1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2024-11-26 19:01:44 +02:00
FFmpeg/fftools/ffmpeg_sched.c
Andreas Rheinhardt 78e2be2377 fftools/ffmpeg_sched: Remove set-but-unused variable
Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
2024-03-14 22:53:45 +01:00

2507 lines
64 KiB
C

/*
* Inter-thread scheduling/synchronization.
* Copyright (c) 2023 Anton Khirnov
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <stdatomic.h>
#include <stddef.h>
#include <stdint.h>
#include "cmdutils.h"
#include "ffmpeg_sched.h"
#include "ffmpeg_utils.h"
#include "sync_queue.h"
#include "thread_queue.h"
#include "libavcodec/packet.h"
#include "libavutil/avassert.h"
#include "libavutil/error.h"
#include "libavutil/fifo.h"
#include "libavutil/frame.h"
#include "libavutil/mem.h"
#include "libavutil/thread.h"
#include "libavutil/threadmessage.h"
#include "libavutil/time.h"
// 100 ms
// FIXME: some other value? make this dynamic?
#define SCHEDULE_TOLERANCE (100 * 1000)
enum QueueType {
QUEUE_PACKETS,
QUEUE_FRAMES,
};
typedef struct SchWaiter {
pthread_mutex_t lock;
pthread_cond_t cond;
atomic_int choked;
// the following are internal state of schedule_update_locked() and must not
// be accessed outside of it
int choked_prev;
int choked_next;
} SchWaiter;
typedef struct SchTask {
Scheduler *parent;
SchedulerNode node;
SchThreadFunc func;
void *func_arg;
pthread_t thread;
int thread_running;
} SchTask;
typedef struct SchDec {
const AVClass *class;
SchedulerNode src;
SchedulerNode *dst;
uint8_t *dst_finished;
unsigned nb_dst;
SchTask task;
// Queue for receiving input packets, one stream.
ThreadQueue *queue;
// Queue for sending post-flush end timestamps back to the source
AVThreadMessageQueue *queue_end_ts;
int expect_end_ts;
// temporary storage used by sch_dec_send()
AVFrame *send_frame;
} SchDec;
typedef struct SchSyncQueue {
SyncQueue *sq;
AVFrame *frame;
pthread_mutex_t lock;
unsigned *enc_idx;
unsigned nb_enc_idx;
} SchSyncQueue;
typedef struct SchEnc {
const AVClass *class;
SchedulerNode src;
SchedulerNode *dst;
uint8_t *dst_finished;
unsigned nb_dst;
// [0] - index of the sync queue in Scheduler.sq_enc,
// [1] - index of this encoder in the sq
int sq_idx[2];
/* Opening encoders is somewhat nontrivial due to their interaction with
* sync queues, which are (among other things) responsible for maintaining
* constant audio frame size, when it is required by the encoder.
*
* Opening the encoder requires stream parameters, obtained from the first
* frame. However, that frame cannot be properly chunked by the sync queue
* without knowing the required frame size, which is only available after
* opening the encoder.
*
* This apparent circular dependency is resolved in the following way:
* - the caller creating the encoder gives us a callback which opens the
* encoder and returns the required frame size (if any)
* - when the first frame is sent to the encoder, the sending thread
* - calls this callback, opening the encoder
* - passes the returned frame size to the sync queue
*/
int (*open_cb)(void *opaque, const AVFrame *frame);
int opened;
SchTask task;
// Queue for receiving input frames, one stream.
ThreadQueue *queue;
// tq_send() to queue returned EOF
int in_finished;
// temporary storage used by sch_enc_send()
AVPacket *send_pkt;
} SchEnc;
typedef struct SchDemuxStream {
SchedulerNode *dst;
uint8_t *dst_finished;
unsigned nb_dst;
} SchDemuxStream;
typedef struct SchDemux {
const AVClass *class;
SchDemuxStream *streams;
unsigned nb_streams;
SchTask task;
SchWaiter waiter;
// temporary storage used by sch_demux_send()
AVPacket *send_pkt;
// protected by schedule_lock
int task_exited;
} SchDemux;
typedef struct PreMuxQueue {
/**
* Queue for buffering the packets before the muxer task can be started.
*/
AVFifo *fifo;
/**
* Maximum number of packets in fifo.
*/
int max_packets;
/*
* The size of the AVPackets' buffers in queue.
* Updated when a packet is either pushed or pulled from the queue.
*/
size_t data_size;
/* Threshold after which max_packets will be in effect */
size_t data_threshold;
} PreMuxQueue;
typedef struct SchMuxStream {
SchedulerNode src;
SchedulerNode src_sched;
unsigned *sub_heartbeat_dst;
unsigned nb_sub_heartbeat_dst;
PreMuxQueue pre_mux_queue;
// an EOF was generated while flushing the pre-mux queue
int init_eof;
////////////////////////////////////////////////////////////
// The following are protected by Scheduler.schedule_lock //
/* dts+duration of the last packet sent to this stream
in AV_TIME_BASE_Q */
int64_t last_dts;
// this stream no longer accepts input
int source_finished;
////////////////////////////////////////////////////////////
} SchMuxStream;
typedef struct SchMux {
const AVClass *class;
SchMuxStream *streams;
unsigned nb_streams;
unsigned nb_streams_ready;
int (*init)(void *arg);
SchTask task;
/**
* Set to 1 after starting the muxer task and flushing the
* pre-muxing queues.
* Set either before any tasks have started, or with
* Scheduler.mux_ready_lock held.
*/
atomic_int mux_started;
ThreadQueue *queue;
unsigned queue_size;
AVPacket *sub_heartbeat_pkt;
} SchMux;
typedef struct SchFilterIn {
SchedulerNode src;
SchedulerNode src_sched;
int send_finished;
int receive_finished;
} SchFilterIn;
typedef struct SchFilterOut {
SchedulerNode dst;
} SchFilterOut;
typedef struct SchFilterGraph {
const AVClass *class;
SchFilterIn *inputs;
unsigned nb_inputs;
atomic_uint nb_inputs_finished_send;
unsigned nb_inputs_finished_receive;
SchFilterOut *outputs;
unsigned nb_outputs;
SchTask task;
// input queue, nb_inputs+1 streams
// last stream is control
ThreadQueue *queue;
SchWaiter waiter;
// protected by schedule_lock
unsigned best_input;
int task_exited;
} SchFilterGraph;
struct Scheduler {
const AVClass *class;
SchDemux *demux;
unsigned nb_demux;
SchMux *mux;
unsigned nb_mux;
unsigned nb_mux_ready;
pthread_mutex_t mux_ready_lock;
unsigned nb_mux_done;
pthread_mutex_t mux_done_lock;
pthread_cond_t mux_done_cond;
SchDec *dec;
unsigned nb_dec;
SchEnc *enc;
unsigned nb_enc;
SchSyncQueue *sq_enc;
unsigned nb_sq_enc;
SchFilterGraph *filters;
unsigned nb_filters;
char *sdp_filename;
int sdp_auto;
int transcode_started;
atomic_int terminate;
atomic_int task_failed;
pthread_mutex_t schedule_lock;
atomic_int_least64_t last_dts;
};
/**
* Wait until this task is allowed to proceed.
