1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2024-12-18 03:19:31 +02:00
FFmpeg/libavcodec/h264_loopfilter.c
Michael Niedermayer 59eb12faff Merge remote branch 'qatar/master'
* qatar/master: (30 commits)
  AVOptions: make default_val a union, as proposed in AVOption2.
  arm/h264pred: add missing argument type.
  h264dsp_mmx: place bracket outside #if/#endif block.
  lavf/utils: fix ff_interleave_compare_dts corner case.
  fate: add 10-bit H264 tests.
  h264: do not print "too many references" warning for intra-only.
  Enable decoding of high bit depth h264.
  Adds 8-, 9- and 10-bit versions of some of the functions used by the h264 decoder.
  Add support for higher QP values in h264.
  Add the notion of pixel size in h264 related functions.
  Make the h264 loop filter bit depth aware.
  Template dsputil_template.c with respect to pixel size, etc.
  Template h264idct_template.c with respect to pixel size, etc.
  Preparatory patch for high bit depth h264 decoding support.
  Move some functions in dsputil.c into a new file dsputil_template.c.
  Move the functions in h264idct into a new file h264idct_template.c.
  Move the functions in h264pred.c into a new file h264pred_template.c.
  Preparatory patch for high bit depth h264 decoding support.
  Add pixel formats for 9- and 10-bit yuv420p.
  Choose h264 chroma dc dequant function dynamically.
  ...

Conflicts:
	doc/APIchanges
	ffmpeg.c
	ffplay.c
	libavcodec/alpha/dsputil_alpha.c
	libavcodec/arm/dsputil_init_arm.c
	libavcodec/arm/dsputil_init_armv6.c
	libavcodec/arm/dsputil_init_neon.c
	libavcodec/arm/dsputil_iwmmxt.c
	libavcodec/arm/h264pred_init_arm.c
	libavcodec/bfin/dsputil_bfin.c
	libavcodec/dsputil.c
	libavcodec/h264.c
	libavcodec/h264.h
	libavcodec/h264_cabac.c
	libavcodec/h264_cavlc.c
	libavcodec/h264_loopfilter.c
	libavcodec/h264_ps.c
	libavcodec/h264_refs.c
	libavcodec/h264dsp.c
	libavcodec/h264idct.c
	libavcodec/h264pred.c
	libavcodec/mlib/dsputil_mlib.c
	libavcodec/options.c
	libavcodec/ppc/dsputil_altivec.c
	libavcodec/ppc/dsputil_ppc.c
	libavcodec/ppc/h264_altivec.c
	libavcodec/ps2/dsputil_mmi.c
	libavcodec/sh4/dsputil_align.c
	libavcodec/sh4/dsputil_sh4.c
	libavcodec/sparc/dsputil_vis.c
	libavcodec/utils.c
	libavcodec/version.h
	libavcodec/x86/dsputil_mmx.c
	libavformat/options.c
	libavformat/utils.c
	libavutil/pixfmt.h
	libswscale/swscale.c
	libswscale/swscale_internal.h
	libswscale/swscale_template.c
	tests/ref/seek/lavf_avi

Merged-by: Michael Niedermayer <michaelni@gmx.at>
2011-05-11 05:47:02 +02:00

659 lines
31 KiB
C

/*
* H.26L/H.264/AVC/JVT/14496-10/... loop filter
* Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* H.264 / AVC / MPEG4 part10 loop filter.
* @author Michael Niedermayer <michaelni@gmx.at>
*/
#include "libavutil/intreadwrite.h"
#include "internal.h"
#include "dsputil.h"
#include "avcodec.h"
#include "mpegvideo.h"
#include "h264.h"
#include "mathops.h"
#include "rectangle.h"
//#undef NDEBUG
#include <assert.h>
/* Deblocking filter (p153) */
static const uint8_t alpha_table[52*3] = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 4, 4, 5, 6,
7, 8, 9, 10, 12, 13, 15, 17, 20, 22,
25, 28, 32, 36, 40, 45, 50, 56, 63, 71,
80, 90,101,113,127,144,162,182,203,226,
255,255,
255,255,255,255,255,255,255,255,255,255,255,255,255,
255,255,255,255,255,255,255,255,255,255,255,255,255,
255,255,255,255,255,255,255,255,255,255,255,255,255,
