mirror of
https://github.com/FFmpeg/FFmpeg.git
synced 2025-01-03 05:10:03 +02:00
4a9bab3db0
Since we only know whether a NAL unit corresponds to a new field after parsing the slice header, this requires reorganizing the calls to slice parsing, per-slice/field/frame init and actual decoding. In the previous code, the function for slice header decoding also immediately started a new field/frame as necessary, so any slices already queued for decoding would no longer be decodable. After this patch, we first parse the slice header, and if we determine that a new field needs to be started we decode all the queued slices.
813 lines
24 KiB
C
813 lines
24 KiB
C
/*
|
|
* H.26L/H.264/AVC/JVT/14496-10/... encoder/decoder
|
|
* Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
|
|
*
|
|
* This file is part of Libav.
|
|
*
|
|
* Libav is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*
|
|
* Libav is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with Libav; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
|
|
/**
|
|
* @file
|
|
* H.264 / AVC / MPEG-4 part10 codec.
|
|
* @author Michael Niedermayer <michaelni@gmx.at>
|
|
*/
|
|
|
|
#ifndef AVCODEC_H264DEC_H
|
|
#define AVCODEC_H264DEC_H
|
|
|
|
#include "libavutil/buffer.h"
|
|
#include "libavutil/intreadwrite.h"
|
|
#include "libavutil/thread.h"
|
|
|
|
#include "cabac.h"
|
|
#include "error_resilience.h"
|
|
#include "h264_parse.h"
|
|
#include "h264_ps.h"
|
|
#include "h264_sei.h"
|
|
#include "h2645_parse.h"
|
|
#include "h264chroma.h"
|
|
#include "h264dsp.h"
|
|
#include "h264pred.h"
|
|
#include "h264qpel.h"
|
|
#include "internal.h"
|
|
#include "mpegutils.h"
|
|
#include "parser.h"
|
|
#include "qpeldsp.h"
|
|
#include "rectangle.h"
|
|
#include "videodsp.h"
|
|
|
|
#define H264_MAX_PICTURE_COUNT 32
|
|
|
|
#define MAX_MMCO_COUNT 66
|
|
|
|
#define MAX_DELAYED_PIC_COUNT 16
|
|
|
|
/* Compiling in interlaced support reduces the speed
|
|
* of progressive decoding by about 2%. */
|
|
#define ALLOW_INTERLACE
|
|
|
|
#define FMO 0
|
|
|
|
/**
|
|
* The maximum number of slices supported by the decoder.
|
|
* must be a power of 2
|
|
*/
|
|
#define MAX_SLICES 32
|
|
|
|
#ifdef ALLOW_INTERLACE
|
|
#define MB_MBAFF(h) h->mb_mbaff
|
|
#define MB_FIELD(h) h->mb_field_decoding_flag
|
|
#define FRAME_MBAFF(h) h->mb_aff_frame
|
|
#define FIELD_PICTURE(h) (h->picture_structure != PICT_FRAME)
|
|
#define LEFT_MBS 2
|
|
#define LTOP 0
|
|
#define LBOT 1
|
|
#define LEFT(i) (i)
|
|
#else
|
|
#define MB_MBAFF(h) 0
|
|
#define MB_FIELD(h) 0
|
|
#define FRAME_MBAFF(h) 0
|
|
#define FIELD_PICTURE(h) 0
|
|
#undef IS_INTERLACED
|
|
#define IS_INTERLACED(mb_type) 0
|
|
#define LEFT_MBS 1
|
|
#define LTOP 0
|
|
#define LBOT 0
|
|
#define LEFT(i) 0
|
|
#endif
|
|
#define FIELD_OR_MBAFF_PICTURE(h) (FRAME_MBAFF(h) || FIELD_PICTURE(h))
|
|
|
|
#ifndef CABAC
|
|
#define CABAC(h) h->ps.pps->cabac
|
|
#endif
|
|
|
|
#define CHROMA422(h) (h->ps.sps->chroma_format_idc == 2)
|
|
#define CHROMA444(h) (h->ps.sps->chroma_format_idc == 3)
|
|
|
|
#define MB_TYPE_REF0 MB_TYPE_ACPRED // dirty but it fits in 16 bit
|
|
#define MB_TYPE_8x8DCT 0x01000000
|
|
#define IS_REF0(a) ((a) & MB_TYPE_REF0)
|
|
#define IS_8x8DCT(a) ((a) & MB_TYPE_8x8DCT)
|
|
|
|
/**
|
|
* Memory management control operation opcode.