*
* @retval 0 the caller should proceed
* @retval 1 the caller should terminate
*/
static int waiter_wait(Scheduler *sch, SchWaiter *w)
{
int terminate;
if (!atomic_load(&w->choked))
return 0;
pthread_mutex_lock(&w->lock);
while (atomic_load(&w->choked) && !atomic_load(&sch->terminate))
pthread_cond_wait(&w->cond, &w->lock);
terminate = atomic_load(&sch->terminate);
pthread_mutex_unlock(&w->lock);
return terminate;
}
static void waiter_set(SchWaiter *w, int choked)
{
pthread_mutex_lock(&w->lock);
atomic_store(&w->choked, choked);
pthread_cond_signal(&w->cond);
pthread_mutex_unlock(&w->lock);
}
static int waiter_init(SchWaiter *w)
{
int ret;
atomic_init(&w->choked, 0);
ret = pthread_mutex_init(&w->lock, NULL);
if (ret)
return AVERROR(ret);
ret = pthread_cond_init(&w->cond, NULL);
if (ret)
return AVERROR(ret);
return 0;
}
static void waiter_uninit(SchWaiter *w)
{
pthread_mutex_destroy(&w->lock);
pthread_cond_destroy(&w->cond);
}
static int queue_alloc(ThreadQueue **ptq, unsigned nb_streams, unsigned queue_size,
enum QueueType type)
{
ThreadQueue *tq;
ObjPool *op;
queue_size = queue_size > 0 ? queue_size : 8;
op = (type == QUEUE_PACKETS) ? objpool_alloc_packets() :
objpool_alloc_frames();
if (!op)
return AVERROR(ENOMEM);
tq = tq_alloc(nb_streams, queue_size, op,
(type == QUEUE_PACKETS) ? pkt_move : frame_move);
if (!tq) {
objpool_free(&op);
return AVERROR(ENOMEM);
}
*ptq = tq;
return 0;
}
static void *task_wrapper(void *arg);
static int task_stop(SchTask *task)
{
int ret;
void *thread_ret;
if (!task->thread_running)
return 0;
ret = pthread_join(task->thread, &thread_ret);
av_assert0(ret == 0);
task->thread_running = 0;
return (intptr_t)thread_ret;
}
static int task_start(SchTask *task)
{
int ret;
av_log(task->func_arg, AV_LOG_VERBOSE, "Starting thread...\n");
av_assert0(!task->thread_running);
ret = pthread_create(&task->thread, NULL, task_wrapper, task);
if (ret) {
av_log(task->func_arg, AV_LOG_ERROR, "pthread_create() failed: %s\n",
strerror(ret));
return AVERROR(ret);
}
task->thread_running = 1;
return 0;
}
static void task_init(Scheduler *sch, SchTask *task, enum SchedulerNodeType type, unsigned idx,
SchThreadFunc func, void *func_arg)
{
task->parent = sch;
task->node.type = type;
task->node.idx = idx;
task->func = func;
task->func_arg = func_arg;
}
static int64_t trailing_dts(const Scheduler *sch, int count_finished)
{
int64_t min_dts = INT64_MAX;
for (unsigned i = 0; i < sch->nb_mux; i++) {
const SchMux *mux = &sch->mux[i];
for (unsigned j = 0; j < mux->nb_streams; j++) {
const SchMuxStream *ms = &mux->streams[j];
if (ms->source_finished && !count_finished)
continue;
if (ms->last_dts == AV_NOPTS_VALUE)
return AV_NOPTS_VALUE;
min_dts = FFMIN(min_dts, ms->last_dts);
}
}
return min_dts == INT64_MAX ? AV_NOPTS_VALUE : min_dts;
}
int sch_stop(Scheduler *sch, int64_t *finish_ts)
{
int ret = 0, err;
atomic_store(&sch->terminate, 1);
for (unsigned type = 0; type < 2; type++)
for (unsigned i = 0; i < (type ? sch->nb_demux : sch->nb_filters); i++) {
SchWaiter *w = type ? &sch->demux[i].waiter : &sch->filters[i].waiter;
waiter_set(w, 1);
}
for (unsigned i = 0; i < sch->nb_demux; i++) {
SchDemux *d = &sch->demux[i];
err = task_stop(&d->task);
ret = err_merge(ret, err);
}
for (unsigned i = 0; i < sch->nb_dec; i++) {
SchDec *dec = &sch->dec[i];
err = task_stop(&dec->task);
ret = err_merge(ret, err);
}
for (unsigned i = 0; i < sch->nb_filters; i++) {
SchFilterGraph *fg = &sch->filters[i];
err = task_stop(&fg->task);
ret = err_merge(ret, err);
}
for (unsigned i = 0; i < sch->nb_enc; i++) {
SchEnc *enc = &sch->enc[i];
err = task_stop(&enc->task);
ret = err_merge(ret, err);
}
for (unsigned i = 0; i < sch->nb_mux; i++) {
SchMux *mux = &sch->mux[i];
err = task_stop(&mux->task);
ret = err_merge(ret, err);
}
if (finish_ts)
*finish_ts = trailing_dts(sch, 1);
return ret;
}
void sch_free(Scheduler **psch)
{
Scheduler *sch = *psch;
if (!sch)
return;
sch_stop(sch, NULL);
for (unsigned i = 0; i < sch->nb_demux; i++) {
SchDemux *d = &sch->demux[i];
for (unsigned j = 0; j < d->nb_streams; j++) {
SchDemuxStream *ds = &d->streams[j];
av_freep(&ds->dst);
av_freep(&ds->dst_finished);
}
av_freep(&d->streams);
av_packet_free(&d->send_pkt);
waiter_uninit(&d->waiter);
}
av_freep(&sch->demux);
for (unsigned i = 0; i < sch->nb_mux; i++) {
SchMux *mux = &sch->mux[i];
for (unsigned j = 0; j < mux->nb_streams; j++) {
SchMuxStream *ms = &mux->streams[j];
if (ms->pre_mux_queue.fifo) {
AVPacket *pkt;
while (av_fifo_read(ms->pre_mux_queue.fifo, &pkt, 1) >= 0)
av_packet_free(&pkt);
av_fifo_freep2(&ms->pre_mux_queue.fifo);
}
av_freep(&ms->sub_heartbeat_dst);
}
av_freep(&mux->streams);
av_packet_free(&mux->sub_heartbeat_pkt);
tq_free(&mux->queue);
}
av_freep(&sch->mux);
for (unsigned i = 0; i < sch->nb_dec; i++) {
SchDec *dec = &sch->dec[i];
tq_free(&dec->queue);
av_thread_message_queue_free(&dec->queue_end_ts);
av_freep(&dec->dst);
av_freep(&dec->dst_finished);
av_frame_free(&dec->send_frame);
}
av_freep(&sch->dec);
for (unsigned i = 0; i < sch->nb_enc; i++) {
SchEnc *enc = &sch->enc[i];
tq_free(&enc->queue);
av_packet_free(&enc->send_pkt);
av_freep(&enc->dst);
av_freep(&enc->dst_finished);
}
av_freep(&sch->enc);
for (unsigned i = 0; i < sch->nb_sq_enc; i++) {
SchSyncQueue *sq = &sch->sq_enc[i];
sq_free(&sq->sq);
av_frame_free(&sq->frame);
pthread_mutex_destroy(&sq->lock);
av_freep(&sq->enc_idx);
}
av_freep(&sch->sq_enc);
for (unsigned i = 0; i < sch->nb_filters; i++) {
SchFilterGraph *fg = &sch->filters[i];
tq_free(&fg->queue);
av_freep(&fg->inputs);
av_freep(&fg->outputs);
waiter_uninit(&fg->waiter);
}
av_freep(&sch->filters);
av_freep(&sch->sdp_filename);
pthread_mutex_destroy(&sch->schedule_lock);
pthread_mutex_destroy(&sch->mux_ready_lock);
pthread_mutex_destroy(&sch->mux_done_lock);
pthread_cond_destroy(&sch->mux_done_cond);
av_freep(psch);
}
static const AVClass scheduler_class = {
.class_name = "Scheduler",
.version = LIBAVUTIL_VERSION_INT,
};
Scheduler *sch_alloc(void)
{
Scheduler *sch;
int ret;
sch = av_mallocz(sizeof(*sch));
if (!sch)
return NULL;
sch->class = &scheduler_class;
sch->sdp_auto = 1;
ret = pthread_mutex_init(&sch->schedule_lock, NULL);
if (ret)
goto fail;
ret = pthread_mutex_init(&sch->mux_ready_lock, NULL);
if (ret)
goto fail;
ret = pthread_mutex_init(&sch->mux_done_lock, NULL);
if (ret)
goto fail;
