mirror of
https://github.com/FFmpeg/FFmpeg.git
synced 2024-12-28 20:53:54 +02:00
5b134a0544
* commit 'eddf95283fbba1b469b76e7518bc3941f671b193': vp9: initialize color space and range properties Merged-by: Michael Niedermayer <michaelni@gmx.at>
4085 lines
160 KiB
C
4085 lines
160 KiB
C
/*
|
|
* VP9 compatible video decoder
|
|
*
|
|
* Copyright (C) 2013 Ronald S. Bultje <rsbultje gmail com>
|
|
* Copyright (C) 2013 Clément Bœsch <u pkh me>
|
|
*
|
|
* This file is part of FFmpeg.
|
|
*
|
|
* FFmpeg is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*
|
|
* FFmpeg is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with FFmpeg; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
|
|
#include "avcodec.h"
|
|
#include "get_bits.h"
|
|
#include "internal.h"
|
|
#include "thread.h"
|
|
#include "videodsp.h"
|
|
#include "vp56.h"
|
|
#include "vp9.h"
|
|
#include "vp9data.h"
|
|
#include "vp9dsp.h"
|
|
#include "libavutil/avassert.h"
|
|
|
|
#define VP9_SYNCCODE 0x498342
|
|
|
|
enum CompPredMode {
|
|
PRED_SINGLEREF,
|
|
PRED_COMPREF,
|
|
PRED_SWITCHABLE,
|
|
};
|
|
|
|
enum BlockLevel {
|
|
BL_64X64,
|
|
BL_32X32,
|
|
BL_16X16,
|
|
BL_8X8,
|
|
};
|
|
|
|
enum BlockSize {
|
|
BS_64x64,
|
|
BS_64x32,
|
|
BS_32x64,
|
|
BS_32x32,
|
|
BS_32x16,
|
|
BS_16x32,
|
|
BS_16x16,
|
|
BS_16x8,
|
|
BS_8x16,
|
|
BS_8x8,
|
|
BS_8x4,
|
|
BS_4x8,
|
|
BS_4x4,
|
|
N_BS_SIZES,
|
|
};
|
|
|
|
struct VP9mvrefPair {
|
|
VP56mv mv[2];
|
|
int8_t ref[2];
|
|
};
|
|
|
|
typedef struct VP9Frame {
|
|
ThreadFrame tf;
|
|
AVBufferRef *extradata;
|
|
uint8_t *segmentation_map;
|
|
struct VP9mvrefPair *mv;
|
|
} VP9Frame;
|
|
|
|
struct VP9Filter {
|
|
uint8_t level[8 * 8];
|
|
uint8_t /* bit=col */ mask[2 /* 0=y, 1=uv */][2 /* 0=col, 1=row */]
|
|
[8 /* rows */][4 /* 0=16, 1=8, 2=4, 3=inner4 */];
|
|
};
|
|
|
|
typedef struct VP9Block {
|
|
uint8_t seg_id, intra, comp, ref[2], mode[4], uvmode, skip;
|
|
enum FilterMode filter;
|
|
VP56mv mv[4 /* b_idx */][2 /* ref */];
|
|
enum BlockSize bs;
|
|
enum TxfmMode tx, uvtx;
|
|
enum BlockLevel bl;
|
|
enum BlockPartition bp;
|
|
} VP9Block;
|
|
|
|
typedef struct VP9Context {
|
|
VP9DSPContext dsp;
|
|
VideoDSPContext vdsp;
|
|
GetBitContext gb;
|
|
VP56RangeCoder c;
|
|
VP56RangeCoder *c_b;
|
|
unsigned c_b_size;
|
|
VP9Block *b_base, *b;
|
|
int pass, uses_2pass, last_uses_2pass;
|
|
int row, row7, col, col7;
|
|
uint8_t *dst[3];
|
|
ptrdiff_t y_stride, uv_stride;
|
|
|
|
// bitstream header
|
|
uint8_t profile;
|
|
uint8_t keyframe, last_keyframe;
|
|
uint8_t invisible;
|
|
uint8_t use_last_frame_mvs;
|
|
uint8_t errorres;
|
|
uint8_t colorspace;
|
|
uint8_t fullrange;
|
|
uint8_t intraonly;
|
|
uint8_t resetctx;
|
|
uint8_t refreshrefmask;
|
|
uint8_t highprecisionmvs;
|
|
enum FilterMode filtermode;
|
|
uint8_t allowcompinter;
|
|
uint8_t fixcompref;
|
|
uint8_t refreshctx;
|
|
uint8_t parallelmode;
|
|
uint8_t framectxid;
|
|
uint8_t refidx[3];
|
|
uint8_t signbias[3];
|
|
uint8_t varcompref[2];
|
|
ThreadFrame refs[8], next_refs[8];
|
|
#define CUR_FRAME 0
|
|
#define LAST_FRAME 1
|
|
VP9Frame frames[2];
|
|
|
|
struct {
|
|
uint8_t level;
|
|
int8_t sharpness;
|
|
uint8_t lim_lut[64];
|
|
uint8_t mblim_lut[64];
|
|
} filter;
|
|
struct {
|
|
uint8_t enabled;
|
|
int8_t mode[2];
|
|
int8_t ref[4];
|
|
} lf_delta;
|
|
uint8_t yac_qi;
|
|
int8_t ydc_qdelta, uvdc_qdelta, uvac_qdelta;
|
|
uint8_t lossless;
|
|
struct {
|
|
uint8_t enabled;
|
|
uint8_t temporal;
|
|
uint8_t absolute_vals;
|
|
uint8_t update_map;
|
|
struct {
|
|
uint8_t q_enabled;
|
|
uint8_t lf_enabled;
|
|
uint8_t ref_enabled;
|
|
uint8_t skip_enabled;
|
|
uint8_t ref_val;
|
|
int16_t q_val;
|
|
int8_t lf_val;
|
|
int16_t qmul[2][2];
|
|
uint8_t lflvl[4][2];
|
|
} feat[8];
|
|
} segmentation;
|
|
struct {
|
|
unsigned log2_tile_cols, log2_tile_rows;
|
|
unsigned tile_cols, tile_rows;
|
|
unsigned tile_row_start, tile_row_end, tile_col_start, tile_col_end;
|
|
} tiling;
|
|
unsigned sb_cols, sb_rows, rows, cols;
|
|
struct {
|
|
prob_context p;
|
|
uint8_t coef[4][2][2][6][6][3];
|
|
} prob_ctx[4];
|
|
struct {
|
|
prob_context p;
|
|
uint8_t coef[4][2][2][6][6][11];
|
|
uint8_t seg[7];
|
|
uint8_t segpred[3];
|
|
} prob;
|
|
struct {
|
|
unsigned y_mode[4][10];
|
|
unsigned uv_mode[10][10];
|
|
unsigned filter[4][3];
|
|
unsigned mv_mode[7][4];
|
|
unsigned intra[4][2];
|
|
unsigned comp[5][2];
|
|
unsigned single_ref[5][2][2];
|
|
unsigned comp_ref[5][2];
|
|
unsigned tx32p[2][4];
|
|
unsigned tx16p[2][3];
|
|
unsigned tx8p[2][2];
|
|
unsigned skip[3][2];
|
|
unsigned mv_joint[4];
|
|
struct {
|
|
unsigned sign[2];
|
|
unsigned classes[11];
|
|
unsigned class0[2];
|
|
unsigned bits[10][2];
|
|
unsigned class0_fp[2][4];
|
|
unsigned fp[4];
|
|
unsigned class0_hp[2];
|
|
unsigned hp[2];
|
|
} mv_comp[2];
|
|
unsigned partition[4][4][4];
|
|
unsigned coef[4][2][2][6][6][3];
|
|
unsigned eob[4][2][2][6][6][2];
|
|
} counts;
|
|
enum TxfmMode txfmmode;
|
|
enum CompPredMode comppredmode;
|
|
|
|
// contextual (left/above) cache
|
|
DECLARE_ALIGNED(16, uint8_t, left_y_nnz_ctx)[16];
|
|
DECLARE_ALIGNED(16, uint8_t, left_mode_ctx)[16];
|
|
DECLARE_ALIGNED(16, VP56mv, left_mv_ctx)[16][2];
|
|
DECLARE_ALIGNED(8, uint8_t, left_uv_nnz_ctx)[2][8];
|
|
DECLARE_ALIGNED(8, uint8_t, left_partition_ctx)[8];
|
|
DECLARE_ALIGNED(8, uint8_t, left_skip_ctx)[8];
|
|
DECLARE_ALIGNED(8, uint8_t, left_txfm_ctx)[8];
|
|
DECLARE_ALIGNED(8, uint8_t, left_segpred_ctx)[8];
|
|
DECLARE_ALIGNED(8, uint8_t, left_intra_ctx)[8];
|
|
DECLARE_ALIGNED(8, uint8_t, left_comp_ctx)[8];
|
|
DECLARE_ALIGNED(8, uint8_t, left_ref_ctx)[8];
|
|
DECLARE_ALIGNED(8, uint8_t, left_filter_ctx)[8];
|
|
uint8_t *above_partition_ctx;
|
|
uint8_t *above_mode_ctx;
|
|
// FIXME maybe merge some of the below in a flags field?
|
|
uint8_t *above_y_nnz_ctx;
|
|
uint8_t *above_uv_nnz_ctx[2];
|
|
uint8_t *above_skip_ctx; // 1bit
|
|
uint8_t *above_txfm_ctx; // 2bit
|
|
uint8_t *above_segpred_ctx; // 1bit
|
|
uint8_t *above_intra_ctx; // 1bit
|
|
uint8_t *above_comp_ctx; // 1bit
|
|
uint8_t *above_ref_ctx; // 2bit
|
|
uint8_t *above_filter_ctx;
|
|
VP56mv (*above_mv_ctx)[2];
|
|
|
|
// whole-frame cache
|
|
uint8_t *intra_pred_data[3];
|
|
struct VP9Filter *lflvl;
|
|
DECLARE_ALIGNED(32, uint8_t, edge_emu_buffer)[71*80];
|
|
|
|
// block reconstruction intermediates
|
|
int block_alloc_using_2pass;
|
|
int16_t *block_base, *block, *uvblock_base[2], *uvblock[2];
|
|
uint8_t *eob_base, *uveob_base[2], *eob, *uveob[2];
|
|
struct { int x, y; } min_mv, max_mv;
|
|
DECLARE_ALIGNED(32, uint8_t, tmp_y)[64*64];
|
|
DECLARE_ALIGNED(32, uint8_t, tmp_uv)[2][32*32];
|
|
} VP9Context;
|
|
|
|
static const uint8_t bwh_tab[2][N_BS_SIZES][2] = {
|
|
{
|
|
{ 16, 16 }, { 16, 8 }, { 8, 16 }, { 8, 8 }, { 8, 4 }, { 4, 8 },
|
|
{ 4, 4 }, { 4, 2 }, { 2, 4 }, { 2, 2 }, { 2, 1 }, { 1, 2 }, { 1, 1 },
|
|
}, {
|
|
{ 8, 8 }, { 8, 4 }, { 4, 8 }, { 4, 4 }, { 4, 2 }, { 2, 4 },
|
|
{ 2, 2 }, { 2, 1 }, { 1, 2 }, { 1, 1 }, { 1, 1 }, { 1, 1 }, { 1, 1 },
|
|
}
|
|
};
|
|
|
|
static int vp9_alloc_frame(AVCodecContext *ctx, VP9Frame *f)
|
|
{
|
|
VP9Context *s = ctx->priv_data;
|
|
int ret, sz;
|
|
|
|
if ((ret = ff_thread_get_buffer(ctx, &f->tf, AV_GET_BUFFER_FLAG_REF)) < 0)
|
|
return ret;
|
|
sz = 64 * s->sb_cols * s->sb_rows;
|
|
if (!(f->extradata = av_buffer_allocz(sz * (1 + sizeof(struct VP9mvrefPair))))) {
|
|
ff_thread_release_buffer(ctx, &f->tf);
|
|
return AVERROR(ENOMEM);
|
|
}
|
|
|
|
f->segmentation_map = f->extradata->data;
|
|
f->mv = (struct VP9mvrefPair *) (f->extradata->data + sz);
|
|
|
|
// retain segmentation map if it doesn't update
|
|
if (s->segmentation.enabled && !s->segmentation.update_map &&
|
|
!s->intraonly && !s->keyframe && !s->errorres) {
|
|
memcpy(f->segmentation_map, s->frames[LAST_FRAME].segmentation_map, sz);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void vp9_unref_frame(AVCodecContext *ctx, VP9Frame *f)
|
|
{
|
|
ff_thread_release_buffer(ctx, &f->tf);
|
|
av_buffer_unref(&f->extradata);
|
|
}
|
|
|
|
static int vp9_ref_frame(AVCodecContext *ctx, VP9Frame *dst, VP9Frame *src)
|
|
{
|
|
int res;
|
|
|
|
if ((res = ff_thread_ref_frame(&dst->tf, &src->tf)) < 0) {
|
|
return res;
|
|
} else if (!(dst->extradata = av_buffer_ref(src->extradata))) {
|
|
vp9_unref_frame(ctx, dst);
|
|
return AVERROR(ENOMEM);
|
|
}
|
|
|
|
dst->segmentation_map = src->segmentation_map;
|
|
dst->mv = src->mv;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int update_size(AVCodecContext *ctx, int w, int h)
|
|
{
|
|
VP9Context *s = ctx->priv_data;
|
|
uint8_t *p;
|
|
|
|
av_assert0(w > 0 && h > 0);
|
|
|
|
if (s->intra_pred_data[0] && w == ctx->width && h == ctx->height)
|
|
return 0;
|
|
|
|
ctx->width = w;
|
|
ctx->height = h;
|
|
s->sb_cols = (w + 63) >> 6;
|
|
s->sb_rows = (h + 63) >> 6;
|
|
s->cols = (w + 7) >> 3;
|
|
s->rows = (h + 7) >> 3;
|
|
|
|
#define assign(var, type, n) var = (type) p; p += s->sb_cols * (n) * sizeof(*var)
|
|
av_freep(&s->intra_pred_data[0]);
|
|
p = av_malloc(s->sb_cols * (240 + sizeof(*s->lflvl) + 16 * sizeof(*s->above_mv_ctx)));
|
|
if (!p)
|
|
return AVERROR(ENOMEM);
|
|
assign(s->intra_pred_data[0], uint8_t *, 64);
|
|
assign(s->intra_pred_data[1], uint8_t *, 32);
|
|
assign(s->intra_pred_data[2], uint8_t *, 32);
|
|
assign(s->above_y_nnz_ctx, uint8_t *, 16);
|
|
assign(s->above_mode_ctx, uint8_t *, 16);
|
|
assign(s->above_mv_ctx, VP56mv(*)[2], 16);
|
|
assign(s->above_partition_ctx, uint8_t *, 8);
|
|
assign(s->above_skip_ctx, uint8_t *, 8);
|
|
assign(s->above_txfm_ctx, uint8_t *, 8);
|
|
assign(s->above_uv_nnz_ctx[0], uint8_t *, 8);
|
|
assign(s->above_uv_nnz_ctx[1], uint8_t *, 8);
|
|
assign(s->above_segpred_ctx, uint8_t *, 8);
|
|
assign(s->above_intra_ctx, uint8_t *, 8);
|
|
assign(s->above_comp_ctx, uint8_t *, 8);
|
|
assign(s->above_ref_ctx, uint8_t *, 8);
|
|
assign(s->above_filter_ctx, uint8_t *, 8);
|
|
assign(s->lflvl, struct VP9Filter *, 1);
|
|
#undef assign
|
|
|
|
// these will be re-allocated a little later
|
|
av_freep(&s->b_base);
|
|
av_freep(&s->block_base);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int update_block_buffers(AVCodecContext *ctx)
|
|
{
|
|
VP9Context *s = ctx->priv_data;
|
|
|
|
if (s->b_base && s->block_base && s->block_alloc_using_2pass == s->uses_2pass)
|
|
return 0;
|
|
|
|
av_free(s->b_base);
|
|
av_free(s->block_base);
|
|
if (s->uses_2pass) {
|
|
int sbs = s->sb_cols * s->sb_rows;
|
|
|
|
s->b_base = av_malloc_array(s->cols * s->rows, sizeof(VP9Block));
|
|
s->block_base = av_mallocz((64 * 64 + 128) * sbs * 3);
|
|
if (!s->b_base || !s->block_base)
|
|
return AVERROR(ENOMEM);
|
|
s->uvblock_base[0] = s->block_base + sbs * 64 * 64;
|
|
s->uvblock_base[1] = s->uvblock_base[0] + sbs * 32 * 32;
|
|
s->eob_base = (uint8_t *) (s->uvblock_base[1] + sbs * 32 * 32);
|
|
s->uveob_base[0] = s->eob_base + 256 * sbs;
|
|
s->uveob_base[1] = s->uveob_base[0] + 64 * sbs;
|
|
} else {
|
|
s->b_base = av_malloc(sizeof(VP9Block));
|
|
s->block_base = av_mallocz((64 * 64 + 128) * 3);
|
|
if (!s->b_base || !s->block_base)
|
|
return AVERROR(ENOMEM);
|
|
s->uvblock_base[0] = s->block_base + 64 * 64;
|
|
s->uvblock_base[1] = s->uvblock_base[0] + 32 * 32;
|
|
s->eob_base = (uint8_t *) (s->uvblock_base[1] + 32 * 32);
|
|
s->uveob_base[0] = s->eob_base + 256;
|
|
s->uveob_base[1] = s->uveob_base[0] + 64;
|
|
}
|
|
s->block_alloc_using_2pass = s->uses_2pass;
|
|
|
|
return 0;
|
|
}
|
|
|
|
// for some reason the sign bit is at the end, not the start, of a bit sequence
|
|
static av_always_inline int get_sbits_inv(GetBitContext *gb, int n)
|
|
{
|
|
int v = get_bits(gb, n);
|
|
return get_bits1(gb) ? -v : v;
|
|
}
|
|
|
|
static av_always_inline int inv_recenter_nonneg(int v, int m)
|
|
{
|
|
return v > 2 * m ? v : v & 1 ? m - ((v + 1) >> 1) : m + (v >> 1);
|
|
}
|
|
|
|
// differential forward probability updates
|
|
static int update_prob(VP56RangeCoder *c, int p)
|
|
{
|
|
static const int inv_map_table[254] = {
|
|
7, 20, 33, 46, 59, 72, 85, 98, 111, 124, 137, 150, 163, 176,
|
|
189, 202, 215, 228, 241, 254, 1, 2, 3, 4, 5, 6, 8, 9,
|
|
10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 24,
|
|
25, 26, 27, 28, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39,
|
|
40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 51, 52, 53, 54,
|
|
55, 56, 57, 58, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69,
|
|
70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84,
|
|
86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99, 100,
|
|
101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 112, 113, 114, 115,
|
|
116, 117, 118, 119, 120, 121, 122, 123, 125, 126, 127, 128, 129, 130,
|
|
131, 132, 133, 134, 135, 136, 138, 139, 140, 141, 142, 143, 144, 145,
|
|
146, 147, 148, 149, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160,
|
|
161, 162, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175,
|
|
177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 190, 191,
|
|
192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 203, 204, 205, 206,
|
|
207, 208, 209, 210, 211, 212, 213, 214, 216, 217, 218, 219, 220, 221,
|
|
222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 234, 235, 236,
|
|
237, 238, 239, 240, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251,
|
|
252, 253,
|
|
};
|
|
int d;
|
|
|
|
/* This code is trying to do a differential probability update. For a
|
|
* current probability A in the range [1, 255], the difference to a new
|
|
* probability of any value can be expressed differentially as 1-A,255-A
|
|
* where some part of this (absolute range) exists both in positive as
|
|
* well as the negative part, whereas another part only exists in one
|
|
* half. We're trying to code this shared part differentially, i.e.