255,255,255,255,255,255,255,255,255,255,255,255,255,
};
static const uint8_t beta_table[52*3] = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 2, 2, 2, 3,
3, 3, 3, 4, 4, 4, 6, 6, 7, 7,
8, 8, 9, 9, 10, 10, 11, 11, 12, 12,
13, 13, 14, 14, 15, 15, 16, 16, 17, 17,
18, 18,
18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18,
18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18,
18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18,
18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18,
};
static const uint8_t tc0_table[52*3][4] = {
{-1, 0, 0, 0 }, {-1, 0, 0, 0 }, {-1, 0, 0, 0 }, {-1, 0, 0, 0 }, {-1, 0, 0, 0 }, {-1, 0, 0, 0 },
{-1, 0, 0, 0 }, {-1, 0, 0, 0 }, {-1, 0, 0, 0 }, {-1, 0, 0, 0 }, {-1, 0, 0, 0 }, {-1, 0, 0, 0 },
{-1, 0, 0, 0 }, {-1, 0, 0, 0 }, {-1, 0, 0, 0 }, {-1, 0, 0, 0 }, {-1, 0, 0, 0 }, {-1, 0, 0, 0 },
{-1, 0, 0, 0 }, {-1, 0, 0, 0 }, {-1, 0, 0, 0 }, {-1, 0, 0, 0 }, {-1, 0, 0, 0 }, {-1, 0, 0, 0 },
{-1, 0, 0, 0 }, {-1, 0, 0, 0 }, {-1, 0, 0, 0 }, {-1, 0, 0, 0 }, {-1, 0, 0, 0 }, {-1, 0, 0, 0 },
{-1, 0, 0, 0 }, {-1, 0, 0, 0 }, {-1, 0, 0, 0 }, {-1, 0, 0, 0 }, {-1, 0, 0, 0 }, {-1, 0, 0, 0 },
{-1, 0, 0, 0 }, {-1, 0, 0, 0 }, {-1, 0, 0, 0 }, {-1, 0, 0, 0 }, {-1, 0, 0, 0 }, {-1, 0, 0, 0 },
{-1, 0, 0, 0 }, {-1, 0, 0, 0 }, {-1, 0, 0, 0 }, {-1, 0, 0, 0 }, {-1, 0, 0, 0 }, {-1, 0, 0, 0 },
{-1, 0, 0, 0 }, {-1, 0, 0, 0 }, {-1, 0, 0, 0 }, {-1, 0, 0, 0 },
{-1, 0, 0, 0 }, {-1, 0, 0, 0 }, {-1, 0, 0, 0 }, {-1, 0, 0, 0 }, {-1, 0, 0, 0 }, {-1, 0, 0, 0 },
{-1, 0, 0, 0 }, {-1, 0, 0, 0 }, {-1, 0, 0, 0 }, {-1, 0, 0, 0 }, {-1, 0, 0, 0 }, {-1, 0, 0, 0 },
{-1, 0, 0, 0 }, {-1, 0, 0, 0 }, {-1, 0, 0, 0 }, {-1, 0, 0, 0 }, {-1, 0, 0, 0 }, {-1, 0, 0, 1 },
{-1, 0, 0, 1 }, {-1, 0, 0, 1 }, {-1, 0, 0, 1 }, {-1, 0, 1, 1 }, {-1, 0, 1, 1 }, {-1, 1, 1, 1 },
{-1, 1, 1, 1 }, {-1, 1, 1, 1 }, {-1, 1, 1, 1 }, {-1, 1, 1, 2 }, {-1, 1, 1, 2 }, {-1, 1, 1, 2 },
{-1, 1, 1, 2 }, {-1, 1, 2, 3 }, {-1, 1, 2, 3 }, {-1, 2, 2, 3 }, {-1, 2, 2, 4 }, {-1, 2, 3, 4 },
{-1, 2, 3, 4 }, {-1, 3, 3, 5 }, {-1, 3, 4, 6 }, {-1, 3, 4, 6 }, {-1, 4, 5, 7 }, {-1, 4, 5, 8 },
{-1, 4, 6, 9 }, {-1, 5, 7,10 }, {-1, 6, 8,11 }, {-1, 6, 8,13 }, {-1, 7,10,14 }, {-1, 8,11,16 },
{-1, 9,12,18 }, {-1,10,13,20 }, {-1,11,15,23 }, {-1,13,17,25 },
{-1,13,17,25 }, {-1,13,17,25 }, {-1,13,17,25 }, {-1,13,17,25 }, {-1,13,17,25 }, {-1,13,17,25 },
{-1,13,17,25 }, {-1,13,17,25 }, {-1,13,17,25 }, {-1,13,17,25 }, {-1,13,17,25 }, {-1,13,17,25 },
{-1,13,17,25 }, {-1,13,17,25 }, {-1,13,17,25 }, {-1,13,17,25 }, {-1,13,17,25 }, {-1,13,17,25 },
{-1,13,17,25 }, {-1,13,17,25 }, {-1,13,17,25 }, {-1,13,17,25 }, {-1,13,17,25 }, {-1,13,17,25 },
{-1,13,17,25 }, {-1,13,17,25 }, {-1,13,17,25 }, {-1,13,17,25 }, {-1,13,17,25 }, {-1,13,17,25 },
{-1,13,17,25 }, {-1,13,17,25 }, {-1,13,17,25 }, {-1,13,17,25 }, {-1,13,17,25 }, {-1,13,17,25 },
{-1,13,17,25 }, {-1,13,17,25 }, {-1,13,17,25 }, {-1,13,17,25 }, {-1,13,17,25 }, {-1,13,17,25 },
{-1,13,17,25 }, {-1,13,17,25 }, {-1,13,17,25 }, {-1,13,17,25 }, {-1,13,17,25 }, {-1,13,17,25 },
{-1,13,17,25 }, {-1,13,17,25 }, {-1,13,17,25 }, {-1,13,17,25 },
};
static void av_always_inline filter_mb_edgev( uint8_t *pix, int stride, int16_t bS[4], unsigned int qp, H264Context *h) {
const int qp_bd_offset = 6 * (h->sps.bit_depth_luma - 8);
const unsigned int index_a = qp - qp_bd_offset + h->slice_alpha_c0_offset;
const int alpha = alpha_table[index_a];
const int beta = beta_table[qp - qp_bd_offset + h->slice_beta_offset];
