mirror of
https://github.com/FFmpeg/FFmpeg.git
synced 2024-12-23 12:43:46 +02:00
499ff6a052
* commit '7acdd3a1275bcd9cad48f9632169f6bbaeb39d84': hevc_filter: avoid excessive calls to ff_hevc_get_ref_list() Conflicts: libavcodec/hevc_filter.c Merged-by: Michael Niedermayer <michaelni@gmx.at>
735 lines
32 KiB
C
735 lines
32 KiB
C
/*
|
|
* HEVC video decoder
|
|
*
|
|
* Copyright (C) 2012 - 2013 Guillaume Martres
|
|
* Copyright (C) 2013 Seppo Tomperi
|
|
* Copyright (C) 2013 Wassim Hamidouche
|
|
*
|
|
* This file is part of FFmpeg.
|
|
*
|
|
* FFmpeg is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*
|
|
* FFmpeg is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with FFmpeg; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
|
|
#include "libavutil/common.h"
|
|
#include "libavutil/internal.h"
|
|
|
|
#include "cabac_functions.h"
|
|
#include "golomb.h"
|
|
#include "hevc.h"
|
|
|
|
#include "bit_depth_template.c"
|
|
|
|
#define LUMA 0
|
|
#define CB 1
|
|
#define CR 2
|
|
|
|
static const uint8_t tctable[54] = {
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, // QP 0...18
|
|
1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, // QP 19...37
|
|
5, 5, 6, 6, 7, 8, 9, 10, 11, 13, 14, 16, 18, 20, 22, 24 // QP 38...53
|
|
};
|
|
|
|
static const uint8_t betatable[52] = {
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 7, 8, // QP 0...18
|
|
9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, // QP 19...37
|
|
38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64 // QP 38...51
|
|
};
|
|
|
|
static int chroma_tc(HEVCContext *s, int qp_y, int c_idx, int tc_offset)
|
|
{
|
|
static const int qp_c[] = {
|
|
29, 30, 31, 32, 33, 33, 34, 34, 35, 35, 36, 36, 37, 37
|
|
};
|
|
int qp, qp_i, offset, idxt;
|
|
|
|
// slice qp offset is not used for deblocking
|
|
if (c_idx == 1)
|
|
offset = s->pps->cb_qp_offset;
|
|
else
|
|
offset = s->pps->cr_qp_offset;
|
|
|
|
qp_i = av_clip(qp_y + offset, 0, 57);
|
|
if (s->sps->chroma_format_idc == 1) {
|
|
if (qp_i < 30)
|
|
qp = qp_i;
|
|
else if (qp_i > 43)
|
|
qp = qp_i - 6;
|
|
else
|
|
qp = qp_c[qp_i - 30];
|
|
} else {
|
|
qp = av_clip(qp_i, 0, 51);
|
|
}
|
|
|
|
idxt = av_clip(qp + DEFAULT_INTRA_TC_OFFSET + tc_offset, 0, 53);
|
|
return tctable[idxt];
|
|
}
|
|
|
|
static int get_qPy_pred(HEVCContext *s, int xBase, int yBase, int log2_cb_size)
|
|
{
|
|
HEVCLocalContext *lc = s->HEVClc;
|
|
int ctb_size_mask = (1 << s->sps->log2_ctb_size) - 1;
|
|
int MinCuQpDeltaSizeMask = (1 << (s->sps->log2_ctb_size -
|
|
s->pps->diff_cu_qp_delta_depth)) - 1;
|
|
int xQgBase = xBase - (xBase & MinCuQpDeltaSizeMask);
|
|
int yQgBase = yBase - (yBase & MinCuQpDeltaSizeMask);
|
|
int min_cb_width = s->sps->min_cb_width;
|
|
int x_cb = xQgBase >> s->sps->log2_min_cb_size;
|
|
int y_cb = yQgBase >> s->sps->log2_min_cb_size;
|
|
int availableA = (xBase & ctb_size_mask) &&
|
|
(xQgBase & ctb_size_mask);
|
|
int availableB = (yBase & ctb_size_mask) &&
|
|
(yQgBase & ctb_size_mask);
|
|
int qPy_pred, qPy_a, qPy_b;
|
|
|
|
// qPy_pred
|
|
if (lc->first_qp_group || (!xQgBase && !yQgBase)) {
|
|
lc->first_qp_group = !lc->tu.is_cu_qp_delta_coded;
|
|
qPy_pred = s->sh.slice_qp;
|
|
} else {
|
|
qPy_pred = lc->qPy_pred;
|
|
}
|
|
|
|
// qPy_a
|
|
if (availableA == 0)
|
|
qPy_a = qPy_pred;
|
|
else
|
|
qPy_a = s->qp_y_tab[(x_cb - 1) + y_cb * min_cb_width];
|
|
|
|
// qPy_b
|
|
if (availableB == 0)
