1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2024-12-28 20:53:54 +02:00
FFmpeg/libavcodec/dsputil.h
Reimar Döffinger 1ffc6e8327 Add ff_init_ff_cos_tabs function and use it in rdft.c to ensure that the
necessary ff_cos_tabs tables are initialized.
Fixes issue 1507 (QDM2 broken since r20237 without hardcoded tables).

Originally committed as revision 20464 to svn://svn.ffmpeg.org/ffmpeg/trunk
2009-11-05 18:29:06 +00:00

996 lines
39 KiB
C

/*
* DSP utils
* Copyright (c) 2000, 2001, 2002 Fabrice Bellard
* Copyright (c) 2002-2004 Michael Niedermayer <michaelni@gmx.at>
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file libavcodec/dsputil.h
* DSP utils.
* note, many functions in here may use MMX which trashes the FPU state, it is
* absolutely necessary to call emms_c() between dsp & float/double code
*/
#ifndef AVCODEC_DSPUTIL_H
#define AVCODEC_DSPUTIL_H
#include "libavutil/intreadwrite.h"
#include "avcodec.h"
//#define DEBUG
/* dct code */
typedef short DCTELEM;
typedef int DWTELEM;
typedef short IDWTELEM;
void fdct_ifast (DCTELEM *data);
void fdct_ifast248 (DCTELEM *data);
void ff_jpeg_fdct_islow (DCTELEM *data);
void ff_fdct248_islow (DCTELEM *data);
void j_rev_dct (DCTELEM *data);
void j_rev_dct4 (DCTELEM *data);
void j_rev_dct2 (DCTELEM *data);
void j_rev_dct1 (DCTELEM *data);
void ff_wmv2_idct_c(DCTELEM *data);
void ff_fdct_mmx(DCTELEM *block);
void ff_fdct_mmx2(DCTELEM *block);
void ff_fdct_sse2(DCTELEM *block);
void ff_h264_idct8_add_c(uint8_t *dst, DCTELEM *block, int stride);
void ff_h264_idct_add_c(uint8_t *dst, DCTELEM *block, int stride);
void ff_h264_idct8_dc_add_c(uint8_t *dst, DCTELEM *block, int stride);
void ff_h264_idct_dc_add_c(uint8_t *dst, DCTELEM *block, int stride);
void ff_h264_lowres_idct_add_c(uint8_t *dst, int stride, DCTELEM *block);
void ff_h264_lowres_idct_put_c(uint8_t *dst, int stride, DCTELEM *block);
void ff_h264_idct_add16_c(uint8_t *dst, const int *blockoffset, DCTELEM *block, int stride, const uint8_t nnzc[6*8]);
void ff_h264_idct_add16intra_c(uint8_t *dst, const int *blockoffset, DCTELEM *block, int stride, const uint8_t nnzc[6*8]);
void ff_h264_idct8_add4_c(uint8_t *dst, const int *blockoffset, DCTELEM *block, int stride, const uint8_t nnzc[6*8]);
void ff_h264_idct_add8_c(uint8_t **dest, const int *blockoffset, DCTELEM *block, int stride, const uint8_t nnzc[6*8]);
void ff_vector_fmul_window_c(float *dst, const float *src0, const float *src1,
const float *win, float add_bias, int len);
void ff_float_to_int16_c(int16_t *dst, const float *src, long len);
void ff_float_to_int16_interleave_c(int16_t *dst, const float **src, long len, int channels);
/* encoding scans */
extern const uint8_t ff_alternate_horizontal_scan[64];
extern const uint8_t ff_alternate_vertical_scan[64];
extern const uint8_t ff_zigzag_direct[64];
extern const uint8_t ff_zigzag248_direct[64];
/* pixel operations */
#define MAX_NEG_CROP 1024
/* temporary */
extern uint32_t ff_squareTbl[512];
extern uint8_t ff_cropTbl[256 + 2 * MAX_NEG_CROP];
/* VP3 DSP functions */
void ff_vp3_idct_c(DCTELEM *block/* align 16*/);
void ff_vp3_idct_put_c(uint8_t *dest/*align 8*/, int line_size, DCTELEM *block/*align 16*/);
void ff_vp3_idct_add_c(uint8_t *dest/*align 8*/, int line_size, DCTELEM *block/*align 16*/);
void ff_vp3_v_loop_filter_c(uint8_t *src, int stride, int *bounding_values);
void ff_vp3_h_loop_filter_c(uint8_t *src, int stride, int *bounding_values);
/* VP6 DSP functions */
void ff_vp6_filter_diag4_c(uint8_t *dst, uint8_t *src, int stride,
const int16_t *h_weights, const int16_t *v_weights);
/* 1/2^n downscaling functions from imgconvert.c */
void ff_img_copy_plane(uint8_t *dst, int dst_wrap, const uint8_t *src, int src_wrap, int width, int height);
void ff_shrink22(uint8_t *dst, int dst_wrap, const uint8_t *src, int src_wrap, int width, int height);
void ff_shrink44(uint8_t *dst, int dst_wrap, const uint8_t *src, int src_wrap, int width, int height);
void ff_shrink88(uint8_t *dst, int dst_wrap, const uint8_t *src, int src_wrap, int width, int height);
void ff_gmc_c(uint8_t *dst, uint8_t *src, int stride, int h, int ox, int oy,
int dxx, int dxy, int dyx, int dyy, int shift, int r, int width, int height);
/* minimum alignment rules ;)
If you notice errors in the align stuff, need more alignment for some ASM code
for some CPU or need to use a function with less aligned data then send a mail
to the ffmpeg-devel mailing list, ...
!warning These alignments might not match reality, (missing attribute((align))
stuff somewhere possible).
I (Michael) did not check them, these are just the alignments which I think
could be reached easily ...