ret = pthread_cond_init(&sch->mux_done_cond, NULL);
if (ret)
goto fail;
return sch;
fail:
sch_free(&sch);
return NULL;
}
int sch_sdp_filename(Scheduler *sch, const char *sdp_filename)
{
av_freep(&sch->sdp_filename);
sch->sdp_filename = av_strdup(sdp_filename);
return sch->sdp_filename ? 0 : AVERROR(ENOMEM);
}
static const AVClass sch_mux_class = {
.class_name = "SchMux",
.version = LIBAVUTIL_VERSION_INT,
.parent_log_context_offset = offsetof(SchMux, task.func_arg),
};
int sch_add_mux(Scheduler *sch, SchThreadFunc func, int (*init)(void *),
void *arg, int sdp_auto, unsigned thread_queue_size)
{
const unsigned idx = sch->nb_mux;
SchMux *mux;
int ret;
ret = GROW_ARRAY(sch->mux, sch->nb_mux);
if (ret < 0)
return ret;
mux = &sch->mux[idx];
mux->class = &sch_mux_class;
mux->init = init;
mux->queue_size = thread_queue_size;
task_init(sch, &mux->task, SCH_NODE_TYPE_MUX, idx, func, arg);
sch->sdp_auto &= sdp_auto;
return idx;
}
int sch_add_mux_stream(Scheduler *sch, unsigned mux_idx)
{
SchMux *mux;
SchMuxStream *ms;
unsigned stream_idx;
int ret;
av_assert0(mux_idx < sch->nb_mux);
mux = &sch->mux[mux_idx];
ret = GROW_ARRAY(mux->streams, mux->nb_streams);
if (ret < 0)
return ret;
stream_idx = mux->nb_streams - 1;
ms = &mux->streams[stream_idx];
ms->pre_mux_queue.fifo = av_fifo_alloc2(8, sizeof(AVPacket*), 0);
if (!ms->pre_mux_queue.fifo)
return AVERROR(ENOMEM);
ms->last_dts = AV_NOPTS_VALUE;
return stream_idx;
}
static const AVClass sch_demux_class = {
.class_name = "SchDemux",
.version = LIBAVUTIL_VERSION_INT,
.parent_log_context_offset = offsetof(SchDemux, task.func_arg),
};
int sch_add_demux(Scheduler *sch, SchThreadFunc func, void *ctx)
{
const unsigned idx = sch->nb_demux;
SchDemux *d;
int ret;
ret = GROW_ARRAY(sch->demux, sch->nb_demux);
if (ret < 0)
return ret;
d = &sch->demux[idx];
task_init(sch, &d->task, SCH_NODE_TYPE_DEMUX, idx, func, ctx);
d->class = &sch_demux_class;
d->send_pkt = av_packet_alloc();
if (!d->send_pkt)
return AVERROR(ENOMEM);
ret = waiter_init(&d->waiter);
if (ret < 0)
return ret;
return idx;
}
int sch_add_demux_stream(Scheduler *sch, unsigned demux_idx)
{
SchDemux *d;
int ret;
av_assert0(demux_idx < sch->nb_demux);
d = &sch->demux[demux_idx];
ret = GROW_ARRAY(d->streams, d->nb_streams);
return ret < 0 ? ret : d->nb_streams - 1;
}
static const AVClass sch_dec_class = {
.class_name = "SchDec",
.version = LIBAVUTIL_VERSION_INT,
.parent_log_context_offset = offsetof(SchDec, task.func_arg),
};
int sch_add_dec(Scheduler *sch, SchThreadFunc func, void *ctx,
int send_end_ts)
{
const unsigned idx = sch->nb_dec;
SchDec *dec;
int ret;
ret = GROW_ARRAY(sch->dec, sch->nb_dec);
if (ret < 0)
return ret;
dec = &sch->dec[idx];
task_init(sch, &dec->task, SCH_NODE_TYPE_DEC, idx, func, ctx);
dec->class = &sch_dec_class;
dec->send_frame = av_frame_alloc();
if (!dec->send_frame)
return AVERROR(ENOMEM);
ret = queue_alloc(&dec->queue, 1, 0, QUEUE_PACKETS);
if (ret < 0)
return ret;
if (send_end_ts) {
ret = av_thread_message_queue_alloc(&dec->queue_end_ts, 1, sizeof(Timestamp));
if (ret < 0)
return ret;
}
return idx;
}
static const AVClass sch_enc_class = {
.class_name = "SchEnc",
.version = LIBAVUTIL_VERSION_INT,
.parent_log_context_offset = offsetof(SchEnc, task.func_arg),
};
int sch_add_enc(Scheduler *sch, SchThreadFunc func, void *ctx,
int (*open_cb)(void *opaque, const AVFrame *frame))
{
const unsigned idx = sch->nb_enc;
SchEnc *enc;
int ret;
ret = GROW_ARRAY(sch->enc, sch->nb_enc);
if (ret < 0)
return ret;
enc = &sch->enc[idx];
enc->class = &sch_enc_class;
enc->open_cb = open_cb;
enc->sq_idx[0] = -1;
enc->sq_idx[1] = -1;
task_init(sch, &enc->task, SCH_NODE_TYPE_ENC, idx, func, ctx);
enc->send_pkt = av_packet_alloc();
if (!enc->send_pkt)
return AVERROR(ENOMEM);
ret = queue_alloc(&enc->queue, 1, 0, QUEUE_FRAMES);
if (ret < 0)
return ret;
return idx;
}
static const AVClass sch_fg_class = {
.class_name = "SchFilterGraph",
.version = LIBAVUTIL_VERSION_INT,
.parent_log_context_offset = offsetof(SchFilterGraph, task.func_arg),
};
int sch_add_filtergraph(Scheduler *sch, unsigned nb_inputs, unsigned nb_outputs,
SchThreadFunc func, void *ctx)
{
const unsigned idx = sch->nb_filters;
SchFilterGraph *fg;
int ret;
ret = GROW_ARRAY(sch->filters, sch->nb_filters);
if (ret < 0)
return ret;
fg = &sch->filters[idx];
fg->class = &sch_fg_class;
task_init(sch, &fg->task, SCH_NODE_TYPE_FILTER_IN, idx, func, ctx);
if (nb_inputs) {
fg->inputs = av_calloc(nb_inputs, sizeof(*fg->inputs));
if (!fg->inputs)
return AVERROR(ENOMEM);
fg->nb_inputs = nb_inputs;
}
if (nb_outputs) {
fg->outputs = av_calloc(nb_outputs, sizeof(*fg->outputs));
if (!fg->outputs)
return AVERROR(ENOMEM);
fg->nb_outputs = nb_outputs;
}
ret = waiter_init(&fg->waiter);
if (ret < 0)
return ret;
ret = queue_alloc(&fg->queue, fg->nb_inputs + 1, 0, QUEUE_FRAMES);
if (ret < 0)
return ret;
return idx;
}
int sch_add_sq_enc(Scheduler *sch, uint64_t buf_size_us, void *logctx)
{
SchSyncQueue *sq;
int ret;
ret = GROW_ARRAY(sch->sq_enc, sch->nb_sq_enc);
if (ret < 0)
return ret;
sq = &sch->sq_enc[sch->nb_sq_enc - 1];
sq->sq = sq_alloc(SYNC_QUEUE_FRAMES, buf_size_us, logctx);
if (!sq->sq)
return AVERROR(ENOMEM);
sq->frame = av_frame_alloc();
if (!sq->frame)
return AVERROR(ENOMEM);
ret = pthread_mutex_init(&sq->lock, NULL);
if (ret)
return AVERROR(ret);
return sq - sch->sq_enc;
}
int sch_sq_add_enc(Scheduler *sch, unsigned sq_idx, unsigned enc_idx,
int limiting, uint64_t max_frames)
{
SchSyncQueue *sq;
SchEnc *enc;
int ret;
av_assert0(sq_idx < sch->nb_sq_enc);
sq = &sch->sq_enc[sq_idx];
av_assert0(enc_idx < sch->nb_enc);
enc = &sch->enc[enc_idx];
ret = GROW_ARRAY(sq->enc_idx, sq->nb_enc_idx);
if (ret < 0)
return ret;
sq->enc_idx[sq->nb_enc_idx - 1] = enc_idx;
ret = sq_add_stream(sq->sq, limiting);
if (ret < 0)
return ret;
enc->sq_idx[0] = sq_idx;
enc->sq_idx[1] = ret;
if (max_frames != INT64_MAX)
sq_limit_frames(sq->sq, enc->sq_idx[1], max_frames);
return 0;
}
int sch_connect(Scheduler *sch, SchedulerNode src, SchedulerNode dst)
{
int ret;
switch (src.type) {
case SCH_NODE_TYPE_DEMUX: {
SchDemuxStream *ds;
av_assert0(src.idx < sch->nb_demux &&
src.idx_stream < sch->demux[src.idx].nb_streams);
ds = &sch->demux[src.idx].streams[src.idx_stream];
ret = GROW_ARRAY(ds->dst, ds->nb_dst);
if (ret < 0)
return ret;
ds->dst[ds->nb_dst - 1] = dst;
// demuxed packets go to decoding or streamcopy