|
|
*/
|
|
typedef enum MMCOOpcode {
|
|
MMCO_END = 0,
|
|
MMCO_SHORT2UNUSED,
|
|
MMCO_LONG2UNUSED,
|
|
MMCO_SHORT2LONG,
|
|
MMCO_SET_MAX_LONG,
|
|
MMCO_RESET,
|
|
MMCO_LONG,
|
|
} MMCOOpcode;
|
|
|
|
/**
|
|
* Memory management control operation.
|
|
*/
|
|
typedef struct MMCO {
|
|
MMCOOpcode opcode;
|
|
int short_pic_num; ///< pic_num without wrapping (pic_num & max_pic_num)
|
|
int long_arg; ///< index, pic_num, or num long refs depending on opcode
|
|
} MMCO;
|
|
|
|
typedef struct H264Picture {
|
|
AVFrame *f;
|
|
ThreadFrame tf;
|
|
|
|
AVBufferRef *qscale_table_buf;
|
|
int8_t *qscale_table;
|
|
|
|
AVBufferRef *motion_val_buf[2];
|
|
int16_t (*motion_val[2])[2];
|
|
|
|
AVBufferRef *mb_type_buf;
|
|
uint32_t *mb_type;
|
|
|
|
AVBufferRef *hwaccel_priv_buf;
|
|
void *hwaccel_picture_private; ///< hardware accelerator private data
|
|
|
|
AVBufferRef *ref_index_buf[2];
|
|
int8_t *ref_index[2];
|
|
|
|
int field_poc[2]; ///< top/bottom POC
|
|
int poc; ///< frame POC
|
|
int frame_num; ///< frame_num (raw frame_num from slice header)
|
|
int mmco_reset; /**< MMCO_RESET set this 1. Reordering code must
|
|
not mix pictures before and after MMCO_RESET. */
|
|
int pic_id; /**< pic_num (short -> no wrap version of pic_num,
|
|
pic_num & max_pic_num; long -> long_pic_num) */
|
|
int long_ref; ///< 1->long term reference 0->short term reference
|
|
int ref_poc[2][2][32]; ///< POCs of the frames used as reference (FIXME need per slice)
|
|
int ref_count[2][2]; ///< number of entries in ref_poc (FIXME need per slice)
|
|
int mbaff; ///< 1 -> MBAFF frame 0-> not MBAFF
|
|
int field_picture; ///< whether or not picture was encoded in separate fields
|
|
|
|
int reference;
|
|
int recovered; ///< picture at IDR or recovery point + recovery count
|
|
} H264Picture;
|
|
|
|
typedef struct H264Ref {
|
|
uint8_t *data[3];
|
|
int linesize[3];
|
|
|
|
int reference;
|
|
int poc;
|
|
int pic_id;
|
|
|
|
H264Picture *parent;
|
|
} H264Ref;
|
|
|
|
typedef struct H264SliceContext {
|
|
struct H264Context *h264;
|
|
GetBitContext gb;
|
|
ERContext er;
|
|
|
|
int slice_num;
|
|
int slice_type;
|
|
int slice_type_nos; ///< S free slice type (SI/SP are remapped to I/P)
|
|
int slice_type_fixed;
|
|
|
|
int qscale;
|
|
int chroma_qp[2]; // QPc
|
|
int qp_thresh; ///< QP threshold to skip loopfilter
|
|
int last_qscale_diff;
|
|
|
|
// deblock
|
|
int deblocking_filter; ///< disable_deblocking_filter_idc with 1 <-> 0
|
|
int slice_alpha_c0_offset;
|
|
int slice_beta_offset;
|
|
|
|
H264PredWeightTable pwt;
|
|
|
|
int prev_mb_skipped;
|
|
int next_mb_skipped;
|
|
|
|
int chroma_pred_mode;
|
|
int intra16x16_pred_mode;
|
|
|
|
int8_t intra4x4_pred_mode_cache[5 * 8];
|
|
int8_t(*intra4x4_pred_mode);
|
|
|
|
int topleft_mb_xy;
|
|
int top_mb_xy;
|
|
int topright_mb_xy;
|
|
int left_mb_xy[LEFT_MBS];
|
|
|
|
int topleft_type;
|
|
int top_type;
|
|
int topright_type;
|
|
int left_type[LEFT_MBS];
|
|
|
|
const uint8_t *left_block;
|
|
int topleft_partition;
|
|
|
|
unsigned int topleft_samples_available;
|
|
unsigned int top_samples_available;
|
|
unsigned int topright_samples_available;
|
|
unsigned int left_samples_available;
|
|
|
|
ptrdiff_t linesize, uvlinesize;
|
|
ptrdiff_t mb_linesize; ///< may be equal to s->linesize or s->linesize * 2, for mbaff
|
|
ptrdiff_t mb_uvlinesize;
|
|
|
|
int mb_x, mb_y;
|
|
int mb_xy;
|
|
int resync_mb_x;
|
|
int resync_mb_y;
|
|
unsigned int first_mb_addr;
|
|
// index of the first MB of the next slice
|
|
int next_slice_idx;
|
|
int mb_skip_run;
|
|
int is_complex;
|
|
|
|