if (alpha ==0 || beta == 0) return;
if( bS[0] < 4 ) {
int8_t tc[4];
tc[0] = tc0_table[index_a][bS[0]];
tc[1] = tc0_table[index_a][bS[1]];
tc[2] = tc0_table[index_a][bS[2]];
tc[3] = tc0_table[index_a][bS[3]];
h->h264dsp.h264_h_loop_filter_luma(pix, stride, alpha, beta, tc);
} else {
h->h264dsp.h264_h_loop_filter_luma_intra(pix, stride, alpha, beta);
}
}
static void av_always_inline filter_mb_edgecv( uint8_t *pix, int stride, int16_t bS[4], unsigned int qp, H264Context *h ) {
const int qp_bd_offset = 6 * (h->sps.bit_depth_luma - 8);
const unsigned int index_a = qp - qp_bd_offset + h->slice_alpha_c0_offset;
const int alpha = alpha_table[index_a];
const int beta = beta_table[qp - qp_bd_offset + h->slice_beta_offset];
if (alpha ==0 || beta == 0) return;
if( bS[0] < 4 ) {
int8_t tc[4];
tc[0] = tc0_table[index_a][bS[0]]+1;
tc[1] = tc0_table[index_a][bS[1]]+1;
tc[2] = tc0_table[index_a][bS[2]]+1;
tc[3] = tc0_table[index_a][bS[3]]+1;
h->h264dsp.h264_h_loop_filter_chroma(pix, stride, alpha, beta, tc);
} else {
h->h264dsp.h264_h_loop_filter_chroma_intra(pix, stride, alpha, beta);
}
}
static void filter_mb_mbaff_edgev( H264Context *h, uint8_t *pix, int stride, int16_t bS[7], int bsi, int qp ) {
const int qp_bd_offset = 6 * (h->sps.bit_depth_luma - 8);
int index_a = qp - qp_bd_offset + h->slice_alpha_c0_offset;
int alpha = alpha_table[index_a];
int beta = beta_table[qp - qp_bd_offset + h->slice_beta_offset];
if (alpha ==0 || beta == 0) return;
if( bS[0] < 4 ) {
int8_t tc[4];
tc[0] = tc0_table[index_a][bS[0*bsi]];
tc[1] = tc0_table[index_a][bS[1*bsi]];
tc[2] = tc0_table[index_a][bS[2*bsi]];
tc[3] = tc0_table[index_a][bS[3*bsi]];
h->h264dsp.h264_h_loop_filter_luma_mbaff(pix, stride, alpha, beta, tc);
} else {
h->h264dsp.h264_h_loop_filter_luma_mbaff_intra(pix, stride, alpha, beta);
}
}
static void filter_mb_mbaff_edgecv( H264Context *h, uint8_t *pix, int stride, int16_t bS[7], int bsi, int qp ) {
const int qp_bd_offset = 6 * (h->sps.bit_depth_luma - 8);
int index_a = qp - qp_bd_offset + h->slice_alpha_c0_offset;
int alpha = alpha_table[index_a];
int beta = beta_table[qp - qp_bd_offset + h->slice_beta_offset];
if (alpha ==0 || beta == 0) return;
if( bS[0] < 4 ) {
int8_t tc[4];
tc[0] = tc0_table[index_a][bS[0*bsi]] + 1;
tc[1] = tc0_table[index_a][bS[1*bsi]] + 1;
tc[2] = tc0_table[index_a][bS[2*bsi]] + 1;
tc[3] = tc0_table[index_a][bS[3*bsi]] + 1;
h->h264dsp.h264_h_loop_filter_chroma_mbaff(pix, stride, alpha, beta, tc);
} else {
h->h264dsp.h264_h_loop_filter_chroma_mbaff_intra(pix, stride, alpha, beta);
}
}
static void av_always_inline filter_mb_edgeh( uint8_t *pix, int stride, int16_t bS[4], unsigned int qp, H264Context *h ) {
const int qp_bd_offset = 6 * (h->sps.bit_depth_luma - 8);
const unsigned int index_a = qp - qp_bd_offset + h->slice_alpha_c0_offset;
const int alpha = alpha_table[index_a];
const int beta = beta_table[qp - qp_bd_offset + h->slice_beta_offset];
if (alpha ==0 || beta == 0) return;
if( bS[0] < 4 ) {
int8_t tc[4];
tc[0] = tc0_table[index_a][bS[0]];
tc[1] = tc0_table[index_a][bS[1]];
tc[2] = tc0_table[index_a][bS[2]];
tc[3] = tc0_table[index_a][bS[3]];
h->h264dsp.h264_v_loop_filter_luma(pix, stride, alpha, beta, tc);
} else {
h->h264dsp.h264_v_loop_filter_luma_intra(pix, stride, alpha, beta);
}
}
static void av_always_inline filter_mb_edgech( uint8_t *pix, int stride, int16_t bS[4], unsigned int qp, H264Context *h ) {