|
|
* times two where the value of the lowest bit specifies the sign, and
|
|
* the single part is then coded on top of this. This absolute difference
|
|
* then again has a value of [0,254], but a bigger value in this range
|
|
* indicates that we're further away from the original value A, so we
|
|
* can code this as a VLC code, since higher values are increasingly
|
|
* unlikely. The first 20 values in inv_map_table[] allow 'cheap, rough'
|
|
* updates vs. the 'fine, exact' updates further down the range, which
|
|
* adds one extra dimension to this differential update model. */
|
|
|
|
if (!vp8_rac_get(c)) {
|
|
d = vp8_rac_get_uint(c, 4) + 0;
|
|
} else if (!vp8_rac_get(c)) {
|
|
d = vp8_rac_get_uint(c, 4) + 16;
|
|
} else if (!vp8_rac_get(c)) {
|
|
d = vp8_rac_get_uint(c, 5) + 32;
|
|
} else {
|
|
d = vp8_rac_get_uint(c, 7);
|
|
if (d >= 65)
|
|
d = (d << 1) - 65 + vp8_rac_get(c);
|
|
d += 64;
|
|
}
|
|
|
|
return p <= 128 ? 1 + inv_recenter_nonneg(inv_map_table[d], p - 1) :
|
|
255 - inv_recenter_nonneg(inv_map_table[d], 255 - p);
|
|
}
|
|
|
|
static int decode_frame_header(AVCodecContext *ctx,
|
|
const uint8_t *data, int size, int *ref)
|
|
{
|
|
VP9Context *s = ctx->priv_data;
|
|
int c, i, j, k, l, m, n, w, h, max, size2, res, sharp;
|
|
int last_invisible;
|
|
const uint8_t *data2;
|
|
|
|
/* general header */
|
|
if ((res = init_get_bits8(&s->gb, data, size)) < 0) {
|
|
av_log(ctx, AV_LOG_ERROR, "Failed to initialize bitstream reader\n");
|
|
return res;
|
|
}
|
|
if (get_bits(&s->gb, 2) != 0x2) { // frame marker
|
|
av_log(ctx, AV_LOG_ERROR, "Invalid frame marker\n");
|
|
return AVERROR_INVALIDDATA;
|
|
}
|
|
s->profile = get_bits1(&s->gb);
|
|
if (get_bits1(&s->gb)) { // reserved bit
|
|
av_log(ctx, AV_LOG_ERROR, "Reserved bit should be zero\n");
|
|
return AVERROR_INVALIDDATA;
|
|
}
|
|
if (get_bits1(&s->gb)) {
|
|
*ref = get_bits(&s->gb, 3);
|
|
return 0;
|
|
}
|
|
s->last_uses_2pass = s->uses_2pass;
|
|
s->last_keyframe = s->keyframe;
|
|
s->keyframe = !get_bits1(&s->gb);
|
|
last_invisible = s->invisible;
|
|
s->invisible = !get_bits1(&s->gb);
|
|
s->errorres = get_bits1(&s->gb);
|
|
s->use_last_frame_mvs = !s->errorres && !last_invisible;
|
|
if (s->keyframe) {
|
|
if (get_bits_long(&s->gb, 24) != VP9_SYNCCODE) { // synccode
|
|
av_log(ctx, AV_LOG_ERROR, "Invalid sync code\n");
|
|
return AVERROR_INVALIDDATA;
|
|
}
|
|
s->colorspace = get_bits(&s->gb, 3);
|
|
if (s->colorspace == 7) { // RGB = profile 1
|
|
av_log(ctx, AV_LOG_ERROR, "RGB not supported in profile 0\n");
|
|
return AVERROR_INVALIDDATA;
|
|
}
|
|
s->fullrange = get_bits1(&s->gb);
|
|
// for profile 1, here follows the subsampling bits
|
|
s->refreshrefmask = 0xff;
|
|
w = get_bits(&s->gb, 16) + 1;
|
|
h = get_bits(&s->gb, 16) + 1;
|
|
if (get_bits1(&s->gb)) // display size
|
|
skip_bits(&s->gb, 32);
|
|
} else {
|
|
s->intraonly = s->invisible ? get_bits1(&s->gb) : 0;
|
|
s->resetctx = s->errorres ? 0 : get_bits(&s->gb, 2);
|
|
if (s->intraonly) {
|
|
if (get_bits_long(&s->gb, 24) != VP9_SYNCCODE) { // synccode
|
|
av_log(ctx, AV_LOG_ERROR, "Invalid sync code\n");
|
|
return AVERROR_INVALIDDATA;
|
|
}
|
|
s->refreshrefmask = get_bits(&s->gb, 8);
|
|
w = get_bits(&s->gb, 16) + 1;
|
|
h = get_bits(&s->gb, 16) + 1;
|
|
if (get_bits1(&s->gb)) // display size
|
|
skip_bits(&s->gb, 32);
|
|
} else {
|
|
s->refreshrefmask = get_bits(&s->gb, 8);
|
|
s->refidx[0] = get_bits(&s->gb, 3);
|
|
s->signbias[0] = get_bits1(&s->gb);
|
|
s->refidx[1] = get_bits(&s->gb, 3);
|
|
s->signbias[1] = get_bits1(&s->gb);
|
|
s->refidx[2] = get_bits(&s->gb, 3);
|
|
s->signbias[2] = get_bits1(&s->gb);
|
|
if (!s->refs[s->refidx[0]].f->data[0] ||
|
|
!s->refs[s->refidx[1]].f->data[0] ||
|
|
!s->refs[s->refidx[2]].f->data[0]) {
|
|
av_log(ctx, AV_LOG_ERROR, "Not all references are available\n");
|
|
return AVERROR_INVALIDDATA;
|
|
}
|
|
if (get_bits1(&s->gb)) {
|
|
w = s->refs[s->refidx[0]].f->width;
|
|
h = s->refs[s->refidx[0]].f->height;
|
|
} else if (get_bits1(&s->gb)) {
|
|
w = s->refs[s->refidx[1]].f->width;
|
|
h = s->refs[s->refidx[1]].f->height;
|
|
} else if (get_bits1(&s->gb)) {
|
|
w = s->refs[s->refidx[2]].f->width;
|
|
h = s->refs[s->refidx[2]].f->height;
|
|
} else {
|
|
w = get_bits(&s->gb, 16) + 1;
|
|
h = get_bits(&s->gb, 16) + 1;
|
|
}
|
|
// Note that in this code, "CUR_FRAME" is actually before we
|
|
// have formally allocated a frame, and thus actually represents
|
|
// the _last_ frame
|
|
s->use_last_frame_mvs &= s->frames[CUR_FRAME].tf.f->width == w &&
|
|
s->frames[CUR_FRAME].tf.f->height == h;
|
|
if (get_bits1(&s->gb)) // display size
|
|
skip_bits(&s->gb, 32);
|
|
s->highprecisionmvs = get_bits1(&s->gb);
|
|
s->filtermode = get_bits1(&s->gb) ? FILTER_SWITCHABLE :
|
|
get_bits(&s->gb, 2);
|
|
s->allowcompinter = s->signbias[0] != s->signbias[1] ||
|
|
s->signbias[0] != s->signbias[2];
|
|
if (s->allowcompinter) {
|
|
if (s->signbias[0] == s->signbias[1]) {
|
|
s->fixcompref = 2;
|
|
s->varcompref[0] = 0;
|
|
s->varcompref[1] = 1;
|
|
} else if (s->signbias[0] == s->signbias[2]) {
|
|
s->fixcompref = 1;
|
|
s->varcompref[0] = 0;
|
|
s->varcompref[1] = 2;
|
|
} else {
|
|
s->fixcompref = 0;
|
|
s->varcompref[0] = 1;
|
|
s->varcompref[1] = 2;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
s->refreshctx = s->errorres ? 0 : get_bits1(&s->gb);
|
|
s->parallelmode = s->errorres ? 1 : get_bits1(&s->gb);
|
|
s->framectxid = c = get_bits(&s->gb, 2);
|
|
|
|
/* loopfilter header data */
|
|
s->filter.level = get_bits(&s->gb, 6);
|
|
sharp = get_bits(&s->gb, 3);
|
|
// if sharpness changed, reinit lim/mblim LUTs. if it didn't change, keep
|
|
// the old cache values since they are still valid
|
|
if (s->filter.sharpness != sharp)
|
|
memset(s->filter.lim_lut, 0, sizeof(s->filter.lim_lut));
|
|
s->filter.sharpness = sharp;
|
|
if ((s->lf_delta.enabled = get_bits1(&s->gb))) {
|
|
if (get_bits1(&s->gb)) {
|
|
for (i = 0; i < 4; i++)
|
|
if (get_bits1(&s->gb))
|
|
s->lf_delta.ref[i] = get_sbits_inv(&s->gb, 6);
|
|
for (i = 0; i < 2; i++)
|
|
if (get_bits1(&s->gb))
|
|
s->lf_delta.mode[i] = get_sbits_inv(&s->gb, 6);
|
|
}
|
|
} else {
|
|
memset(&s->lf_delta, 0, sizeof(s->lf_delta));
|
|
}
|
|
|
|
/* quantization header data */
|
|
s->yac_qi = get_bits(&s->gb, 8);
|
|
s->ydc_qdelta = get_bits1(&s->gb) ? get_sbits_inv(&s->gb, 4) : 0;
|
|
s->uvdc_qdelta = get_bits1(&s->gb) ? get_sbits_inv(&s->gb, 4) : 0;
|
|
s->uvac_qdelta = get_bits1(&s->gb) ? get_sbits_inv(&s->gb, 4) : 0;
|
|
s->lossless = s->yac_qi == 0 && s->ydc_qdelta == 0 &&
|
|
s->uvdc_qdelta == 0 && s->uvac_qdelta == 0;
|
|
|
|
/* segmentation header info */
|
|
if ((s->segmentation.enabled = get_bits1(&s->gb))) {
|
|
if ((s->segmentation.update_map = get_bits1(&s->gb))) {
|
|
for (i = 0; i < 7; i++)
|
|
s->prob.seg[i] = get_bits1(&s->gb) ?
|
|
get_bits(&s->gb, 8) : 255;
|
|
if ((s->segmentation.temporal = get_bits1(&s->gb))) {
|
|
for (i = 0; i < 3; i++)
|
|
s->prob.segpred[i] = get_bits1(&s->gb) ?
|
|
get_bits(&s->gb, 8) : 255;
|
|
}
|
|
}
|
|
if ((!s->segmentation.update_map || s->segmentation.temporal) &&
|
|
(w != s->frames[CUR_FRAME].tf.f->width ||
|
|
h != s->frames[CUR_FRAME].tf.f->height)) {
|
|
av_log(ctx, AV_LOG_ERROR,
|
|
"Reference segmap (temp=%d,update=%d) enabled on size-change!\n",
|
|
s->segmentation.temporal, s->segmentation.update_map);
|
|
return AVERROR_INVALIDDATA;
|
|
}
|
|
|
|
if (get_bits1(&s->gb)) {
|
|
s->segmentation.absolute_vals = get_bits1(&s->gb);
|
|
for (i = 0; i < 8; i++) {
|
|
if ((s->segmentation.feat[i].q_enabled = get_bits1(&s->gb)))
|
|
s->segmentation.feat[i].q_val = get_sbits_inv(&s->gb, 8);
|
|
if ((s->segmentation.feat[i].lf_enabled = get_bits1(&s->gb)))
|
|
s->segmentation.feat[i].lf_val = get_sbits_inv(&s->gb, 6);
|
|
if ((s->segmentation.feat[i].ref_enabled = get_bits1(&s->gb)))
|
|
s->segmentation.feat[i].ref_val = get_bits(&s->gb, 2);
|
|
s->segmentation.feat[i].skip_enabled = get_bits1(&s->gb);
|
|
}
|
|
}
|
|
} else {
|
|
s->segmentation.feat[0].q_enabled = 0;
|
|
s->segmentation.feat[0].lf_enabled = 0;
|
|
s->segmentation.feat[0].skip_enabled = 0;
|
|
s->segmentation.feat[0].ref_enabled = 0;
|
|
}
|
|
|
|
// set qmul[] based on Y/UV, AC/DC and segmentation Q idx deltas
|
|
for (i = 0; i < (s->segmentation.enabled ? 8 : 1); i++) {
|
|
int qyac, qydc, quvac, quvdc, lflvl, sh;
|
|
|
|
if (s->segmentation.feat[i].q_enabled) {
|
|
if (s->segmentation.absolute_vals)
|
|
qyac = s->segmentation.feat[i].q_val;
|
|
else
|
|
qyac = s->yac_qi + s->segmentation.feat[i].q_val;
|
|
} else {
|
|
qyac = s->yac_qi;
|
|
}
|
|
qydc = av_clip_uintp2(qyac + s->ydc_qdelta, 8);
|
|
quvdc = av_clip_uintp2(qyac + s->uvdc_qdelta, 8);
|
|
quvac = av_clip_uintp2(qyac + s->uvac_qdelta, 8);
|
|
qyac = av_clip_uintp2(qyac, 8);
|
|
|
|
s->segmentation.feat[i].qmul[0][0] = vp9_dc_qlookup[qydc];
|
|
s->segmentation.feat[i].qmul[0][1] = vp9_ac_qlookup[qyac];
|
|
s->segmentation.feat[i].qmul[1][0] = vp9_dc_qlookup[quvdc];
|
|
s->segmentation.feat[i].qmul[1][1] = vp9_ac_qlookup[quvac];
|
|
|
|
sh = s->filter.level >= 32;
|
|
if (s->segmentation.feat[i].lf_enabled) {
|
|
if (s->segmentation.absolute_vals)
|
|
lflvl = s->segmentation.feat[i].lf_val;
|
|
else
|
|
lflvl = s->filter.level + s->segmentation.feat[i].lf_val;
|
|
} else {
|
|
lflvl = s->filter.level;
|
|
}
|
|
s->segmentation.feat[i].lflvl[0][0] =
|
|
s->segmentation.feat[i].lflvl[0][1] =
|
|
av_clip_uintp2(lflvl + (s->lf_delta.ref[0] << sh), 6);
|
|
for (j = 1; j < 4; j++) {
|
|
s->segmentation.feat[i].lflvl[j][0] =
|
|
av_clip_uintp2(lflvl + ((s->lf_delta.ref[j] +
|
|
s->lf_delta.mode[0]) << sh), 6);
|
|
s->segmentation.feat[i].lflvl[j][1] =
|
|
av_clip_uintp2(lflvl + ((s->lf_delta.ref[j] +
|
|
s->lf_delta.mode[1]) << sh), 6);
|
|
}
|
|
}
|
|
|
|
/* tiling info */
|
|
if ((res = update_size(ctx, w, h)) < 0) {
|
|
av_log(ctx, AV_LOG_ERROR, "Failed to initialize decoder for %dx%d\n", w, h);
|
|
return res;
|
|
}
|
|
for (s->tiling.log2_tile_cols = 0;
|
|
(s->sb_cols >> s->tiling.log2_tile_cols) > 64;
|
|
s->tiling.log2_tile_cols++) ;
|
|
for (max = 0; (s->sb_cols >> max) >= 4; max++) ;
|
|
max = FFMAX(0, max - 1);
|
|
while (max > s->tiling.log2_tile_cols) {
|
|
if (get_bits1(&s->gb))
|
|
s->tiling.log2_tile_cols++;
|
|
else
|
|
break;
|
|
}
|
|
s->tiling.log2_tile_rows = decode012(&s->gb);
|
|
s->tiling.tile_rows = 1 << s->tiling.log2_tile_rows;
|
|
if (s->tiling.tile_cols != (1 << s->tiling.log2_tile_cols)) {
|
|
s->tiling.tile_cols = 1 << s->tiling.log2_tile_cols;
|
|
s->c_b = av_fast_realloc(s->c_b, &s->c_b_size,
|
|
sizeof(VP56RangeCoder) * s->tiling.tile_cols);
|
|
if (!s->c_b) {
|
|
av_log(ctx, AV_LOG_ERROR, "Ran out of memory during range coder init\n");
|
|
return AVERROR(ENOMEM);
|
|
}
|
|
}
|
|
|
|
if (s->keyframe || s->errorres || s->intraonly) {
|
|
s->prob_ctx[0].p = s->prob_ctx[1].p = s->prob_ctx[2].p =
|
|
s->prob_ctx[3].p = vp9_default_probs;
|
|
memcpy(s->prob_ctx[0].coef, vp9_default_coef_probs,
|
|
sizeof(vp9_default_coef_probs));
|
|
memcpy(s->prob_ctx[1].coef, vp9_default_coef_probs,
|
|
sizeof(vp9_default_coef_probs));
|
|
memcpy(s->prob_ctx[2].coef, vp9_default_coef_probs,
|
|
sizeof(vp9_default_coef_probs));
|
|
memcpy(s->prob_ctx[3].coef, vp9_default_coef_probs,
|
|
sizeof(vp9_default_coef_probs));
|
|
}
|
|
|
|
// next 16 bits is size of the rest of the header (arith-coded)
|
|
size2 = get_bits(&s->gb, 16);
|
|
data2 = align_get_bits(&s->gb);
|
|
if (size2 > size - (data2 - data)) {
|
|
av_log(ctx, AV_LOG_ERROR, "Invalid compressed header size\n");
|
|
return AVERROR_INVALIDDATA;
|
|
}
|
|
ff_vp56_init_range_decoder(&s->c, data2, size2);
|
|
if (vp56_rac_get_prob_branchy(&s->c, 128)) { // marker bit
|
|
av_log(ctx, AV_LOG_ERROR, "Marker bit was set\n");
|
|
return AVERROR_INVALIDDATA;
|
|
}
|
|
|
|
if (s->keyframe || s->intraonly) {
|
|
memset(s->counts.coef, 0, sizeof(s->counts.coef) + sizeof(s->counts.eob));
|
|
} else {
|
|
memset(&s->counts, 0, sizeof(s->counts));
|
|
}
|
|
// FIXME is it faster to not copy here, but do it down in the fw updates
|
|
// as explicit copies if the fw update is missing (and skip the copy upon
|
|
// fw update)?