int picture_structure;
|
|
int mb_field_decoding_flag;
|
|
int mb_mbaff; ///< mb_aff_frame && mb_field_decoding_flag
|
|
|
|
int redundant_pic_count;
|
|
|
|
/**
|
|
* number of neighbors (top and/or left) that used 8x8 dct
|
|
*/
|
|
int neighbor_transform_size;
|
|
|
|
int direct_spatial_mv_pred;
|
|
int col_parity;
|
|
int col_fieldoff;
|
|
|
|
int cbp;
|
|
int top_cbp;
|
|
int left_cbp;
|
|
|
|
int dist_scale_factor[32];
|
|
int dist_scale_factor_field[2][32];
|
|
int map_col_to_list0[2][16 + 32];
|
|
int map_col_to_list0_field[2][2][16 + 32];
|
|
|
|
/**
|
|
* num_ref_idx_l0/1_active_minus1 + 1
|
|
*/
|
|
unsigned int ref_count[2]; ///< counts frames or fields, depending on current mb mode
|
|
unsigned int list_count;
|
|
H264Ref ref_list[2][48]; /**< 0..15: frame refs, 16..47: mbaff field refs.
|
|
* Reordered version of default_ref_list
|
|
* according to picture reordering in slice header */
|
|
struct {
|
|
uint8_t op;
|
|
uint8_t val;
|
|
} ref_modifications[2][32];
|
|
int nb_ref_modifications[2];
|
|
|
|
unsigned int pps_id;
|
|
|
|
const uint8_t *intra_pcm_ptr;
|
|
int16_t *dc_val_base;
|
|
|
|
uint8_t *bipred_scratchpad;
|
|
uint8_t *edge_emu_buffer;
|
|
uint8_t (*top_borders[2])[(16 * 3) * 2];
|
|
int bipred_scratchpad_allocated;
|
|
int edge_emu_buffer_allocated;
|
|
int top_borders_allocated[2];
|
|
|
|
/**
|
|
* non zero coeff count cache.
|
|
* is 64 if not available.
|
|
*/
|
|
DECLARE_ALIGNED(8, uint8_t, non_zero_count_cache)[15 * 8];
|
|
|
|
/**
|
|
* Motion vector cache.
|
|
*/
|
|
DECLARE_ALIGNED(16, int16_t, mv_cache)[2][5 * 8][2];
|
|
DECLARE_ALIGNED(8, int8_t, ref_cache)[2][5 * 8];
|
|
DECLARE_ALIGNED(16, uint8_t, mvd_cache)[2][5 * 8][2];
|
|
uint8_t direct_cache[5 * 8];
|
|
|
|
DECLARE_ALIGNED(8, uint16_t, sub_mb_type)[4];
|
|
|
|
///< as a DCT coefficient is int32_t in high depth, we need to reserve twice the space.
|
|
DECLARE_ALIGNED(16, int16_t, mb)[16 * 48 * 2];
|
|
DECLARE_ALIGNED(16, int16_t, mb_luma_dc)[3][16 * 2];
|
|
///< as mb is addressed by scantable[i] and scantable is uint8_t we can either
|
|
///< check that i is not too large or ensure that there is some unused stuff after mb
|
|
int16_t mb_padding[256 * 2];
|
|
|
|
uint8_t (*mvd_table[2])[2];
|
|
|
|
/**
|
|
* Cabac
|
|
*/
|
|
CABACContext cabac;
|
|
uint8_t cabac_state[1024];
|
|
int cabac_init_idc;
|
|
|
|
MMCO mmco[MAX_MMCO_COUNT];
|
|
int nb_mmco;
|
|
int explicit_ref_marking;
|
|
|
|
int frame_num;
|
|
int poc_lsb;
|
|
int delta_poc_bottom;
|
|
int delta_poc[2];
|
|
int curr_pic_num;
|
|
int max_pic_num;
|
|
} H264SliceContext;
|
|
|
|
/**
|
|
* H264Context
|
|
*/
|
|
typedef struct H264Context {
|
|
const AVClass *class;
|
|
AVCodecContext *avctx;
|
|
VideoDSPContext vdsp;
|
|
H264DSPContext h264dsp;
|
|
H264ChromaContext h264chroma;
|
|
H264QpelContext h264qpel;
|
|
|
|
H264Picture DPB[H264_MAX_PICTURE_COUNT];
|
|
H264Picture *cur_pic_ptr;
|
|
H264Picture cur_pic;
|
|
|
|
H264SliceContext *slice_ctx;
|
|
int nb_slice_ctx;
|
|
int nb_slice_ctx_queued;
|
|
|
|
H2645Packet pkt;
|
|
|
|
int pixel_shift; ///< 0 for 8-bit H.264, 1 for high-bit-depth H.264
|
|
|
|
/* coded dimensions -- 16 * mb w/h */
|
|
int width, height;
|
|
int chroma_x_shift, chroma_y_shift;
|
|
|
|
int droppable;
|
|
int coded_picture_number;
|
|
|
|
int context_initialized;
|
|
int flags;
|
|
int workaround_bugs;
|
|
/* Set when slice threading is used and at least one slice uses deblocking
|
|
* mode 1 (i.e. across slice boundaries). Then we disable the loop filter
|
|
* during normal MB decoding and execute it serially at the end.