switch (dst.type) {
case SCH_NODE_TYPE_DEC: {
SchDec *dec;
av_assert0(dst.idx < sch->nb_dec);
dec = &sch->dec[dst.idx];
av_assert0(!dec->src.type);
dec->src = src;
break;
}
case SCH_NODE_TYPE_MUX: {
SchMuxStream *ms;
av_assert0(dst.idx < sch->nb_mux &&
dst.idx_stream < sch->mux[dst.idx].nb_streams);
ms = &sch->mux[dst.idx].streams[dst.idx_stream];
av_assert0(!ms->src.type);
ms->src = src;
break;
}
default: av_assert0(0);
}
break;
}
case SCH_NODE_TYPE_DEC: {
SchDec *dec;
av_assert0(src.idx < sch->nb_dec);
dec = &sch->dec[src.idx];
ret = GROW_ARRAY(dec->dst, dec->nb_dst);
if (ret < 0)
return ret;
dec->dst[dec->nb_dst - 1] = dst;
// decoded frames go to filters or encoding
switch (dst.type) {
case SCH_NODE_TYPE_FILTER_IN: {
SchFilterIn *fi;
av_assert0(dst.idx < sch->nb_filters &&
dst.idx_stream < sch->filters[dst.idx].nb_inputs);
fi = &sch->filters[dst.idx].inputs[dst.idx_stream];
av_assert0(!fi->src.type);
fi->src = src;
break;
}
case SCH_NODE_TYPE_ENC: {
SchEnc *enc;
av_assert0(dst.idx < sch->nb_enc);
enc = &sch->enc[dst.idx];
av_assert0(!enc->src.type);
enc->src = src;
break;
}
default: av_assert0(0);
}
break;
}
case SCH_NODE_TYPE_FILTER_OUT: {
SchFilterOut *fo;
SchEnc *enc;
av_assert0(src.idx < sch->nb_filters &&
src.idx_stream < sch->filters[src.idx].nb_outputs);
// filtered frames go to encoding
av_assert0(dst.type == SCH_NODE_TYPE_ENC &&
dst.idx < sch->nb_enc);
fo = &sch->filters[src.idx].outputs[src.idx_stream];
enc = &sch->enc[dst.idx];
av_assert0(!fo->dst.type && !enc->src.type);
fo->dst = dst;
enc->src = src;
break;
}
case SCH_NODE_TYPE_ENC: {
SchEnc *enc;
av_assert0(src.idx < sch->nb_enc);
enc = &sch->enc[src.idx];
ret = GROW_ARRAY(enc->dst, enc->nb_dst);
if (ret < 0)
return ret;
enc->dst[enc->nb_dst - 1] = dst;
// encoding packets go to muxing or decoding
switch (dst.type) {
case SCH_NODE_TYPE_MUX: {
SchMuxStream *ms;
av_assert0(dst.idx < sch->nb_mux &&
dst.idx_stream < sch->mux[dst.idx].nb_streams);
ms = &sch->mux[dst.idx].streams[dst.idx_stream];
av_assert0(!ms->src.type);
ms->src = src;
break;
}
case SCH_NODE_TYPE_DEC: {
SchDec *dec;
av_assert0(dst.idx < sch->nb_dec);
dec = &sch->dec[dst.idx];
av_assert0(!dec->src.type);
dec->src = src;
break;
}
default: av_assert0(0);
}
break;
}
default: av_assert0(0);
}
return 0;
}
static int mux_task_start(SchMux *mux)
{
int ret = 0;
ret = task_start(&mux->task);
if (ret < 0)
return ret;
/* flush the pre-muxing queues */
for (unsigned i = 0; i < mux->nb_streams; i++) {
SchMuxStream *ms = &mux->streams[i];
AVPacket *pkt;
while (av_fifo_read(ms->pre_mux_queue.fifo, &pkt, 1) >= 0) {
if (pkt) {
if (!ms->init_eof)
ret = tq_send(mux->queue, i, pkt);
av_packet_free(&pkt);
if (ret == AVERROR_EOF)
ms->init_eof = 1;
else if (ret < 0)
return ret;
} else
tq_send_finish(mux->queue, i);
}
}
atomic_store(&mux->mux_started, 1);
return 0;
}
int print_sdp(const char *filename);
static int mux_init(Scheduler *sch, SchMux *mux)
{
int ret;
ret = mux->init(mux->task.func_arg);
if (ret < 0)
return ret;
sch->nb_mux_ready++;
if (sch->sdp_filename || sch->sdp_auto) {
if (sch->nb_mux_ready < sch->nb_mux)
return 0;
ret = print_sdp(sch->sdp_filename);
if (ret < 0) {
av_log(sch, AV_LOG_ERROR, "Error writing the SDP.\n");
return ret;
}
/* SDP is written only after all the muxers are ready, so now we
* start ALL the threads */
for (unsigned i = 0; i < sch->nb_mux; i++) {
ret = mux_task_start(&sch->mux[i]);
if (ret < 0)
return ret;
}
} else {
ret = mux_task_start(mux);
if (ret < 0)
return ret;
}
return 0;
}
void sch_mux_stream_buffering(Scheduler *sch, unsigned mux_idx, unsigned stream_idx,
size_t data_threshold, int max_packets)
{
SchMux *mux;
SchMuxStream *ms;
av_assert0(mux_idx < sch->nb_mux);
mux = &sch->mux[mux_idx];
av_assert0(stream_idx < mux->nb_streams);
ms = &mux->streams[stream_idx];
ms->pre_mux_queue.max_packets = max_packets;
ms->pre_mux_queue.data_threshold = data_threshold;
}
int sch_mux_stream_ready(Scheduler *sch, unsigned mux_idx, unsigned stream_idx)
{
SchMux *mux;
int ret = 0;
av_assert0(mux_idx < sch->nb_mux);
mux = &sch->mux[mux_idx];
av_assert0(stream_idx < mux->nb_streams);
pthread_mutex_lock(&sch->mux_ready_lock);
av_assert0(mux->nb_streams_ready < mux->nb_streams);
// this may be called during initialization - do not start
// threads before sch_start() is called
if (++mux->nb_streams_ready == mux->nb_streams && sch->transcode_started)
ret = mux_init(sch, mux);
pthread_mutex_unlock(&sch->mux_ready_lock);
return ret;
}
int sch_mux_sub_heartbeat_add(Scheduler *sch, unsigned mux_idx, unsigned stream_idx,
unsigned dec_idx)
{
SchMux *mux;
SchMuxStream *ms;
int ret = 0;
av_assert0(mux_idx < sch->nb_mux);
mux = &sch->mux[mux_idx];
av_assert0(stream_idx < mux->nb_streams);
ms = &mux->streams[stream_idx];
ret = GROW_ARRAY(ms->sub_heartbeat_dst, ms->nb_sub_heartbeat_dst);
if (ret < 0)
return ret;
av_assert0(dec_idx < sch->nb_dec);
ms->sub_heartbeat_dst[ms->nb_sub_heartbeat_dst - 1] = dec_idx;
if (!mux->sub_heartbeat_pkt) {
mux->sub_heartbeat_pkt = av_packet_alloc();
if (!mux->sub_heartbeat_pkt)
return AVERROR(ENOMEM);
}
return 0;
}
static void unchoke_for_stream(Scheduler *sch, SchedulerNode src)
{
while (1) {
SchFilterGraph *fg;
// fed directly by a demuxer (i.e. not through a filtergraph)
if (src.type == SCH_NODE_TYPE_DEMUX) {
sch->demux[src.idx].waiter.choked_next = 0;
return;
}
av_assert0(src.type == SCH_NODE_TYPE_FILTER_OUT);
fg = &sch->filters[src.idx];
// the filtergraph contains internal sources and
// requested to be scheduled directly
if (fg->best_input == fg->nb_inputs) {
fg->waiter.choked_next = 0;
return;
}
src = fg->inputs[fg->best_input].src_sched;
}
}
static void schedule_update_locked(Scheduler *sch)
{
int64_t dts;
int have_unchoked = 0;
// on termination request all waiters are choked,
// we are not to unchoke them
if (atomic_load(&sch->terminate))
return;
dts = trailing_dts(sch, 0);
atomic_store(&sch->last_dts, dts);
// initialize our internal state
for (unsigned type = 0; type < 2; type++)
for (unsigned i = 0; i < (type ? sch->nb_filters : sch->nb_demux); i++) {
SchWaiter *w = type ? &sch->filters[i].waiter : &sch->demux[i].waiter;
w->choked_prev = atomic_load(&w->choked);
w->choked_next = 1;
}
// figure out the sources that are allowed to proceed
for (unsigned i = 0; i < sch->nb_mux; i++) {
SchMux *mux = &sch->mux[i];