|
|
s->prob.p = s->prob_ctx[c].p;
|
|
|
|
// txfm updates
|
|
if (s->lossless) {
|
|
s->txfmmode = TX_4X4;
|
|
} else {
|
|
s->txfmmode = vp8_rac_get_uint(&s->c, 2);
|
|
if (s->txfmmode == 3)
|
|
s->txfmmode += vp8_rac_get(&s->c);
|
|
|
|
if (s->txfmmode == TX_SWITCHABLE) {
|
|
for (i = 0; i < 2; i++)
|
|
if (vp56_rac_get_prob_branchy(&s->c, 252))
|
|
s->prob.p.tx8p[i] = update_prob(&s->c, s->prob.p.tx8p[i]);
|
|
for (i = 0; i < 2; i++)
|
|
for (j = 0; j < 2; j++)
|
|
if (vp56_rac_get_prob_branchy(&s->c, 252))
|
|
s->prob.p.tx16p[i][j] =
|
|
update_prob(&s->c, s->prob.p.tx16p[i][j]);
|
|
for (i = 0; i < 2; i++)
|
|
for (j = 0; j < 3; j++)
|
|
if (vp56_rac_get_prob_branchy(&s->c, 252))
|
|
s->prob.p.tx32p[i][j] =
|
|
update_prob(&s->c, s->prob.p.tx32p[i][j]);
|
|
}
|
|
}
|
|
|
|
// coef updates
|
|
for (i = 0; i < 4; i++) {
|
|
uint8_t (*ref)[2][6][6][3] = s->prob_ctx[c].coef[i];
|
|
if (vp8_rac_get(&s->c)) {
|
|
for (j = 0; j < 2; j++)
|
|
for (k = 0; k < 2; k++)
|
|
for (l = 0; l < 6; l++)
|
|
for (m = 0; m < 6; m++) {
|
|
uint8_t *p = s->prob.coef[i][j][k][l][m];
|
|
uint8_t *r = ref[j][k][l][m];
|
|
if (m >= 3 && l == 0) // dc only has 3 pt
|
|
break;
|
|
for (n = 0; n < 3; n++) {
|
|
if (vp56_rac_get_prob_branchy(&s->c, 252)) {
|
|
p[n] = update_prob(&s->c, r[n]);
|
|
} else {
|
|
p[n] = r[n];
|
|
}
|
|
}
|
|
p[3] = 0;
|
|
}
|
|
} else {
|
|
for (j = 0; j < 2; j++)
|
|
for (k = 0; k < 2; k++)
|
|
for (l = 0; l < 6; l++)
|
|
for (m = 0; m < 6; m++) {
|
|
uint8_t *p = s->prob.coef[i][j][k][l][m];
|
|
uint8_t *r = ref[j][k][l][m];
|
|
if (m > 3 && l == 0) // dc only has 3 pt
|
|
break;
|
|
memcpy(p, r, 3);
|
|
p[3] = 0;
|
|
}
|
|
}
|
|
if (s->txfmmode == i)
|
|
break;
|
|
}
|
|
|
|
// mode updates
|
|
for (i = 0; i < 3; i++)
|
|
if (vp56_rac_get_prob_branchy(&s->c, 252))
|
|
s->prob.p.skip[i] = update_prob(&s->c, s->prob.p.skip[i]);
|
|
if (!s->keyframe && !s->intraonly) {
|
|
for (i = 0; i < 7; i++)
|
|
for (j = 0; j < 3; j++)
|
|
if (vp56_rac_get_prob_branchy(&s->c, 252))
|
|
s->prob.p.mv_mode[i][j] =
|
|
update_prob(&s->c, s->prob.p.mv_mode[i][j]);
|
|
|
|
if (s->filtermode == FILTER_SWITCHABLE)
|
|
for (i = 0; i < 4; i++)
|
|
for (j = 0; j < 2; j++)
|
|
if (vp56_rac_get_prob_branchy(&s->c, 252))
|
|
s->prob.p.filter[i][j] =
|
|
update_prob(&s->c, s->prob.p.filter[i][j]);
|
|
|
|
for (i = 0; i < 4; i++)
|
|
if (vp56_rac_get_prob_branchy(&s->c, 252))
|
|
s->prob.p.intra[i] = update_prob(&s->c, s->prob.p.intra[i]);
|
|
|
|
if (s->allowcompinter) {
|
|
s->comppredmode = vp8_rac_get(&s->c);
|
|
if (s->comppredmode)
|
|
s->comppredmode += vp8_rac_get(&s->c);
|
|
if (s->comppredmode == PRED_SWITCHABLE)
|
|
for (i = 0; i < 5; i++)
|
|
if (vp56_rac_get_prob_branchy(&s->c, 252))
|
|
s->prob.p.comp[i] =
|
|
update_prob(&s->c, s->prob.p.comp[i]);
|
|
} else {
|
|
s->comppredmode = PRED_SINGLEREF;
|
|
}
|
|
|
|
if (s->comppredmode != PRED_COMPREF) {
|
|
for (i = 0; i < 5; i++) {
|
|
if (vp56_rac_get_prob_branchy(&s->c, 252))
|
|
s->prob.p.single_ref[i][0] =
|
|
update_prob(&s->c, s->prob.p.single_ref[i][0]);
|
|
if (vp56_rac_get_prob_branchy(&s->c, 252))
|
|
s->prob.p.single_ref[i][1] =
|
|
update_prob(&s->c, s->prob.p.single_ref[i][1]);
|
|
}
|
|
}
|
|
|
|
if (s->comppredmode != PRED_SINGLEREF) {
|
|
for (i = 0; i < 5; i++)
|
|
if (vp56_rac_get_prob_branchy(&s->c, 252))
|
|
s->prob.p.comp_ref[i] =
|
|
update_prob(&s->c, s->prob.p.comp_ref[i]);
|
|
}
|
|
|
|
for (i = 0; i < 4; i++)
|
|
for (j = 0; j < 9; j++)
|
|
if (vp56_rac_get_prob_branchy(&s->c, 252))
|
|
s->prob.p.y_mode[i][j] =
|
|
update_prob(&s->c, s->prob.p.y_mode[i][j]);
|
|
|
|
for (i = 0; i < 4; i++)
|
|
for (j = 0; j < 4; j++)
|
|
for (k = 0; k < 3; k++)
|
|
if (vp56_rac_get_prob_branchy(&s->c, 252))
|
|
s->prob.p.partition[3 - i][j][k] =
|
|
update_prob(&s->c, s->prob.p.partition[3 - i][j][k]);
|
|
|
|
// mv fields don't use the update_prob subexp model for some reason
|
|
for (i = 0; i < 3; i++)
|
|
if (vp56_rac_get_prob_branchy(&s->c, 252))
|
|
s->prob.p.mv_joint[i] = (vp8_rac_get_uint(&s->c, 7) << 1) | 1;
|
|
|
|
for (i = 0; i < 2; i++) {
|
|
if (vp56_rac_get_prob_branchy(&s->c, 252))
|
|
s->prob.p.mv_comp[i].sign = (vp8_rac_get_uint(&s->c, 7) << 1) | 1;
|
|
|
|
for (j = 0; j < 10; j++)
|
|
if (vp56_rac_get_prob_branchy(&s->c, 252))
|
|
s->prob.p.mv_comp[i].classes[j] =
|
|
(vp8_rac_get_uint(&s->c, 7) << 1) | 1;
|
|
|
|
if (vp56_rac_get_prob_branchy(&s->c, 252))
|
|
s->prob.p.mv_comp[i].class0 = (vp8_rac_get_uint(&s->c, 7) << 1) | 1;
|
|
|
|
for (j = 0; j < 10; j++)
|
|
if (vp56_rac_get_prob_branchy(&s->c, 252))
|
|
s->prob.p.mv_comp[i].bits[j] =
|
|
(vp8_rac_get_uint(&s->c, 7) << 1) | 1;
|
|
}
|
|
|
|
for (i = 0; i < 2; i++) {
|
|
for (j = 0; j < 2; j++)
|
|
for (k = 0; k < 3; k++)
|
|
if (vp56_rac_get_prob_branchy(&s->c, 252))
|
|
s->prob.p.mv_comp[i].class0_fp[j][k] =
|
|
(vp8_rac_get_uint(&s->c, 7) << 1) | 1;
|
|
|
|
for (j = 0; j < 3; j++)
|
|
if (vp56_rac_get_prob_branchy(&s->c, 252))
|
|
s->prob.p.mv_comp[i].fp[j] =
|
|
(vp8_rac_get_uint(&s->c, 7) << 1) | 1;
|
|
}
|
|
|
|
if (s->highprecisionmvs) {
|
|
for (i = 0; i < 2; i++) {
|
|
if (vp56_rac_get_prob_branchy(&s->c, 252))
|
|
s->prob.p.mv_comp[i].class0_hp =
|
|
(vp8_rac_get_uint(&s->c, 7) << 1) | 1;
|
|
|
|
if (vp56_rac_get_prob_branchy(&s->c, 252))
|
|
s->prob.p.mv_comp[i].hp =
|
|
(vp8_rac_get_uint(&s->c, 7) << 1) | 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
return (data2 - data) + size2;
|
|
}
|
|
|
|
static av_always_inline void clamp_mv(VP56mv *dst, const VP56mv *src,
|
|
VP9Context *s)
|
|
{
|
|
dst->x = av_clip(src->x, s->min_mv.x, s->max_mv.x);
|
|
dst->y = av_clip(src->y, s->min_mv.y, s->max_mv.y);
|
|
}
|
|
|
|
static void find_ref_mvs(VP9Context *s,
|
|
VP56mv *pmv, int ref, int z, int idx, int sb)
|
|
{
|
|
static const int8_t mv_ref_blk_off[N_BS_SIZES][8][2] = {
|
|
[BS_64x64] = {{ 3, -1 }, { -1, 3 }, { 4, -1 }, { -1, 4 },
|
|
{ -1, -1 }, { 0, -1 }, { -1, 0 }, { 6, -1 }},
|
|
[BS_64x32] = {{ 0, -1 }, { -1, 0 }, { 4, -1 }, { -1, 2 },
|
|
{ -1, -1 }, { 0, -3 }, { -3, 0 }, { 2, -1 }},
|
|
[BS_32x64] = {{ -1, 0 }, { 0, -1 }, { -1, 4 }, { 2, -1 },
|
|
{ -1, -1 }, { -3, 0 }, { 0, -3 }, { -1, 2 }},
|
|
[BS_32x32] = {{ 1, -1 }, { -1, 1 }, { 2, -1 }, { -1, 2 },
|
|
{ -1, -1 }, { 0, -3 }, { -3, 0 }, { -3, -3 }},
|
|
[BS_32x16] = {{ 0, -1 }, { -1, 0 }, { 2, -1 }, { -1, -1 },
|
|
{ -1, 1 }, { 0, -3 }, { -3, 0 }, { -3, -3 }},
|
|
[BS_16x32] = {{ -1, 0 }, { 0, -1 }, { -1, 2 }, { -1, -1 },
|
|
{ 1, -1 }, { -3, 0 }, { 0, -3 }, { -3, -3 }},
|
|
[BS_16x16] = {{ 0, -1 }, { -1, 0 }, { 1, -1 }, { -1, 1 },
|
|
{ -1, -1 }, { 0, -3 }, { -3, 0 }, { -3, -3 }},
|
|
[BS_16x8] = {{ 0, -1 }, { -1, 0 }, { 1, -1 }, { -1, -1 },
|
|
{ 0, -2 }, { -2, 0 }, { -2, -1 }, { -1, -2 }},
|
|
[BS_8x16] = {{ -1, 0 }, { 0, -1 }, { -1, 1 }, { -1, -1 },
|
|
{ -2, 0 }, { 0, -2 }, { -1, -2 }, { -2, -1 }},
|
|
[BS_8x8] = {{ 0, -1 }, { -1, 0 }, { -1, -1 }, { 0, -2 },
|
|
{ -2, 0 }, { -1, -2 }, { -2, -1 }, { -2, -2 }},
|
|
[BS_8x4] = {{ 0, -1 }, { -1, 0 }, { -1, -1 }, { 0, -2 },
|
|
{ -2, 0 }, { -1, -2 }, { -2, -1 }, { -2, -2 }},
|
|
[BS_4x8] = {{ 0, -1 }, { -1, 0 }, { -1, -1 }, { 0, -2 },
|
|
{ -2, 0 }, { -1, -2 }, { -2, -1 }, { -2, -2 }},
|
|
[BS_4x4] = {{ 0, -1 }, { -1, 0 }, { -1, -1 }, { 0, -2 },
|
|
{ -2, 0 }, { -1, -2 }, { -2, -1 }, { -2, -2 }},
|
|
};
|
|
VP9Block *b = s->b;
|
|
int row = s->row, col = s->col, row7 = s->row7;
|
|
const int8_t (*p)[2] = mv_ref_blk_off[b->bs];
|
|
#define INVALID_MV 0x80008000U
|
|
uint32_t mem = INVALID_MV;
|
|
int i;
|
|
|
|
#define RETURN_DIRECT_MV(mv) \
|
|
do { \
|
|
uint32_t m = AV_RN32A(&mv); \
|
|
if (!idx) { \
|
|
AV_WN32A(pmv, m); \
|
|
return; \
|
|
} else if (mem == INVALID_MV) { \
|
|
mem = m; \
|
|
} else if (m != mem) { \
|
|
AV_WN32A(pmv, m); \
|
|
return; \
|
|
} \
|
|
} while (0)
|
|
|
|
if (sb >= 0) {
|
|
if (sb == 2 || sb == 1) {
|
|
RETURN_DIRECT_MV(b->mv[0][z]);
|
|
} else if (sb == 3) {
|
|
RETURN_DIRECT_MV(b->mv[2][z]);
|
|
RETURN_DIRECT_MV(b->mv[1][z]);
|
|
RETURN_DIRECT_MV(b->mv[0][z]);
|
|
}
|
|
|
|
#define RETURN_MV(mv) \
|
|
do { \
|
|
if (sb > 0) { \
|
|
VP56mv tmp; \
|
|
uint32_t m; \
|
|
clamp_mv(&tmp, &mv, s); \
|
|
m = AV_RN32A(&tmp); \
|
|
if (!idx) { \
|
|
AV_WN32A(pmv, m); \
|
|
return; \
|
|
} else if (mem == INVALID_MV) { \
|
|
mem = m; \
|
|
} else if (m != mem) { \
|
|
AV_WN32A(pmv, m); \
|
|
return; \
|
|
} \
|
|
} else { \
|
|
uint32_t m = AV_RN32A(&mv); \
|
|
if (!idx) { \
|
|
clamp_mv(pmv, &mv, s); \
|
|
return; \
|
|
} else if (mem == INVALID_MV) { \
|
|
mem = m; \
|
|
} else if (m != mem) { \
|
|
clamp_mv(pmv, &mv, s); \
|
|
return; \
|
|
} \
|
|
} \
|
|
} while (0)
|
|
|
|
if (row > 0) {
|
|
struct VP9mvrefPair *mv = &s->frames[CUR_FRAME].mv[(row - 1) * s->sb_cols * 8 + col];
|
|
if (mv->ref[0] == ref) {
|
|
RETURN_MV(s->above_mv_ctx[2 * col + (sb & 1)][0]);
|
|
} else if (mv->ref[1] == ref) {
|
|
RETURN_MV(s->above_mv_ctx[2 * col + (sb & 1)][1]);
|
|
}
|
|
}
|
|
if (col > s->tiling.tile_col_start) {
|
|
struct VP9mvrefPair *mv = &s->frames[CUR_FRAME].mv[row * s->sb_cols * 8 + col - 1];
|
|
if (mv->ref[0] == ref) {
|
|
RETURN_MV(s->left_mv_ctx[2 * row7 + (sb >> 1)][0]);
|
|
} else if (mv->ref[1] == ref) {
|
|
RETURN_MV(s->left_mv_ctx[2 * row7 + (sb >> 1)][1]);
|
|
}
|
|
}
|
|
i = 2;
|
|
} else {
|
|
i = 0;
|
|
}
|
|
|
|
// previously coded MVs in this neighbourhood, using same reference frame
|
|
for (; i < 8; i++) {
|
|
int c = p[i][0] + col, r = p[i][1] + row;
|
|
|
|
if (c >= s->tiling.tile_col_start && c < s->cols && r >= 0 && r < s->rows) {
|
|
struct VP9mvrefPair *mv = &s->frames[CUR_FRAME].mv[r * s->sb_cols * 8 + c];
|
|
|
|
if (mv->ref[0] == ref) {
|
|
RETURN_MV(mv->mv[0]);
|
|
} else if (mv->ref[1] == ref) {
|
|
RETURN_MV(mv->mv[1]);
|
|
}
|
|
}
|
|
}
|
|
|
|
// MV at this position in previous frame, using same reference frame
|
|
if (s->use_last_frame_mvs) {
|
|
struct VP9mvrefPair *mv = &s->frames[LAST_FRAME].mv[row * s->sb_cols * 8 + col];
|
|
|
|
if (!s->last_uses_2pass)
|
|
ff_thread_await_progress(&s->frames[LAST_FRAME].tf, row >> 3, 0);
|
|
if (mv->ref[0] == ref) {
|
|
RETURN_MV(mv->mv[0]);
|
|
} else if (mv->ref[1] == ref) {
|
|
RETURN_MV(mv->mv[1]);
|
|
}
|
|
}
|
|
|
|
#define RETURN_SCALE_MV(mv, scale) \
|
|
do { \
|
|
if (scale) { \
|
|
VP56mv mv_temp = { -mv.x, -mv.y }; \
|
|
RETURN_MV(mv_temp); \
|
|
} else { \
|
|
RETURN_MV(mv); \
|
|
} \
|
|
} while (0)
|
|
|
|
// previously coded MVs in this neighbourhood, using different reference frame
|
|
for (i = 0; i < 8; i++) {
|
|
int c = p[i][0] + col, r = p[i][1] + row;
|
|
|
|
if (c >= s->tiling.tile_col_start && c < s->cols && r >= 0 && r < s->rows) {
|
|
struct VP9mvrefPair *mv = &s->frames[CUR_FRAME].mv[r * s->sb_cols * 8 + c];
|
|
|
|
if (mv->ref[0] != ref && mv->ref[0] >= 0) {
|
|
RETURN_SCALE_MV(mv->mv[0], s->signbias[mv->ref[0]] != s->signbias[ref]);
|
|
}
|
|
if (mv->ref[1] != ref && mv->ref[1] >= 0 &&