|
|
*/
|
|
int postpone_filter;
|
|
|
|
/*
|
|
* Set to 1 when the current picture is IDR, 0 otherwise.
|
|
*/
|
|
int picture_idr;
|
|
|
|
int8_t(*intra4x4_pred_mode);
|
|
H264PredContext hpc;
|
|
|
|
uint8_t (*non_zero_count)[48];
|
|
|
|
#define LIST_NOT_USED -1 // FIXME rename?
|
|
#define PART_NOT_AVAILABLE -2
|
|
|
|
/**
|
|
* block_offset[ 0..23] for frame macroblocks
|
|
* block_offset[24..47] for field macroblocks
|
|
*/
|
|
int block_offset[2 * (16 * 3)];
|
|
|
|
uint32_t *mb2b_xy; // FIXME are these 4 a good idea?
|
|
uint32_t *mb2br_xy;
|
|
int b_stride; // FIXME use s->b4_stride
|
|
|
|
uint16_t *slice_table; ///< slice_table_base + 2*mb_stride + 1
|
|
|
|
// interlacing specific flags
|
|
int mb_aff_frame;
|
|
int picture_structure;
|
|
int first_field;
|
|
|
|
uint8_t *list_counts; ///< Array of list_count per MB specifying the slice type
|
|
|
|
/* 0x100 -> non null luma_dc, 0x80/0x40 -> non null chroma_dc (cb/cr), 0x?0 -> chroma_cbp(0, 1, 2), 0x0? luma_cbp */
|
|
uint16_t *cbp_table;
|
|
|
|
/* chroma_pred_mode for i4x4 or i16x16, else 0 */
|
|
uint8_t *chroma_pred_mode_table;
|
|
uint8_t (*mvd_table[2])[2];
|
|
uint8_t *direct_table;
|
|
|
|
uint8_t zigzag_scan[16];
|
|
uint8_t zigzag_scan8x8[64];
|
|
uint8_t zigzag_scan8x8_cavlc[64];
|
|
uint8_t field_scan[16];
|
|
uint8_t field_scan8x8[64];
|
|
uint8_t field_scan8x8_cavlc[64];
|
|
const uint8_t *zigzag_scan_q0;
|
|
const uint8_t *zigzag_scan8x8_q0;
|
|
const uint8_t *zigzag_scan8x8_cavlc_q0;
|
|
const uint8_t *field_scan_q0;
|
|
const uint8_t *field_scan8x8_q0;
|
|
const uint8_t *field_scan8x8_cavlc_q0;
|
|
|
|
int mb_y;
|
|
int mb_height, mb_width;
|
|
int mb_stride;
|
|
int mb_num;
|
|
|
|
// =============================================================
|
|
// Things below are not used in the MB or more inner code
|
|
|
|
int nal_ref_idc;
|
|
int nal_unit_type;
|
|
|
|
/**
|
|
* Used to parse AVC variant of H.264
|
|
*/
|
|
int is_avc; ///< this flag is != 0 if codec is avc1
|
|
int nal_length_size; ///< Number of bytes used for nal length (1, 2 or 4)
|
|
|
|
int bit_depth_luma; ///< luma bit depth from sps to detect changes
|
|
int chroma_format_idc; ///< chroma format from sps to detect changes
|
|
|
|
H264ParamSets ps;
|
|
|
|
uint16_t *slice_table_base;
|
|
|
|
H264POCContext poc;
|
|
|
|
H264Picture *short_ref[32];
|
|
H264Picture *long_ref[32];
|
|
H264Picture *delayed_pic[MAX_DELAYED_PIC_COUNT + 2]; // FIXME size?