|
|
qPy_b = qPy_pred;
|
|
else
|
|
qPy_b = s->qp_y_tab[x_cb + (y_cb - 1) * min_cb_width];
|
|
|
|
av_assert2(qPy_a >= -s->sps->qp_bd_offset && qPy_a < 52);
|
|
av_assert2(qPy_b >= -s->sps->qp_bd_offset && qPy_b < 52);
|
|
|
|
return (qPy_a + qPy_b + 1) >> 1;
|
|
}
|
|
|
|
void ff_hevc_set_qPy(HEVCContext *s, int xBase, int yBase, int log2_cb_size)
|
|
{
|
|
int qp_y = get_qPy_pred(s, xBase, yBase, log2_cb_size);
|
|
|
|
if (s->HEVClc->tu.cu_qp_delta != 0) {
|
|
int off = s->sps->qp_bd_offset;
|
|
s->HEVClc->qp_y = FFUMOD(qp_y + s->HEVClc->tu.cu_qp_delta + 52 + 2 * off,
|
|
52 + off) - off;
|
|
} else
|
|
s->HEVClc->qp_y = qp_y;
|
|
}
|
|
|
|
static int get_qPy(HEVCContext *s, int xC, int yC)
|
|
{
|
|
int log2_min_cb_size = s->sps->log2_min_cb_size;
|
|
int x = xC >> log2_min_cb_size;
|
|
int y = yC >> log2_min_cb_size;
|
|
return s->qp_y_tab[x + y * s->sps->min_cb_width];
|
|
}
|
|
|
|
static void copy_CTB(uint8_t *dst, uint8_t *src,
|
|
int width, int height, int stride_dst, int stride_src)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < height; i++) {
|
|
memcpy(dst, src, width);
|
|
dst += stride_dst;
|
|
src += stride_src;
|
|
}
|
|
}
|
|
|
|
static void restore_tqb_pixels(HEVCContext *s, int x0, int y0, int width, int height, int c_idx)
|
|
{
|
|
if ( s->pps->transquant_bypass_enable_flag ||
|
|
(s->sps->pcm.loop_filter_disable_flag && s->sps->pcm_enabled_flag)) {
|
|
int x, y;
|
|
ptrdiff_t stride_dst = s->sao_frame->linesize[c_idx];
|
|
ptrdiff_t stride_src = s->frame->linesize[c_idx];
|
|
int min_pu_size = 1 << s->sps->log2_min_pu_size;
|
|
int hshift = s->sps->hshift[c_idx];
|
|
int vshift = s->sps->vshift[c_idx];
|
|
int x_min = ((x0 ) >> s->sps->log2_min_pu_size);
|
|
int y_min = ((y0 ) >> s->sps->log2_min_pu_size);
|
|
int x_max = ((x0 + width ) >> s->sps->log2_min_pu_size);
|
|
int y_max = ((y0 + height) >> s->sps->log2_min_pu_size);
|
|
int len = min_pu_size >> hshift;
|
|
for (y = y_min; y < y_max; y++) {
|
|
for (x = x_min; x < x_max; x++) {
|
|
if (s->is_pcm[y * s->sps->min_pu_width + x]) {
|
|
int n;
|
|
uint8_t *src = &s->frame->data[c_idx][ ((y << s->sps->log2_min_pu_size) >> vshift) * stride_src + (((x << s->sps->log2_min_pu_size) >> hshift) << s->sps->pixel_shift)];
|
|
uint8_t *dst = &s->sao_frame->data[c_idx][((y << s->sps->log2_min_pu_size) >> vshift) * stride_dst + (((x << s->sps->log2_min_pu_size) >> hshift) << s->sps->pixel_shift)];
|
|
for (n = 0; n < (min_pu_size >> vshift); n++) {
|
|
memcpy(src, dst, len);
|
|
src += stride_src;
|
|
dst += stride_dst;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#define CTB(tab, x, y) ((tab)[(y) * s->sps->ctb_width + (x)])
|
|
|
|
static void sao_filter_CTB(HEVCContext *s, int x, int y)
|
|
{
|
|
int c_idx;
|
|
int edges[4]; // 0 left 1 top 2 right 3 bottom
|
|
int x_ctb = x >> s->sps->log2_ctb_size;
|
|
int y_ctb = y >> s->sps->log2_ctb_size;
|
|
int ctb_addr_rs = y_ctb * s->sps->ctb_width + x_ctb;
|
|
int ctb_addr_ts = s->pps->ctb_addr_rs_to_ts[ctb_addr_rs];
|
|
SAOParams *sao = &CTB(s->sao, x_ctb, y_ctb);
|
|
// flags indicating unfilterable edges
|
|
uint8_t vert_edge[] = { 0, 0 };
|
|
uint8_t horiz_edge[] = { 0, 0 };
|
|
uint8_t diag_edge[] = { 0, 0, 0, 0 };
|
|
uint8_t lfase = CTB(s->filter_slice_edges, x_ctb, y_ctb);
|
|
uint8_t no_tile_filter = s->pps->tiles_enabled_flag &&
|
|
!s->pps->loop_filter_across_tiles_enabled_flag;
|
|