for (unsigned j = 0; j < mux->nb_streams; j++) {
SchMuxStream *ms = &mux->streams[j];
// unblock sources for output streams that are not finished
// and not too far ahead of the trailing stream
if (ms->source_finished)
continue;
if (dts == AV_NOPTS_VALUE && ms->last_dts != AV_NOPTS_VALUE)
continue;
if (dts != AV_NOPTS_VALUE && ms->last_dts - dts >= SCHEDULE_TOLERANCE)
continue;
// resolve the source to unchoke
unchoke_for_stream(sch, ms->src_sched);
have_unchoked = 1;
}
}
// make sure to unchoke at least one source, if still available
for (unsigned type = 0; !have_unchoked && type < 2; type++)
for (unsigned i = 0; i < (type ? sch->nb_filters : sch->nb_demux); i++) {
int exited = type ? sch->filters[i].task_exited : sch->demux[i].task_exited;
SchWaiter *w = type ? &sch->filters[i].waiter : &sch->demux[i].waiter;
if (!exited) {
w->choked_next = 0;
have_unchoked = 1;
break;
}
}
for (unsigned type = 0; type < 2; type++)
for (unsigned i = 0; i < (type ? sch->nb_filters : sch->nb_demux); i++) {
SchWaiter *w = type ? &sch->filters[i].waiter : &sch->demux[i].waiter;
if (w->choked_prev != w->choked_next)
waiter_set(w, w->choked_next);
}
}
enum {
CYCLE_NODE_NEW = 0,
CYCLE_NODE_STARTED,
CYCLE_NODE_DONE,
};
static int
check_acyclic_for_output(const Scheduler *sch, SchedulerNode src,
uint8_t *filters_visited, SchedulerNode *filters_stack)
{
unsigned nb_filters_stack = 0;
memset(filters_visited, 0, sch->nb_filters * sizeof(*filters_visited));
while (1) {
const SchFilterGraph *fg = &sch->filters[src.idx];
filters_visited[src.idx] = CYCLE_NODE_STARTED;
// descend into every input, depth first
if (src.idx_stream < fg->nb_inputs) {
const SchFilterIn *fi = &fg->inputs[src.idx_stream++];
// connected to demuxer, no cycles possible
if (fi->src_sched.type == SCH_NODE_TYPE_DEMUX)
continue;
// otherwise connected to another filtergraph
av_assert0(fi->src_sched.type == SCH_NODE_TYPE_FILTER_OUT);
// found a cycle
if (filters_visited[fi->src_sched.idx] == CYCLE_NODE_STARTED)
return AVERROR(EINVAL);
// place current position on stack and descend
av_assert0(nb_filters_stack < sch->nb_filters);
filters_stack[nb_filters_stack++] = src;
src = (SchedulerNode){ .idx = fi->src_sched.idx, .idx_stream = 0 };
continue;
}
filters_visited[src.idx] = CYCLE_NODE_DONE;
// previous search finished,
if (nb_filters_stack) {
src = filters_stack[--nb_filters_stack];
continue;
}
return 0;
}
}
static int check_acyclic(Scheduler *sch)
{
uint8_t *filters_visited = NULL;
SchedulerNode *filters_stack = NULL;
int ret = 0;
if (!sch->nb_filters)
return 0;
filters_visited = av_malloc_array(sch->nb_filters, sizeof(*filters_visited));
if (!filters_visited)
return AVERROR(ENOMEM);
filters_stack = av_malloc_array(sch->nb_filters, sizeof(*filters_stack));
if (!filters_stack) {
ret = AVERROR(ENOMEM);
goto fail;
}
// trace the transcoding graph upstream from every output stream
// fed by a filtergraph
for (unsigned i = 0; i < sch->nb_mux; i++) {
SchMux *mux = &sch->mux[i];
for (unsigned j = 0; j < mux->nb_streams; j++) {
SchMuxStream *ms = &mux->streams[j];
SchedulerNode src = ms->src_sched;
if (src.type != SCH_NODE_TYPE_FILTER_OUT)
continue;
src.idx_stream = 0;
ret = check_acyclic_for_output(sch, src, filters_visited, filters_stack);
if (ret < 0) {
av_log(mux, AV_LOG_ERROR, "Transcoding graph has a cycle\n");
goto fail;
}
}
}
fail:
av_freep(&filters_visited);
av_freep(&filters_stack);
return ret;
}
static int start_prepare(Scheduler *sch)
{
int ret;
for (unsigned i = 0; i < sch->nb_demux; i++) {
SchDemux *d = &sch->demux[i];
for (unsigned j = 0; j < d->nb_streams; j++) {
SchDemuxStream *ds = &d->streams[j];
if (!ds->nb_dst) {
av_log(d, AV_LOG_ERROR,
"Demuxer stream %u not connected to any sink\n", j);
return AVERROR(EINVAL);
}
ds->dst_finished = av_calloc(ds->nb_dst, sizeof(*ds->dst_finished));
if (!ds->dst_finished)
return AVERROR(ENOMEM);
}
}
for (unsigned i = 0; i < sch->nb_dec; i++) {
SchDec *dec = &sch->dec[i];
if (!dec->src.type) {
av_log(dec, AV_LOG_ERROR,
"Decoder not connected to a source\n");
return AVERROR(EINVAL);
}
if (!dec->nb_dst) {
av_log(dec, AV_LOG_ERROR,
"Decoder not connected to any sink\n");
return AVERROR(EINVAL);
}
dec->dst_finished = av_calloc(dec->nb_dst, sizeof(*dec->dst_finished));
if (!dec->dst_finished)
return AVERROR(ENOMEM);
}
for (unsigned i = 0; i < sch->nb_enc; i++) {
SchEnc *enc = &sch->enc[i];
if (!enc->src.type) {
av_log(enc, AV_LOG_ERROR,
"Encoder not connected to a source\n");
return AVERROR(EINVAL);
}
if (!enc->nb_dst) {
av_log(enc, AV_LOG_ERROR,
"Encoder not connected to any sink\n");
return AVERROR(EINVAL);
}
enc->dst_finished = av_calloc(enc->nb_dst, sizeof(*enc->dst_finished));
if (!enc->dst_finished)
return AVERROR(ENOMEM);
}
for (unsigned i = 0; i < sch->nb_mux; i++) {
SchMux *mux = &sch->mux[i];
for (unsigned j = 0; j < mux->nb_streams; j++) {
SchMuxStream *ms = &mux->streams[j];
switch (ms->src.type) {
case SCH_NODE_TYPE_ENC: {
SchEnc *enc = &sch->enc[ms->src.idx];
if (enc->src.type == SCH_NODE_TYPE_DEC) {
ms->src_sched = sch->dec[enc->src.idx].src;
av_assert0(ms->src_sched.type == SCH_NODE_TYPE_DEMUX);
} else {
ms->src_sched = enc->src;
av_assert0(ms->src_sched.type == SCH_NODE_TYPE_FILTER_OUT);
}
break;
}
case SCH_NODE_TYPE_DEMUX:
ms->src_sched = ms->src;
break;
default:
av_log(mux, AV_LOG_ERROR,
"Muxer stream #%u not connected to a source\n", j);
return AVERROR(EINVAL);
}
}
ret = queue_alloc(&mux->queue, mux->nb_streams, mux->queue_size,
QUEUE_PACKETS);
if (ret < 0)
return ret;
}
for (unsigned i = 0; i < sch->nb_filters; i++) {
SchFilterGraph *fg = &sch->filters[i];
for (unsigned j = 0; j < fg->nb_inputs; j++) {
SchFilterIn *fi = &fg->inputs[j];
SchDec *dec;
if (!fi->src.type) {
av_log(fg, AV_LOG_ERROR,
"Filtergraph input %u not connected to a source\n", j);
return AVERROR(EINVAL);
}
av_assert0(fi->src.type == SCH_NODE_TYPE_DEC);
dec = &sch->dec[fi->src.idx];
switch (dec->src.type) {
case SCH_NODE_TYPE_DEMUX: fi->src_sched = dec->src; break;
case SCH_NODE_TYPE_ENC: fi->src_sched = sch->enc[dec->src.idx].src; break;
default: av_assert0(0);
}
}
for (unsigned j = 0; j < fg->nb_outputs; j++) {
SchFilterOut *fo = &fg->outputs[j];
if (!fo->dst.type) {
av_log(fg, AV_LOG_ERROR,
"Filtergraph %u output %u not connected to a sink\n", i, j);
return AVERROR(EINVAL);
}
}
}
// Check that the transcoding graph has no cycles.