!future video codecs might need functions with less strict alignment
*/
/*
void get_pixels_c(DCTELEM *block, const uint8_t *pixels, int line_size);
void diff_pixels_c(DCTELEM *block, const uint8_t *s1, const uint8_t *s2, int stride);
void put_pixels_clamped_c(const DCTELEM *block, uint8_t *pixels, int line_size);
void add_pixels_clamped_c(const DCTELEM *block, uint8_t *pixels, int line_size);
void clear_blocks_c(DCTELEM *blocks);
*/
/* add and put pixel (decoding) */
// blocksizes for op_pixels_func are 8x4,8x8 16x8 16x16
//h for op_pixels_func is limited to {width/2, width} but never larger than 16 and never smaller then 4
typedef void (*op_pixels_func)(uint8_t *block/*align width (8 or 16)*/, const uint8_t *pixels/*align 1*/, int line_size, int h);
typedef void (*tpel_mc_func)(uint8_t *block/*align width (8 or 16)*/, const uint8_t *pixels/*align 1*/, int line_size, int w, int h);
typedef void (*qpel_mc_func)(uint8_t *dst/*align width (8 or 16)*/, uint8_t *src/*align 1*/, int stride);
typedef void (*h264_chroma_mc_func)(uint8_t *dst/*align 8*/, uint8_t *src/*align 1*/, int srcStride, int h, int x, int y);
typedef void (*h264_weight_func)(uint8_t *block, int stride, int log2_denom, int weight, int offset);
typedef void (*h264_biweight_func)(uint8_t *dst, uint8_t *src, int stride, int log2_denom, int weightd, int weights, int offset);
#define DEF_OLD_QPEL(name)\
void ff_put_ ## name (uint8_t *dst/*align width (8 or 16)*/, uint8_t *src/*align 1*/, int stride);\
void ff_put_no_rnd_ ## name (uint8_t *dst/*align width (8 or 16)*/, uint8_t *src/*align 1*/, int stride);\
void ff_avg_ ## name (uint8_t *dst/*align width (8 or 16)*/, uint8_t *src/*align 1*/, int stride);
DEF_OLD_QPEL(qpel16_mc11_old_c)
DEF_OLD_QPEL(qpel16_mc31_old_c)
DEF_OLD_QPEL(qpel16_mc12_old_c)
DEF_OLD_QPEL(qpel16_mc32_old_c)
DEF_OLD_QPEL(qpel16_mc13_old_c)
DEF_OLD_QPEL(qpel16_mc33_old_c)
DEF_OLD_QPEL(qpel8_mc11_old_c)
DEF_OLD_QPEL(qpel8_mc31_old_c)
DEF_OLD_QPEL(qpel8_mc12_old_c)
DEF_OLD_QPEL(qpel8_mc32_old_c)
DEF_OLD_QPEL(qpel8_mc13_old_c)
DEF_OLD_QPEL(qpel8_mc33_old_c)
#define CALL_2X_PIXELS(a, b, n)\
static void a(uint8_t *block, const uint8_t *pixels, int line_size, int h){\
b(block , pixels , line_size, h);\
b(block+n, pixels+n, line_size, h);\
}
/* motion estimation */
// h is limited to {width/2, width, 2*width} but never larger than 16 and never smaller then 2
// although currently h<4 is not used as functions with width <8 are neither used nor implemented
typedef int (*me_cmp_func)(void /*MpegEncContext*/ *s, uint8_t *blk1/*align width (8 or 16)*/, uint8_t *blk2/*align 1*/, int line_size, int h)/* __attribute__ ((const))*/;
// for snow slices
typedef struct slice_buffer_s slice_buffer;
/**
* Scantable.
*/
typedef struct ScanTable{
const uint8_t *scantable;
uint8_t permutated[64];
uint8_t raster_end[64];
#if ARCH_PPC
/** Used by dct_quantize_altivec to find last-non-zero */
DECLARE_ALIGNED(16, uint8_t, inverse[64]);
#endif
} ScanTable;
void ff_init_scantable(uint8_t *, ScanTable *st, const uint8_t *src_scantable);
void ff_emulated_edge_mc(uint8_t *buf, uint8_t *src, int linesize,
int block_w, int block_h,
int src_x, int src_y, int w, int h);
/**
* DSPContext.
*/
typedef struct DSPContext {
/* pixel ops : interface with DCT */
void (*get_pixels)(DCTELEM *block/*align 16*/, const uint8_t *pixels/*align 8*/, int line_size);
void (*diff_pixels)(DCTELEM *block/*align 16*/, const uint8_t *s1/*align 8*/, const uint8_t *s2/*align 8*/, int stride);
void (*put_pixels_clamped)(const DCTELEM *block/*align 16*/, uint8_t *pixels/*align 8*/, int line_size);
void (*put_signed_pixels_clamped)(const DCTELEM *block/*align 16*/, uint8_t *pixels/*align 8*/, int line_size);
void (*add_pixels_clamped)(const DCTELEM *block/*align 16*/, uint8_t *pixels/*align 8*/, int line_size);
void (*add_pixels8)(uint8_t *pixels, DCTELEM *block, int line_size);
void (*add_pixels4)(uint8_t *pixels, DCTELEM *block, int line_size);
int (*sum_abs_dctelem)(DCTELEM *block/*align 16*/);
/**
* translational global motion compensation.
*/
void (*gmc1)(uint8_t *dst/*align 8*/, uint8_t *src/*align 1*/, int srcStride, int h, int x16, int y16, int rounder);
/**
* global motion compensation.