const int qp_bd_offset = 6 * (h->sps.bit_depth_luma - 8);
const unsigned int index_a = qp - qp_bd_offset + h->slice_alpha_c0_offset;
const int alpha = alpha_table[index_a];
const int beta = beta_table[qp - qp_bd_offset + h->slice_beta_offset];
if (alpha ==0 || beta == 0) return;
if( bS[0] < 4 ) {
int8_t tc[4];
tc[0] = tc0_table[index_a][bS[0]]+1;
tc[1] = tc0_table[index_a][bS[1]]+1;
tc[2] = tc0_table[index_a][bS[2]]+1;
tc[3] = tc0_table[index_a][bS[3]]+1;
h->h264dsp.h264_v_loop_filter_chroma(pix, stride, alpha, beta, tc);
} else {
h->h264dsp.h264_v_loop_filter_chroma_intra(pix, stride, alpha, beta);
}
}
void ff_h264_filter_mb_fast( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize) {
MpegEncContext * const s = &h->s;
int mb_xy;
int mb_type, left_type;
int qp, qp0, qp1, qpc, qpc0, qpc1, qp_thresh;
mb_xy = h->mb_xy;
if(!h->top_type || !h->h264dsp.h264_loop_filter_strength || h->pps.chroma_qp_diff) {
ff_h264_filter_mb(h, mb_x, mb_y, img_y, img_cb, img_cr, linesize, uvlinesize);
return;
}
assert(!FRAME_MBAFF);
left_type= h->left_type[0];
mb_type = s->current_picture.mb_type[mb_xy];
qp = s->current_picture.qscale_table[mb_xy];
qp0 = s->current_picture.qscale_table[mb_xy-1];
qp1 = s->current_picture.qscale_table[h->top_mb_xy];
qpc = get_chroma_qp( h, 0, qp );
qpc0 = get_chroma_qp( h, 0, qp0 );
qpc1 = get_chroma_qp( h, 0, qp1 );
qp0 = (qp + qp0 + 1) >> 1;
qp1 = (qp + qp1 + 1) >> 1;
qpc0 = (qpc + qpc0 + 1) >> 1;
qpc1 = (qpc + qpc1 + 1) >> 1;
qp_thresh = 15+52 - h->slice_alpha_c0_offset;
if(qp <= qp_thresh && qp0 <= qp_thresh && qp1 <= qp_thresh &&
qpc <= qp_thresh && qpc0 <= qp_thresh && qpc1 <= qp_thresh)
return;
if( IS_INTRA(mb_type) ) {
int16_t bS4[4] = {4,4,4,4};
int16_t bS3[4] = {3,3,3,3};
int16_t *bSH = FIELD_PICTURE ? bS3 : bS4;
if(left_type)
filter_mb_edgev( &img_y[4*0], linesize, bS4, qp0, h);
if( IS_8x8DCT(mb_type) ) {
filter_mb_edgev( &img_y[4*2], linesize, bS3, qp, h);
filter_mb_edgeh( &img_y[4*0*linesize], linesize, bSH, qp1, h);
filter_mb_edgeh( &img_y[4*2*linesize], linesize, bS3, qp, h);
} else {
filter_mb_edgev( &img_y[4*1], linesize, bS3, qp, h);
filter_mb_edgev( &img_y[4*2], linesize, bS3, qp, h);
filter_mb_edgev( &img_y[4*3], linesize, bS3, qp, h);
filter_mb_edgeh( &img_y[4*0*linesize], linesize, bSH, qp1, h);
filter_mb_edgeh( &img_y[4*1*linesize], linesize, bS3, qp, h);
filter_mb_edgeh( &img_y[4*2*linesize], linesize, bS3, qp, h);
filter_mb_edgeh( &img_y[4*3*linesize], linesize, bS3, qp, h);
}
if(left_type){
filter_mb_edgecv( &img_cb[2*0], uvlinesize, bS4, qpc0, h);
filter_mb_edgecv( &img_cr[2*0], uvlinesize, bS4, qpc0, h);
}
filter_mb_edgecv( &img_cb[2*2], uvlinesize, bS3, qpc, h);
filter_mb_edgecv( &img_cr[2*2], uvlinesize, bS3, qpc, h);
filter_mb_edgech( &img_cb[2*0*uvlinesize], uvlinesize, bSH, qpc1, h);
filter_mb_edgech( &img_cb[2*2*uvlinesize], uvlinesize, bS3, qpc, h);
filter_mb_edgech( &img_cr[2*0*uvlinesize], uvlinesize, bSH, qpc1, h);
filter_mb_edgech( &img_cr[2*2*uvlinesize], uvlinesize, bS3, qpc, h);
return;
} else {
LOCAL_ALIGNED_8(int16_t, bS, [2], [4][4]);
int edges;
if( IS_8x8DCT(mb_type) && (h->cbp&7) == 7 ) {
edges = 4;
AV_WN64A(bS[0][0], 0x0002000200020002ULL);
AV_WN64A(bS[0][2], 0x0002000200020002ULL);
AV_WN64A(bS[1][0], 0x0002000200020002ULL);
AV_WN64A(bS[1][2], 0x0002000200020002ULL);
} else {
int mask_edge1 = (3*(((5*mb_type)>>5)&1)) | (mb_type>>4); //(mb_type & (MB_TYPE_16x16 | MB_TYPE_8x16)) ? 3 : (mb_type & MB_TYPE_16x8) ? 1 : 0;