|
|
// BUG - libvpx has this condition regardless of whether
|
|
// we used the first ref MV and pre-scaling
|
|
AV_RN32A(&mv->mv[0]) != AV_RN32A(&mv->mv[1])) {
|
|
RETURN_SCALE_MV(mv->mv[1], s->signbias[mv->ref[1]] != s->signbias[ref]);
|
|
}
|
|
}
|
|
}
|
|
|
|
// MV at this position in previous frame, using different reference frame
|
|
if (s->use_last_frame_mvs) {
|
|
struct VP9mvrefPair *mv = &s->frames[LAST_FRAME].mv[row * s->sb_cols * 8 + col];
|
|
|
|
// no need to await_progress, because we already did that above
|
|
if (mv->ref[0] != ref && mv->ref[0] >= 0) {
|
|
RETURN_SCALE_MV(mv->mv[0], s->signbias[mv->ref[0]] != s->signbias[ref]);
|
|
}
|
|
if (mv->ref[1] != ref && mv->ref[1] >= 0 &&
|
|
// BUG - libvpx has this condition regardless of whether
|
|
// we used the first ref MV and pre-scaling
|
|
AV_RN32A(&mv->mv[0]) != AV_RN32A(&mv->mv[1])) {
|
|
RETURN_SCALE_MV(mv->mv[1], s->signbias[mv->ref[1]] != s->signbias[ref]);
|
|
}
|
|
}
|
|
|
|
AV_ZERO32(pmv);
|
|
#undef INVALID_MV
|
|
#undef RETURN_MV
|
|
#undef RETURN_SCALE_MV
|
|
}
|
|
|
|
static av_always_inline int read_mv_component(VP9Context *s, int idx, int hp)
|
|
{
|
|
int bit, sign = vp56_rac_get_prob(&s->c, s->prob.p.mv_comp[idx].sign);
|
|
int n, c = vp8_rac_get_tree(&s->c, vp9_mv_class_tree,
|
|
s->prob.p.mv_comp[idx].classes);
|
|
|
|
s->counts.mv_comp[idx].sign[sign]++;
|
|
s->counts.mv_comp[idx].classes[c]++;
|
|
if (c) {
|
|
int m;
|
|
|
|
for (n = 0, m = 0; m < c; m++) {
|
|
bit = vp56_rac_get_prob(&s->c, s->prob.p.mv_comp[idx].bits[m]);
|
|
n |= bit << m;
|
|
s->counts.mv_comp[idx].bits[m][bit]++;
|
|
}
|
|
n <<= 3;
|
|
bit = vp8_rac_get_tree(&s->c, vp9_mv_fp_tree, s->prob.p.mv_comp[idx].fp);
|
|
n |= bit << 1;
|
|
s->counts.mv_comp[idx].fp[bit]++;
|
|
if (hp) {
|
|
bit = vp56_rac_get_prob(&s->c, s->prob.p.mv_comp[idx].hp);
|
|
s->counts.mv_comp[idx].hp[bit]++;
|
|
n |= bit;
|
|
} else {
|
|
n |= 1;
|
|
// bug in libvpx - we count for bw entropy purposes even if the
|
|
// bit wasn't coded
|
|
s->counts.mv_comp[idx].hp[1]++;
|
|
}
|
|
n += 8 << c;
|
|
} else {
|
|
n = vp56_rac_get_prob(&s->c, s->prob.p.mv_comp[idx].class0);
|
|
s->counts.mv_comp[idx].class0[n]++;
|
|
bit = vp8_rac_get_tree(&s->c, vp9_mv_fp_tree,
|
|
s->prob.p.mv_comp[idx].class0_fp[n]);
|
|
s->counts.mv_comp[idx].class0_fp[n][bit]++;
|
|
n = (n << 3) | (bit << 1);
|
|
if (hp) {
|
|
bit = vp56_rac_get_prob(&s->c, s->prob.p.mv_comp[idx].class0_hp);
|
|
s->counts.mv_comp[idx].class0_hp[bit]++;
|
|
n |= bit;
|
|
} else {
|
|
n |= 1;
|
|
// bug in libvpx - we count for bw entropy purposes even if the
|
|
// bit wasn't coded
|
|
s->counts.mv_comp[idx].class0_hp[1]++;
|
|
}
|
|
}
|
|
|
|
return sign ? -(n + 1) : (n + 1);
|
|
}
|
|
|
|
static void fill_mv(VP9Context *s,
|
|
VP56mv *mv, int mode, int sb)
|
|
{
|
|
VP9Block *b = s->b;
|
|
|
|
if (mode == ZEROMV) {
|
|
AV_ZERO64(mv);
|
|
} else {
|
|
int hp;
|
|
|
|
// FIXME cache this value and reuse for other subblocks
|
|
find_ref_mvs(s, &mv[0], b->ref[0], 0, mode == NEARMV,
|
|
mode == NEWMV ? -1 : sb);
|
|
// FIXME maybe move this code into find_ref_mvs()
|
|
if ((mode == NEWMV || sb == -1) &&
|
|
!(hp = s->highprecisionmvs && abs(mv[0].x) < 64 && abs(mv[0].y) < 64)) {
|
|
if (mv[0].y & 1) {
|
|
if (mv[0].y < 0)
|
|
mv[0].y++;
|
|
else
|
|
mv[0].y--;
|
|
}
|
|
if (mv[0].x & 1) {
|
|
if (mv[0].x < 0)
|
|
mv[0].x++;
|
|
else
|
|
mv[0].x--;
|
|
}
|
|
}
|
|
if (mode == NEWMV) {
|
|
enum MVJoint j = vp8_rac_get_tree(&s->c, vp9_mv_joint_tree,
|
|
s->prob.p.mv_joint);
|
|
|
|
s->counts.mv_joint[j]++;
|
|
if (j >= MV_JOINT_V)
|
|
mv[0].y += read_mv_component(s, 0, hp);
|
|
if (j & 1)
|
|
mv[0].x += read_mv_component(s, 1, hp);
|
|
}
|
|
|
|
if (b->comp) {
|
|
// FIXME cache this value and reuse for other subblocks
|
|
find_ref_mvs(s, &mv[1], b->ref[1], 1, mode == NEARMV,
|
|
mode == NEWMV ? -1 : sb);
|
|
if ((mode == NEWMV || sb == -1) &&
|
|
!(hp = s->highprecisionmvs && abs(mv[1].x) < 64 && abs(mv[1].y) < 64)) {
|
|
if (mv[1].y & 1) {
|
|
if (mv[1].y < 0)
|
|
mv[1].y++;
|
|
else
|
|
mv[1].y--;
|
|
}
|
|
if (mv[1].x & 1) {
|
|
if (mv[1].x < 0)
|
|
mv[1].x++;
|
|
else
|
|
mv[1].x--;
|
|
}
|
|
}
|
|
if (mode == NEWMV) {
|
|
enum MVJoint j = vp8_rac_get_tree(&s->c, vp9_mv_joint_tree,
|
|
s->prob.p.mv_joint);
|
|
|
|
s->counts.mv_joint[j]++;
|
|
if (j >= MV_JOINT_V)
|
|
mv[1].y += read_mv_component(s, 0, hp);
|
|
if (j & 1)
|
|
mv[1].x += read_mv_component(s, 1, hp);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static av_always_inline void setctx_2d(uint8_t *ptr, int w, int h,
|
|
ptrdiff_t stride, int v)
|
|
{
|
|
switch (w) {
|
|
case 1:
|
|
do {
|
|
*ptr = v;
|
|
ptr += stride;
|
|
} while (--h);
|
|
break;
|
|
case 2: {
|
|
int v16 = v * 0x0101;
|
|
do {
|
|
AV_WN16A(ptr, v16);
|
|
ptr += stride;
|
|
} while (--h);
|
|
break;
|
|
}
|
|
case 4: {
|
|
uint32_t v32 = v * 0x01010101;
|
|
do {
|
|
AV_WN32A(ptr, v32);
|
|
ptr += stride;
|
|
} while (--h);
|
|
break;
|
|
}
|
|
case 8: {
|
|
#if HAVE_FAST_64BIT
|
|
uint64_t v64 = v * 0x0101010101010101ULL;
|
|
do {
|
|
AV_WN64A(ptr, v64);
|
|
ptr += stride;
|
|
} while (--h);
|
|
#else
|
|
uint32_t v32 = v * 0x01010101;
|
|
do {
|
|
AV_WN32A(ptr, v32);
|
|
AV_WN32A(ptr + 4, v32);
|
|
ptr += stride;
|
|
} while (--h);
|
|
#endif
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void decode_mode(AVCodecContext *ctx)
|
|
{
|
|
static const uint8_t left_ctx[N_BS_SIZES] = {
|
|
0x0, 0x8, 0x0, 0x8, 0xc, 0x8, 0xc, 0xe, 0xc, 0xe, 0xf, 0xe, 0xf
|
|
};
|
|
static const uint8_t above_ctx[N_BS_SIZES] = {
|
|
0x0, 0x0, 0x8, 0x8, 0x8, 0xc, 0xc, 0xc, 0xe, 0xe, 0xe, 0xf, 0xf
|
|
};
|
|
static const uint8_t max_tx_for_bl_bp[N_BS_SIZES] = {
|
|
TX_32X32, TX_32X32, TX_32X32, TX_32X32, TX_16X16, TX_16X16,
|
|
TX_16X16, TX_8X8, TX_8X8, TX_8X8, TX_4X4, TX_4X4, TX_4X4
|
|
};
|
|
VP9Context *s = ctx->priv_data;
|
|
VP9Block *b = s->b;
|
|
int row = s->row, col = s->col, row7 = s->row7;
|
|
enum TxfmMode max_tx = max_tx_for_bl_bp[b->bs];
|
|
int w4 = FFMIN(s->cols - col, bwh_tab[1][b->bs][0]);
|
|
int h4 = FFMIN(s->rows - row, bwh_tab[1][b->bs][1]), y;
|
|
int have_a = row > 0, have_l = col > s->tiling.tile_col_start;
|
|
int vref, filter_id;
|
|
|
|
if (!s->segmentation.enabled) {
|
|
b->seg_id = 0;
|
|
} else if (s->keyframe || s->intraonly) {
|
|
b->seg_id = vp8_rac_get_tree(&s->c, vp9_segmentation_tree, s->prob.seg);
|
|
} else if (!s->segmentation.update_map ||
|
|
(s->segmentation.temporal &&
|
|
vp56_rac_get_prob_branchy(&s->c,
|
|
s->prob.segpred[s->above_segpred_ctx[col] +
|
|
s->left_segpred_ctx[row7]]))) {
|
|
if (!s->errorres) {
|
|
int pred = 8, x;
|
|
uint8_t *refsegmap = s->frames[LAST_FRAME].segmentation_map;
|
|
|
|
if (!s->last_uses_2pass)
|
|
ff_thread_await_progress(&s->frames[LAST_FRAME].tf, row >> 3, 0);
|
|
for (y = 0; y < h4; y++)
|
|
for (x = 0; x < w4; x++)
|
|
pred = FFMIN(pred, refsegmap[(y + row) * 8 * s->sb_cols + x + col]);
|
|
av_assert1(pred < 8);
|
|
b->seg_id = pred;
|
|
} else {
|
|
b->seg_id = 0;
|
|
}
|
|
|
|
memset(&s->above_segpred_ctx[col], 1, w4);
|
|
memset(&s->left_segpred_ctx[row7], 1, h4);
|
|
} else {
|
|
b->seg_id = vp8_rac_get_tree(&s->c, vp9_segmentation_tree,
|
|
s->prob.seg);
|
|
|
|
memset(&s->above_segpred_ctx[col], 0, w4);
|
|
memset(&s->left_segpred_ctx[row7], 0, h4);
|
|
}
|
|
if (s->segmentation.enabled &&
|
|
(s->segmentation.update_map || s->keyframe || s->intraonly)) {
|
|
setctx_2d(&s->frames[CUR_FRAME].segmentation_map[row * 8 * s->sb_cols + col],
|
|
w4, h4, 8 * s->sb_cols, b->seg_id);
|
|
}
|
|
|
|
b->skip = s->segmentation.enabled &&
|
|
s->segmentation.feat[b->seg_id].skip_enabled;
|
|
if (!b->skip) {
|
|
int c = s->left_skip_ctx[row7] + s->above_skip_ctx[col];
|
|
b->skip = vp56_rac_get_prob(&s->c, s->prob.p.skip[c]);
|
|
s->counts.skip[c][b->skip]++;
|
|
}
|
|
|
|
if (s->keyframe || s->intraonly) {
|
|
b->intra = 1;
|
|
} else if (s->segmentation.feat[b->seg_id].ref_enabled) {
|
|
b->intra = !s->segmentation.feat[b->seg_id].ref_val;
|
|
} else {
|
|
int c, bit;
|
|
|
|
if (have_a && have_l) {
|
|
c = s->above_intra_ctx[col] + s->left_intra_ctx[row7];
|
|
c += (c == 2);
|
|
} else {
|
|
c = have_a ? 2 * s->above_intra_ctx[col] :
|
|
have_l ? 2 * s->left_intra_ctx[row7] : 0;
|
|
}
|
|
bit = vp56_rac_get_prob(&s->c, s->prob.p.intra[c]);
|
|
s->counts.intra[c][bit]++;
|
|
b->intra = !bit;
|
|
}
|
|
|
|
if ((b->intra || !b->skip) && s->txfmmode == TX_SWITCHABLE) {
|
|
int c;
|
|
if (have_a) {
|
|
if (have_l) {
|
|
c = (s->above_skip_ctx[col] ? max_tx :
|
|
s->above_txfm_ctx[col]) +
|
|
(s->left_skip_ctx[row7] ? max_tx :
|
|
s->left_txfm_ctx[row7]) > max_tx;
|
|
} else {
|
|
c = s->above_skip_ctx[col] ? 1 :
|
|
(s->above_txfm_ctx[col] * 2 > max_tx);
|
|
}
|
|
} else if (have_l) {
|
|
c = s->left_skip_ctx[row7] ? 1 :
|
|
(s->left_txfm_ctx[row7] * 2 > max_tx);
|
|
} else {
|
|
c = 1;
|
|
}
|
|
switch (max_tx) {
|
|
case TX_32X32:
|
|
b->tx = vp56_rac_get_prob(&s->c, s->prob.p.tx32p[c][0]);
|
|
if (b->tx) {
|
|
b->tx += vp56_rac_get_prob(&s->c, s->prob.p.tx32p[c][1]);
|
|
if (b->tx == 2)
|
|
b->tx += vp56_rac_get_prob(&s->c, s->prob.p.tx32p[c][2]);
|
|
}
|
|
s->counts.tx32p[c][b->tx]++;
|
|
break;
|
|
case TX_16X16:
|
|
b->tx = vp56_rac_get_prob(&s->c, s->prob.p.tx16p[c][0]);
|
|
if (b->tx)
|
|
b->tx += vp56_rac_get_prob(&s->c, s->prob.p.tx16p[c][1]);
|
|
s->counts.tx16p[c][b->tx]++;
|
|
break;
|
|
case TX_8X8:
|
|
b->tx = vp56_rac_get_prob(&s->c, s->prob.p.tx8p[c]);
|
|
s->counts.tx8p[c][b->tx]++;
|
|
break;
|
|
case TX_4X4:
|
|
b->tx = TX_4X4;
|
|
break;
|
|
}
|
|
} else {
|
|
b->tx = FFMIN(max_tx, s->txfmmode);
|
|
}
|
|
|
|
if (s->keyframe || s->intraonly) {
|
|
uint8_t *a = &s->above_mode_ctx[col * 2];
|
|
uint8_t *l = &s->left_mode_ctx[(row7) << 1];
|
|
|
|
b->comp = 0;
|
|
if (b->bs > BS_8x8) {
|
|
// FIXME the memory storage intermediates here aren't really
|
|
// necessary, they're just there to make the code slightly
|
|
// simpler for now
|
|
b->mode[0] = a[0] = vp8_rac_get_tree(&s->c, vp9_intramode_tree,
|
|
vp9_default_kf_ymode_probs[a[0]][l[0]]);
|
|
if (b->bs != BS_8x4) {
|
|
b->mode[1] = vp8_rac_get_tree(&s->c, vp9_intramode_tree,
|
|
vp9_default_kf_ymode_probs[a[1]][b->mode[0]]);
|
|
l[0] = a[1] = b->mode[1];
|
|
} else {
|
|
l[0] = a[1] = b->mode[1] = b->mode[0];
|
|
}
|
|
if (b->bs != BS_4x8) {
|
|
b->mode[2] = a[0] = vp8_rac_get_tree(&s->c, vp9_intramode_tree,
|
|
vp9_default_kf_ymode_probs[a[0]][l[1]]);
|
|
if (b->bs != BS_8x4) {
|
|
b->mode[3] = vp8_rac_get_tree(&s->c, vp9_intramode_tree,
|
|
vp9_default_kf_ymode_probs[a[1]][b->mode[2]]);
|
|
l[1] = a[1] = b->mode[3];
|
|
} else {
|
|
l[1] = a[1] = b->mode[3] = b->mode[2];
|
|
}
|
|
} else {
|
|
b->mode[2] = b->mode[0];
|
|
l[1] = a[1] = b->mode[3] = b->mode[1];
|
|
}
|
|
} else {
|
|
b->mode[0] = vp8_rac_get_tree(&s->c, vp9_intramode_tree,
|
|
vp9_default_kf_ymode_probs[*a][*l]);
|
|