ret = check_acyclic(sch);
if (ret < 0)
return ret;
return 0;
}
int sch_start(Scheduler *sch)
{
int ret;
ret = start_prepare(sch);
if (ret < 0)
return ret;
sch->transcode_started = 1;
for (unsigned i = 0; i < sch->nb_mux; i++) {
SchMux *mux = &sch->mux[i];
if (mux->nb_streams_ready == mux->nb_streams) {
ret = mux_init(sch, mux);
if (ret < 0)
return ret;
}
}
for (unsigned i = 0; i < sch->nb_enc; i++) {
SchEnc *enc = &sch->enc[i];
ret = task_start(&enc->task);
if (ret < 0)
return ret;
}
for (unsigned i = 0; i < sch->nb_filters; i++) {
SchFilterGraph *fg = &sch->filters[i];
ret = task_start(&fg->task);
if (ret < 0)
return ret;
}
for (unsigned i = 0; i < sch->nb_dec; i++) {
SchDec *dec = &sch->dec[i];
ret = task_start(&dec->task);
if (ret < 0)
return ret;
}
for (unsigned i = 0; i < sch->nb_demux; i++) {
SchDemux *d = &sch->demux[i];
if (!d->nb_streams)
continue;
ret = task_start(&d->task);
if (ret < 0)
return ret;
}
pthread_mutex_lock(&sch->schedule_lock);
schedule_update_locked(sch);
pthread_mutex_unlock(&sch->schedule_lock);
return 0;
}
int sch_wait(Scheduler *sch, uint64_t timeout_us, int64_t *transcode_ts)
{
int ret, err;
// convert delay to absolute timestamp
timeout_us += av_gettime();
pthread_mutex_lock(&sch->mux_done_lock);
if (sch->nb_mux_done < sch->nb_mux) {
struct timespec tv = { .tv_sec = timeout_us / 1000000,
.tv_nsec = (timeout_us % 1000000) * 1000 };
pthread_cond_timedwait(&sch->mux_done_cond, &sch->mux_done_lock, &tv);
}
ret = sch->nb_mux_done == sch->nb_mux;
pthread_mutex_unlock(&sch->mux_done_lock);
*transcode_ts = atomic_load(&sch->last_dts);
// abort transcoding if any task failed
err = atomic_load(&sch->task_failed);
return ret || err;
}
static int enc_open(Scheduler *sch, SchEnc *enc, const AVFrame *frame)
{
int ret;
ret = enc->open_cb(enc->task.func_arg, frame);
if (ret < 0)
return ret;
// ret>0 signals audio frame size, which means sync queue must
// have been enabled during encoder creation
if (ret > 0) {
SchSyncQueue *sq;
av_assert0(enc->sq_idx[0] >= 0);
sq = &sch->sq_enc[enc->sq_idx[0]];
pthread_mutex_lock(&sq->lock);
sq_frame_samples(sq->sq, enc->sq_idx[1], ret);
pthread_mutex_unlock(&sq->lock);
}
return 0;
}
static int send_to_enc_thread(Scheduler *sch, SchEnc *enc, AVFrame *frame)
{
int ret;
if (!frame) {
tq_send_finish(enc->queue, 0);
return 0;
}
if (enc->in_finished)
return AVERROR_EOF;
ret = tq_send(enc->queue, 0, frame);
if (ret < 0)
enc->in_finished = 1;
return ret;
}
static int send_to_enc_sq(Scheduler *sch, SchEnc *enc, AVFrame *frame)
{
SchSyncQueue *sq = &sch->sq_enc[enc->sq_idx[0]];
int ret = 0;
// inform the scheduling code that no more input will arrive along this path;
// this is necessary because the sync queue may not send an EOF downstream
// until other streams finish
// TODO: consider a cleaner way of passing this information through
// the pipeline
if (!frame) {
for (unsigned i = 0; i < enc->nb_dst; i++) {
SchMux *mux;
SchMuxStream *ms;
if (enc->dst[i].type != SCH_NODE_TYPE_MUX)
continue;
mux = &sch->mux[enc->dst[i].idx];
ms = &mux->streams[enc->dst[i].idx_stream];
pthread_mutex_lock(&sch->schedule_lock);
ms->source_finished = 1;
schedule_update_locked(sch);
pthread_mutex_unlock(&sch->schedule_lock);
}
}
pthread_mutex_lock(&sq->lock);
ret = sq_send(sq->sq, enc->sq_idx[1], SQFRAME(frame));
if (ret < 0)
goto finish;
while (1) {
SchEnc *enc;
// TODO: the SQ API should be extended to allow returning EOF
// for individual streams
ret = sq_receive(sq->sq, -1, SQFRAME(sq->frame));
if (ret < 0) {
ret = (ret == AVERROR(EAGAIN)) ? 0 : ret;
break;
}
enc = &sch->enc[sq->enc_idx[ret]];
ret = send_to_enc_thread(sch, enc, sq->frame);
if (ret < 0) {
av_frame_unref(sq->frame);
if (ret != AVERROR_EOF)
break;
sq_send(sq->sq, enc->sq_idx[1], SQFRAME(NULL));
continue;
}
}
if (ret < 0) {
// close all encoders fed from this sync queue
for (unsigned i = 0; i < sq->nb_enc_idx; i++) {
int err = send_to_enc_thread(sch, &sch->enc[sq->enc_idx[i]], NULL);
// if the sync queue error is EOF and closing the encoder
// produces a more serious error, make sure to pick the latter
ret = err_merge((ret == AVERROR_EOF && err < 0) ? 0 : ret, err);
}
}
finish:
pthread_mutex_unlock(&sq->lock);
return ret;
}
static int send_to_enc(Scheduler *sch, SchEnc *enc, AVFrame *frame)
{
if (enc->open_cb && frame && !enc->opened) {
int ret = enc_open(sch, enc, frame);
if (ret < 0)
return ret;
enc->opened = 1;
// discard empty frames that only carry encoder init parameters
if (!frame->buf[0]) {
av_frame_unref(frame);
return 0;
}
}
return (enc->sq_idx[0] >= 0) ?
send_to_enc_sq (sch, enc, frame) :
send_to_enc_thread(sch, enc, frame);
}
static int mux_queue_packet(SchMux *mux, SchMuxStream *ms, AVPacket *pkt)
{
PreMuxQueue *q = &ms->pre_mux_queue;
AVPacket *tmp_pkt = NULL;
int ret;
if (!av_fifo_can_write(q->fifo)) {
size_t packets = av_fifo_can_read(q->fifo);
size_t pkt_size = pkt ? pkt->size : 0;
int thresh_reached = (q->data_size + pkt_size) > q->data_threshold;
size_t max_packets = thresh_reached ? q->max_packets : SIZE_MAX;
size_t new_size = FFMIN(2 * packets, max_packets);
if (new_size <= packets) {
av_log(mux, AV_LOG_ERROR,
"Too many packets buffered for output stream.\n");
return AVERROR(ENOSPC);
}
ret = av_fifo_grow2(q->fifo, new_size - packets);
if (ret < 0)
return ret;
}
if (pkt) {
tmp_pkt = av_packet_alloc();
if (!tmp_pkt)
return AVERROR(ENOMEM);
av_packet_move_ref(tmp_pkt, pkt);
q->data_size += tmp_pkt->size;
}
av_fifo_write(q->fifo, &tmp_pkt, 1);
return 0;
}
static int send_to_mux(Scheduler *sch, SchMux *mux, unsigned stream_idx,
AVPacket *pkt)
{
SchMuxStream *ms = &mux->streams[stream_idx];
int64_t dts = (pkt && pkt->dts != AV_NOPTS_VALUE) ?
av_rescale_q(pkt->dts + pkt->duration, pkt->time_base, AV_TIME_BASE_Q) :
AV_NOPTS_VALUE;
// queue the packet if the muxer cannot be started yet
if (!atomic_load(&mux->mux_started)) {
int queued = 0;
// the muxer could have started between the above atomic check and
// locking the mutex, then this block falls through to normal send path
pthread_mutex_lock(&sch->mux_ready_lock);
if (!atomic_load(&mux->mux_started)) {
int ret = mux_queue_packet(mux, ms, pkt);
queued = ret < 0 ? ret : 1;
}
pthread_mutex_unlock(&sch->mux_ready_lock);
if (queued < 0)
return queued;
else if (queued)
goto update_schedule;
}
if (pkt) {
int ret;
if (ms->init_eof)
return AVERROR_EOF;
ret = tq_send(mux->queue, stream_idx, pkt);
if (ret < 0)
return ret;
} else
tq_send_finish(mux->queue, stream_idx);
update_schedule:
// TODO: use atomics to check whether this changes trailing dts
// to avoid locking unnecesarily
if (dts != AV_NOPTS_VALUE || !pkt) {
pthread_mutex_lock(&sch->schedule_lock);
if (pkt) ms->last_dts = dts;
else ms->source_finished = 1;
schedule_update_locked(sch);
pthread_mutex_unlock(&sch->schedule_lock);
}
return 0;
}
static int
demux_stream_send_to_dst(Scheduler *sch, const SchedulerNode dst,
uint8_t *dst_finished, AVPacket *pkt, unsigned flags)
{
int ret;
if (*dst_finished)
return AVERROR_EOF;
if (pkt && dst.type == SCH_NODE_TYPE_MUX &&
(flags & DEMUX_SEND_STREAMCOPY_EOF)) {
av_packet_unref(pkt);
pkt = NULL;
}
if (!pkt)
goto finish;
ret = (dst.type == SCH_NODE_TYPE_MUX) ?