*/
void (*gmc )(uint8_t *dst/*align 8*/, uint8_t *src/*align 1*/, int stride, int h, int ox, int oy,
int dxx, int dxy, int dyx, int dyy, int shift, int r, int width, int height);
void (*clear_block)(DCTELEM *block/*align 16*/);
void (*clear_blocks)(DCTELEM *blocks/*align 16*/);
int (*pix_sum)(uint8_t * pix, int line_size);
int (*pix_norm1)(uint8_t * pix, int line_size);
// 16x16 8x8 4x4 2x2 16x8 8x4 4x2 8x16 4x8 2x4
me_cmp_func sad[6]; /* identical to pix_absAxA except additional void * */
me_cmp_func sse[6];
me_cmp_func hadamard8_diff[6];
me_cmp_func dct_sad[6];
me_cmp_func quant_psnr[6];
me_cmp_func bit[6];
me_cmp_func rd[6];
me_cmp_func vsad[6];
me_cmp_func vsse[6];
me_cmp_func nsse[6];
me_cmp_func w53[6];
me_cmp_func w97[6];
me_cmp_func dct_max[6];
me_cmp_func dct264_sad[6];
me_cmp_func me_pre_cmp[6];
me_cmp_func me_cmp[6];
me_cmp_func me_sub_cmp[6];
me_cmp_func mb_cmp[6];
me_cmp_func ildct_cmp[6]; //only width 16 used
me_cmp_func frame_skip_cmp[6]; //only width 8 used
int (*ssd_int8_vs_int16)(const int8_t *pix1, const int16_t *pix2,
int size);
/**
* Halfpel motion compensation with rounding (a+b+1)>>1.
* this is an array[4][4] of motion compensation functions for 4
* horizontal blocksizes (8,16) and the 4 halfpel positions<br>
* *pixels_tab[ 0->16xH 1->8xH ][ xhalfpel + 2*yhalfpel ]
* @param block destination where the result is stored
* @param pixels source
* @param line_size number of bytes in a horizontal line of block
* @param h height
*/
op_pixels_func put_pixels_tab[4][4];
/**
* Halfpel motion compensation with rounding (a+b+1)>>1.
* This is an array[4][4] of motion compensation functions for 4
* horizontal blocksizes (8,16) and the 4 halfpel positions<br>
* *pixels_tab[ 0->16xH 1->8xH ][ xhalfpel + 2*yhalfpel ]
* @param block destination into which the result is averaged (a+b+1)>>1
* @param pixels source
* @param line_size number of bytes in a horizontal line of block
* @param h height
*/
op_pixels_func avg_pixels_tab[4][4];
/**
* Halfpel motion compensation with no rounding (a+b)>>1.
* this is an array[2][4] of motion compensation functions for 2
* horizontal blocksizes (8,16) and the 4 halfpel positions<br>
* *pixels_tab[ 0->16xH 1->8xH ][ xhalfpel + 2*yhalfpel ]
* @param block destination where the result is stored
* @param pixels source
* @param line_size number of bytes in a horizontal line of block
* @param h height
*/
op_pixels_func put_no_rnd_pixels_tab[4][4];
/**
* Halfpel motion compensation with no rounding (a+b)>>1.
* this is an array[2][4] of motion compensation functions for 2
* horizontal blocksizes (8,16) and the 4 halfpel positions<br>
* *pixels_tab[ 0->16xH 1->8xH ][ xhalfpel + 2*yhalfpel ]
* @param block destination into which the result is averaged (a+b)>>1
* @param pixels source
* @param line_size number of bytes in a horizontal line of block
* @param h height
*/
op_pixels_func avg_no_rnd_pixels_tab[4][4];
void (*put_no_rnd_pixels_l2[2])(uint8_t *block/*align width (8 or 16)*/, const uint8_t *a/*align 1*/, const uint8_t *b/*align 1*/, int line_size, int h);
/**
* Thirdpel motion compensation with rounding (a+b+1)>>1.
* this is an array[12] of motion compensation functions for the 9 thirdpe
* positions<br>
* *pixels_tab[ xthirdpel + 4*ythirdpel ]
* @param block destination where the result is stored
* @param pixels source
* @param line_size number of bytes in a horizontal line of block
* @param h height
*/
tpel_mc_func put_tpel_pixels_tab[11]; //FIXME individual func ptr per width?
tpel_mc_func avg_tpel_pixels_tab[11]; //FIXME individual func ptr per width?