uint8_t restore = no_tile_filter || !lfase;
|
|
uint8_t left_tile_edge = 0;
|
|
uint8_t right_tile_edge = 0;
|
|
uint8_t up_tile_edge = 0;
|
|
uint8_t bottom_tile_edge = 0;
|
|
|
|
edges[0] = x_ctb == 0;
|
|
edges[1] = y_ctb == 0;
|
|
edges[2] = x_ctb == s->sps->ctb_width - 1;
|
|
edges[3] = y_ctb == s->sps->ctb_height - 1;
|
|
|
|
if (restore) {
|
|
if (!edges[0]) {
|
|
left_tile_edge = no_tile_filter && s->pps->tile_id[ctb_addr_ts] != s->pps->tile_id[s->pps->ctb_addr_rs_to_ts[ctb_addr_rs-1]];
|
|
vert_edge[0] = (!lfase && CTB(s->tab_slice_address, x_ctb, y_ctb) != CTB(s->tab_slice_address, x_ctb - 1, y_ctb)) || left_tile_edge;
|
|
}
|
|
if (!edges[2]) {
|
|
right_tile_edge = no_tile_filter && s->pps->tile_id[ctb_addr_ts] != s->pps->tile_id[s->pps->ctb_addr_rs_to_ts[ctb_addr_rs+1]];
|
|
vert_edge[1] = (!lfase && CTB(s->tab_slice_address, x_ctb, y_ctb) != CTB(s->tab_slice_address, x_ctb + 1, y_ctb)) || right_tile_edge;
|
|
}
|
|
if (!edges[1]) {
|
|
up_tile_edge = no_tile_filter && s->pps->tile_id[ctb_addr_ts] != s->pps->tile_id[s->pps->ctb_addr_rs_to_ts[ctb_addr_rs - s->sps->ctb_width]];
|
|
horiz_edge[0] = (!lfase && CTB(s->tab_slice_address, x_ctb, y_ctb) != CTB(s->tab_slice_address, x_ctb, y_ctb - 1)) || up_tile_edge;
|
|
}
|
|
if (!edges[3]) {
|
|
bottom_tile_edge = no_tile_filter && s->pps->tile_id[ctb_addr_ts] != s->pps->tile_id[s->pps->ctb_addr_rs_to_ts[ctb_addr_rs + s->sps->ctb_width]];
|
|
horiz_edge[1] = (!lfase && CTB(s->tab_slice_address, x_ctb, y_ctb) != CTB(s->tab_slice_address, x_ctb, y_ctb + 1)) || bottom_tile_edge;
|
|
}
|
|
if (!edges[0] && !edges[1]) {
|
|
diag_edge[0] = (!lfase && CTB(s->tab_slice_address, x_ctb, y_ctb) != CTB(s->tab_slice_address, x_ctb - 1, y_ctb - 1)) || left_tile_edge || up_tile_edge;
|
|
}
|
|
if (!edges[1] && !edges[2]) {
|
|
diag_edge[1] = (!lfase && CTB(s->tab_slice_address, x_ctb, y_ctb) != CTB(s->tab_slice_address, x_ctb + 1, y_ctb - 1)) || right_tile_edge || up_tile_edge;
|
|
}
|
|
if (!edges[2] && !edges[3]) {
|
|
diag_edge[2] = (!lfase && CTB(s->tab_slice_address, x_ctb, y_ctb) != CTB(s->tab_slice_address, x_ctb + 1, y_ctb + 1)) || right_tile_edge || bottom_tile_edge;
|
|
}
|
|
if (!edges[0] && !edges[3]) {
|
|
diag_edge[3] = (!lfase && CTB(s->tab_slice_address, x_ctb, y_ctb) != CTB(s->tab_slice_address, x_ctb - 1, y_ctb + 1)) || left_tile_edge || bottom_tile_edge;
|
|
}
|
|
}
|
|
|
|
for (c_idx = 0; c_idx < 3; c_idx++) {
|
|
int x0 = x >> s->sps->hshift[c_idx];
|
|
int y0 = y >> s->sps->vshift[c_idx];
|
|
int stride_src = s->frame->linesize[c_idx];
|
|
int stride_dst = s->sao_frame->linesize[c_idx];
|
|
int ctb_size_h = (1 << (s->sps->log2_ctb_size)) >> s->sps->hshift[c_idx];
|
|
int ctb_size_v = (1 << (s->sps->log2_ctb_size)) >> s->sps->vshift[c_idx];
|
|
int width = FFMIN(ctb_size_h, (s->sps->width >> s->sps->hshift[c_idx]) - x0);
|
|
int height = FFMIN(ctb_size_v, (s->sps->height >> s->sps->vshift[c_idx]) - y0);
|
|
uint8_t *src = &s->frame->data[c_idx][y0 * stride_src + (x0 << s->sps->pixel_shift)];
|
|
uint8_t *dst = &s->sao_frame->data[c_idx][y0 * stride_dst + (x0 << s->sps->pixel_shift)];
|
|
|
|
switch (sao->type_idx[c_idx]) {
|
|
case SAO_BAND:
|
|
copy_CTB(dst, src, width << s->sps->pixel_shift, height, stride_dst, stride_src);
|
|
s->hevcdsp.sao_band_filter(src, dst,
|
|
stride_src, stride_dst,
|
|
sao,
|
|
edges, width,
|
|
height, c_idx);
|
|
restore_tqb_pixels(s, x, y, width, height, c_idx);