send_to_mux(sch, &sch->mux[dst.idx], dst.idx_stream, pkt) :
tq_send(sch->dec[dst.idx].queue, 0, pkt);
if (ret == AVERROR_EOF)
goto finish;
return ret;
finish:
if (dst.type == SCH_NODE_TYPE_MUX)
send_to_mux(sch, &sch->mux[dst.idx], dst.idx_stream, NULL);
else
tq_send_finish(sch->dec[dst.idx].queue, 0);
*dst_finished = 1;
return AVERROR_EOF;
}
static int demux_send_for_stream(Scheduler *sch, SchDemux *d, SchDemuxStream *ds,
AVPacket *pkt, unsigned flags)
{
unsigned nb_done = 0;
for (unsigned i = 0; i < ds->nb_dst; i++) {
AVPacket *to_send = pkt;
uint8_t *finished = &ds->dst_finished[i];
int ret;
// sending a packet consumes it, so make a temporary reference if needed
if (pkt && i < ds->nb_dst - 1) {
to_send = d->send_pkt;
ret = av_packet_ref(to_send, pkt);
if (ret < 0)
return ret;
}
ret = demux_stream_send_to_dst(sch, ds->dst[i], finished, to_send, flags);
if (to_send)
av_packet_unref(to_send);
if (ret == AVERROR_EOF)
nb_done++;
else if (ret < 0)
return ret;
}
return (nb_done == ds->nb_dst) ? AVERROR_EOF : 0;
}
static int demux_flush(Scheduler *sch, SchDemux *d, AVPacket *pkt)
{
Timestamp max_end_ts = (Timestamp){ .ts = AV_NOPTS_VALUE };
av_assert0(!pkt->buf && !pkt->data && !pkt->side_data_elems);
for (unsigned i = 0; i < d->nb_streams; i++) {
SchDemuxStream *ds = &d->streams[i];
for (unsigned j = 0; j < ds->nb_dst; j++) {
const SchedulerNode *dst = &ds->dst[j];
SchDec *dec;
int ret;
if (ds->dst_finished[j] || dst->type != SCH_NODE_TYPE_DEC)
continue;
dec = &sch->dec[dst->idx];
ret = tq_send(dec->queue, 0, pkt);
if (ret < 0)
return ret;
if (dec->queue_end_ts) {
Timestamp ts;
ret = av_thread_message_queue_recv(dec->queue_end_ts, &ts, 0);
if (ret < 0)
return ret;
if (max_end_ts.ts == AV_NOPTS_VALUE ||
(ts.ts != AV_NOPTS_VALUE &&
av_compare_ts(max_end_ts.ts, max_end_ts.tb, ts.ts, ts.tb) < 0))
max_end_ts = ts;
}
}
}
pkt->pts = max_end_ts.ts;
pkt->time_base = max_end_ts.tb;
return 0;
}
int sch_demux_send(Scheduler *sch, unsigned demux_idx, AVPacket *pkt,
unsigned flags)
{
SchDemux *d;
int terminate;
av_assert0(demux_idx < sch->nb_demux);
d = &sch->demux[demux_idx];
terminate = waiter_wait(sch, &d->waiter);
if (terminate)
return AVERROR_EXIT;
// flush the downstreams after seek
if (pkt->stream_index == -1)
return demux_flush(sch, d, pkt);
av_assert0(pkt->stream_index < d->nb_streams);
return demux_send_for_stream(sch, d, &d->streams[pkt->stream_index], pkt, flags);
}
static int demux_done(Scheduler *sch, unsigned demux_idx)
{
SchDemux *d = &sch->demux[demux_idx];
int ret = 0;
for (unsigned i = 0; i < d->nb_streams; i++) {
int err = demux_send_for_stream(sch, d, &d->streams[i], NULL, 0);
if (err != AVERROR_EOF)
ret = err_merge(ret, err);
}
pthread_mutex_lock(&sch->schedule_lock);
d->task_exited = 1;
schedule_update_locked(sch);
pthread_mutex_unlock(&sch->schedule_lock);
return ret;
}
int sch_mux_receive(Scheduler *sch, unsigned mux_idx, AVPacket *pkt)
{
SchMux *mux;
int ret, stream_idx;
av_assert0(mux_idx < sch->nb_mux);
mux = &sch->mux[mux_idx];
ret = tq_receive(mux->queue, &stream_idx, pkt);
pkt->stream_index = stream_idx;
return ret;
}
void sch_mux_receive_finish(Scheduler *sch, unsigned mux_idx, unsigned stream_idx)
{
SchMux *mux;
av_assert0(mux_idx < sch->nb_mux);
mux = &sch->mux[mux_idx];
av_assert0(stream_idx < mux->nb_streams);
tq_receive_finish(mux->queue, stream_idx);
pthread_mutex_lock(&sch->schedule_lock);
mux->streams[stream_idx].source_finished = 1;
schedule_update_locked(sch);
pthread_mutex_unlock(&sch->schedule_lock);
}
int sch_mux_sub_heartbeat(Scheduler *sch, unsigned mux_idx, unsigned stream_idx,
const AVPacket *pkt)
{
SchMux *mux;
SchMuxStream *ms;
av_assert0(mux_idx < sch->nb_mux);
mux = &sch->mux[mux_idx];
av_assert0(stream_idx < mux->nb_streams);
ms = &mux->streams[stream_idx];
for (unsigned i = 0; i < ms->nb_sub_heartbeat_dst; i++) {
SchDec *dst = &sch->dec[ms->sub_heartbeat_dst[i]];
int ret;
ret = av_packet_copy_props(mux->sub_heartbeat_pkt, pkt);
if (ret < 0)
return ret;
tq_send(dst->queue, 0, mux->sub_heartbeat_pkt);
}
return 0;
}
static int mux_done(Scheduler *sch, unsigned mux_idx)
{
SchMux *mux = &sch->mux[mux_idx];
pthread_mutex_lock(&sch->schedule_lock);
for (unsigned i = 0; i < mux->nb_streams; i++) {
tq_receive_finish(mux->queue, i);
mux->streams[i].source_finished = 1;
}
schedule_update_locked(sch);
pthread_mutex_unlock(&sch->schedule_lock);
pthread_mutex_lock(&sch->mux_done_lock);
av_assert0(sch->nb_mux_done < sch->nb_mux);
sch->nb_mux_done++;
pthread_cond_signal(&sch->mux_done_cond);
pthread_mutex_unlock(&sch->mux_done_lock);
return 0;
}
int sch_dec_receive(Scheduler *sch, unsigned dec_idx, AVPacket *pkt)
{
SchDec *dec;
int ret, dummy;
av_assert0(dec_idx < sch->nb_dec);
dec = &sch->dec[dec_idx];
// the decoder should have given us post-flush end timestamp in pkt
if (dec->expect_end_ts) {
Timestamp ts = (Timestamp){ .ts = pkt->pts, .tb = pkt->time_base };
ret = av_thread_message_queue_send(dec->queue_end_ts, &ts, 0);
if (ret < 0)
return ret;
dec->expect_end_ts = 0;
}
ret = tq_receive(dec->queue, &dummy, pkt);
av_assert0(dummy <= 0);
// got a flush packet, on the next call to this function the decoder
// will give us post-flush end timestamp
if (ret >= 0 && !pkt->data && !pkt->side_data_elems && dec->queue_end_ts)
dec->expect_end_ts = 1;
return ret;
}
static int send_to_filter(Scheduler *sch, SchFilterGraph *fg,
unsigned in_idx, AVFrame *frame)
{
if (frame)
return tq_send(fg->queue, in_idx, frame);
if (!fg->inputs[in_idx].send_finished) {
fg->inputs[in_idx].send_finished = 1;
tq_send_finish(fg->queue, in_idx);
// close the control stream when all actual inputs are done
if (atomic_fetch_add(&fg->nb_inputs_finished_send, 1) == fg->nb_inputs - 1)
tq_send_finish(fg->queue, fg->nb_inputs);
}
return 0;
}
static int dec_send_to_dst(Scheduler *sch, const SchedulerNode dst,
uint8_t *dst_finished, AVFrame *frame)
{
int ret;
if (*dst_finished)
return AVERROR_EOF;
if (!frame)
goto finish;
ret = (dst.type == SCH_NODE_TYPE_FILTER_IN) ?