b->mode[3] = b->mode[2] = b->mode[1] = b->mode[0];
|
|
// FIXME this can probably be optimized
|
|
memset(a, b->mode[0], bwh_tab[0][b->bs][0]);
|
|
memset(l, b->mode[0], bwh_tab[0][b->bs][1]);
|
|
}
|
|
b->uvmode = vp8_rac_get_tree(&s->c, vp9_intramode_tree,
|
|
vp9_default_kf_uvmode_probs[b->mode[3]]);
|
|
} else if (b->intra) {
|
|
b->comp = 0;
|
|
if (b->bs > BS_8x8) {
|
|
b->mode[0] = vp8_rac_get_tree(&s->c, vp9_intramode_tree,
|
|
s->prob.p.y_mode[0]);
|
|
s->counts.y_mode[0][b->mode[0]]++;
|
|
if (b->bs != BS_8x4) {
|
|
b->mode[1] = vp8_rac_get_tree(&s->c, vp9_intramode_tree,
|
|
s->prob.p.y_mode[0]);
|
|
s->counts.y_mode[0][b->mode[1]]++;
|
|
} else {
|
|
b->mode[1] = b->mode[0];
|
|
}
|
|
if (b->bs != BS_4x8) {
|
|
b->mode[2] = vp8_rac_get_tree(&s->c, vp9_intramode_tree,
|
|
s->prob.p.y_mode[0]);
|
|
s->counts.y_mode[0][b->mode[2]]++;
|
|
if (b->bs != BS_8x4) {
|
|
b->mode[3] = vp8_rac_get_tree(&s->c, vp9_intramode_tree,
|
|
s->prob.p.y_mode[0]);
|
|
s->counts.y_mode[0][b->mode[3]]++;
|
|
} else {
|
|
b->mode[3] = b->mode[2];
|
|
}
|
|
} else {
|
|
b->mode[2] = b->mode[0];
|
|
b->mode[3] = b->mode[1];
|
|
}
|
|
} else {
|
|
static const uint8_t size_group[10] = {
|
|
3, 3, 3, 3, 2, 2, 2, 1, 1, 1
|
|
};
|
|
int sz = size_group[b->bs];
|
|
|
|
b->mode[0] = vp8_rac_get_tree(&s->c, vp9_intramode_tree,
|
|
s->prob.p.y_mode[sz]);
|
|
b->mode[1] = b->mode[2] = b->mode[3] = b->mode[0];
|
|
s->counts.y_mode[sz][b->mode[3]]++;
|
|
}
|
|
b->uvmode = vp8_rac_get_tree(&s->c, vp9_intramode_tree,
|
|
s->prob.p.uv_mode[b->mode[3]]);
|
|
s->counts.uv_mode[b->mode[3]][b->uvmode]++;
|
|
} else {
|
|
static const uint8_t inter_mode_ctx_lut[14][14] = {
|
|
{ 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5 },
|
|
{ 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5 },
|
|
{ 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5 },
|
|
{ 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5 },
|
|
{ 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5 },
|
|
{ 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5 },
|
|
{ 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5 },
|
|
{ 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5 },
|
|
{ 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5 },
|
|
{ 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5 },
|
|
{ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 2, 2, 1, 3 },
|
|
{ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 2, 2, 1, 3 },
|
|
{ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 1, 1, 0, 3 },
|
|
{ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 3, 3, 3, 4 },
|
|
};
|
|
|
|
if (s->segmentation.feat[b->seg_id].ref_enabled) {
|
|
av_assert2(s->segmentation.feat[b->seg_id].ref_val != 0);
|
|
b->comp = 0;
|
|
b->ref[0] = s->segmentation.feat[b->seg_id].ref_val - 1;
|
|
} else {
|
|
// read comp_pred flag
|
|
if (s->comppredmode != PRED_SWITCHABLE) {
|
|
b->comp = s->comppredmode == PRED_COMPREF;
|
|
} else {
|
|
int c;
|
|
|
|
// FIXME add intra as ref=0xff (or -1) to make these easier?
|
|
if (have_a) {
|
|
if (have_l) {
|
|
if (s->above_comp_ctx[col] && s->left_comp_ctx[row7]) {
|
|
c = 4;
|
|
} else if (s->above_comp_ctx[col]) {
|
|
c = 2 + (s->left_intra_ctx[row7] ||
|
|
s->left_ref_ctx[row7] == s->fixcompref);
|
|
} else if (s->left_comp_ctx[row7]) {
|
|
c = 2 + (s->above_intra_ctx[col] ||
|
|
s->above_ref_ctx[col] == s->fixcompref);
|
|
} else {
|
|
c = (!s->above_intra_ctx[col] &&
|
|
s->above_ref_ctx[col] == s->fixcompref) ^
|
|
(!s->left_intra_ctx[row7] &&
|
|
s->left_ref_ctx[row & 7] == s->fixcompref);
|
|
}
|
|
} else {
|
|
c = s->above_comp_ctx[col] ? 3 :
|
|
(!s->above_intra_ctx[col] && s->above_ref_ctx[col] == s->fixcompref);
|
|
}
|
|
} else if (have_l) {
|
|
c = s->left_comp_ctx[row7] ? 3 :
|
|
(!s->left_intra_ctx[row7] && s->left_ref_ctx[row7] == s->fixcompref);
|
|
} else {
|
|
c = 1;
|
|
}
|
|
b->comp = vp56_rac_get_prob(&s->c, s->prob.p.comp[c]);
|
|
s->counts.comp[c][b->comp]++;
|
|
}
|
|
|
|
// read actual references
|
|
// FIXME probably cache a few variables here to prevent repetitive
|
|
// memory accesses below
|
|
if (b->comp) /* two references */ {
|
|
int fix_idx = s->signbias[s->fixcompref], var_idx = !fix_idx, c, bit;
|
|
|
|
b->ref[fix_idx] = s->fixcompref;
|
|
// FIXME can this codeblob be replaced by some sort of LUT?
|
|
if (have_a) {
|
|
if (have_l) {
|
|
if (s->above_intra_ctx[col]) {
|
|
if (s->left_intra_ctx[row7]) {
|
|
c = 2;
|
|
} else {
|
|
c = 1 + 2 * (s->left_ref_ctx[row7] != s->varcompref[1]);
|
|
}
|
|
} else if (s->left_intra_ctx[row7]) {
|
|
c = 1 + 2 * (s->above_ref_ctx[col] != s->varcompref[1]);
|
|
} else {
|
|
int refl = s->left_ref_ctx[row7], refa = s->above_ref_ctx[col];
|
|
|
|
if (refl == refa && refa == s->varcompref[1]) {
|
|
c = 0;
|
|
} else if (!s->left_comp_ctx[row7] && !s->above_comp_ctx[col]) {
|
|
if ((refa == s->fixcompref && refl == s->varcompref[0]) ||
|
|
(refl == s->fixcompref && refa == s->varcompref[0])) {
|
|
c = 4;
|
|
} else {
|
|
c = (refa == refl) ? 3 : 1;
|
|
}
|
|
} else if (!s->left_comp_ctx[row7]) {
|
|
if (refa == s->varcompref[1] && refl != s->varcompref[1]) {
|
|
c = 1;
|
|
} else {
|
|
c = (refl == s->varcompref[1] &&
|
|
refa != s->varcompref[1]) ? 2 : 4;
|
|
}
|
|
} else if (!s->above_comp_ctx[col]) {
|
|
if (refl == s->varcompref[1] && refa != s->varcompref[1]) {
|
|
c = 1;
|
|
} else {
|
|
c = (refa == s->varcompref[1] &&
|
|
refl != s->varcompref[1]) ? 2 : 4;
|
|
}
|
|
} else {
|
|
c = (refl == refa) ? 4 : 2;
|
|
}
|
|
}
|
|
} else {
|
|
if (s->above_intra_ctx[col]) {
|
|
c = 2;
|
|
} else if (s->above_comp_ctx[col]) {
|
|
c = 4 * (s->above_ref_ctx[col] != s->varcompref[1]);
|
|
} else {
|
|
c = 3 * (s->above_ref_ctx[col] != s->varcompref[1]);
|
|
}
|
|
}
|
|
} else if (have_l) {
|
|
if (s->left_intra_ctx[row7]) {
|
|
c = 2;
|
|
} else if (s->left_comp_ctx[row7]) {
|
|
c = 4 * (s->left_ref_ctx[row7] != s->varcompref[1]);
|
|
} else {
|
|
c = 3 * (s->left_ref_ctx[row7] != s->varcompref[1]);
|
|
}
|
|
} else {
|
|
c = 2;
|
|
}
|
|
bit = vp56_rac_get_prob(&s->c, s->prob.p.comp_ref[c]);
|
|
b->ref[var_idx] = s->varcompref[bit];
|
|
s->counts.comp_ref[c][bit]++;
|
|
} else /* single reference */ {
|
|
int bit, c;
|
|
|
|
if (have_a && !s->above_intra_ctx[col]) {
|
|
if (have_l && !s->left_intra_ctx[row7]) {
|
|
if (s->left_comp_ctx[row7]) {
|
|
if (s->above_comp_ctx[col]) {
|
|
c = 1 + (!s->fixcompref || !s->left_ref_ctx[row7] ||
|
|
!s->above_ref_ctx[col]);
|
|
} else {
|
|
c = (3 * !s->above_ref_ctx[col]) +
|
|
(!s->fixcompref || !s->left_ref_ctx[row7]);
|
|
}
|
|
} else if (s->above_comp_ctx[col]) {
|
|
c = (3 * !s->left_ref_ctx[row7]) +
|
|
(!s->fixcompref || !s->above_ref_ctx[col]);
|
|
} else {
|
|
c = 2 * !s->left_ref_ctx[row7] + 2 * !s->above_ref_ctx[col];
|
|
}
|
|
} else if (s->above_intra_ctx[col]) {
|
|
c = 2;
|
|
} else if (s->above_comp_ctx[col]) {
|
|
c = 1 + (!s->fixcompref || !s->above_ref_ctx[col]);
|
|
} else {
|
|
c = 4 * (!s->above_ref_ctx[col]);
|
|
}
|
|
} else if (have_l && !s->left_intra_ctx[row7]) {
|
|
if (s->left_intra_ctx[row7]) {
|
|
c = 2;
|
|
} else if (s->left_comp_ctx[row7]) {
|
|
c = 1 + (!s->fixcompref || !s->left_ref_ctx[row7]);
|
|
} else {
|
|
c = 4 * (!s->left_ref_ctx[row7]);
|
|
}
|
|
} else {
|
|
c = 2;
|
|
}
|
|
bit = vp56_rac_get_prob(&s->c, s->prob.p.single_ref[c][0]);
|
|
s->counts.single_ref[c][0][bit]++;
|
|
if (!bit) {
|
|
b->ref[0] = 0;
|
|
} else {
|
|
// FIXME can this codeblob be replaced by some sort of LUT?
|
|
if (have_a) {
|
|
if (have_l) {
|
|
if (s->left_intra_ctx[row7]) {
|
|
if (s->above_intra_ctx[col]) {
|
|
c = 2;
|
|
} else if (s->above_comp_ctx[col]) {
|
|
c = 1 + 2 * (s->fixcompref == 1 ||
|
|
s->above_ref_ctx[col] == 1);
|
|
} else if (!s->above_ref_ctx[col]) {
|
|
c = 3;
|
|
} else {
|
|
c = 4 * (s->above_ref_ctx[col] == 1);
|
|
}
|
|
} else if (s->above_intra_ctx[col]) {
|
|
if (s->left_intra_ctx[row7]) {
|
|
c = 2;
|
|
} else if (s->left_comp_ctx[row7]) {
|
|
c = 1 + 2 * (s->fixcompref == 1 ||
|
|
s->left_ref_ctx[row7] == 1);
|
|
} else if (!s->left_ref_ctx[row7]) {
|
|
c = 3;
|
|
} else {
|
|
c = 4 * (s->left_ref_ctx[row7] == 1);
|
|
}
|
|
} else if (s->above_comp_ctx[col]) {
|
|
if (s->left_comp_ctx[row7]) {
|
|
if (s->left_ref_ctx[row7] == s->above_ref_ctx[col]) {
|
|
c = 3 * (s->fixcompref == 1 ||
|
|
s->left_ref_ctx[row7] == 1);
|
|
} else {
|
|
c = 2;
|
|
}
|
|
} else if (!s->left_ref_ctx[row7]) {
|
|
c = 1 + 2 * (s->fixcompref == 1 ||
|
|
s->above_ref_ctx[col] == 1);
|
|
} else {
|
|
c = 3 * (s->left_ref_ctx[row7] == 1) +
|
|
(s->fixcompref == 1 || s->above_ref_ctx[col] == 1);
|
|
}
|
|
} else if (s->left_comp_ctx[row7]) {
|
|
if (!s->above_ref_ctx[col]) {
|
|
c = 1 + 2 * (s->fixcompref == 1 ||
|
|
s->left_ref_ctx[row7] == 1);
|
|
} else {
|
|
c = 3 * (s->above_ref_ctx[col] == 1) +
|
|
(s->fixcompref == 1 || s->left_ref_ctx[row7] == 1);
|
|
}
|
|
} else if (!s->above_ref_ctx[col]) {
|
|
if (!s->left_ref_ctx[row7]) {
|
|
c = 3;
|
|
} else {
|
|
c = 4 * (s->left_ref_ctx[row7] == 1);
|
|
}
|
|
} else if (!s->left_ref_ctx[row7]) {
|
|
c = 4 * (s->above_ref_ctx[col] == 1);
|
|
} else {
|
|
c = 2 * (s->left_ref_ctx[row7] == 1) +
|
|
2 * (s->above_ref_ctx[col] == 1);
|
|
}
|
|
} else {
|
|
if (s->above_intra_ctx[col] ||
|
|
(!s->above_comp_ctx[col] && !s->above_ref_ctx[col])) {
|
|
c = 2;
|
|
} else if (s->above_comp_ctx[col]) {
|
|
c = 3 * (s->fixcompref == 1 || s->above_ref_ctx[col] == 1);
|
|
} else {
|
|
c = 4 * (s->above_ref_ctx[col] == 1);
|
|
}
|
|
}
|
|
} else if (have_l) {
|
|
if (s->left_intra_ctx[row7] ||
|
|
(!s->left_comp_ctx[row7] && !s->left_ref_ctx[row7])) {
|
|
c = 2;
|
|
} else if (s->left_comp_ctx[row7]) {
|
|
c = 3 * (s->fixcompref == 1 || s->left_ref_ctx[row7] == 1);
|
|
} else {
|
|
c = 4 * (s->left_ref_ctx[row7] == 1);
|
|
}
|
|
} else {
|
|
c = 2;
|
|
}
|
|
bit = vp56_rac_get_prob(&s->c, s->prob.p.single_ref[c][1]);
|
|
s->counts.single_ref[c][1][bit]++;
|
|
b->ref[0] = 1 + bit;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (b->bs <= BS_8x8) {
|
|
if (s->segmentation.feat[b->seg_id].skip_enabled) {
|
|
b->mode[0] = b->mode[1] = b->mode[2] = b->mode[3] = ZEROMV;
|
|
} else {
|
|
static const uint8_t off[10] = {
|
|
3, 0, 0, 1, 0, 0, 0, 0, 0, 0
|
|
};
|
|
|
|
// FIXME this needs to use the LUT tables from find_ref_mvs
|
|
// because not all are -1,0/0,-1
|
|
int c = inter_mode_ctx_lut[s->above_mode_ctx[col + off[b->bs]]]
|
|
[s->left_mode_ctx[row7 + off[b->bs]]];
|
|
|
|
b->mode[0] = vp8_rac_get_tree(&s->c, vp9_inter_mode_tree,
|
|
s->prob.p.mv_mode[c]);
|
|
b->mode[1] = b->mode[2] = b->mode[3] = b->mode[0];
|
|
s->counts.mv_mode[c][b->mode[0] - 10]++;
|
|
}
|
|
}
|
|
|
|
if (s->filtermode == FILTER_SWITCHABLE) {
|
|
int c;
|
|
|
|
if (have_a && s->above_mode_ctx[col] >= NEARESTMV) {
|
|
if (have_l && s->left_mode_ctx[row7] >= NEARESTMV) {
|
|
c = s->above_filter_ctx[col] == s->left_filter_ctx[row7] ?