|
|
int last_pocs[MAX_DELAYED_PIC_COUNT];
|
|
int next_outputed_poc;
|
|
|
|
/**
|
|
* memory management control operations buffer.
|
|
*/
|
|
MMCO mmco[MAX_MMCO_COUNT];
|
|
int nb_mmco;
|
|
int mmco_reset;
|
|
int explicit_ref_marking;
|
|
|
|
int long_ref_count; ///< number of actual long term references
|
|
int short_ref_count; ///< number of actual short term references
|
|
|
|
/**
|
|
* @name Members for slice based multithreading
|
|
* @{
|
|
*/
|
|
/**
|
|
* current slice number, used to initialize slice_num of each thread/context
|
|
*/
|
|
int current_slice;
|
|
|
|
/** @} */
|
|
|
|
/**
|
|
* Complement sei_pic_struct
|
|
* SEI_PIC_STRUCT_TOP_BOTTOM and SEI_PIC_STRUCT_BOTTOM_TOP indicate interlaced frames.
|
|
* However, soft telecined frames may have these values.
|
|
* This is used in an attempt to flag soft telecine progressive.
|
|
*/
|
|
int prev_interlaced_frame;
|
|
|
|
/**
|
|
* recovery_frame is the frame_num at which the next frame should
|
|
* be fully constructed.
|
|
*
|
|
* Set to -1 when not expecting a recovery point.
|
|
*/
|
|
int recovery_frame;
|
|
|
|
/**
|
|
* We have seen an IDR, so all the following frames in coded order are correctly
|
|
* decodable.
|
|
*/
|
|
#define FRAME_RECOVERED_IDR (1 << 0)
|
|
/**
|
|
* Sufficient number of frames have been decoded since a SEI recovery point,
|
|
* so all the following frames in presentation order are correct.
|
|
*/
|
|
#define FRAME_RECOVERED_SEI (1 << 1)
|
|
|
|
int frame_recovered; ///< Initial frame has been completely recovered
|
|
|
|
/* for frame threading, this is set to 1
|
|
* after finish_setup() has been called, so we cannot modify
|
|
* some context properties (which are supposed to stay constant between
|
|
* slices) anymore */
|
|
int setup_finished;
|
|
|
|
AVFrame *output_frame;
|
|
|
|
int enable_er;
|
|
|
|
H264SEIContext sei;
|
|
|
|
AVBufferPool *qscale_table_pool;
|
|
AVBufferPool *mb_type_pool;
|
|
AVBufferPool *motion_val_pool;
|
|
AVBufferPool *ref_index_pool;
|
|
int ref2frm[MAX_SLICES][2][64]; ///< reference to frame number lists, used in the loop filter, the first 2 are for -2,-1
|
|
} H264Context;
|
|
|
|
extern const uint16_t ff_h264_mb_sizes[4];
|
|
|
|
/**
|
|
* Reconstruct bitstream slice_type.
|
|
*/
|
|
int ff_h264_get_slice_type(const H264SliceContext *sl);
|
|
|
|
/**
|
|
* Allocate tables.
|
|
* needs width/height
|
|
*/
|
|
int ff_h264_alloc_tables(H264Context *h);
|
|
|
|
int ff_h264_decode_ref_pic_list_reordering(H264SliceContext *sl, void *logctx);
|
|
int ff_h264_build_ref_list(const H264Context *h, H264SliceContext *sl);
|
|
void ff_h264_remove_all_refs(H264Context *h);
|
|
|
|
/**
|
|
* Execute the reference picture marking (memory management control operations).