int mask_edge0 = 3*((mask_edge1>>1) & ((5*left_type)>>5)&1); // (mb_type & (MB_TYPE_16x16 | MB_TYPE_8x16)) && (h->left_type[0] & (MB_TYPE_16x16 | MB_TYPE_8x16)) ? 3 : 0;
int step = 1+(mb_type>>24); //IS_8x8DCT(mb_type) ? 2 : 1;
edges = 4 - 3*((mb_type>>3) & !(h->cbp & 15)); //(mb_type & MB_TYPE_16x16) && !(h->cbp & 15) ? 1 : 4;
h->h264dsp.h264_loop_filter_strength( bS, h->non_zero_count_cache, h->ref_cache, h->mv_cache,
h->list_count==2, edges, step, mask_edge0, mask_edge1, FIELD_PICTURE);
}
if( IS_INTRA(left_type) )
AV_WN64A(bS[0][0], 0x0004000400040004ULL);
if( IS_INTRA(h->top_type) )
AV_WN64A(bS[1][0], FIELD_PICTURE ? 0x0003000300030003ULL : 0x0004000400040004ULL);
#define FILTER(hv,dir,edge)\
if(AV_RN64A(bS[dir][edge])) { \
filter_mb_edge##hv( &img_y[4*edge*(dir?linesize:1)], linesize, bS[dir][edge], edge ? qp : qp##dir, h );\
if(!(edge&1)) {\
filter_mb_edgec##hv( &img_cb[2*edge*(dir?uvlinesize:1)], uvlinesize, bS[dir][edge], edge ? qpc : qpc##dir, h );\
filter_mb_edgec##hv( &img_cr[2*edge*(dir?uvlinesize:1)], uvlinesize, bS[dir][edge], edge ? qpc : qpc##dir, h );\
}\
}
if(left_type)
FILTER(v,0,0);
if( edges == 1 ) {
FILTER(h,1,0);
} else if( IS_8x8DCT(mb_type) ) {
FILTER(v,0,2);
FILTER(h,1,0);
FILTER(h,1,2);
} else {
FILTER(v,0,1);
FILTER(v,0,2);
FILTER(v,0,3);
FILTER(h,1,0);
FILTER(h,1,1);
FILTER(h,1,2);
FILTER(h,1,3);
}
#undef FILTER
}
}
static int check_mv(H264Context *h, long b_idx, long bn_idx, int mvy_limit){
int v;
v= h->ref_cache[0][b_idx] != h->ref_cache[0][bn_idx];
if(!v && h->ref_cache[0][b_idx]!=-1)
v= h->mv_cache[0][b_idx][0] - h->mv_cache[0][bn_idx][0] + 3 >= 7U |
FFABS( h->mv_cache[0][b_idx][1] - h->mv_cache[0][bn_idx][1] ) >= mvy_limit;
if(h->list_count==2){
if(!v)
v = h->ref_cache[1][b_idx] != h->ref_cache[1][bn_idx] |
h->mv_cache[1][b_idx][0] - h->mv_cache[1][bn_idx][0] + 3 >= 7U |
FFABS( h->mv_cache[1][b_idx][1] - h->mv_cache[1][bn_idx][1] ) >= mvy_limit;
if(v){
if(h->ref_cache[0][b_idx] != h->ref_cache[1][bn_idx] |
h->ref_cache[1][b_idx] != h->ref_cache[0][bn_idx])
return 1;
return
h->mv_cache[0][b_idx][0] - h->mv_cache[1][bn_idx][0] + 3 >= 7U |
FFABS( h->mv_cache[0][b_idx][1] - h->mv_cache[1][bn_idx][1] ) >= mvy_limit |
h->mv_cache[1][b_idx][0] - h->mv_cache[0][bn_idx][0] + 3 >= 7U |
FFABS( h->mv_cache[1][b_idx][1] - h->mv_cache[0][bn_idx][1] ) >= mvy_limit;
}
}
return v;
}
static av_always_inline void filter_mb_dir(H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize, int mb_xy, int mb_type, int mvy_limit, int first_vertical_edge_done, int dir) {
MpegEncContext * const s = &h->s;
int edge;
const int mbm_xy = dir == 0 ? mb_xy -1 : h->top_mb_xy;
const int mbm_type = dir == 0 ? h->left_type[0] : h->top_type;
// how often to recheck mv-based bS when iterating between edges
static const uint8_t mask_edge_tab[2][8]={{0,3,3,3,1,1,1,1},
{0,3,1,1,3,3,3,3}};
const int mask_edge = mask_edge_tab[dir][(mb_type>>3)&7];
const int edges = mask_edge== 3 && !(h->cbp&15) ? 1 : 4;
// how often to recheck mv-based bS when iterating along each edge
const int mask_par0 = mb_type & (MB_TYPE_16x16 | (MB_TYPE_8x16 >> dir));
if(mbm_type && !first_vertical_edge_done){
if (FRAME_MBAFF && (dir == 1) && ((mb_y&1) == 0)
&& IS_INTERLACED(mbm_type&~mb_type)
) {
// This is a special case in the norm where the filtering must
// be done twice (one each of the field) even if we are in a
// frame macroblock.