send_to_filter(sch, &sch->filters[dst.idx], dst.idx_stream, frame) :
send_to_enc(sch, &sch->enc[dst.idx], frame);
if (ret == AVERROR_EOF)
goto finish;
return ret;
finish:
if (dst.type == SCH_NODE_TYPE_FILTER_IN)
send_to_filter(sch, &sch->filters[dst.idx], dst.idx_stream, NULL);
else
send_to_enc(sch, &sch->enc[dst.idx], NULL);
*dst_finished = 1;
return AVERROR_EOF;
}
int sch_dec_send(Scheduler *sch, unsigned dec_idx, AVFrame *frame)
{
SchDec *dec;
int ret = 0;
unsigned nb_done = 0;
av_assert0(dec_idx < sch->nb_dec);
dec = &sch->dec[dec_idx];
for (unsigned i = 0; i < dec->nb_dst; i++) {
uint8_t *finished = &dec->dst_finished[i];
AVFrame *to_send = frame;
// sending a frame consumes it, so make a temporary reference if needed
if (i < dec->nb_dst - 1) {
to_send = dec->send_frame;
// frame may sometimes contain props only,
// e.g. to signal EOF timestamp
ret = frame->buf[0] ? av_frame_ref(to_send, frame) :
av_frame_copy_props(to_send, frame);
if (ret < 0)
return ret;
}
ret = dec_send_to_dst(sch, dec->dst[i], finished, to_send);
if (ret < 0) {
av_frame_unref(to_send);
if (ret == AVERROR_EOF) {
nb_done++;
ret = 0;
continue;
}
return ret;
}
}
return (nb_done == dec->nb_dst) ? AVERROR_EOF : 0;
}
static int dec_done(Scheduler *sch, unsigned dec_idx)
{
SchDec *dec = &sch->dec[dec_idx];
int ret = 0;
tq_receive_finish(dec->queue, 0);
// make sure our source does not get stuck waiting for end timestamps
// that will never arrive
if (dec->queue_end_ts)
av_thread_message_queue_set_err_recv(dec->queue_end_ts, AVERROR_EOF);
for (unsigned i = 0; i < dec->nb_dst; i++) {
int err = dec_send_to_dst(sch, dec->dst[i], &dec->dst_finished[i], NULL);
if (err < 0 && err != AVERROR_EOF)
ret = err_merge(ret, err);
}
return ret;
}
int sch_enc_receive(Scheduler *sch, unsigned enc_idx, AVFrame *frame)
{
SchEnc *enc;
int ret, dummy;
av_assert0(enc_idx < sch->nb_enc);
enc = &sch->enc[enc_idx];
ret = tq_receive(enc->queue, &dummy, frame);
av_assert0(dummy <= 0);
return ret;
}
static int enc_send_to_dst(Scheduler *sch, const SchedulerNode dst,
uint8_t *dst_finished, AVPacket *pkt)
{
int ret;
if (*dst_finished)
return AVERROR_EOF;
if (!pkt)
goto finish;
ret = (dst.type == SCH_NODE_TYPE_MUX) ?
send_to_mux(sch, &sch->mux[dst.idx], dst.idx_stream, pkt) :
tq_send(sch->dec[dst.idx].queue, 0, pkt);
if (ret == AVERROR_EOF)
goto finish;
return ret;
finish:
if (dst.type == SCH_NODE_TYPE_MUX)
send_to_mux(sch, &sch->mux[dst.idx], dst.idx_stream, NULL);
else
tq_send_finish(sch->dec[dst.idx].queue, 0);
*dst_finished = 1;
return AVERROR_EOF;
}
int sch_enc_send(Scheduler *sch, unsigned enc_idx, AVPacket *pkt)
{
SchEnc *enc;
int ret;
av_assert0(enc_idx < sch->nb_enc);
enc = &sch->enc[enc_idx];
for (unsigned i = 0; i < enc->nb_dst; i++) {
uint8_t *finished = &enc->dst_finished[i];
AVPacket *to_send = pkt;
// sending a packet consumes it, so make a temporary reference if needed
if (i < enc->nb_dst - 1) {
to_send = enc->send_pkt;
ret = av_packet_ref(to_send, pkt);
if (ret < 0)
return ret;
}
ret = enc_send_to_dst(sch, enc->dst[i], finished, to_send);
if (ret < 0) {
av_packet_unref(to_send);
if (ret == AVERROR_EOF) {
ret = 0;
continue;
}
return ret;
}
}
return ret;
}
static int enc_done(Scheduler *sch, unsigned enc_idx)
{
SchEnc *enc = &sch->enc[enc_idx];
int ret = 0;
tq_receive_finish(enc->queue, 0);
for (unsigned i = 0; i < enc->nb_dst; i++) {
int err = enc_send_to_dst(sch, enc->dst[i], &enc->dst_finished[i], NULL);
if (err < 0 && err != AVERROR_EOF)
ret = err_merge(ret, err);
}
return ret;
}
int sch_filter_receive(Scheduler *sch, unsigned fg_idx,
unsigned *in_idx, AVFrame *frame)
{
SchFilterGraph *fg;
av_assert0(fg_idx < sch->nb_filters);
fg = &sch->filters[fg_idx];
av_assert0(*in_idx <= fg->nb_inputs);
// update scheduling to account for desired input stream, if it changed
//
// this check needs no locking because only the filtering thread
// updates this value
if (*in_idx != fg->best_input) {
pthread_mutex_lock(&sch->schedule_lock);
fg->best_input = *in_idx;
schedule_update_locked(sch);
pthread_mutex_unlock(&sch->schedule_lock);
}
if (*in_idx == fg->nb_inputs) {
int terminate = waiter_wait(sch, &fg->waiter);
return terminate ? AVERROR_EOF : AVERROR(EAGAIN);
}
while (1) {
int ret, idx;
ret = tq_receive(fg->queue, &idx, frame);
if (idx < 0)
return AVERROR_EOF;
else if (ret >= 0) {
*in_idx = idx;
return 0;
}
// disregard EOFs for specific streams - they should always be
// preceded by an EOF frame
}
}
void sch_filter_receive_finish(Scheduler *sch, unsigned fg_idx, unsigned in_idx)
{
SchFilterGraph *fg;
SchFilterIn *fi;
av_assert0(fg_idx < sch->nb_filters);
fg = &sch->filters[fg_idx];
av_assert0(in_idx < fg->nb_inputs);
fi = &fg->inputs[in_idx];
if (!fi->receive_finished) {
fi->receive_finished = 1;
tq_receive_finish(fg->queue, in_idx);
// close the control stream when all actual inputs are done
if (++fg->nb_inputs_finished_receive == fg->nb_inputs)
tq_receive_finish(fg->queue, fg->nb_inputs);
}
}
int sch_filter_send(Scheduler *sch, unsigned fg_idx, unsigned out_idx, AVFrame *frame)
{
SchFilterGraph *fg;
av_assert0(fg_idx < sch->nb_filters);
fg = &sch->filters[fg_idx];
av_assert0(out_idx < fg->nb_outputs);
return send_to_enc(sch, &sch->enc[fg->outputs[out_idx].dst.idx], frame);
}
static int filter_done(Scheduler *sch, unsigned fg_idx)
{
SchFilterGraph *fg = &sch->filters[fg_idx];
int ret = 0;
for (unsigned i = 0; i <= fg->nb_inputs; i++)
tq_receive_finish(fg->queue, i);
for (unsigned i = 0; i < fg->nb_outputs; i++) {
SchEnc *enc = &sch->enc[fg->outputs[i].dst.idx];
int err = send_to_enc(sch, enc, NULL);
if (err < 0 && err != AVERROR_EOF)
ret = err_merge(ret, err);
}
pthread_mutex_lock(&sch->schedule_lock);
fg->task_exited = 1;
schedule_update_locked(sch);
pthread_mutex_unlock(&sch->schedule_lock);
return ret;
}
int sch_filter_command(Scheduler *sch, unsigned fg_idx, AVFrame *frame)
{
SchFilterGraph *fg;
av_assert0(fg_idx < sch->nb_filters);
fg = &sch->filters[fg_idx];
return send_to_filter(sch, fg, fg->nb_inputs, frame);
}
static void *task_wrapper(void *arg)
{
SchTask *task = arg;
Scheduler *sch = task->parent;
int ret;
int err = 0;
ret = task->func(task->func_arg);
if (ret < 0)
av_log(task->func_arg, AV_LOG_ERROR,
"Task finished with error code: %d (%s)\n", ret, av_err2str(ret));
switch (task->node.type) {
case SCH_NODE_TYPE_DEMUX: err = demux_done (sch, task->node.idx); break;
case SCH_NODE_TYPE_MUX: err = mux_done (sch, task->node.idx); break;
case SCH_NODE_TYPE_DEC: err = dec_done (sch, task->node.idx); break;
case SCH_NODE_TYPE_ENC: err = enc_done (sch, task->node.idx); break;
case SCH_NODE_TYPE_FILTER_IN: err = filter_done(sch, task->node.idx); break;
default: av_assert0(0);
}
ret = err_merge(ret, err);
// EOF is considered normal termination
if (ret == AVERROR_EOF)
ret = 0;
if (ret < 0)
atomic_store(&sch->task_failed, 1);
av_log(task->func_arg, ret < 0 ? AV_LOG_ERROR : AV_LOG_VERBOSE,
"Terminating thread with return code %d (%s)\n", ret,
ret < 0 ? av_err2str(ret) : "success");
return (void*)(intptr_t)ret;
}