|
|
*/
|
|
int ff_h264_execute_ref_pic_marking(H264Context *h);
|
|
|
|
int ff_h264_decode_ref_pic_marking(H264SliceContext *sl, GetBitContext *gb,
|
|
const H2645NAL *nal, void *logctx);
|
|
|
|
void ff_h264_hl_decode_mb(const H264Context *h, H264SliceContext *sl);
|
|
int ff_h264_decode_init(AVCodecContext *avctx);
|
|
void ff_h264_decode_init_vlc(void);
|
|
|
|
/**
|
|
* Decode a macroblock
|
|
* @return 0 if OK, ER_AC_ERROR / ER_DC_ERROR / ER_MV_ERROR on error
|
|
*/
|
|
int ff_h264_decode_mb_cavlc(const H264Context *h, H264SliceContext *sl);
|
|
|
|
/**
|
|
* Decode a CABAC coded macroblock
|
|
* @return 0 if OK, ER_AC_ERROR / ER_DC_ERROR / ER_MV_ERROR on error
|
|
*/
|
|
int ff_h264_decode_mb_cabac(const H264Context *h, H264SliceContext *sl);
|
|
|
|
void ff_h264_init_cabac_states(const H264Context *h, H264SliceContext *sl);
|
|
|
|
void ff_h264_init_dequant_tables(H264Context *h);
|
|
|
|
void ff_h264_direct_dist_scale_factor(const H264Context *const h, H264SliceContext *sl);
|
|
void ff_h264_direct_ref_list_init(const H264Context *const h, H264SliceContext *sl);
|
|
void ff_h264_pred_direct_motion(const H264Context *const h, H264SliceContext *sl,
|
|
int *mb_type);
|
|
|
|
void ff_h264_filter_mb_fast(const H264Context *h, H264SliceContext *sl, int mb_x, int mb_y,
|
|
uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr,
|
|
unsigned int linesize, unsigned int uvlinesize);
|
|
void ff_h264_filter_mb(const H264Context *h, H264SliceContext *sl, int mb_x, int mb_y,
|
|
uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr,
|
|
unsigned int linesize, unsigned int uvlinesize);
|
|
|
|
/*
|
|
* o-o o-o
|
|
* / / /
|
|
* o-o o-o
|
|
* ,---'
|
|
* o-o o-o
|
|
* / / /
|
|
* o-o o-o
|
|
*/
|
|
|
|
/* Scan8 organization:
|
|
* 0 1 2 3 4 5 6 7
|
|
* 0 DY y y y y y
|
|
* 1 y Y Y Y Y
|
|
* 2 y Y Y Y Y
|
|
* 3 y Y Y Y Y
|
|
* 4 y Y Y Y Y
|
|
* 5 DU u u u u u
|
|
* 6 u U U U U
|
|
* 7 u U U U U
|
|
* 8 u U U U U
|
|
* 9 u U U U U
|
|
* 10 DV v v v v v
|
|
* 11 v V V V V
|
|
* 12 v V V V V
|
|
* 13 v V V V V
|
|
* 14 v V V V V
|
|
* DY/DU/DV are for luma/chroma DC.
|
|
*/
|
|
|
|
#define LUMA_DC_BLOCK_INDEX 48
|
|
#define CHROMA_DC_BLOCK_INDEX 49
|
|
|
|
// This table must be here because scan8[constant] must be known at compiletime
|
|
static const uint8_t scan8[16 * 3 + 3] = {
|
|
4 + 1 * 8, 5 + 1 * 8, 4 + 2 * 8, 5 + 2 * 8,
|
|
6 + 1 * 8, 7 + 1 * 8, 6 + 2 * 8, 7 + 2 * 8,
|
|
4 + 3 * 8, 5 + 3 * 8, 4 + 4 * 8, 5 + 4 * 8,
|
|
6 + 3 * 8, 7 + 3 * 8, 6 + 4 * 8, 7 + 4 * 8,
|
|
4 + 6 * 8, 5 + 6 * 8, 4 + 7 * 8, 5 + 7 * 8,
|
|
6 + 6 * 8, 7 + 6 * 8, 6 + 7 * 8, 7 + 7 * 8,
|
|
4 + 8 * 8, 5 + 8 * 8, 4 + 9 * 8, 5 + 9 * 8,
|
|
6 + 8 * 8, 7 + 8 * 8, 6 + 9 * 8, 7 + 9 * 8,
|
|
4 + 11 * 8, 5 + 11 * 8, 4 + 12 * 8, 5 + 12 * 8,
|
|
6 + 11 * 8, 7 + 11 * 8, 6 + 12 * 8, 7 + 12 * 8,
|
|
4 + 13 * 8, 5 + 13 * 8, 4 + 14 * 8, 5 + 14 * 8,
|
|
6 + 13 * 8, 7 + 13 * 8, 6 + 14 * 8, 7 + 14 * 8,
|
|
0 + 0 * 8, 0 + 5 * 8, 0 + 10 * 8
|
|
};
|
|
|
|
static av_always_inline uint32_t pack16to32(int a, int b)
|
|
{
|
|
#if HAVE_BIGENDIAN
|
|
return (b & 0xFFFF) + (a << 16);
|
|
#else
|
|
return (a & 0xFFFF) + (b << 16);
|
|
#endif
|
|
}
|
|
|
|
static av_always_inline uint16_t pack8to16(int a, int b)
|
|
{
|
|
#if HAVE_BIGENDIAN
|
|
return (b & 0xFF) + (a << 8);
|
|
#else
|
|
return (a & 0xFF) + (b << 8);
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* Get the chroma qp.