|
|
sao->type_idx[c_idx] = SAO_APPLIED;
|
|
break;
|
|
case SAO_EDGE:
|
|
{
|
|
uint8_t left_pixels = !edges[0] && (CTB(s->sao, x_ctb-1, y_ctb).type_idx[c_idx] != SAO_APPLIED);
|
|
if (!edges[1]) {
|
|
uint8_t top_left = !edges[0] && (CTB(s->sao, x_ctb-1, y_ctb-1).type_idx[c_idx] != SAO_APPLIED);
|
|
uint8_t top_right = !edges[2] && (CTB(s->sao, x_ctb+1, y_ctb-1).type_idx[c_idx] != SAO_APPLIED);
|
|
if (CTB(s->sao, x_ctb , y_ctb-1).type_idx[c_idx] == 0)
|
|
memcpy( dst - stride_dst - (top_left << s->sps->pixel_shift),
|
|
src - stride_src - (top_left << s->sps->pixel_shift),
|
|
(top_left + width + top_right) << s->sps->pixel_shift);
|
|
else {
|
|
if (top_left)
|
|
memcpy( dst - stride_dst - (1 << s->sps->pixel_shift),
|
|
src - stride_src - (1 << s->sps->pixel_shift),
|
|
1 << s->sps->pixel_shift);
|
|
if(top_right)
|
|
memcpy( dst - stride_dst + (width << s->sps->pixel_shift),
|
|
src - stride_src + (width << s->sps->pixel_shift),
|
|
1 << s->sps->pixel_shift);
|
|
}
|
|
}
|
|
if (!edges[3]) { // bottom and bottom right
|
|
uint8_t bottom_left = !edges[0] && (CTB(s->sao, x_ctb-1, y_ctb+1).type_idx[c_idx] != SAO_APPLIED);
|
|
memcpy( dst + height * stride_dst - (bottom_left << s->sps->pixel_shift),
|
|
src + height * stride_src - (bottom_left << s->sps->pixel_shift),
|
|
(width + 1 + bottom_left) << s->sps->pixel_shift);
|
|
}
|
|
copy_CTB(dst - (left_pixels << s->sps->pixel_shift),
|
|
src - (left_pixels << s->sps->pixel_shift),
|
|
(width + 1 + left_pixels) << s->sps->pixel_shift, height, stride_dst, stride_src);
|
|
s->hevcdsp.sao_edge_filter[restore](src, dst,
|
|
stride_src, stride_dst,
|
|
sao,
|
|
edges, width,
|
|
height, c_idx,
|
|
vert_edge,
|
|
horiz_edge,
|
|
diag_edge);
|
|
restore_tqb_pixels(s, x, y, width, height, c_idx);
|
|
sao->type_idx[c_idx] = SAO_APPLIED;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static int get_pcm(HEVCContext *s, int x, int y)
|
|
{
|
|
int log2_min_pu_size = s->sps->log2_min_pu_size;
|
|
int x_pu, y_pu;
|
|
|
|
if (x < 0 || y < 0)
|
|
return 2;
|
|
|
|
x_pu = x >> log2_min_pu_size;
|
|
y_pu = y >> log2_min_pu_size;
|
|
|
|
if (x_pu >= s->sps->min_pu_width || y_pu >= s->sps->min_pu_height)
|
|
return 2;
|
|
return s->is_pcm[y_pu * s->sps->min_pu_width + x_pu];
|
|
}
|
|
|
|
#define TC_CALC(qp, bs) \
|
|
tctable[av_clip((qp) + DEFAULT_INTRA_TC_OFFSET * ((bs) - 1) + \
|
|
(tc_offset >> 1 << 1), \
|
|
0, MAX_QP + DEFAULT_INTRA_TC_OFFSET)]
|
|
|
|
static void deblocking_filter_CTB(HEVCContext *s, int x0, int y0)
|
|
{
|
|
uint8_t *src;
|
|
int x, y;
|
|
int chroma, beta;
|
|
int32_t c_tc[2], tc[2];
|
|
uint8_t no_p[2] = { 0 };
|
|
uint8_t no_q[2] = { 0 };
|
|
|
|
int log2_ctb_size = s->sps->log2_ctb_size;
|
|
int x_end, x_end2, y_end;
|
|
int ctb_size = 1 << log2_ctb_size;
|
|
int ctb = (x0 >> log2_ctb_size) +
|
|
(y0 >> log2_ctb_size) * s->sps->ctb_width;
|
|
int cur_tc_offset = s->deblock[ctb].tc_offset;
|
|
int cur_beta_offset = s->deblock[ctb].beta_offset;
|
|
int left_tc_offset, left_beta_offset;
|
|
int tc_offset, beta_offset;
|
|
int pcmf = (s->sps->pcm_enabled_flag &&
|
|
s->sps->pcm.loop_filter_disable_flag) ||
|
|
s->pps->transquant_bypass_enable_flag;
|
|
|
|
if (x0) {
|
|
left_tc_offset = s->deblock[ctb - 1].tc_offset;
|
|
left_beta_offset = s->deblock[ctb - 1].beta_offset;
|
|
} else {
|
|
left_tc_offset = 0;
|
|
left_beta_offset = 0;
|
|
}
|
|
|