|
|
s->left_filter_ctx[row7] : 3;
|
|
} else {
|
|
c = s->above_filter_ctx[col];
|
|
}
|
|
} else if (have_l && s->left_mode_ctx[row7] >= NEARESTMV) {
|
|
c = s->left_filter_ctx[row7];
|
|
} else {
|
|
c = 3;
|
|
}
|
|
|
|
filter_id = vp8_rac_get_tree(&s->c, vp9_filter_tree,
|
|
s->prob.p.filter[c]);
|
|
s->counts.filter[c][filter_id]++;
|
|
b->filter = vp9_filter_lut[filter_id];
|
|
} else {
|
|
b->filter = s->filtermode;
|
|
}
|
|
|
|
if (b->bs > BS_8x8) {
|
|
int c = inter_mode_ctx_lut[s->above_mode_ctx[col]][s->left_mode_ctx[row7]];
|
|
|
|
b->mode[0] = vp8_rac_get_tree(&s->c, vp9_inter_mode_tree,
|
|
s->prob.p.mv_mode[c]);
|
|
s->counts.mv_mode[c][b->mode[0] - 10]++;
|
|
fill_mv(s, b->mv[0], b->mode[0], 0);
|
|
|
|
if (b->bs != BS_8x4) {
|
|
b->mode[1] = vp8_rac_get_tree(&s->c, vp9_inter_mode_tree,
|
|
s->prob.p.mv_mode[c]);
|
|
s->counts.mv_mode[c][b->mode[1] - 10]++;
|
|
fill_mv(s, b->mv[1], b->mode[1], 1);
|
|
} else {
|
|
b->mode[1] = b->mode[0];
|
|
AV_COPY32(&b->mv[1][0], &b->mv[0][0]);
|
|
AV_COPY32(&b->mv[1][1], &b->mv[0][1]);
|
|
}
|
|
|
|
if (b->bs != BS_4x8) {
|
|
b->mode[2] = vp8_rac_get_tree(&s->c, vp9_inter_mode_tree,
|
|
s->prob.p.mv_mode[c]);
|
|
s->counts.mv_mode[c][b->mode[2] - 10]++;
|
|
fill_mv(s, b->mv[2], b->mode[2], 2);
|
|
|
|
if (b->bs != BS_8x4) {
|
|
b->mode[3] = vp8_rac_get_tree(&s->c, vp9_inter_mode_tree,
|
|
s->prob.p.mv_mode[c]);
|
|
s->counts.mv_mode[c][b->mode[3] - 10]++;
|
|
fill_mv(s, b->mv[3], b->mode[3], 3);
|
|
} else {
|
|
b->mode[3] = b->mode[2];
|
|
AV_COPY32(&b->mv[3][0], &b->mv[2][0]);
|
|
AV_COPY32(&b->mv[3][1], &b->mv[2][1]);
|
|
}
|
|
} else {
|
|
b->mode[2] = b->mode[0];
|
|
AV_COPY32(&b->mv[2][0], &b->mv[0][0]);
|
|
AV_COPY32(&b->mv[2][1], &b->mv[0][1]);
|
|
b->mode[3] = b->mode[1];
|
|
AV_COPY32(&b->mv[3][0], &b->mv[1][0]);
|
|
AV_COPY32(&b->mv[3][1], &b->mv[1][1]);
|
|
}
|
|
} else {
|
|
fill_mv(s, b->mv[0], b->mode[0], -1);
|
|
AV_COPY32(&b->mv[1][0], &b->mv[0][0]);
|
|
AV_COPY32(&b->mv[2][0], &b->mv[0][0]);
|
|
AV_COPY32(&b->mv[3][0], &b->mv[0][0]);
|
|
AV_COPY32(&b->mv[1][1], &b->mv[0][1]);
|
|
AV_COPY32(&b->mv[2][1], &b->mv[0][1]);
|
|
AV_COPY32(&b->mv[3][1], &b->mv[0][1]);
|
|
}
|
|
|
|
vref = b->ref[b->comp ? s->signbias[s->varcompref[0]] : 0];
|
|
}
|
|
|
|
#if HAVE_FAST_64BIT
|
|
#define SPLAT_CTX(var, val, n) \
|
|
switch (n) { \
|
|
case 1: var = val; break; \
|
|
case 2: AV_WN16A(&var, val * 0x0101); break; \
|
|
case 4: AV_WN32A(&var, val * 0x01010101); break; \
|
|
case 8: AV_WN64A(&var, val * 0x0101010101010101ULL); break; \
|
|
case 16: { \
|
|
uint64_t v64 = val * 0x0101010101010101ULL; \
|
|
AV_WN64A( &var, v64); \
|
|
AV_WN64A(&((uint8_t *) &var)[8], v64); \
|
|
break; \
|
|
} \
|
|
}
|
|
#else
|
|
#define SPLAT_CTX(var, val, n) \
|
|
switch (n) { \
|
|
case 1: var = val; break; \
|
|
case 2: AV_WN16A(&var, val * 0x0101); break; \
|
|
case 4: AV_WN32A(&var, val * 0x01010101); break; \
|
|
case 8: { \
|
|
uint32_t v32 = val * 0x01010101; \
|
|
AV_WN32A( &var, v32); \
|
|
AV_WN32A(&((uint8_t *) &var)[4], v32); \
|
|
break; \
|
|
} \
|
|
case 16: { \
|
|
uint32_t v32 = val * 0x01010101; \
|
|
AV_WN32A( &var, v32); \
|
|
AV_WN32A(&((uint8_t *) &var)[4], v32); \
|
|
AV_WN32A(&((uint8_t *) &var)[8], v32); \
|
|
AV_WN32A(&((uint8_t *) &var)[12], v32); \
|
|
break; \
|
|
} \
|
|
}
|
|
#endif
|
|
|
|
switch (bwh_tab[1][b->bs][0]) {
|
|
#define SET_CTXS(dir, off, n) \
|
|
do { \
|
|
SPLAT_CTX(s->dir##_skip_ctx[off], b->skip, n); \
|
|
SPLAT_CTX(s->dir##_txfm_ctx[off], b->tx, n); \
|
|
SPLAT_CTX(s->dir##_partition_ctx[off], dir##_ctx[b->bs], n); \
|
|
if (!s->keyframe && !s->intraonly) { \
|
|
SPLAT_CTX(s->dir##_intra_ctx[off], b->intra, n); \
|
|
SPLAT_CTX(s->dir##_comp_ctx[off], b->comp, n); \
|
|
SPLAT_CTX(s->dir##_mode_ctx[off], b->mode[3], n); \
|
|
if (!b->intra) { \
|
|
SPLAT_CTX(s->dir##_ref_ctx[off], vref, n); \
|
|
if (s->filtermode == FILTER_SWITCHABLE) { \
|
|
SPLAT_CTX(s->dir##_filter_ctx[off], filter_id, n); \
|
|
} \
|
|
} \
|
|
} \
|
|
} while (0)
|
|
case 1: SET_CTXS(above, col, 1); break;
|
|
case 2: SET_CTXS(above, col, 2); break;
|
|
case 4: SET_CTXS(above, col, 4); break;
|
|
case 8: SET_CTXS(above, col, 8); break;
|
|
}
|
|
switch (bwh_tab[1][b->bs][1]) {
|
|
case 1: SET_CTXS(left, row7, 1); break;
|
|
case 2: SET_CTXS(left, row7, 2); break;
|
|
case 4: SET_CTXS(left, row7, 4); break;
|
|
case 8: SET_CTXS(left, row7, 8); break;
|
|
}
|
|
#undef SPLAT_CTX
|
|
#undef SET_CTXS
|
|
|
|
if (!s->keyframe && !s->intraonly) {
|
|
if (b->bs > BS_8x8) {
|
|
int mv0 = AV_RN32A(&b->mv[3][0]), mv1 = AV_RN32A(&b->mv[3][1]);
|
|
|
|
AV_COPY32(&s->left_mv_ctx[row7 * 2 + 0][0], &b->mv[1][0]);
|
|
AV_COPY32(&s->left_mv_ctx[row7 * 2 + 0][1], &b->mv[1][1]);
|
|
AV_WN32A(&s->left_mv_ctx[row7 * 2 + 1][0], mv0);
|
|
AV_WN32A(&s->left_mv_ctx[row7 * 2 + 1][1], mv1);
|
|
AV_COPY32(&s->above_mv_ctx[col * 2 + 0][0], &b->mv[2][0]);
|
|
AV_COPY32(&s->above_mv_ctx[col * 2 + 0][1], &b->mv[2][1]);
|
|
AV_WN32A(&s->above_mv_ctx[col * 2 + 1][0], mv0);
|
|
AV_WN32A(&s->above_mv_ctx[col * 2 + 1][1], mv1);
|
|
} else {
|
|
int n, mv0 = AV_RN32A(&b->mv[3][0]), mv1 = AV_RN32A(&b->mv[3][1]);
|
|
|
|
for (n = 0; n < w4 * 2; n++) {
|
|
AV_WN32A(&s->above_mv_ctx[col * 2 + n][0], mv0);
|
|
AV_WN32A(&s->above_mv_ctx[col * 2 + n][1], mv1);
|
|
}
|
|
for (n = 0; n < h4 * 2; n++) {
|
|
AV_WN32A(&s->left_mv_ctx[row7 * 2 + n][0], mv0);
|
|
AV_WN32A(&s->left_mv_ctx[row7 * 2 + n][1], mv1);
|
|
}
|
|
}
|
|
}
|
|
|
|
// FIXME kinda ugly
|
|
for (y = 0; y < h4; y++) {
|
|
int x, o = (row + y) * s->sb_cols * 8 + col;
|
|
struct VP9mvrefPair *mv = &s->frames[CUR_FRAME].mv[o];
|
|
|
|
if (b->intra) {
|
|
for (x = 0; x < w4; x++) {
|
|
mv[x].ref[0] =
|
|
mv[x].ref[1] = -1;
|
|
}
|
|
} else if (b->comp) {
|
|
for (x = 0; x < w4; x++) {
|
|
mv[x].ref[0] = b->ref[0];
|
|
mv[x].ref[1] = b->ref[1];
|
|
AV_COPY32(&mv[x].mv[0], &b->mv[3][0]);
|
|
AV_COPY32(&mv[x].mv[1], &b->mv[3][1]);
|
|
}
|
|
} else {
|
|
for (x = 0; x < w4; x++) {
|
|
mv[x].ref[0] = b->ref[0];
|
|
mv[x].ref[1] = -1;
|
|
AV_COPY32(&mv[x].mv[0], &b->mv[3][0]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// FIXME merge cnt/eob arguments?
|
|
static av_always_inline int
|
|
decode_coeffs_b_generic(VP56RangeCoder *c, int16_t *coef, int n_coeffs,
|
|
int is_tx32x32, unsigned (*cnt)[6][3],
|
|
unsigned (*eob)[6][2], uint8_t (*p)[6][11],
|
|
int nnz, const int16_t *scan, const int16_t (*nb)[2],
|
|
const int16_t *band_counts, const int16_t *qmul)
|
|
{
|
|
int i = 0, band = 0, band_left = band_counts[band];
|
|
uint8_t *tp = p[0][nnz];
|
|
uint8_t cache[1024];
|
|
|
|
do {
|
|
int val, rc;
|
|
|
|
val = vp56_rac_get_prob_branchy(c, tp[0]); // eob
|
|
eob[band][nnz][val]++;
|
|
if (!val)
|
|
break;
|
|
|
|
skip_eob:
|
|
if (!vp56_rac_get_prob_branchy(c, tp[1])) { // zero
|
|
cnt[band][nnz][0]++;
|
|
if (!--band_left)
|
|
band_left = band_counts[++band];
|
|
cache[scan[i]] = 0;
|
|
nnz = (1 + cache[nb[i][0]] + cache[nb[i][1]]) >> 1;
|
|
tp = p[band][nnz];
|
|
if (++i == n_coeffs)
|
|
break; //invalid input; blocks should end with EOB
|
|
goto skip_eob;
|
|
}
|
|
|
|
rc = scan[i];
|
|
if (!vp56_rac_get_prob_branchy(c, tp[2])) { // one
|
|
cnt[band][nnz][1]++;
|
|
val = 1;
|
|
cache[rc] = 1;
|
|
} else {
|
|
// fill in p[3-10] (model fill) - only once per frame for each pos
|
|
if (!tp[3])
|
|
memcpy(&tp[3], vp9_model_pareto8[tp[2]], 8);
|
|
|
|
cnt[band][nnz][2]++;
|
|
if (!vp56_rac_get_prob_branchy(c, tp[3])) { // 2, 3, 4
|
|
if (!vp56_rac_get_prob_branchy(c, tp[4])) {
|
|
cache[rc] = val = 2;
|
|
} else {
|
|
val = 3 + vp56_rac_get_prob(c, tp[5]);
|
|
cache[rc] = 3;
|
|
}
|
|
} else if (!vp56_rac_get_prob_branchy(c, tp[6])) { // cat1/2
|
|
cache[rc] = 4;
|
|
if (!vp56_rac_get_prob_branchy(c, tp[7])) {
|
|
val = 5 + vp56_rac_get_prob(c, 159);
|
|
} else {
|
|
val = 7 + (vp56_rac_get_prob(c, 165) << 1);
|
|
val += vp56_rac_get_prob(c, 145);
|
|
}
|
|
} else { // cat 3-6
|
|
cache[rc] = 5;
|
|
if (!vp56_rac_get_prob_branchy(c, tp[8])) {
|
|
if (!vp56_rac_get_prob_branchy(c, tp[9])) {
|
|
val = 11 + (vp56_rac_get_prob(c, 173) << 2);
|
|
val += (vp56_rac_get_prob(c, 148) << 1);
|
|
val += vp56_rac_get_prob(c, 140);
|
|
} else {
|
|
val = 19 + (vp56_rac_get_prob(c, 176) << 3);
|
|
val += (vp56_rac_get_prob(c, 155) << 2);
|
|
val += (vp56_rac_get_prob(c, 140) << 1);
|
|
val += vp56_rac_get_prob(c, 135);
|
|
}
|
|
} else if (!vp56_rac_get_prob_branchy(c, tp[10])) {
|
|
val = 35 + (vp56_rac_get_prob(c, 180) << 4);
|
|
val += (vp56_rac_get_prob(c, 157) << 3);
|
|
val += (vp56_rac_get_prob(c, 141) << 2);
|
|
val += (vp56_rac_get_prob(c, 134) << 1);
|
|
val += vp56_rac_get_prob(c, 130);
|
|
} else {
|
|
val = 67 + (vp56_rac_get_prob(c, 254) << 13);
|
|
val += (vp56_rac_get_prob(c, 254) << 12);
|
|
val += (vp56_rac_get_prob(c, 254) << 11);
|
|
val += (vp56_rac_get_prob(c, 252) << 10);
|
|
val += (vp56_rac_get_prob(c, 249) << 9);
|
|
val += (vp56_rac_get_prob(c, 243) << 8);
|
|
val += (vp56_rac_get_prob(c, 230) << 7);
|
|
val += (vp56_rac_get_prob(c, 196) << 6);
|
|
val += (vp56_rac_get_prob(c, 177) << 5);
|
|
val += (vp56_rac_get_prob(c, 153) << 4);
|
|
val += (vp56_rac_get_prob(c, 140) << 3);
|
|
val += (vp56_rac_get_prob(c, 133) << 2);
|
|
val += (vp56_rac_get_prob(c, 130) << 1);
|
|
val += vp56_rac_get_prob(c, 129);
|
|
}
|
|
}
|
|
}
|
|
if (!--band_left)
|
|
band_left = band_counts[++band];
|
|
if (is_tx32x32)
|
|
coef[rc] = ((vp8_rac_get(c) ? -val : val) * qmul[!!i]) / 2;
|
|
else
|
|
coef[rc] = (vp8_rac_get(c) ? -val : val) * qmul[!!i];
|
|
nnz = (1 + cache[nb[i][0]] + cache[nb[i][1]]) >> 1;
|
|
tp = p[band][nnz];
|
|
} while (++i < n_coeffs);
|
|
|
|
return i;
|
|
}
|
|
|
|
static int decode_coeffs_b(VP56RangeCoder *c, int16_t *coef, int n_coeffs,
|
|
unsigned (*cnt)[6][3], unsigned (*eob)[6][2],
|
|
uint8_t (*p)[6][11], int nnz, const int16_t *scan,
|
|
const int16_t (*nb)[2], const int16_t *band_counts,
|
|
const int16_t *qmul)
|
|
{
|
|
return decode_coeffs_b_generic(c, coef, n_coeffs, 0, cnt, eob, p,
|
|
nnz, scan, nb, band_counts, qmul);
|
|
}
|
|
|
|
static int decode_coeffs_b32(VP56RangeCoder *c, int16_t *coef, int n_coeffs,
|
|
unsigned (*cnt)[6][3], unsigned (*eob)[6][2],
|
|
uint8_t (*p)[6][11], int nnz, const int16_t *scan,
|
|
const int16_t (*nb)[2], const int16_t *band_counts,
|
|
const int16_t *qmul)
|
|
{
|
|
return decode_coeffs_b_generic(c, coef, n_coeffs, 1, cnt, eob, p,
|
|
nnz, scan, nb, band_counts, qmul);
|
|
}
|
|
|
|
static void decode_coeffs(AVCodecContext *ctx)
|
|
{
|
|
VP9Context *s = ctx->priv_data;
|
|
VP9Block *b = s->b;
|
|
int row = s->row, col = s->col;
|
|