|
|
*/
|
|
static av_always_inline int get_chroma_qp(const PPS *pps, int t, int qscale)
|
|
{
|
|
return pps->chroma_qp_table[t][qscale];
|
|
}
|
|
|
|
/**
|
|
* Get the predicted intra4x4 prediction mode.
|
|
*/
|
|
static av_always_inline int pred_intra_mode(const H264Context *h,
|
|
H264SliceContext *sl, int n)
|
|
{
|
|
const int index8 = scan8[n];
|
|
const int left = sl->intra4x4_pred_mode_cache[index8 - 1];
|
|
const int top = sl->intra4x4_pred_mode_cache[index8 - 8];
|
|
const int min = FFMIN(left, top);
|
|
|
|
ff_tlog(h->avctx, "mode:%d %d min:%d\n", left, top, min);
|
|
|
|
if (min < 0)
|
|
return DC_PRED;
|
|
else
|
|
return min;
|
|
}
|
|
|
|
static av_always_inline void write_back_intra_pred_mode(const H264Context *h,
|
|
H264SliceContext *sl)
|
|
{
|
|
int8_t *i4x4 = sl->intra4x4_pred_mode + h->mb2br_xy[sl->mb_xy];
|
|
int8_t *i4x4_cache = sl->intra4x4_pred_mode_cache;
|
|
|
|
AV_COPY32(i4x4, i4x4_cache + 4 + 8 * 4);
|
|
i4x4[4] = i4x4_cache[7 + 8 * 3];
|
|
i4x4[5] = i4x4_cache[7 + 8 * 2];
|
|
i4x4[6] = i4x4_cache[7 + 8 * 1];
|
|
}
|
|
|
|
static av_always_inline void write_back_non_zero_count(const H264Context *h,
|
|
H264SliceContext *sl)
|
|
{
|
|
const int mb_xy = sl->mb_xy;
|
|
uint8_t *nnz = h->non_zero_count[mb_xy];
|
|
uint8_t *nnz_cache = sl->non_zero_count_cache;
|
|
|
|
AV_COPY32(&nnz[ 0], &nnz_cache[4 + 8 * 1]);
|
|
AV_COPY32(&nnz[ 4], &nnz_cache[4 + 8 * 2]);
|
|
AV_COPY32(&nnz[ 8], &nnz_cache[4 + 8 * 3]);
|
|
AV_COPY32(&nnz[12], &nnz_cache[4 + 8 * 4]);
|
|
AV_COPY32(&nnz[16], &nnz_cache[4 + 8 * 6]);
|
|
AV_COPY32(&nnz[20], &nnz_cache[4 + 8 * 7]);
|
|
AV_COPY32(&nnz[32], &nnz_cache[4 + 8 * 11]);
|
|
AV_COPY32(&nnz[36], &nnz_cache[4 + 8 * 12]);
|
|
|
|
if (!h->chroma_y_shift) {
|
|
AV_COPY32(&nnz[24], &nnz_cache[4 + 8 * 8]);
|
|
AV_COPY32(&nnz[28], &nnz_cache[4 + 8 * 9]);
|
|
AV_COPY32(&nnz[40], &nnz_cache[4 + 8 * 13]);
|
|
AV_COPY32(&nnz[44], &nnz_cache[4 + 8 * 14]);
|
|
}
|
|
}
|
|
|
|
static av_always_inline void write_back_motion_list(const H264Context *h,
|
|
H264SliceContext *sl,
|
|
int b_stride,
|
|
int b_xy, int b8_xy,
|
|
int mb_type, int list)
|
|
{
|
|
int16_t(*mv_dst)[2] = &h->cur_pic.motion_val[list][b_xy];
|
|
int16_t(*mv_src)[2] = &sl->mv_cache[list][scan8[0]];
|
|
AV_COPY128(mv_dst + 0 * b_stride, mv_src + 8 * 0);
|
|
AV_COPY128(mv_dst + 1 * b_stride, mv_src + 8 * 1);
|
|
AV_COPY128(mv_dst + 2 * b_stride, mv_src + 8 * 2);
|
|
AV_COPY128(mv_dst + 3 * b_stride, mv_src + 8 * 3);
|
|
if (CABAC(h)) {
|
|
uint8_t (*mvd_dst)[2] = &sl->mvd_table[list][FMO ? 8 * sl->mb_xy
|
|
: h->mb2br_xy[sl->mb_xy]];
|
|
uint8_t(*mvd_src)[2] = &sl->mvd_cache[list][scan8[0]];
|
|
if (IS_SKIP(mb_type)) {
|
|
AV_ZERO128(mvd_dst);
|
|
} else {
|
|
AV_COPY64(mvd_dst, mvd_src + 8 * 3);
|
|
AV_COPY16(mvd_dst + 3 + 3, mvd_src + 3 + 8 * 0);