qpel_mc_func put_qpel_pixels_tab[2][16];
qpel_mc_func avg_qpel_pixels_tab[2][16];
qpel_mc_func put_no_rnd_qpel_pixels_tab[2][16];
qpel_mc_func avg_no_rnd_qpel_pixels_tab[2][16];
qpel_mc_func put_mspel_pixels_tab[8];
/**
* h264 Chroma MC
*/
h264_chroma_mc_func put_h264_chroma_pixels_tab[3];
h264_chroma_mc_func avg_h264_chroma_pixels_tab[3];
/* This is really one func used in VC-1 decoding */
h264_chroma_mc_func put_no_rnd_vc1_chroma_pixels_tab[3];
h264_chroma_mc_func avg_no_rnd_vc1_chroma_pixels_tab[3];
qpel_mc_func put_h264_qpel_pixels_tab[4][16];
qpel_mc_func avg_h264_qpel_pixels_tab[4][16];
qpel_mc_func put_2tap_qpel_pixels_tab[4][16];
qpel_mc_func avg_2tap_qpel_pixels_tab[4][16];
h264_weight_func weight_h264_pixels_tab[10];
h264_biweight_func biweight_h264_pixels_tab[10];
/* AVS specific */
qpel_mc_func put_cavs_qpel_pixels_tab[2][16];
qpel_mc_func avg_cavs_qpel_pixels_tab[2][16];
void (*cavs_filter_lv)(uint8_t *pix, int stride, int alpha, int beta, int tc, int bs1, int bs2);
void (*cavs_filter_lh)(uint8_t *pix, int stride, int alpha, int beta, int tc, int bs1, int bs2);
void (*cavs_filter_cv)(uint8_t *pix, int stride, int alpha, int beta, int tc, int bs1, int bs2);
void (*cavs_filter_ch)(uint8_t *pix, int stride, int alpha, int beta, int tc, int bs1, int bs2);
void (*cavs_idct8_add)(uint8_t *dst, DCTELEM *block, int stride);
me_cmp_func pix_abs[2][4];
/* huffyuv specific */
void (*add_bytes)(uint8_t *dst/*align 16*/, uint8_t *src/*align 16*/, int w);
void (*add_bytes_l2)(uint8_t *dst/*align 16*/, uint8_t *src1/*align 16*/, uint8_t *src2/*align 16*/, int w);
void (*diff_bytes)(uint8_t *dst/*align 16*/, uint8_t *src1/*align 16*/, uint8_t *src2/*align 1*/,int w);
/**
* subtract huffyuv's variant of median prediction
* note, this might read from src1[-1], src2[-1]
*/
void (*sub_hfyu_median_prediction)(uint8_t *dst, const uint8_t *src1, const uint8_t *src2, int w, int *left, int *left_top);
void (*add_hfyu_median_prediction)(uint8_t *dst, const uint8_t *top, const uint8_t *diff, int w, int *left, int *left_top);
int (*add_hfyu_left_prediction)(uint8_t *dst, const uint8_t *src, int w, int left);
void (*add_hfyu_left_prediction_bgr32)(uint8_t *dst, const uint8_t *src, int w, int *red, int *green, int *blue);
/* this might write to dst[w] */
void (*add_png_paeth_prediction)(uint8_t *dst, uint8_t *src, uint8_t *top, int w, int bpp);
void (*bswap_buf)(uint32_t *dst, const uint32_t *src, int w);
void (*h264_v_loop_filter_luma)(uint8_t *pix/*align 16*/, int stride, int alpha, int beta, int8_t *tc0);
void (*h264_h_loop_filter_luma)(uint8_t *pix/*align 4 */, int stride, int alpha, int beta, int8_t *tc0);
/* v/h_loop_filter_luma_intra: align 16 */
void (*h264_v_loop_filter_luma_intra)(uint8_t *pix, int stride, int alpha, int beta);
void (*h264_h_loop_filter_luma_intra)(uint8_t *pix, int stride, int alpha, int beta);
void (*h264_v_loop_filter_chroma)(uint8_t *pix/*align 8*/, int stride, int alpha, int beta, int8_t *tc0);
void (*h264_h_loop_filter_chroma)(uint8_t *pix/*align 4*/, int stride, int alpha, int beta, int8_t *tc0);
void (*h264_v_loop_filter_chroma_intra)(uint8_t *pix/*align 8*/, int stride, int alpha, int beta);
void (*h264_h_loop_filter_chroma_intra)(uint8_t *pix/*align 8*/, int stride, int alpha, int beta);
// h264_loop_filter_strength: simd only. the C version is inlined in h264.c
void (*h264_loop_filter_strength)(int16_t bS[2][4][4], uint8_t nnz[40], int8_t ref[2][40], int16_t mv[2][40][2],
int bidir, int edges, int step, int mask_mv0, int mask_mv1, int field);
void (*h263_v_loop_filter)(uint8_t *src, int stride, int qscale);
void (*h263_h_loop_filter)(uint8_t *src, int stride, int qscale);
void (*h261_loop_filter)(uint8_t *src, int stride);
void (*x8_v_loop_filter)(uint8_t *src, int stride, int qscale);
void (*x8_h_loop_filter)(uint8_t *src, int stride, int qscale);
void (*vp3_v_loop_filter)(uint8_t *src, int stride, int *bounding_values);
void (*vp3_h_loop_filter)(uint8_t *src, int stride, int *bounding_values);
void (*vp6_filter_diag4)(uint8_t *dst, uint8_t *src, int stride,
const int16_t *h_weights,const int16_t *v_weights);
/* assume len is a multiple of 4, and arrays are 16-byte aligned */
void (*vorbis_inverse_coupling)(float *mag, float *ang, int blocksize);
void (*ac3_downmix)(float (*samples)[256], float (*matrix)[2], int out_ch, int in_ch, int len);
/* no alignment needed */
void (*lpc_compute_autocorr)(const int32_t *data, int len, int lag, double *autoc);
/* assume len is a multiple of 8, and arrays are 16-byte aligned */
void (*vector_fmul)(float *dst, const float *src, int len);
void (*vector_fmul_reverse)(float *dst, const float *src0, const float *src1, int len);
/* assume len is a multiple of 8, and src arrays are 16-byte aligned */
void (*vector_fmul_add)(float *dst, const float *src0, const float *src1, const float *src2, int len);
/* assume len is a multiple of 4, and arrays are 16-byte aligned */
void (*vector_fmul_window)(float *dst, const float *src0, const float *src1, const float *win, float add_bias, int len);
/* assume len is a multiple of 8, and arrays are 16-byte aligned */
void (*int32_to_float_fmul_scalar)(float *dst, const int *src, float mul, int len);
void (*vector_clipf)(float *dst /* align 16 */, const float *src /* align 16 */, float min, float max, int len /* align 16 */);
/**
* Multiply a vector of floats by a scalar float. Source and
* destination vectors must overlap exactly or not at all.
* @param dst result vector, 16-byte aligned
* @param src input vector, 16-byte aligned
* @param mul scalar value
* @param len length of vector, multiple of 4
*/
void (*vector_fmul_scalar)(float *dst, const float *src, float mul,
int len);
/**
* Multiply a vector of floats by concatenated short vectors of
* floats and by a scalar float. Source and destination vectors
* must overlap exactly or not at all.