|
x_end = x0 + ctb_size;
|
|
if (x_end > s->sps->width)
|
|
x_end = s->sps->width;
|
|
y_end = y0 + ctb_size;
|
|
if (y_end > s->sps->height)
|
|
y_end = s->sps->height;
|
|
|
|
tc_offset = cur_tc_offset;
|
|
beta_offset = cur_beta_offset;
|
|
|
|
x_end2 = x_end;
|
|
if (x_end2 != s->sps->width)
|
|
x_end2 -= 8;
|
|
for (y = y0; y < y_end; y += 8) {
|
|
// vertical filtering luma
|
|
for (x = x0 ? x0 : 8; x < x_end; x += 8) {
|
|
const int bs0 = s->vertical_bs[(x + y * s->bs_width) >> 2];
|
|
const int bs1 = s->vertical_bs[(x + (y + 4) * s->bs_width) >> 2];
|
|
if (bs0 || bs1) {
|
|
const int qp = (get_qPy(s, x - 1, y) + get_qPy(s, x, y) + 1) >> 1;
|
|
|
|
beta = betatable[av_clip(qp + beta_offset, 0, MAX_QP)];
|
|
|
|
tc[0] = bs0 ? TC_CALC(qp, bs0) : 0;
|
|
tc[1] = bs1 ? TC_CALC(qp, bs1) : 0;
|
|
src = &s->frame->data[LUMA][y * s->frame->linesize[LUMA] + (x << s->sps->pixel_shift)];
|
|
if (pcmf) {
|
|
no_p[0] = get_pcm(s, x - 1, y);
|
|
no_p[1] = get_pcm(s, x - 1, y + 4);
|
|
no_q[0] = get_pcm(s, x, y);
|
|
no_q[1] = get_pcm(s, x, y + 4);
|
|
s->hevcdsp.hevc_v_loop_filter_luma_c(src,
|
|
s->frame->linesize[LUMA],
|
|
beta, tc, no_p, no_q);
|
|
} else
|
|
s->hevcdsp.hevc_v_loop_filter_luma(src,
|
|
s->frame->linesize[LUMA],
|
|
beta, tc, no_p, no_q);
|
|
}
|
|
}
|
|
|
|
if(!y)
|
|
continue;
|
|
|
|
// horizontal filtering luma
|
|
for (x = x0 ? x0 - 8 : 0; x < x_end2; x += 8) {
|
|
const int bs0 = s->horizontal_bs[( x + y * s->bs_width) >> 2];
|
|
const int bs1 = s->horizontal_bs[((x + 4) + y * s->bs_width) >> 2];
|
|
if (bs0 || bs1) {
|
|
const int qp = (get_qPy(s, x, y - 1) + get_qPy(s, x, y) + 1) >> 1;
|
|
|
|
tc_offset = x >= x0 ? cur_tc_offset : left_tc_offset;
|
|
beta_offset = x >= x0 ? cur_beta_offset : left_beta_offset;
|
|
|
|
beta = betatable[av_clip(qp + beta_offset, 0, MAX_QP)];
|
|
tc[0] = bs0 ? TC_CALC(qp, bs0) : 0;
|
|
tc[1] = bs1 ? TC_CALC(qp, bs1) : 0;
|
|
src = &s->frame->data[LUMA][y * s->frame->linesize[LUMA] + (x << s->sps->pixel_shift)];
|
|
if (pcmf) {
|
|
no_p[0] = get_pcm(s, x, y - 1);
|
|
no_p[1] = get_pcm(s, x + 4, y - 1);
|
|
no_q[0] = get_pcm(s, x, y);
|
|
no_q[1] = get_pcm(s, x + 4, y);
|
|
s->hevcdsp.hevc_h_loop_filter_luma_c(src,
|
|
s->frame->linesize[LUMA],
|
|
beta, tc, no_p, no_q);
|
|
} else
|
|
s->hevcdsp.hevc_h_loop_filter_luma(src,
|
|
s->frame->linesize[LUMA],
|
|
beta, tc, no_p, no_q);
|
|
}
|
|
}
|
|
}
|
|
|
|
for (chroma = 1; chroma <= 2; chroma++) {
|
|
int h = 1 << s->sps->hshift[chroma];
|
|
int v = 1 << s->sps->vshift[chroma];
|
|
|
|
// vertical filtering chroma
|
|
for (y = y0; y < y_end; y += (8 * v)) {
|
|
for (x = x0 ? x0 : 8 * h; x < x_end; x += (8 * h)) {
|
|
const int bs0 = s->vertical_bs[(x + y * s->bs_width) >> 2];
|
|
const int bs1 = s->vertical_bs[(x + (y + (4 * v)) * s->bs_width) >> 2];
|
|
|
|
if ((bs0 == 2) || (bs1 == 2)) {
|
|
const int qp0 = (get_qPy(s, x - 1, y) + get_qPy(s, x, y) + 1) >> 1;
|
|
const int qp1 = (get_qPy(s, x - 1, y + (4 * v)) + get_qPy(s, x, y + (4 * v)) + 1) >> 1;
|
|
|
|
c_tc[0] = (bs0 == 2) ? chroma_tc(s, qp0, chroma, tc_offset) : 0;
|
|
c_tc[1] = (bs1 == 2) ? chroma_tc(s, qp1, chroma, tc_offset) : 0;
|
|
src = &s->frame->data[chroma][(y >> s->sps->vshift[chroma]) * s->frame->linesize[chroma] + ((x >> s->sps->hshift[chroma]) << s->sps->pixel_shift)];
|
|
if (pcmf) {
|
|
no_p[0] = get_pcm(s, x - 1, y);
|
|
no_p[1] = get_pcm(s, x - 1, y + (4 * v));
