \
} else if (is16bit) { lut1d->interp = interp_1d_16_##name; \
} else { lut1d->interp = interp_1d_8_##name; } \
} while (0)
switch (lut1d->interpolation) {
case INTERPOLATE_1D_NEAREST: SET_FUNC_1D(nearest); break;
case INTERPOLATE_1D_LINEAR: SET_FUNC_1D(linear); break;
case INTERPOLATE_1D_COSINE: SET_FUNC_1D(cosine); break;
case INTERPOLATE_1D_CUBIC: SET_FUNC_1D(cubic); break;
case INTERPOLATE_1D_SPLINE: SET_FUNC_1D(spline); break;
default:
av_assert0(0);
}
return 0;
}
static av_cold int lut1d_init(AVFilterContext *ctx)
{
int ret;
FILE *f;
const char *ext;
LUT1DContext *lut1d = ctx->priv;
lut1d->scale.r = lut1d->scale.g = lut1d->scale.b = 1.f;
if (!lut1d->file) {
set_identity_matrix_1d(lut1d, 32);
return 0;
}
f = av_fopen_utf8(lut1d->file, "r");
if (!f) {
ret = AVERROR(errno);
av_log(ctx, AV_LOG_ERROR, "%s: %s\n", lut1d->file, av_err2str(ret));
return ret;
}
ext = strrchr(lut1d->file, '.');
if (!ext) {
av_log(ctx, AV_LOG_ERROR, "Unable to guess the format from the extension\n");
ret = AVERROR_INVALIDDATA;
goto end;
}
ext++;
if (!av_strcasecmp(ext, "cube") || !av_strcasecmp(ext, "1dlut")) {
ret = parse_cube_1d(ctx, f);
} else if (!av_strcasecmp(ext, "csp")) {
ret = parse_cinespace_1d(ctx, f);
} else {
av_log(ctx, AV_LOG_ERROR, "Unrecognized '.%s' file type\n", ext);
ret = AVERROR(EINVAL);
}
if (!ret && !lut1d->lutsize) {
av_log(ctx, AV_LOG_ERROR, "1D LUT is empty\n");
ret = AVERROR_INVALIDDATA;
}
end:
fclose(f);
return ret;
}
static AVFrame *apply_1d_lut(AVFilterLink *inlink, AVFrame *in)
{
AVFilterContext *ctx = inlink->dst;
LUT1DContext *lut1d = ctx->priv;
AVFilterLink *outlink = inlink->dst->outputs[0];
AVFrame *out;
ThreadData td;
if (av_frame_is_writable(in)) {
out = in;
} else {
out = ff_get_video_buffer(outlink, outlink->w, outlink->h);
if (!out) {
av_frame_free(&in);
return NULL;
}
av_frame_copy_props(out, in);
}
td.in = in;
td.out = out;
ctx->internal->execute(ctx, lut1d->interp, &td, NULL, FFMIN(outlink->h, ff_filter_get_nb_threads(ctx)));
if (out != in)
av_frame_free(&in);
return out;
}
static int filter_frame_1d(AVFilterLink *inlink, AVFrame *in)
{
AVFilterLink *outlink = inlink->dst->outputs[0];
AVFrame *out = apply_1d_lut(inlink, in);
if (!out)
return AVERROR(ENOMEM);
return ff_filter_frame(outlink, out);
}
static int lut1d_process_command(AVFilterContext *ctx, const char *cmd, const char *args,
char *res, int res_len, int flags)
{
LUT1DContext *lut1d = ctx->priv;
int ret;
ret = ff_filter_process_command(ctx, cmd, args, res, res_len, flags);
if (ret < 0)
return ret;
ret = lut1d_init(ctx);
if (ret < 0) {
set_identity_matrix_1d(lut1d, 32);
return ret;
}
return config_input_1d(ctx->inputs[0]);
}
static const AVFilterPad lut1d_inputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_VIDEO,
.filter_frame = filter_frame_1d,
.config_props = config_input_1d,
},
{ NULL }
};
static const AVFilterPad lut1d_outputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_VIDEO,
},
{ NULL }
};
const AVFilter ff_vf_lut1d = {
.name = "lut1d",
.description = NULL_IF_CONFIG_SMALL("Adjust colors using a 1D LUT."),
.priv_size = sizeof(LUT1DContext),
.init = lut1d_init,
.query_formats = query_formats,
.inputs = lut1d_inputs,
.outputs = lut1d_outputs,
.priv_class = &lut1d_class,
.flags = AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC | AVFILTER_FLAG_SLICE_THREADS,
.process_command = lut1d_process_command,
};
#endif