//
unsigned int tmp_linesize = 2 * linesize;
unsigned int tmp_uvlinesize = 2 * uvlinesize;
int mbn_xy = mb_xy - 2 * s->mb_stride;
int j;
for(j=0; j<2; j++, mbn_xy += s->mb_stride){
DECLARE_ALIGNED(8, int16_t, bS)[4];
int qp;
if( IS_INTRA(mb_type|s->current_picture.mb_type[mbn_xy]) ) {
AV_WN64A(bS, 0x0003000300030003ULL);
} else {
if(!CABAC && IS_8x8DCT(s->current_picture.mb_type[mbn_xy])){
bS[0]= 1+((h->cbp_table[mbn_xy] & 4)||h->non_zero_count_cache[scan8[0]+0]);
bS[1]= 1+((h->cbp_table[mbn_xy] & 4)||h->non_zero_count_cache[scan8[0]+1]);
bS[2]= 1+((h->cbp_table[mbn_xy] & 8)||h->non_zero_count_cache[scan8[0]+2]);
bS[3]= 1+((h->cbp_table[mbn_xy] & 8)||h->non_zero_count_cache[scan8[0]+3]);
}else{
const uint8_t *mbn_nnz = h->non_zero_count[mbn_xy] + 4+3*8;
int i;
for( i = 0; i < 4; i++ ) {
bS[i] = 1 + !!(h->non_zero_count_cache[scan8[0]+i] | mbn_nnz[i]);
}
}
}
// Do not use s->qscale as luma quantizer because it has not the same
// value in IPCM macroblocks.
qp = ( s->current_picture.qscale_table[mb_xy] + s->current_picture.qscale_table[mbn_xy] + 1 ) >> 1;
tprintf(s->avctx, "filter mb:%d/%d dir:%d edge:%d, QPy:%d ls:%d uvls:%d", mb_x, mb_y, dir, edge, qp, tmp_linesize, tmp_uvlinesize);
{ int i; for (i = 0; i < 4; i++) tprintf(s->avctx, " bS[%d]:%d", i, bS[i]); tprintf(s->avctx, "\n"); }
filter_mb_edgeh( &img_y[j*linesize], tmp_linesize, bS, qp, h );
filter_mb_edgech( &img_cb[j*uvlinesize], tmp_uvlinesize, bS,
( h->chroma_qp[0] + get_chroma_qp( h, 0, s->current_picture.qscale_table[mbn_xy] ) + 1 ) >> 1, h);
filter_mb_edgech( &img_cr[j*uvlinesize], tmp_uvlinesize, bS,
( h->chroma_qp[1] + get_chroma_qp( h, 1, s->current_picture.qscale_table[mbn_xy] ) + 1 ) >> 1, h);
}
}else{
DECLARE_ALIGNED(8, int16_t, bS)[4];
int qp;
if( IS_INTRA(mb_type|mbm_type)) {
AV_WN64A(bS, 0x0003000300030003ULL);
if ( (!IS_INTERLACED(mb_type|mbm_type))
|| ((FRAME_MBAFF || (s->picture_structure != PICT_FRAME)) && (dir == 0))
)
AV_WN64A(bS, 0x0004000400040004ULL);
} else {
int i;
int mv_done;
if( dir && FRAME_MBAFF && IS_INTERLACED(mb_type ^ mbm_type)) {
AV_WN64A(bS, 0x0001000100010001ULL);
mv_done = 1;
}
else if( mask_par0 && ((mbm_type & (MB_TYPE_16x16 | (MB_TYPE_8x16 >> dir)))) ) {
int b_idx= 8 + 4;
int bn_idx= b_idx - (dir ? 8:1);
bS[0] = bS[1] = bS[2] = bS[3] = check_mv(h, 8 + 4, bn_idx, mvy_limit);
mv_done = 1;
}
else
mv_done = 0;
for( i = 0; i < 4; i++ ) {
int x = dir == 0 ? 0 : i;
int y = dir == 0 ? i : 0;
int b_idx= 8 + 4 + x + 8*y;
int bn_idx= b_idx - (dir ? 8:1);
if( h->non_zero_count_cache[b_idx] |
h->non_zero_count_cache[bn_idx] ) {
bS[i] = 2;
}
else if(!mv_done)
{
bS[i] = check_mv(h, b_idx, bn_idx, mvy_limit);
}
}
}
/* Filter edge */
// Do not use s->qscale as luma quantizer because it has not the same
// value in IPCM macroblocks.