* [0]: short vectors of length 2, 8-byte aligned
* [1]: short vectors of length 4, 16-byte aligned
* @param dst output vector, 16-byte aligned
* @param src input vector, 16-byte aligned
* @param sv array of pointers to short vectors
* @param mul scalar value
* @param len number of elements in src and dst, multiple of 4
*/
void (*vector_fmul_sv_scalar[2])(float *dst, const float *src,
const float **sv, float mul, int len);
/**
* Multiply short vectors of floats by a scalar float, store
* concatenated result.
* [0]: short vectors of length 2, 8-byte aligned
* [1]: short vectors of length 4, 16-byte aligned
* @param dst output vector, 16-byte aligned
* @param sv array of pointers to short vectors
* @param mul scalar value
* @param len number of output elements, multiple of 4
*/
void (*sv_fmul_scalar[2])(float *dst, const float **sv,
float mul, int len);
/**
* Calculate the scalar product of two vectors of floats.
* @param v1 first vector, 16-byte aligned
* @param v2 second vector, 16-byte aligned
* @param len length of vectors, multiple of 4
*/
float (*scalarproduct_float)(const float *v1, const float *v2, int len);
/**
* Calculate the sum and difference of two vectors of floats.
* @param v1 first input vector, sum output, 16-byte aligned
* @param v2 second input vector, difference output, 16-byte aligned
* @param len length of vectors, multiple of 4
*/
void (*butterflies_float)(float *restrict v1, float *restrict v2, int len);
/* C version: convert floats from the range [384.0,386.0] to ints in [-32768,32767]
* simd versions: convert floats from [-32768.0,32767.0] without rescaling and arrays are 16byte aligned */
void (*float_to_int16)(int16_t *dst, const float *src, long len);
void (*float_to_int16_interleave)(int16_t *dst, const float **src, long len, int channels);
/* (I)DCT */
void (*fdct)(DCTELEM *block/* align 16*/);
void (*fdct248)(DCTELEM *block/* align 16*/);
/* IDCT really*/
void (*idct)(DCTELEM *block/* align 16*/);
/**
* block -> idct -> clip to unsigned 8 bit -> dest.
* (-1392, 0, 0, ...) -> idct -> (-174, -174, ...) -> put -> (0, 0, ...)
* @param line_size size in bytes of a horizontal line of dest
*/
void (*idct_put)(uint8_t *dest/*align 8*/, int line_size, DCTELEM *block/*align 16*/);
/**
* block -> idct -> add dest -> clip to unsigned 8 bit -> dest.
* @param line_size size in bytes of a horizontal line of dest
*/
void (*idct_add)(uint8_t *dest/*align 8*/, int line_size, DCTELEM *block/*align 16*/);
/**
* idct input permutation.
* several optimized IDCTs need a permutated input (relative to the normal order of the reference
* IDCT)
* this permutation must be performed before the idct_put/add, note, normally this can be merged
* with the zigzag/alternate scan<br>
* an example to avoid confusion:
* - (->decode coeffs -> zigzag reorder -> dequant -> reference idct ->...)
* - (x -> referece dct -> reference idct -> x)
* - (x -> referece dct -> simple_mmx_perm = idct_permutation -> simple_idct_mmx -> x)
* - (->decode coeffs -> zigzag reorder -> simple_mmx_perm -> dequant -> simple_idct_mmx ->...)
*/
uint8_t idct_permutation[64];
int idct_permutation_type;
#define FF_NO_IDCT_PERM 1
#define FF_LIBMPEG2_IDCT_PERM 2
#define FF_SIMPLE_IDCT_PERM 3
#define FF_TRANSPOSE_IDCT_PERM 4
#define FF_PARTTRANS_IDCT_PERM 5
#define FF_SSE2_IDCT_PERM 6
int (*try_8x8basis)(int16_t rem[64], int16_t weight[64], int16_t basis[64], int scale);
void (*add_8x8basis)(int16_t rem[64], int16_t basis[64], int scale);
#define BASIS_SHIFT 16
#define RECON_SHIFT 6
void (*draw_edges)(uint8_t *buf, int wrap, int width, int height, int w);
#define EDGE_WIDTH 16
/* h264 functions */
/* NOTE!!! if you implement any of h264_idct8_add, h264_idct8_add4 then you must implement all of them
NOTE!!! if you implement any of h264_idct_add, h264_idct_add16, h264_idct_add16intra, h264_idct_add8 then you must implement all of them
The reason for above, is that no 2 out of one list may use a different permutation.