|
|
no_q[0] = get_pcm(s, x, y);
|
|
no_q[1] = get_pcm(s, x, y + (4 * v));
|
|
s->hevcdsp.hevc_v_loop_filter_chroma_c(src,
|
|
s->frame->linesize[chroma],
|
|
c_tc, no_p, no_q);
|
|
} else
|
|
s->hevcdsp.hevc_v_loop_filter_chroma(src,
|
|
s->frame->linesize[chroma],
|
|
c_tc, no_p, no_q);
|
|
}
|
|
}
|
|
|
|
if(!y)
|
|
continue;
|
|
|
|
// horizontal filtering chroma
|
|
tc_offset = x0 ? left_tc_offset : cur_tc_offset;
|
|
x_end2 = x_end;
|
|
if (x_end != s->sps->width)
|
|
x_end2 = x_end - 8 * h;
|
|
for (x = x0 ? x0 - 8 * h : 0; x < x_end2; x += (8 * h)) {
|
|
const int bs0 = s->horizontal_bs[( x + y * s->bs_width) >> 2];
|
|
const int bs1 = s->horizontal_bs[((x + 4 * h) + y * s->bs_width) >> 2];
|
|
if ((bs0 == 2) || (bs1 == 2)) {
|
|
const int qp0 = bs0 == 2 ? (get_qPy(s, x, y - 1) + get_qPy(s, x, y) + 1) >> 1 : 0;
|
|
const int qp1 = bs1 == 2 ? (get_qPy(s, x + (4 * h), y - 1) + get_qPy(s, x + (4 * h), y) + 1) >> 1 : 0;
|
|
|
|
c_tc[0] = bs0 == 2 ? chroma_tc(s, qp0, chroma, tc_offset) : 0;
|
|
c_tc[1] = bs1 == 2 ? chroma_tc(s, qp1, chroma, cur_tc_offset) : 0;
|
|
src = &s->frame->data[chroma][(y >> s->sps->vshift[1]) * s->frame->linesize[chroma] + ((x >> s->sps->hshift[1]) << s->sps->pixel_shift)];
|
|
if (pcmf) {
|
|
no_p[0] = get_pcm(s, x, y - 1);
|
|
no_p[1] = get_pcm(s, x + (4 * h), y - 1);
|
|
no_q[0] = get_pcm(s, x, y);
|
|
no_q[1] = get_pcm(s, x + (4 * h), y);
|
|
s->hevcdsp.hevc_h_loop_filter_chroma_c(src,
|
|
s->frame->linesize[chroma],
|
|
c_tc, no_p, no_q);
|
|
} else
|
|
s->hevcdsp.hevc_h_loop_filter_chroma(src,
|
|
s->frame->linesize[chroma],
|
|
c_tc, no_p, no_q);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static int boundary_strength(HEVCContext *s, MvField *curr, MvField *neigh,
|
|
RefPicList *neigh_refPicList)
|
|
{
|
|
if (curr->pred_flag == PF_BI && neigh->pred_flag == PF_BI) {
|
|
// same L0 and L1
|
|
if (s->ref->refPicList[0].list[curr->ref_idx[0]] == neigh_refPicList[0].list[neigh->ref_idx[0]] &&
|
|
s->ref->refPicList[0].list[curr->ref_idx[0]] == s->ref->refPicList[1].list[curr->ref_idx[1]] &&
|
|
neigh_refPicList[0].list[neigh->ref_idx[0]] == neigh_refPicList[1].list[neigh->ref_idx[1]]) {
|
|
if ((FFABS(neigh->mv[0].x - curr->mv[0].x) >= 4 || FFABS(neigh->mv[0].y - curr->mv[0].y) >= 4 ||
|
|
FFABS(neigh->mv[1].x - curr->mv[1].x) >= 4 || FFABS(neigh->mv[1].y - curr->mv[1].y) >= 4) &&
|
|
(FFABS(neigh->mv[1].x - curr->mv[0].x) >= 4 || FFABS(neigh->mv[1].y - curr->mv[0].y) >= 4 ||
|
|
FFABS(neigh->mv[0].x - curr->mv[1].x) >= 4 || FFABS(neigh->mv[0].y - curr->mv[1].y) >= 4))
|
|
return 1;
|
|
else
|
|
return 0;
|
|
} else if (neigh_refPicList[0].list[neigh->ref_idx[0]] == s->ref->refPicList[0].list[curr->ref_idx[0]] &&
|
|
neigh_refPicList[1].list[neigh->ref_idx[1]] == s->ref->refPicList[1].list[curr->ref_idx[1]]) {
|
|
if (FFABS(neigh->mv[0].x - curr->mv[0].x) >= 4 || FFABS(neigh->mv[0].y - curr->mv[0].y) >= 4 ||
|
|
FFABS(neigh->mv[1].x - curr->mv[1].x) >= 4 || FFABS(neigh->mv[1].y - curr->mv[1].y) >= 4)
|
|
return 1;
|
|
else
|
|
return 0;
|
|
} else if (neigh_refPicList[1].list[neigh->ref_idx[1]] == s->ref->refPicList[0].list[curr->ref_idx[0]] &&
|
|
neigh_refPicList[0].list[neigh->ref_idx[0]] == s->ref->refPicList[1].list[curr->ref_idx[1]]) {
|
|
if (FFABS(neigh->mv[1].x - curr->mv[0].x) >= 4 || FFABS(neigh->mv[1].y - curr->mv[0].y) >= 4 ||
|
|