if(bS[0]+bS[1]+bS[2]+bS[3]){
qp = ( s->current_picture.qscale_table[mb_xy] + s->current_picture.qscale_table[mbm_xy] + 1 ) >> 1;
//tprintf(s->avctx, "filter mb:%d/%d dir:%d edge:%d, QPy:%d, QPc:%d, QPcn:%d\n", mb_x, mb_y, dir, edge, qp, h->chroma_qp[0], s->current_picture.qscale_table[mbn_xy]);
tprintf(s->avctx, "filter mb:%d/%d dir:%d edge:%d, QPy:%d ls:%d uvls:%d", mb_x, mb_y, dir, edge, qp, linesize, uvlinesize);
//{ int i; for (i = 0; i < 4; i++) tprintf(s->avctx, " bS[%d]:%d", i, bS[i]); tprintf(s->avctx, "\n"); }
if( dir == 0 ) {
filter_mb_edgev( &img_y[0], linesize, bS, qp, h );
{
int qp= ( h->chroma_qp[0] + get_chroma_qp( h, 0, s->current_picture.qscale_table[mbm_xy] ) + 1 ) >> 1;
filter_mb_edgecv( &img_cb[0], uvlinesize, bS, qp, h);
if(h->pps.chroma_qp_diff)
qp= ( h->chroma_qp[1] + get_chroma_qp( h, 1, s->current_picture.qscale_table[mbm_xy] ) + 1 ) >> 1;
filter_mb_edgecv( &img_cr[0], uvlinesize, bS, qp, h);
}
} else {
filter_mb_edgeh( &img_y[0], linesize, bS, qp, h );
{
int qp= ( h->chroma_qp[0] + get_chroma_qp( h, 0, s->current_picture.qscale_table[mbm_xy] ) + 1 ) >> 1;
filter_mb_edgech( &img_cb[0], uvlinesize, bS, qp, h);
if(h->pps.chroma_qp_diff)
qp= ( h->chroma_qp[1] + get_chroma_qp( h, 1, s->current_picture.qscale_table[mbm_xy] ) + 1 ) >> 1;
filter_mb_edgech( &img_cr[0], uvlinesize, bS, qp, h);
}
}
}
}
}
/* Calculate bS */
for( edge = 1; edge < edges; edge++ ) {
DECLARE_ALIGNED(8, int16_t, bS)[4];
int qp;
if( IS_8x8DCT(mb_type & (edge<<24)) ) // (edge&1) && IS_8x8DCT(mb_type)
continue;
if( IS_INTRA(mb_type)) {
AV_WN64A(bS, 0x0003000300030003ULL);
} else {
int i;
int mv_done;
if( edge & mask_edge ) {
AV_ZERO64(bS);
mv_done = 1;
}
else if( mask_par0 ) {
int b_idx= 8 + 4 + edge * (dir ? 8:1);
int bn_idx= b_idx - (dir ? 8:1);
bS[0] = bS[1] = bS[2] = bS[3] = check_mv(h, b_idx, bn_idx, mvy_limit);
mv_done = 1;
}
else
mv_done = 0;
for( i = 0; i < 4; i++ ) {
int x = dir == 0 ? edge : i;
int y = dir == 0 ? i : edge;
int b_idx= 8 + 4 + x + 8*y;
int bn_idx= b_idx - (dir ? 8:1);
if( h->non_zero_count_cache[b_idx] |
h->non_zero_count_cache[bn_idx] ) {
bS[i] = 2;
}
else if(!mv_done)
{
bS[i] = check_mv(h, b_idx, bn_idx, mvy_limit);
}
}
if(bS[0]+bS[1]+bS[2]+bS[3] == 0)
continue;
}
/* Filter edge */
// Do not use s->qscale as luma quantizer because it has not the same
// value in IPCM macroblocks.
qp = s->current_picture.qscale_table[mb_xy];
//tprintf(s->avctx, "filter mb:%d/%d dir:%d edge:%d, QPy:%d, QPc:%d, QPcn:%d\n", mb_x, mb_y, dir, edge, qp, h->chroma_qp[0], s->current_picture.qscale_table[mbn_xy]);
tprintf(s->avctx, "filter mb:%d/%d dir:%d edge:%d, QPy:%d ls:%d uvls:%d", mb_x, mb_y, dir, edge, qp, linesize, uvlinesize);
//{ int i; for (i = 0; i < 4; i++) tprintf(s->avctx, " bS[%d]:%d", i, bS[i]); tprintf(s->avctx, "\n"); }
if( dir == 0 ) {
filter_mb_edgev( &img_y[4*edge << h->pixel_shift], linesize, bS, qp, h );
if( (edge&1) == 0 ) {
filter_mb_edgecv( &img_cb[2*edge << h->pixel_shift], uvlinesize, bS, h->chroma_qp[0], h);
filter_mb_edgecv( &img_cr[2*edge << h->pixel_shift], uvlinesize, bS, h->chroma_qp[1], h);
}
} else {
filter_mb_edgeh( &img_y[4*edge*linesize], linesize, bS, qp, h );
if( (edge&1) == 0 ) {
filter_mb_edgech( &img_cb[2*edge*uvlinesize], uvlinesize, bS, h->chroma_qp[0], h);
filter_mb_edgech( &img_cr[2*edge*uvlinesize], uvlinesize, bS, h->chroma_qp[1], h);
}
}
}
}
void ff_h264_filter_mb( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize) {
MpegEncContext * const s = &h->s;
const int mb_xy= mb_x + mb_y*s->mb_stride;
const int mb_type = s->current_picture.mb_type[mb_xy];
const int mvy_limit = IS_INTERLACED(mb_type) ? 2 : 4;
int first_vertical_edge_done = 0;
av_unused int dir;
if (FRAME_MBAFF
// and current and left pair do not have the same interlaced type
&& IS_INTERLACED(mb_type^h->left_type[0])
// and left mb is in available to us
&& h->left_type[0]) {
/* First vertical edge is different in MBAFF frames
* There are 8 different bS to compute and 2 different Qp
*/
DECLARE_ALIGNED(8, int16_t, bS)[8];
int qp[2];
int bqp[2];
int rqp[2];
int mb_qp, mbn0_qp, mbn1_qp;
int i;
first_vertical_edge_done = 1;
if( IS_INTRA(mb_type) ) {
AV_WN64A(&bS[0], 0x0004000400040004ULL);
AV_WN64A(&bS[4], 0x0004000400040004ULL);
} else {
static const uint8_t offset[2][2][8]={
{
{7+8*0, 7+8*0, 7+8*0, 7+8*0, 7+8*1, 7+8*1, 7+8*1, 7+8*1},
{7+8*2, 7+8*2, 7+8*2, 7+8*2, 7+8*3, 7+8*3, 7+8*3, 7+8*3},
},{
{7+8*0, 7+8*1, 7+8*2, 7+8*3, 7+8*0, 7+8*1, 7+8*2, 7+8*3},
{7+8*0, 7+8*1, 7+8*2, 7+8*3, 7+8*0, 7+8*1, 7+8*2, 7+8*3},
}
};
const uint8_t *off= offset[MB_FIELD][mb_y&1];
for( i = 0; i < 8; i++ ) {
int j= MB_FIELD ? i>>2 : i&1;
int mbn_xy = h->left_mb_xy[j];
int mbn_type= h->left_type[j];
if( IS_INTRA( mbn_type ) )
bS[i] = 4;
else{
bS[i] = 1 + !!(h->non_zero_count_cache[12+8*(i>>1)] |
((!h->pps.cabac && IS_8x8DCT(mbn_type)) ?