uint8_t (*p)[6][11] = s->prob.coef[b->tx][0 /* y */][!b->intra];
|
|
unsigned (*c)[6][3] = s->counts.coef[b->tx][0 /* y */][!b->intra];
|
|
unsigned (*e)[6][2] = s->counts.eob[b->tx][0 /* y */][!b->intra];
|
|
int w4 = bwh_tab[1][b->bs][0] << 1, h4 = bwh_tab[1][b->bs][1] << 1;
|
|
int end_x = FFMIN(2 * (s->cols - col), w4);
|
|
int end_y = FFMIN(2 * (s->rows - row), h4);
|
|
int n, pl, x, y, res;
|
|
int16_t (*qmul)[2] = s->segmentation.feat[b->seg_id].qmul;
|
|
int tx = 4 * s->lossless + b->tx;
|
|
const int16_t * const *yscans = vp9_scans[tx];
|
|
const int16_t (* const *ynbs)[2] = vp9_scans_nb[tx];
|
|
const int16_t *uvscan = vp9_scans[b->uvtx][DCT_DCT];
|
|
const int16_t (*uvnb)[2] = vp9_scans_nb[b->uvtx][DCT_DCT];
|
|
uint8_t *a = &s->above_y_nnz_ctx[col * 2];
|
|
uint8_t *l = &s->left_y_nnz_ctx[(row & 7) << 1];
|
|
static const int16_t band_counts[4][8] = {
|
|
{ 1, 2, 3, 4, 3, 16 - 13 },
|
|
{ 1, 2, 3, 4, 11, 64 - 21 },
|
|
{ 1, 2, 3, 4, 11, 256 - 21 },
|
|
{ 1, 2, 3, 4, 11, 1024 - 21 },
|
|
};
|
|
const int16_t *y_band_counts = band_counts[b->tx];
|
|
const int16_t *uv_band_counts = band_counts[b->uvtx];
|
|
|
|
#define MERGE(la, end, step, rd) \
|
|
for (n = 0; n < end; n += step) \
|
|
la[n] = !!rd(&la[n])
|
|
#define MERGE_CTX(step, rd) \
|
|
do { \
|
|
MERGE(l, end_y, step, rd); \
|
|
MERGE(a, end_x, step, rd); \
|
|
} while (0)
|
|
|
|
#define DECODE_Y_COEF_LOOP(step, mode_index, v) \
|
|
for (n = 0, y = 0; y < end_y; y += step) { \
|
|
for (x = 0; x < end_x; x += step, n += step * step) { \
|
|
enum TxfmType txtp = vp9_intra_txfm_type[b->mode[mode_index]]; \
|
|
res = decode_coeffs_b##v(&s->c, s->block + 16 * n, 16 * step * step, \
|
|
c, e, p, a[x] + l[y], yscans[txtp], \
|
|
ynbs[txtp], y_band_counts, qmul[0]); \
|
|
a[x] = l[y] = !!res; \
|
|
if (step >= 4) { \
|
|
AV_WN16A(&s->eob[n], res); \
|
|
} else { \
|
|
s->eob[n] = res; \
|
|
} \
|
|
} \
|
|
}
|
|
|
|
#define SPLAT(la, end, step, cond) \
|
|
if (step == 2) { \
|
|
for (n = 1; n < end; n += step) \
|
|
la[n] = la[n - 1]; \
|
|
} else if (step == 4) { \
|
|
if (cond) { \
|
|
for (n = 0; n < end; n += step) \
|
|
AV_WN32A(&la[n], la[n] * 0x01010101); \
|
|
} else { \
|
|
for (n = 0; n < end; n += step) \
|
|
memset(&la[n + 1], la[n], FFMIN(end - n - 1, 3)); \
|
|
} \
|
|
} else /* step == 8 */ { \
|
|
if (cond) { \
|
|
if (HAVE_FAST_64BIT) { \
|
|
for (n = 0; n < end; n += step) \
|
|
AV_WN64A(&la[n], la[n] * 0x0101010101010101ULL); \
|
|
} else { \
|
|
for (n = 0; n < end; n += step) { \
|
|
uint32_t v32 = la[n] * 0x01010101; \
|
|
AV_WN32A(&la[n], v32); \
|
|
AV_WN32A(&la[n + 4], v32); \
|
|
} \
|
|
} \
|
|
} else { \
|
|
for (n = 0; n < end; n += step) \
|
|
memset(&la[n + 1], la[n], FFMIN(end - n - 1, 7)); \
|
|
} \
|
|
}
|
|
#define SPLAT_CTX(step) \
|
|
do { \
|
|
SPLAT(a, end_x, step, end_x == w4); \
|
|
SPLAT(l, end_y, step, end_y == h4); \
|
|
} while (0)
|
|
|
|
/* y tokens */
|
|
switch (b->tx) {
|
|
case TX_4X4:
|
|
DECODE_Y_COEF_LOOP(1, b->bs > BS_8x8 ? n : 0,);
|
|
break;
|
|
case TX_8X8:
|
|
MERGE_CTX(2, AV_RN16A);
|
|
DECODE_Y_COEF_LOOP(2, 0,);
|
|
SPLAT_CTX(2);
|
|
break;
|
|
case TX_16X16:
|
|
MERGE_CTX(4, AV_RN32A);
|
|
DECODE_Y_COEF_LOOP(4, 0,);
|
|
SPLAT_CTX(4);
|
|
break;
|
|
case TX_32X32:
|
|
MERGE_CTX(8, AV_RN64A);
|
|
DECODE_Y_COEF_LOOP(8, 0, 32);
|
|
SPLAT_CTX(8);
|
|
break;
|
|
}
|
|
|
|
#define DECODE_UV_COEF_LOOP(step) \
|
|
for (n = 0, y = 0; y < end_y; y += step) { \
|
|
for (x = 0; x < end_x; x += step, n += step * step) { \
|
|
res = decode_coeffs_b(&s->c, s->uvblock[pl] + 16 * n, \
|
|
16 * step * step, c, e, p, a[x] + l[y], \
|
|
uvscan, uvnb, uv_band_counts, qmul[1]); \
|
|
a[x] = l[y] = !!res; \
|
|
if (step >= 4) { \
|
|
AV_WN16A(&s->uveob[pl][n], res); \
|
|
} else { \
|
|
s->uveob[pl][n] = res; \
|
|
} \
|
|
} \
|
|
}
|
|
|
|
p = s->prob.coef[b->uvtx][1 /* uv */][!b->intra];
|
|
c = s->counts.coef[b->uvtx][1 /* uv */][!b->intra];
|
|
e = s->counts.eob[b->uvtx][1 /* uv */][!b->intra];
|
|
w4 >>= 1;
|
|
h4 >>= 1;
|
|
end_x >>= 1;
|
|
end_y >>= 1;
|
|
for (pl = 0; pl < 2; pl++) {
|
|
a = &s->above_uv_nnz_ctx[pl][col];
|
|
l = &s->left_uv_nnz_ctx[pl][row & 7];
|
|
switch (b->uvtx) {
|
|
case TX_4X4:
|
|
DECODE_UV_COEF_LOOP(1);
|
|
break;
|
|
case TX_8X8:
|
|
MERGE_CTX(2, AV_RN16A);
|
|
DECODE_UV_COEF_LOOP(2);
|
|
SPLAT_CTX(2);
|
|
break;
|
|
case TX_16X16:
|
|
MERGE_CTX(4, AV_RN32A);
|
|
DECODE_UV_COEF_LOOP(4);
|
|
SPLAT_CTX(4);
|
|
break;
|
|
case TX_32X32:
|
|
MERGE_CTX(8, AV_RN64A);
|
|
// a 64x64 (max) uv block can ever only contain 1 tx32x32 block
|
|
// so there is no need to loop
|
|
res = decode_coeffs_b32(&s->c, s->uvblock[pl],
|
|
1024, c, e, p, a[0] + l[0],
|
|
uvscan, uvnb, uv_band_counts, qmul[1]);
|
|
a[0] = l[0] = !!res;
|
|
AV_WN16A(&s->uveob[pl][0], res);
|
|
SPLAT_CTX(8);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
static av_always_inline int check_intra_mode(VP9Context *s, int mode, uint8_t **a,
|
|
uint8_t *dst_edge, ptrdiff_t stride_edge,
|
|
uint8_t *dst_inner, ptrdiff_t stride_inner,
|
|
uint8_t *l, int col, int x, int w,
|
|
int row, int y, enum TxfmMode tx,
|
|
int p)
|
|
{
|
|
int have_top = row > 0 || y > 0;
|
|
int have_left = col > s->tiling.tile_col_start || x > 0;
|
|
int have_right = x < w - 1;
|
|
static const uint8_t mode_conv[10][2 /* have_left */][2 /* have_top */] = {
|
|
[VERT_PRED] = { { DC_127_PRED, VERT_PRED },
|
|
{ DC_127_PRED, VERT_PRED } },
|
|
[HOR_PRED] = { { DC_129_PRED, DC_129_PRED },
|
|
{ HOR_PRED, HOR_PRED } },
|
|
[DC_PRED] = { { DC_128_PRED, TOP_DC_PRED },
|
|
{ LEFT_DC_PRED, DC_PRED } },
|
|
[DIAG_DOWN_LEFT_PRED] = { { DC_127_PRED, DIAG_DOWN_LEFT_PRED },
|
|
{ DC_127_PRED, DIAG_DOWN_LEFT_PRED } },
|
|
[DIAG_DOWN_RIGHT_PRED] = { { DIAG_DOWN_RIGHT_PRED, DIAG_DOWN_RIGHT_PRED },
|
|
{ DIAG_DOWN_RIGHT_PRED, DIAG_DOWN_RIGHT_PRED } },
|
|
[VERT_RIGHT_PRED] = { { VERT_RIGHT_PRED, VERT_RIGHT_PRED },
|
|
{ VERT_RIGHT_PRED, VERT_RIGHT_PRED } },
|
|
[HOR_DOWN_PRED] = { { HOR_DOWN_PRED, HOR_DOWN_PRED },
|
|
{ HOR_DOWN_PRED, HOR_DOWN_PRED } },
|
|
[VERT_LEFT_PRED] = { { DC_127_PRED, VERT_LEFT_PRED },
|
|
{ DC_127_PRED, VERT_LEFT_PRED } },
|
|
[HOR_UP_PRED] = { { DC_129_PRED, DC_129_PRED },
|
|
{ HOR_UP_PRED, HOR_UP_PRED } },
|
|
[TM_VP8_PRED] = { { DC_129_PRED, VERT_PRED },
|
|
{ HOR_PRED, TM_VP8_PRED } },
|
|
};
|
|
static const struct {
|
|
uint8_t needs_left:1;
|
|
uint8_t needs_top:1;
|
|
uint8_t needs_topleft:1;
|
|
uint8_t needs_topright:1;
|
|
} edges[N_INTRA_PRED_MODES] = {
|
|
[VERT_PRED] = { .needs_top = 1 },
|
|
[HOR_PRED] = { .needs_left = 1 },
|
|
[DC_PRED] = { .needs_top = 1, .needs_left = 1 },
|
|
[DIAG_DOWN_LEFT_PRED] = { .needs_top = 1, .needs_topright = 1 },
|
|
[DIAG_DOWN_RIGHT_PRED] = { .needs_left = 1, .needs_top = 1, .needs_topleft = 1 },
|
|
[VERT_RIGHT_PRED] = { .needs_left = 1, .needs_top = 1, .needs_topleft = 1 },
|
|
[HOR_DOWN_PRED] = { .needs_left = 1, .needs_top = 1, .needs_topleft = 1 },
|
|
[VERT_LEFT_PRED] = { .needs_top = 1, .needs_topright = 1 },
|
|
[HOR_UP_PRED] = { .needs_left = 1 },
|
|
[TM_VP8_PRED] = { .needs_left = 1, .needs_top = 1, .needs_topleft = 1 },
|
|
[LEFT_DC_PRED] = { .needs_left = 1 },
|
|
[TOP_DC_PRED] = { .needs_top = 1 },
|
|
[DC_128_PRED] = { 0 },
|
|
[DC_127_PRED] = { 0 },
|
|
[DC_129_PRED] = { 0 }
|
|
};
|
|
|
|
av_assert2(mode >= 0 && mode < 10);
|
|
mode = mode_conv[mode][have_left][have_top];
|
|
if (edges[mode].needs_top) {
|
|
uint8_t *top, *topleft;
|
|
int n_px_need = 4 << tx, n_px_have = (((s->cols - col) << !p) - x) * 4;
|
|
int n_px_need_tr = 0;
|
|
|
|
if (tx == TX_4X4 && edges[mode].needs_topright && have_right)
|
|
n_px_need_tr = 4;
|
|
|
|
// if top of sb64-row, use s->intra_pred_data[] instead of
|
|
// dst[-stride] for intra prediction (it contains pre- instead of
|
|
// post-loopfilter data)
|
|
if (have_top) {
|
|
top = !(row & 7) && !y ?
|
|
s->intra_pred_data[p] + col * (8 >> !!p) + x * 4 :
|
|
y == 0 ? &dst_edge[-stride_edge] : &dst_inner[-stride_inner];
|
|
if (have_left)
|
|
topleft = !(row & 7) && !y ?
|
|
s->intra_pred_data[p] + col * (8 >> !!p) + x * 4 :
|
|
y == 0 || x == 0 ? &dst_edge[-stride_edge] :
|
|
&dst_inner[-stride_inner];
|
|
}
|
|
|
|
if (have_top &&
|
|
(!edges[mode].needs_topleft || (have_left && top == topleft)) &&
|
|
(tx != TX_4X4 || !edges[mode].needs_topright || have_right) &&
|
|
n_px_need + n_px_need_tr <= n_px_have) {
|
|
*a = top;
|
|
} else {
|
|
if (have_top) {
|
|
if (n_px_need <= n_px_have) {
|
|
memcpy(*a, top, n_px_need);
|
|
} else {
|
|
memcpy(*a, top, n_px_have);
|
|
memset(&(*a)[n_px_have], (*a)[n_px_have - 1],
|
|
n_px_need - n_px_have);
|
|
}
|
|
} else {
|
|
memset(*a, 127, n_px_need);
|
|
}
|
|
if (edges[mode].needs_topleft) {
|
|
if (have_left && have_top) {
|
|
(*a)[-1] = topleft[-1];
|
|
} else {
|
|
(*a)[-1] = have_top ? 129 : 127;
|
|
}
|
|
}
|
|
if (tx == TX_4X4 && edges[mode].needs_topright) {
|
|
if (have_top && have_right &&
|
|
n_px_need + n_px_need_tr <= n_px_have) {
|
|
memcpy(&(*a)[4], &top[4], 4);
|
|
} else {
|
|
memset(&(*a)[4], (*a)[3], 4);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if (edges[mode].needs_left) {
|
|
if (have_left) {
|
|
int n_px_need = 4 << tx, i, n_px_have = (((s->rows - row) << !p) - y) * 4;
|
|
uint8_t *dst = x == 0 ? dst_edge : dst_inner;
|
|
ptrdiff_t stride = x == 0 ? stride_edge : stride_inner;
|
|
|
|
if (n_px_need <= n_px_have) {
|
|
for (i = 0; i < n_px_need; i++)
|
|
l[n_px_need - 1 - i] = dst[i * stride - 1];
|
|
} else {
|
|
for (i = 0; i < n_px_have; i++)
|
|
l[n_px_need - 1 - i] = dst[i * stride - 1];
|
|
memset(l, l[n_px_need - n_px_have], n_px_need - n_px_have);
|
|
}
|
|
} else {
|
|
memset(l, 129, 4 << tx);
|
|
}
|
|
}
|
|
|
|
return mode;
|
|
}
|
|
|
|
static void intra_recon(AVCodecContext *ctx, ptrdiff_t y_off, ptrdiff_t uv_off)
|
|
{
|
|
VP9Context *s = ctx->priv_data;
|
|
VP9Block *b = s->b;
|
|
int row = s->row, col = s->col;
|
|
int w4 = bwh_tab[1][b->bs][0] << 1, step1d = 1 << b->tx, n;
|
|
int h4 = bwh_tab[1][b->bs][1] << 1, x, y, step = 1 << (b->tx * 2);
|
|
int end_x = FFMIN(2 * (s->cols - col), w4);
|
|
int end_y = FFMIN(2 * (s->rows - row), h4);
|
|
int tx = 4 * s->lossless + b->tx, uvtx = b->uvtx + 4 * s->lossless;
|
|
int uvstep1d = 1 << b->uvtx, p;
|
|
uint8_t *dst = s->dst[0], *dst_r = s->frames[CUR_FRAME].tf.f->data[0] + y_off;
|
|
LOCAL_ALIGNED_32(uint8_t, a_buf, [64]);
|
|
LOCAL_ALIGNED_32(uint8_t, l, [32]);
|
|
|
|
for (n = 0, y = 0; y < end_y; y += step1d) {
|
|
uint8_t *ptr = dst, *ptr_r = dst_r;
|
|
for (x = 0; x < end_x; x += step1d, ptr += 4 * step1d,
|
|
ptr_r += 4 * step1d, n += step) {
|
|
int mode = b->mode[b->bs > BS_8x8 && b->tx == TX_4X4 ?