FFABS(neigh->mv[0].x - curr->mv[1].x) >= 4 || FFABS(neigh->mv[0].y - curr->mv[1].y) >= 4)
|
|
return 1;
|
|
else
|
|
return 0;
|
|
} else {
|
|
return 1;
|
|
}
|
|
} else if ((curr->pred_flag != PF_BI) && (neigh->pred_flag != PF_BI)){ // 1 MV
|
|
Mv A, B;
|
|
int ref_A, ref_B;
|
|
|
|
if (curr->pred_flag & 1) {
|
|
A = curr->mv[0];
|
|
ref_A = s->ref->refPicList[0].list[curr->ref_idx[0]];
|
|
} else {
|
|
A = curr->mv[1];
|
|
ref_A = s->ref->refPicList[1].list[curr->ref_idx[1]];
|
|
}
|
|
|
|
if (neigh->pred_flag & 1) {
|
|
B = neigh->mv[0];
|
|
ref_B = neigh_refPicList[0].list[neigh->ref_idx[0]];
|
|
} else {
|
|
B = neigh->mv[1];
|
|
ref_B = neigh_refPicList[1].list[neigh->ref_idx[1]];
|
|
}
|
|
|
|
if (ref_A == ref_B) {
|
|
if (FFABS(A.x - B.x) >= 4 || FFABS(A.y - B.y) >= 4)
|
|
return 1;
|
|
else
|
|
return 0;
|
|
} else
|
|
return 1;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
void ff_hevc_deblocking_boundary_strengths(HEVCContext *s, int x0, int y0,
|
|
int log2_trafo_size)
|
|
{
|
|
HEVCLocalContext *lc = s->HEVClc;
|
|
MvField *tab_mvf = s->ref->tab_mvf;
|
|
int log2_min_pu_size = s->sps->log2_min_pu_size;
|
|
int log2_min_tu_size = s->sps->log2_min_tb_size;
|
|
int min_pu_width = s->sps->min_pu_width;
|
|
int min_tu_width = s->sps->min_tb_width;
|
|
int is_intra = tab_mvf[(y0 >> log2_min_pu_size) * min_pu_width +
|
|
(x0 >> log2_min_pu_size)].pred_flag == PF_INTRA;
|
|
int boundary_upper, boundary_left;
|
|
int i, j, bs;
|
|
|
|
boundary_upper = y0 > 0 && !(y0 & 7);
|
|
if (boundary_upper &&
|
|
((!s->sh.slice_loop_filter_across_slices_enabled_flag &&
|
|
lc->boundary_flags & BOUNDARY_UPPER_SLICE &&
|
|
(y0 % (1 << s->sps->log2_ctb_size)) == 0) ||
|
|
(!s->pps->loop_filter_across_tiles_enabled_flag &&
|
|
lc->boundary_flags & BOUNDARY_UPPER_TILE &&
|
|
(y0 % (1 << s->sps->log2_ctb_size)) == 0)))
|
|
boundary_upper = 0;
|
|
|
|
if (boundary_upper) {
|
|
RefPicList *rpl_top = (lc->boundary_flags & BOUNDARY_UPPER_SLICE) ?
|
|
ff_hevc_get_ref_list(s, s->ref, x0, y0 - 1) :
|
|
s->ref->refPicList;
|
|
int yp_pu = (y0 - 1) >> log2_min_pu_size;
|
|
int yq_pu = y0 >> log2_min_pu_size;
|
|
int yp_tu = (y0 - 1) >> log2_min_tu_size;
|
|
int yq_tu = y0 >> log2_min_tu_size;
|
|
|
|
for (i = 0; i < (1 << log2_trafo_size); i += 4) {
|
|
int x_pu = (x0 + i) >> log2_min_pu_size;
|
|
int x_tu = (x0 + i) >> log2_min_tu_size;
|
|
MvField *top = &tab_mvf[yp_pu * min_pu_width + x_pu];
|
|
MvField *curr = &tab_mvf[yq_pu * min_pu_width + x_pu];
|
|
uint8_t top_cbf_luma = s->cbf_luma[yp_tu * min_tu_width + x_tu];
|
|
uint8_t curr_cbf_luma = s->cbf_luma[yq_tu * min_tu_width + x_tu];
|
|
|
|
if (curr->pred_flag == PF_INTRA || top->pred_flag == PF_INTRA)
|
|
bs = 2;
|
|
else if (curr_cbf_luma || top_cbf_luma)
|
|
bs = 1;
|
|
else
|
|
bs = boundary_strength(s, curr, top, rpl_top);
|
|
s->horizontal_bs[((x0 + i) + y0 * s->bs_width) >> 2] = bs;
|
|
}
|
|
}
|
|
|
|
// bs for vertical TU boundaries
|
|
boundary_left = x0 > 0 && !(x0 & 7);
|
|
if (boundary_left &&
|
|
((!s->sh.slice_loop_filter_across_slices_enabled_flag &&
|
|
lc->boundary_flags & BOUNDARY_LEFT_SLICE &&
|
|
(x0 % (1 << s->sps->log2_ctb_size)) == 0) ||
|
|
(!s->pps->loop_filter_across_tiles_enabled_flag &&
|
|
lc->boundary_flags & BOUNDARY_LEFT_TILE &&
|
|
(x0 % (1 << s->sps->log2_ctb_size)) == 0)))
|
|
boundary_left = 0;
|
|
|
|
if (boundary_left) {
|
|
RefPicList *rpl_left = (lc->boundary_flags & BOUNDARY_LEFT_SLICE) ?