(h->cbp_table[mbn_xy] & ((MB_FIELD ? (i&2) : (mb_y&1)) ? 8 : 2))
:
h->non_zero_count[mbn_xy][ off[i] ]));
}
}
}
mb_qp = s->current_picture.qscale_table[mb_xy];
mbn0_qp = s->current_picture.qscale_table[h->left_mb_xy[0]];
mbn1_qp = s->current_picture.qscale_table[h->left_mb_xy[1]];
qp[0] = ( mb_qp + mbn0_qp + 1 ) >> 1;
bqp[0] = ( get_chroma_qp( h, 0, mb_qp ) +
get_chroma_qp( h, 0, mbn0_qp ) + 1 ) >> 1;
rqp[0] = ( get_chroma_qp( h, 1, mb_qp ) +
get_chroma_qp( h, 1, mbn0_qp ) + 1 ) >> 1;
qp[1] = ( mb_qp + mbn1_qp + 1 ) >> 1;
bqp[1] = ( get_chroma_qp( h, 0, mb_qp ) +
get_chroma_qp( h, 0, mbn1_qp ) + 1 ) >> 1;
rqp[1] = ( get_chroma_qp( h, 1, mb_qp ) +
get_chroma_qp( h, 1, mbn1_qp ) + 1 ) >> 1;
/* Filter edge */
tprintf(s->avctx, "filter mb:%d/%d MBAFF, QPy:%d/%d, QPb:%d/%d QPr:%d/%d ls:%d uvls:%d", mb_x, mb_y, qp[0], qp[1], bqp[0], bqp[1], rqp[0], rqp[1], linesize, uvlinesize);
{ int i; for (i = 0; i < 8; i++) tprintf(s->avctx, " bS[%d]:%d", i, bS[i]); tprintf(s->avctx, "\n"); }
if(MB_FIELD){
filter_mb_mbaff_edgev ( h, img_y , linesize, bS , 1, qp [0] );
filter_mb_mbaff_edgev ( h, img_y + 8* linesize, linesize, bS+4, 1, qp [1] );
filter_mb_mbaff_edgecv( h, img_cb, uvlinesize, bS , 1, bqp[0] );
filter_mb_mbaff_edgecv( h, img_cb + 4*uvlinesize, uvlinesize, bS+4, 1, bqp[1] );
filter_mb_mbaff_edgecv( h, img_cr, uvlinesize, bS , 1, rqp[0] );
filter_mb_mbaff_edgecv( h, img_cr + 4*uvlinesize, uvlinesize, bS+4, 1, rqp[1] );
}else{
filter_mb_mbaff_edgev ( h, img_y , 2* linesize, bS , 2, qp [0] );
filter_mb_mbaff_edgev ( h, img_y + linesize, 2* linesize, bS+1, 2, qp [1] );
filter_mb_mbaff_edgecv( h, img_cb, 2*uvlinesize, bS , 2, bqp[0] );
filter_mb_mbaff_edgecv( h, img_cb + uvlinesize, 2*uvlinesize, bS+1, 2, bqp[1] );
filter_mb_mbaff_edgecv( h, img_cr, 2*uvlinesize, bS , 2, rqp[0] );
filter_mb_mbaff_edgecv( h, img_cr + uvlinesize, 2*uvlinesize, bS+1, 2, rqp[1] );
}
}
#if CONFIG_SMALL
for( dir = 0; dir < 2; dir++ )
filter_mb_dir(h, mb_x, mb_y, img_y, img_cb, img_cr, linesize, uvlinesize, mb_xy, mb_type, mvy_limit, dir ? 0 : first_vertical_edge_done, dir);
#else
filter_mb_dir(h, mb_x, mb_y, img_y, img_cb, img_cr, linesize, uvlinesize, mb_xy, mb_type, mvy_limit, first_vertical_edge_done, 0);
filter_mb_dir(h, mb_x, mb_y, img_y, img_cb, img_cr, linesize, uvlinesize, mb_xy, mb_type, mvy_limit, 0, 1);
#endif
}