|
|
AV_COPY16(mvd_dst + 3 + 2, mvd_src + 3 + 8 * 1);
|
|
AV_COPY16(mvd_dst + 3 + 1, mvd_src + 3 + 8 * 2);
|
|
}
|
|
}
|
|
|
|
{
|
|
int8_t *ref_index = &h->cur_pic.ref_index[list][b8_xy];
|
|
int8_t *ref_cache = sl->ref_cache[list];
|
|
ref_index[0 + 0 * 2] = ref_cache[scan8[0]];
|
|
ref_index[1 + 0 * 2] = ref_cache[scan8[4]];
|
|
ref_index[0 + 1 * 2] = ref_cache[scan8[8]];
|
|
ref_index[1 + 1 * 2] = ref_cache[scan8[12]];
|
|
}
|
|
}
|
|
|
|
static av_always_inline void write_back_motion(const H264Context *h,
|
|
H264SliceContext *sl,
|
|
int mb_type)
|
|
{
|
|
const int b_stride = h->b_stride;
|
|
const int b_xy = 4 * sl->mb_x + 4 * sl->mb_y * h->b_stride; // try mb2b(8)_xy
|
|
const int b8_xy = 4 * sl->mb_xy;
|
|
|
|
if (USES_LIST(mb_type, 0)) {
|
|
write_back_motion_list(h, sl, b_stride, b_xy, b8_xy, mb_type, 0);
|
|
} else {
|
|
fill_rectangle(&h->cur_pic.ref_index[0][b8_xy],
|
|
2, 2, 2, (uint8_t)LIST_NOT_USED, 1);
|
|
}
|
|
if (USES_LIST(mb_type, 1))
|
|
write_back_motion_list(h, sl, b_stride, b_xy, b8_xy, mb_type, 1);
|
|
|
|
if (sl->slice_type_nos == AV_PICTURE_TYPE_B && CABAC(h)) {
|
|
if (IS_8X8(mb_type)) {
|
|
uint8_t *direct_table = &h->direct_table[4 * sl->mb_xy];
|
|
direct_table[1] = sl->sub_mb_type[1] >> 1;
|
|
direct_table[2] = sl->sub_mb_type[2] >> 1;
|
|
direct_table[3] = sl->sub_mb_type[3] >> 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
static av_always_inline int get_dct8x8_allowed(const H264Context *h, H264SliceContext *sl)
|
|
{
|
|
if (h->ps.sps->direct_8x8_inference_flag)
|
|
return !(AV_RN64A(sl->sub_mb_type) &
|
|
((MB_TYPE_16x8 | MB_TYPE_8x16 | MB_TYPE_8x8) *
|
|
0x0001000100010001ULL));
|
|
else
|
|
return !(AV_RN64A(sl->sub_mb_type) &
|
|
((MB_TYPE_16x8 | MB_TYPE_8x16 | MB_TYPE_8x8 | MB_TYPE_DIRECT2) *
|
|
0x0001000100010001ULL));
|
|
}
|
|
|
|
int ff_h264_field_end(H264Context *h, H264SliceContext *sl, int in_setup);
|
|
|
|
int ff_h264_ref_picture(H264Context *h, H264Picture *dst, H264Picture *src);
|
|
void ff_h264_unref_picture(H264Context *h, H264Picture *pic);
|
|
|
|
int ff_h264_slice_context_init(H264Context *h, H264SliceContext *sl);
|
|
|
|
void ff_h264_draw_horiz_band(const H264Context *h, H264SliceContext *sl, int y, int height);
|
|
|
|
/**
|
|
* Submit a slice for decoding.
|
|
*
|
|
* Parse the slice header, starting a new field/frame if necessary. If any
|
|
* slices are queued for the previous field, they are decoded.
|
|
*/
|
|
int ff_h264_queue_decode_slice(H264Context *h, const H2645NAL *nal);
|
|
int ff_h264_execute_decode_slices(H264Context *h);
|
|
int ff_h264_update_thread_context(AVCodecContext *dst,
|
|
const AVCodecContext *src);
|
|
|
|
void ff_h264_flush_change(H264Context *h);
|
|
|
|
void ff_h264_free_tables(H264Context *h);
|
|
|
|
#endif /* AVCODEC_H264DEC_H */
|