|
|
ff_hevc_get_ref_list(s, s->ref, x0 - 1, y0) :
|
|
s->ref->refPicList;
|
|
int xp_pu = (x0 - 1) >> log2_min_pu_size;
|
|
int xq_pu = x0 >> log2_min_pu_size;
|
|
int xp_tu = (x0 - 1) >> log2_min_tu_size;
|
|
int xq_tu = x0 >> log2_min_tu_size;
|
|
|
|
for (i = 0; i < (1 << log2_trafo_size); i += 4) {
|
|
int y_pu = (y0 + i) >> log2_min_pu_size;
|
|
int y_tu = (y0 + i) >> log2_min_tu_size;
|
|
MvField *left = &tab_mvf[y_pu * min_pu_width + xp_pu];
|
|
MvField *curr = &tab_mvf[y_pu * min_pu_width + xq_pu];
|
|
uint8_t left_cbf_luma = s->cbf_luma[y_tu * min_tu_width + xp_tu];
|
|
uint8_t curr_cbf_luma = s->cbf_luma[y_tu * min_tu_width + xq_tu];
|
|
|
|
if (curr->pred_flag == PF_INTRA || left->pred_flag == PF_INTRA)
|
|
bs = 2;
|
|
else if (curr_cbf_luma || left_cbf_luma)
|
|
bs = 1;
|
|
else
|
|
bs = boundary_strength(s, curr, left, rpl_left);
|
|
s->vertical_bs[(x0 + (y0 + i) * s->bs_width) >> 2] = bs;
|
|
}
|
|
}
|
|
|
|
if (log2_trafo_size > log2_min_pu_size && !is_intra) {
|
|
RefPicList *rpl = s->ref->refPicList;
|
|
|
|
// bs for TU internal horizontal PU boundaries
|
|
for (j = 8; j < (1 << log2_trafo_size); j += 8) {
|
|
int yp_pu = (y0 + j - 1) >> log2_min_pu_size;
|
|
int yq_pu = (y0 + j) >> log2_min_pu_size;
|
|
|
|
for (i = 0; i < (1 << log2_trafo_size); i += 4) {
|
|
int x_pu = (x0 + i) >> log2_min_pu_size;
|
|
MvField *top = &tab_mvf[yp_pu * min_pu_width + x_pu];
|
|
MvField *curr = &tab_mvf[yq_pu * min_pu_width + x_pu];
|
|
|
|
bs = boundary_strength(s, curr, top, rpl);
|
|
s->horizontal_bs[((x0 + i) + (y0 + j) * s->bs_width) >> 2] = bs;
|
|
}
|
|
}
|
|
|
|
// bs for TU internal vertical PU boundaries
|
|
for (j = 0; j < (1 << log2_trafo_size); j += 4) {
|
|
int y_pu = (y0 + j) >> log2_min_pu_size;
|
|
|
|
for (i = 8; i < (1 << log2_trafo_size); i += 8) {
|
|
int xp_pu = (x0 + i - 1) >> log2_min_pu_size;
|
|
int xq_pu = (x0 + i) >> log2_min_pu_size;
|
|
MvField *left = &tab_mvf[y_pu * min_pu_width + xp_pu];
|
|
MvField *curr = &tab_mvf[y_pu * min_pu_width + xq_pu];
|
|
|
|
bs = boundary_strength(s, curr, left, rpl);
|
|
s->vertical_bs[((x0 + i) + (y0 + j) * s->bs_width) >> 2] = bs;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#undef LUMA
|
|
#undef CB
|
|
#undef CR
|
|
|
|
void ff_hevc_hls_filter(HEVCContext *s, int x, int y, int ctb_size)
|
|
{
|
|
int x_end = x >= s->sps->width - ctb_size;
|
|
deblocking_filter_CTB(s, x, y);
|
|
if (s->sps->sao_enabled) {
|
|
int y_end = y >= s->sps->height - ctb_size;
|
|
if (y && x)
|
|
sao_filter_CTB(s, x - ctb_size, y - ctb_size);
|
|
if (x && y_end)
|
|
sao_filter_CTB(s, x - ctb_size, y);
|
|
if (y && x_end) {
|
|
sao_filter_CTB(s, x, y - ctb_size);
|
|
if (s->threads_type & FF_THREAD_FRAME )
|
|
ff_thread_report_progress(&s->ref->tf, y, 0);
|
|
}
|
|
if (x_end && y_end) {
|
|
sao_filter_CTB(s, x , y);
|
|
if (s->threads_type & FF_THREAD_FRAME )
|
|
ff_thread_report_progress(&s->ref->tf, y + ctb_size, 0);
|
|
}
|
|
} else if (s->threads_type & FF_THREAD_FRAME && x_end)
|
|
ff_thread_report_progress(&s->ref->tf, y + ctb_size - 4, 0);
|
|
}
|
|
|
|
void ff_hevc_hls_filters(HEVCContext *s, int x_ctb, int y_ctb, int ctb_size)
|
|
{
|
|
int x_end = x_ctb >= s->sps->width - ctb_size;
|
|
int y_end = y_ctb >= s->sps->height - ctb_size;
|
|
if (y_ctb && x_ctb)
|
|
ff_hevc_hls_filter(s, x_ctb - ctb_size, y_ctb - ctb_size, ctb_size);
|
|
if (y_ctb && x_end)
|
|
ff_hevc_hls_filter(s, x_ctb, y_ctb - ctb_size, ctb_size);
|
|
if (x_ctb && y_end)
|
|
ff_hevc_hls_filter(s, x_ctb - ctb_size, y_ctb, ctb_size);
|
|
}
|