*/
void (*h264_idct_add)(uint8_t *dst/*align 4*/, DCTELEM *block/*align 16*/, int stride);
void (*h264_idct8_add)(uint8_t *dst/*align 8*/, DCTELEM *block/*align 16*/, int stride);
void (*h264_idct_dc_add)(uint8_t *dst/*align 4*/, DCTELEM *block/*align 16*/, int stride);
void (*h264_idct8_dc_add)(uint8_t *dst/*align 8*/, DCTELEM *block/*align 16*/, int stride);
void (*h264_dct)(DCTELEM block[4][4]);
void (*h264_idct_add16)(uint8_t *dst/*align 16*/, const int *blockoffset, DCTELEM *block/*align 16*/, int stride, const uint8_t nnzc[6*8]);
void (*h264_idct8_add4)(uint8_t *dst/*align 16*/, const int *blockoffset, DCTELEM *block/*align 16*/, int stride, const uint8_t nnzc[6*8]);
void (*h264_idct_add8)(uint8_t **dst/*align 16*/, const int *blockoffset, DCTELEM *block/*align 16*/, int stride, const uint8_t nnzc[6*8]);
void (*h264_idct_add16intra)(uint8_t *dst/*align 16*/, const int *blockoffset, DCTELEM *block/*align 16*/, int stride, const uint8_t nnzc[6*8]);
/* snow wavelet */
void (*vertical_compose97i)(IDWTELEM *b0, IDWTELEM *b1, IDWTELEM *b2, IDWTELEM *b3, IDWTELEM *b4, IDWTELEM *b5, int width);
void (*horizontal_compose97i)(IDWTELEM *b, int width);
void (*inner_add_yblock)(const uint8_t *obmc, const int obmc_stride, uint8_t * * block, int b_w, int b_h, int src_x, int src_y, int src_stride, slice_buffer * sb, int add, uint8_t * dst8);
void (*prefetch)(void *mem, int stride, int h);
void (*shrink[4])(uint8_t *dst, int dst_wrap, const uint8_t *src, int src_wrap, int width, int height);
/* mlp/truehd functions */
void (*mlp_filter_channel)(int32_t *state, const int32_t *coeff,
int firorder, int iirorder,
unsigned int filter_shift, int32_t mask, int blocksize,
int32_t *sample_buffer);
/* vc1 functions */
void (*vc1_inv_trans_8x8)(DCTELEM *b);
void (*vc1_inv_trans_8x4)(uint8_t *dest, int line_size, DCTELEM *block);
void (*vc1_inv_trans_4x8)(uint8_t *dest, int line_size, DCTELEM *block);
void (*vc1_inv_trans_4x4)(uint8_t *dest, int line_size, DCTELEM *block);
void (*vc1_inv_trans_8x8_dc)(uint8_t *dest, int line_size, DCTELEM *block);
void (*vc1_inv_trans_8x4_dc)(uint8_t *dest, int line_size, DCTELEM *block);
void (*vc1_inv_trans_4x8_dc)(uint8_t *dest, int line_size, DCTELEM *block);
void (*vc1_inv_trans_4x4_dc)(uint8_t *dest, int line_size, DCTELEM *block);
void (*vc1_v_overlap)(uint8_t* src, int stride);
void (*vc1_h_overlap)(uint8_t* src, int stride);
void (*vc1_v_loop_filter4)(uint8_t *src, int stride, int pq);
void (*vc1_h_loop_filter4)(uint8_t *src, int stride, int pq);
void (*vc1_v_loop_filter8)(uint8_t *src, int stride, int pq);
void (*vc1_h_loop_filter8)(uint8_t *src, int stride, int pq);
void (*vc1_v_loop_filter16)(uint8_t *src, int stride, int pq);
void (*vc1_h_loop_filter16)(uint8_t *src, int stride, int pq);
/* put 8x8 block with bicubic interpolation and quarterpel precision
* last argument is actually round value instead of height
*/
op_pixels_func put_vc1_mspel_pixels_tab[16];
op_pixels_func avg_vc1_mspel_pixels_tab[16];
/* intrax8 functions */
void (*x8_spatial_compensation[12])(uint8_t *src , uint8_t *dst, int linesize);
void (*x8_setup_spatial_compensation)(uint8_t *src, uint8_t *dst, int linesize,
int * range, int * sum, int edges);
/* ape functions */
/**
* Add contents of the second vector to the first one.
* @param len length of vectors, should be multiple of 16
*/
void (*add_int16)(int16_t *v1/*align 16*/, int16_t *v2, int len);
/**
* Add contents of the second vector to the first one.
* @param len length of vectors, should be multiple of 16
*/
void (*sub_int16)(int16_t *v1/*align 16*/, int16_t *v2, int len);
/**
* Calculate scalar product of two vectors.
* @param len length of vectors, should be multiple of 16
* @param shift number of bits to discard from product
*/
int32_t (*scalarproduct_int16)(int16_t *v1, int16_t *v2/*align 16*/, int len, int shift);
/* rv30 functions */
qpel_mc_func put_rv30_tpel_pixels_tab[4][16];
qpel_mc_func avg_rv30_tpel_pixels_tab[4][16];
/* rv40 functions */
qpel_mc_func put_rv40_qpel_pixels_tab[4][16];
qpel_mc_func avg_rv40_qpel_pixels_tab[4][16];
h264_chroma_mc_func put_rv40_chroma_pixels_tab[3];
h264_chroma_mc_func avg_rv40_chroma_pixels_tab[3];
} DSPContext;
void dsputil_static_init(void);
void dsputil_init(DSPContext* p, AVCodecContext *avctx);
int ff_check_alignment(void);
/**
* permute block according to permuatation.
* @param last last non zero element in scantable order
*/
void ff_block_permute(DCTELEM *block, uint8_t *permutation, const uint8_t *scantable, int last);
void ff_set_cmp(DSPContext* c, me_cmp_func *cmp, int type);
#define BYTE_VEC32(c) ((c)*0x01010101UL)
static inline uint32_t rnd_avg32(uint32_t a, uint32_t b)
{
return (a | b) - (((a ^ b) & ~BYTE_VEC32(0x01)) >> 1);
}
static inline uint32_t no_rnd_avg32(uint32_t a, uint32_t b)
{
return (a & b) + (((a ^ b) & ~BYTE_VEC32(0x01)) >> 1);
}
static inline int get_penalty_factor(int lambda, int lambda2, int type){
switch(type&0xFF){
default:
case FF_CMP_SAD:
return lambda>>FF_LAMBDA_SHIFT;
case FF_CMP_DCT:
return (3*lambda)>>(FF_LAMBDA_SHIFT+1);
case FF_CMP_W53:
return (4*lambda)>>(FF_LAMBDA_SHIFT);
case FF_CMP_W97:
return (2*lambda)>>(FF_LAMBDA_SHIFT);
case FF_CMP_SATD:
case FF_CMP_DCT264:
return (2*lambda)>>FF_LAMBDA_SHIFT;
case FF_CMP_RD:
case FF_CMP_PSNR:
case FF_CMP_SSE:
case FF_CMP_NSSE:
return lambda2>>FF_LAMBDA_SHIFT;
case FF_CMP_BIT:
return 1;
}
}
/**
* Empty mmx state.
* this must be called between any dsp function and float/double code.
* for example sin(); dsp->idct_put(); emms_c(); cos()
*/
#define emms_c()
/* should be defined by architectures supporting
one or more MultiMedia extension */
int mm_support(void);
extern int mm_flags;
void dsputil_init_alpha(DSPContext* c, AVCodecContext *avctx);
void dsputil_init_arm(DSPContext* c, AVCodecContext *avctx);
void dsputil_init_bfin(DSPContext* c, AVCodecContext *avctx);
void dsputil_init_mlib(DSPContext* c, AVCodecContext *avctx);
void dsputil_init_mmi(DSPContext* c, AVCodecContext *avctx);
void dsputil_init_mmx(DSPContext* c, AVCodecContext *avctx);
void dsputil_init_ppc(DSPContext* c, AVCodecContext *avctx);
void dsputil_init_sh4(DSPContext* c, AVCodecContext *avctx);
void dsputil_init_vis(DSPContext* c, AVCodecContext *avctx);
#define DECLARE_ALIGNED_16(t, v) DECLARE_ALIGNED(16, t, v)
#define DECLARE_ALIGNED_8(t, v) DECLARE_ALIGNED(8, t, v)
#if HAVE_MMX
#undef emms_c
static inline void emms(void)
{
__asm__ volatile ("emms;":::"memory");
}
#define emms_c() \
{\
if (mm_flags & FF_MM_MMX)\
emms();\
}
#elif ARCH_ARM
#if HAVE_NEON
# define STRIDE_ALIGN 16
#endif
#elif ARCH_PPC
#define STRIDE_ALIGN 16
#elif HAVE_MMI
#define STRIDE_ALIGN 16
#else
#define mm_flags 0
#define mm_support() 0
#endif
#ifndef STRIDE_ALIGN
# define STRIDE_ALIGN 8
#endif
/* PSNR */
void get_psnr(uint8_t *orig_image[3], uint8_t *coded_image[3],
int orig_linesize[3], int coded_linesize,
AVCodecContext *avctx);
/* FFT computation */
/* NOTE: soon integer code will be added, so you must use the
FFTSample type */
typedef float FFTSample;
typedef struct FFTComplex {
FFTSample re, im;
} FFTComplex;
typedef struct FFTContext {
int nbits;
int inverse;
uint16_t *revtab;
FFTComplex *exptab;
FFTComplex *exptab1; /* only used by SSE code */
FFTComplex *tmp_buf;
int mdct_size; /* size of MDCT (i.e. number of input data * 2) */
int mdct_bits; /* n = 2^nbits */
/* pre/post rotation tables */
FFTSample *tcos;
FFTSample *tsin;
void (*fft_permute)(struct FFTContext *s, FFTComplex *z);
void (*fft_calc)(struct FFTContext *s, FFTComplex *z);
void (*imdct_calc)(struct FFTContext *s, FFTSample *output, const FFTSample *input);
void (*imdct_half)(struct FFTContext *s, FFTSample *output, const FFTSample *input);
void (*mdct_calc)(struct FFTContext *s, FFTSample *output, const FFTSample *input);
int split_radix;
int permutation;
#define FF_MDCT_PERM_NONE 0
#define FF_MDCT_PERM_INTERLEAVE 1
} FFTContext;
#if CONFIG_HARDCODED_TABLES
#define COSTABLE_CONST const
#define SINTABLE_CONST const
#else
#define COSTABLE_CONST
#define SINTABLE_CONST
#endif
#define COSTABLE(size) \
COSTABLE_CONST DECLARE_ALIGNED_16(FFTSample, ff_cos_##size[size/2])
#define SINTABLE(size) \
SINTABLE_CONST DECLARE_ALIGNED_16(FFTSample, ff_sin_##size[size/2])
extern COSTABLE(16);
extern COSTABLE(32);
extern COSTABLE(64);
extern COSTABLE(128);
extern COSTABLE(256);
extern COSTABLE(512);
extern COSTABLE(1024);
extern COSTABLE(2048);
extern COSTABLE(4096);
extern COSTABLE(8192);
extern COSTABLE(16384);
extern COSTABLE(32768);
extern COSTABLE(65536);
extern COSTABLE_CONST FFTSample* const ff_cos_tabs[17];
/**
* Initializes the cosine table in ff_cos_tabs[index]
* \param index index in ff_cos_tabs array of the table to initialize
*/
void ff_init_ff_cos_tabs(int index);
extern SINTABLE(16);
extern SINTABLE(32);
extern SINTABLE(64);
extern SINTABLE(128);
extern SINTABLE(256);
extern SINTABLE(512);
extern SINTABLE(1024);
extern SINTABLE(2048);
extern SINTABLE(4096);
extern SINTABLE(8192);
extern SINTABLE(16384);
extern SINTABLE(32768);
extern SINTABLE(65536);
/**
* Sets up a complex FFT.
* @param nbits log2 of the length of the input array
* @param inverse if 0 perform the forward transform, if 1 perform the inverse
*/
int ff_fft_init(FFTContext *s, int nbits, int inverse);
void ff_fft_permute_c(FFTContext *s, FFTComplex *z);
void ff_fft_calc_c(FFTContext *s, FFTComplex *z);
void ff_fft_init_altivec(FFTContext *s);
void ff_fft_init_mmx(FFTContext *s);
void ff_fft_init_arm(FFTContext *s);
/**
* Do the permutation needed BEFORE calling ff_fft_calc().
*/
static inline void ff_fft_permute(FFTContext *s, FFTComplex *z)
{
s->fft_permute(s, z);
}
/**
* Do a complex FFT with the parameters defined in ff_fft_init(). The
* input data must be permuted before. No 1.0/sqrt(n) normalization is done.
*/
static inline void ff_fft_calc(FFTContext *s, FFTComplex *z)
{
s->fft_calc(s, z);
}
void ff_fft_end(FFTContext *s);
/* MDCT computation */
static inline void ff_imdct_calc(FFTContext *s, FFTSample *output, const FFTSample *input)
{
s->imdct_calc(s, output, input);
}
static inline void ff_imdct_half(FFTContext *s, FFTSample *output, const FFTSample *input)
{
s->imdct_half(s, output, input);
}
static inline void ff_mdct_calc(FFTContext *s, FFTSample *output,
const FFTSample *input)
{
s->mdct_calc(s, output, input);
}
/**
* Generate a Kaiser-Bessel Derived Window.
* @param window pointer to half window
* @param alpha determines window shape
* @param n size of half window
*/
void ff_kbd_window_init(float *window, float alpha, int n);
/**
* Generate a sine window.
* @param window pointer to half window
* @param n size of half window
*/
void ff_sine_window_init(float *window, int n);
extern float ff_sine_32 [ 32];
extern float ff_sine_64 [ 64];
extern float ff_sine_128 [ 128];
extern float ff_sine_256 [ 256];
extern float ff_sine_512 [ 512];
extern float ff_sine_1024[1024];
extern float ff_sine_2048[2048];
extern float ff_sine_4096[4096];
extern float * const ff_sine_windows[13];
int ff_mdct_init(FFTContext *s, int nbits, int inverse, double scale);
void ff_imdct_calc_c(FFTContext *s, FFTSample *output, const FFTSample *input);
void ff_imdct_half_c(FFTContext *s, FFTSample *output, const FFTSample *input);
void ff_mdct_calc_c(FFTContext *s, FFTSample *output, const FFTSample *input);
void ff_mdct_end(FFTContext *s);
/* Real Discrete Fourier Transform */
enum RDFTransformType {
RDFT,
IRDFT,
RIDFT,
IRIDFT,
};
typedef struct {
int nbits;
int inverse;
int sign_convention;
/* pre/post rotation tables */
const FFTSample *tcos;
SINTABLE_CONST FFTSample *tsin;
FFTContext fft;
} RDFTContext;
/**
* Sets up a real FFT.
* @param nbits log2 of the length of the input array
* @param trans the type of transform
*/
int ff_rdft_init(RDFTContext *s, int nbits, enum RDFTransformType trans);
void ff_rdft_calc(RDFTContext *s, FFTSample *data);
void ff_rdft_end(RDFTContext *s);
#define WRAPPER8_16(name8, name16)\
static int name16(void /*MpegEncContext*/ *s, uint8_t *dst, uint8_t *src, int stride, int h){\
return name8(s, dst , src , stride, h)\
+name8(s, dst+8 , src+8 , stride, h);\
}
#define WRAPPER8_16_SQ(name8, name16)\
static int name16(void /*MpegEncContext*/ *s, uint8_t *dst, uint8_t *src, int stride, int h){\
int score=0;\
score +=name8(s, dst , src , stride, 8);\
score +=name8(s, dst+8 , src+8 , stride, 8);\
if(h==16){\
dst += 8*stride;\
src += 8*stride;\
score +=name8(s, dst , src , stride, 8);\
score +=name8(s, dst+8 , src+8 , stride, 8);\
}\
return score;\
}
static inline void copy_block2(uint8_t *dst, const uint8_t *src, int dstStride, int srcStride, int h)
{
int i;
for(i=0; i<h; i++)
{
AV_WN16(dst , AV_RN16(src ));
dst+=dstStride;
src+=srcStride;
}
}
static inline void copy_block4(uint8_t *dst, const uint8_t *src, int dstStride, int srcStride, int h)
{
int i;
for(i=0; i<h; i++)
{
AV_WN32(dst , AV_RN32(src ));
dst+=dstStride;
src+=srcStride;
}
}
static inline void copy_block8(uint8_t *dst, const uint8_t *src, int dstStride, int srcStride, int h)
{
int i;
for(i=0; i<h; i++)
{
AV_WN32(dst , AV_RN32(src ));
AV_WN32(dst+4 , AV_RN32(src+4 ));
dst+=dstStride;
src+=srcStride;
}
}
static inline void copy_block9(uint8_t *dst, const uint8_t *src, int dstStride, int srcStride, int h)
{
int i;
for(i=0; i<h; i++)
{
AV_WN32(dst , AV_RN32(src ));
AV_WN32(dst+4 , AV_RN32(src+4 ));
dst[8]= src[8];
dst+=dstStride;
src+=srcStride;
}
}
static inline void copy_block16(uint8_t *dst, const uint8_t *src, int dstStride, int srcStride, int h)
{
int i;
for(i=0; i<h; i++)
{
AV_WN32(dst , AV_RN32(src ));
AV_WN32(dst+4 , AV_RN32(src+4 ));
AV_WN32(dst+8 , AV_RN32(src+8 ));
AV_WN32(dst+12, AV_RN32(src+12));
dst+=dstStride;
src+=srcStride;
}
}
static inline void copy_block17(uint8_t *dst, const uint8_t *src, int dstStride, int srcStride, int h)
{
int i;
for(i=0; i<h; i++)
{
AV_WN32(dst , AV_RN32(src ));
AV_WN32(dst+4 , AV_RN32(src+4 ));
AV_WN32(dst+8 , AV_RN32(src+8 ));
AV_WN32(dst+12, AV_RN32(src+12));
dst[16]= src[16];
dst+=dstStride;
src+=srcStride;
}
}
#endif /* AVCODEC_DSPUTIL_H */