|
|
y * 2 + x : 0];
|
|
uint8_t *a = &a_buf[32];
|
|
enum TxfmType txtp = vp9_intra_txfm_type[mode];
|
|
int eob = b->skip ? 0 : b->tx > TX_8X8 ? AV_RN16A(&s->eob[n]) : s->eob[n];
|
|
|
|
mode = check_intra_mode(s, mode, &a, ptr_r,
|
|
s->frames[CUR_FRAME].tf.f->linesize[0],
|
|
ptr, s->y_stride, l,
|
|
col, x, w4, row, y, b->tx, 0);
|
|
s->dsp.intra_pred[b->tx][mode](ptr, s->y_stride, l, a);
|
|
if (eob)
|
|
s->dsp.itxfm_add[tx][txtp](ptr, s->y_stride,
|
|
s->block + 16 * n, eob);
|
|
}
|
|
dst_r += 4 * step1d * s->frames[CUR_FRAME].tf.f->linesize[0];
|
|
dst += 4 * step1d * s->y_stride;
|
|
}
|
|
|
|
// U/V
|
|
w4 >>= 1;
|
|
end_x >>= 1;
|
|
end_y >>= 1;
|
|
step = 1 << (b->uvtx * 2);
|
|
for (p = 0; p < 2; p++) {
|
|
dst = s->dst[1 + p];
|
|
dst_r = s->frames[CUR_FRAME].tf.f->data[1 + p] + uv_off;
|
|
for (n = 0, y = 0; y < end_y; y += uvstep1d) {
|
|
uint8_t *ptr = dst, *ptr_r = dst_r;
|
|
for (x = 0; x < end_x; x += uvstep1d, ptr += 4 * uvstep1d,
|
|
ptr_r += 4 * uvstep1d, n += step) {
|
|
int mode = b->uvmode;
|
|
uint8_t *a = &a_buf[16];
|
|
int eob = b->skip ? 0 : b->uvtx > TX_8X8 ? AV_RN16A(&s->uveob[p][n]) : s->uveob[p][n];
|
|
|
|
mode = check_intra_mode(s, mode, &a, ptr_r,
|
|
s->frames[CUR_FRAME].tf.f->linesize[1],
|
|
ptr, s->uv_stride, l,
|
|
col, x, w4, row, y, b->uvtx, p + 1);
|
|
s->dsp.intra_pred[b->uvtx][mode](ptr, s->uv_stride, l, a);
|
|
if (eob)
|
|
s->dsp.itxfm_add[uvtx][DCT_DCT](ptr, s->uv_stride,
|
|
s->uvblock[p] + 16 * n, eob);
|
|
}
|
|
dst_r += 4 * uvstep1d * s->frames[CUR_FRAME].tf.f->linesize[1];
|
|
dst += 4 * uvstep1d * s->uv_stride;
|
|
}
|
|
}
|
|
}
|
|
|
|
static av_always_inline void mc_luma_dir(VP9Context *s, vp9_mc_func (*mc)[2],
|
|
uint8_t *dst, ptrdiff_t dst_stride,
|
|
const uint8_t *ref, ptrdiff_t ref_stride,
|
|
ThreadFrame *ref_frame,
|
|
ptrdiff_t y, ptrdiff_t x, const VP56mv *mv,
|
|
int bw, int bh, int w, int h)
|
|
{
|
|
int mx = mv->x, my = mv->y, th;
|
|
|
|
y += my >> 3;
|
|
x += mx >> 3;
|
|
ref += y * ref_stride + x;
|
|
mx &= 7;
|
|
my &= 7;
|
|
// FIXME bilinear filter only needs 0/1 pixels, not 3/4
|
|
// we use +7 because the last 7 pixels of each sbrow can be changed in
|
|
// the longest loopfilter of the next sbrow
|
|
th = (y + bh + 4 * !!my + 7) >> 6;
|
|
ff_thread_await_progress(ref_frame, FFMAX(th, 0), 0);
|
|
if (x < !!mx * 3 || y < !!my * 3 ||
|
|
x + !!mx * 4 > w - bw || y + !!my * 4 > h - bh) {
|
|
s->vdsp.emulated_edge_mc(s->edge_emu_buffer,
|
|
ref - !!my * 3 * ref_stride - !!mx * 3,
|
|
80, ref_stride,
|
|
bw + !!mx * 7, bh + !!my * 7,
|
|
x - !!mx * 3, y - !!my * 3, w, h);
|
|
ref = s->edge_emu_buffer + !!my * 3 * 80 + !!mx * 3;
|
|
ref_stride = 80;
|
|
}
|
|
mc[!!mx][!!my](dst, dst_stride, ref, ref_stride, bh, mx << 1, my << 1);
|
|
}
|
|
|
|
static av_always_inline void mc_chroma_dir(VP9Context *s, vp9_mc_func (*mc)[2],
|
|
uint8_t *dst_u, uint8_t *dst_v,
|
|
ptrdiff_t dst_stride,
|
|
const uint8_t *ref_u, ptrdiff_t src_stride_u,
|
|
const uint8_t *ref_v, ptrdiff_t src_stride_v,
|
|
ThreadFrame *ref_frame,
|
|
ptrdiff_t y, ptrdiff_t x, const VP56mv *mv,
|
|
int bw, int bh, int w, int h)
|
|
{
|
|
int mx = mv->x, my = mv->y, th;
|
|
|
|
y += my >> 4;
|
|
x += mx >> 4;
|
|
ref_u += y * src_stride_u + x;
|
|
ref_v += y * src_stride_v + x;
|
|
mx &= 15;
|
|
my &= 15;
|
|
// FIXME bilinear filter only needs 0/1 pixels, not 3/4
|
|
// we use +7 because the last 7 pixels of each sbrow can be changed in
|
|
// the longest loopfilter of the next sbrow
|
|
th = (y + bh + 4 * !!my + 7) >> 5;
|
|
ff_thread_await_progress(ref_frame, FFMAX(th, 0), 0);
|
|
if (x < !!mx * 3 || y < !!my * 3 ||
|
|
x + !!mx * 4 > w - bw || y + !!my * 4 > h - bh) {
|
|
s->vdsp.emulated_edge_mc(s->edge_emu_buffer,
|
|
ref_u - !!my * 3 * src_stride_u - !!mx * 3,
|
|
80, src_stride_u,
|
|
bw + !!mx * 7, bh + !!my * 7,
|
|
x - !!mx * 3, y - !!my * 3, w, h);
|
|
ref_u = s->edge_emu_buffer + !!my * 3 * 80 + !!mx * 3;
|
|
mc[!!mx][!!my](dst_u, dst_stride, ref_u, 80, bh, mx, my);
|
|
|
|
s->vdsp.emulated_edge_mc(s->edge_emu_buffer,
|
|
ref_v - !!my * 3 * src_stride_v - !!mx * 3,
|
|
80, src_stride_v,
|
|
bw + !!mx * 7, bh + !!my * 7,
|
|
x - !!mx * 3, y - !!my * 3, w, h);
|
|
ref_v = s->edge_emu_buffer + !!my * 3 * 80 + !!mx * 3;
|
|
mc[!!mx][!!my](dst_v, dst_stride, ref_v, 80, bh, mx, my);
|
|
} else {
|
|
mc[!!mx][!!my](dst_u, dst_stride, ref_u, src_stride_u, bh, mx, my);
|
|
mc[!!mx][!!my](dst_v, dst_stride, ref_v, src_stride_v, bh, mx, my);
|
|
}
|
|
}
|
|
|
|
static void inter_recon(AVCodecContext *ctx)
|
|
{
|
|
static const uint8_t bwlog_tab[2][N_BS_SIZES] = {
|
|
{ 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4 },
|
|
{ 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4, 4 },
|
|
};
|
|
VP9Context *s = ctx->priv_data;
|
|
VP9Block *b = s->b;
|
|
int row = s->row, col = s->col;
|
|
ThreadFrame *tref1 = &s->refs[s->refidx[b->ref[0]]], *tref2;
|
|
AVFrame *ref1 = tref1->f, *ref2;
|
|
int w1 = ref1->width, h1 = ref1->height, w2, h2;
|
|
ptrdiff_t ls_y = s->y_stride, ls_uv = s->uv_stride;
|
|
|
|
if (b->comp) {
|
|
tref2 = &s->refs[s->refidx[b->ref[1]]];
|
|
ref2 = tref2->f;
|
|
w2 = ref2->width;
|
|
h2 = ref2->height;
|
|
}
|
|
|
|
// y inter pred
|
|
if (b->bs > BS_8x8) {
|
|
if (b->bs == BS_8x4) {
|
|
mc_luma_dir(s, s->dsp.mc[3][b->filter][0], s->dst[0], ls_y,
|
|
ref1->data[0], ref1->linesize[0], tref1,
|
|
row << 3, col << 3, &b->mv[0][0], 8, 4, w1, h1);
|
|
mc_luma_dir(s, s->dsp.mc[3][b->filter][0],
|
|
s->dst[0] + 4 * ls_y, ls_y,
|
|
ref1->data[0], ref1->linesize[0], tref1,
|
|
(row << 3) + 4, col << 3, &b->mv[2][0], 8, 4, w1, h1);
|
|
|
|
if (b->comp) {
|
|
mc_luma_dir(s, s->dsp.mc[3][b->filter][1], s->dst[0], ls_y,
|
|
ref2->data[0], ref2->linesize[0], tref2,
|
|
row << 3, col << 3, &b->mv[0][1], 8, 4, w2, h2);
|
|
mc_luma_dir(s, s->dsp.mc[3][b->filter][1],
|
|
s->dst[0] + 4 * ls_y, ls_y,
|
|
ref2->data[0], ref2->linesize[0], tref2,
|
|
(row << 3) + 4, col << 3, &b->mv[2][1], 8, 4, w2, h2);
|
|
}
|
|
} else if (b->bs == BS_4x8) {
|
|
mc_luma_dir(s, s->dsp.mc[4][b->filter][0], s->dst[0], ls_y,
|
|
ref1->data[0], ref1->linesize[0], tref1,
|
|
row << 3, col << 3, &b->mv[0][0], 4, 8, w1, h1);
|
|
mc_luma_dir(s, s->dsp.mc[4][b->filter][0], s->dst[0] + 4, ls_y,
|
|
ref1->data[0], ref1->linesize[0], tref1,
|
|
row << 3, (col << 3) + 4, &b->mv[1][0], 4, 8, w1, h1);
|
|
|
|
if (b->comp) {
|
|
mc_luma_dir(s, s->dsp.mc[4][b->filter][1], s->dst[0], ls_y,
|
|
ref2->data[0], ref2->linesize[0], tref2,
|
|
row << 3, col << 3, &b->mv[0][1], 4, 8, w2, h2);
|
|
mc_luma_dir(s, s->dsp.mc[4][b->filter][1], s->dst[0] + 4, ls_y,
|
|
ref2->data[0], ref2->linesize[0], tref2,
|
|
row << 3, (col << 3) + 4, &b->mv[1][1], 4, 8, w2, h2);
|
|
}
|
|
} else {
|
|
av_assert2(b->bs == BS_4x4);
|
|
|
|
// FIXME if two horizontally adjacent blocks have the same MV,
|
|
// do a w8 instead of a w4 call
|
|
mc_luma_dir(s, s->dsp.mc[4][b->filter][0], s->dst[0], ls_y,
|
|
ref1->data[0], ref1->linesize[0], tref1,
|
|
row << 3, col << 3, &b->mv[0][0], 4, 4, w1, h1);
|
|
mc_luma_dir(s, s->dsp.mc[4][b->filter][0], s->dst[0] + 4, ls_y,
|
|
ref1->data[0], ref1->linesize[0], tref1,
|
|
row << 3, (col << 3) + 4, &b->mv[1][0], 4, 4, w1, h1);
|
|
mc_luma_dir(s, s->dsp.mc[4][b->filter][0],
|
|
s->dst[0] + 4 * ls_y, ls_y,
|
|
ref1->data[0], ref1->linesize[0], tref1,
|
|
(row << 3) + 4, col << 3, &b->mv[2][0], 4, 4, w1, h1);
|
|
mc_luma_dir(s, s->dsp.mc[4][b->filter][0],
|
|
s->dst[0] + 4 * ls_y + 4, ls_y,
|
|
ref1->data[0], ref1->linesize[0], tref1,
|
|
(row << 3) + 4, (col << 3) + 4, &b->mv[3][0], 4, 4, w1, h1);
|
|
|
|
if (b->comp) {
|
|
mc_luma_dir(s, s->dsp.mc[4][b->filter][1], s->dst[0], ls_y,
|
|
ref2->data[0], ref2->linesize[0], tref2,
|
|
row << 3, col << 3, &b->mv[0][1], 4, 4, w2, h2);
|
|
mc_luma_dir(s, s->dsp.mc[4][b->filter][1], s->dst[0] + 4, ls_y,
|
|
ref2->data[0], ref2->linesize[0], tref2,
|
|
row << 3, (col << 3) + 4, &b->mv[1][1], 4, 4, w2, h2);
|
|
mc_luma_dir(s, s->dsp.mc[4][b->filter][1],
|
|
s->dst[0] + 4 * ls_y, ls_y,
|
|
ref2->data[0], ref2->linesize[0], tref2,
|
|
(row << 3) + 4, col << 3, &b->mv[2][1], 4, 4, w2, h2);
|
|
mc_luma_dir(s, s->dsp.mc[4][b->filter][1],
|
|
s->dst[0] + 4 * ls_y + 4, ls_y,
|
|
ref2->data[0], ref2->linesize[0], tref2,
|
|
(row << 3) + 4, (col << 3) + 4, &b->mv[3][1], 4, 4, w2, h2);
|
|
}
|
|
}
|
|
} else {
|
|
int bwl = bwlog_tab[0][b->bs];
|
|
int bw = bwh_tab[0][b->bs][0] * 4, bh = bwh_tab[0][b->bs][1] * 4;
|
|
|
|
mc_luma_dir(s, s->dsp.mc[bwl][b->filter][0], s->dst[0], ls_y,
|
|
ref1->data[0], ref1->linesize[0], tref1,
|
|
row << 3, col << 3, &b->mv[0][0],bw, bh, w1, h1);
|
|
|
|
if (b->comp)
|
|
mc_luma_dir(s, s->dsp.mc[bwl][b->filter][1], s->dst[0], ls_y,
|
|
ref2->data[0], ref2->linesize[0], tref2,
|
|
row << 3, col << 3, &b->mv[0][1], bw, bh, w2, h2);
|
|
}
|
|
|
|
// uv inter pred
|
|
{
|
|
int bwl = bwlog_tab[1][b->bs];
|
|
int bw = bwh_tab[1][b->bs][0] * 4, bh = bwh_tab[1][b->bs][1] * 4;
|
|
VP56mv mvuv;
|
|
|
|
w1 = (w1 + 1) >> 1;
|
|
h1 = (h1 + 1) >> 1;
|
|
if (b->comp) {
|
|
w2 = (w2 + 1) >> 1;
|
|
h2 = (h2 + 1) >> 1;
|
|
}
|
|
if (b->bs > BS_8x8) {
|
|
mvuv.x = ROUNDED_DIV(b->mv[0][0].x + b->mv[1][0].x + b->mv[2][0].x + b->mv[3][0].x, 4);
|
|
mvuv.y = ROUNDED_DIV(b->mv[0][0].y + b->mv[1][0].y + b->mv[2][0].y + b->mv[3][0].y, 4);
|
|
} else {
|
|
mvuv = b->mv[0][0];
|
|
}
|
|
|
|
mc_chroma_dir(s, s->dsp.mc[bwl][b->filter][0],
|
|
s->dst[1], s->dst[2], ls_uv,
|
|
ref1->data[1], ref1->linesize[1],
|
|
ref1->data[2], ref1->linesize[2], tref1,
|
|
row << 2, col << 2, &mvuv, bw, bh, w1, h1);
|
|
|
|
if (b->comp) {
|
|
if (b->bs > BS_8x8) {
|
|
mvuv.x = ROUNDED_DIV(b->mv[0][1].x + b->mv[1][1].x + b->mv[2][1].x + b->mv[3][1].x, 4);
|
|
mvuv.y = ROUNDED_DIV(b->mv[0][1].y + b->mv[1][1].y + b->mv[2][1].y + b->mv[3][1].y, 4);
|
|
} else {
|
|
mvuv = b->mv[0][1];
|
|
}
|
|
mc_chroma_dir(s, s->dsp.mc[bwl][b->filter][1],
|
|
s->dst[1], s->dst[2], ls_uv,
|
|
ref2->data[1], ref2->linesize[1],
|
|
ref2->data[2], ref2->linesize[2], tref2,
|
|
row << 2, col << 2, &mvuv, bw, bh, w2, h2);
|
|
}
|
|
}
|
|
|
|
if (!b->skip) {
|
|
/* mostly copied intra_reconn() */
|
|
|
|
int w4 = bwh_tab[1][b->bs][0] << 1, step1d = 1 << b->tx, n;
|
|
int h4 = bwh_tab[1][b->bs][1] << 1, x, y, step = 1 << (b->tx * 2);
|
|
int end_x = FFMIN(2 * (s->cols - col), w4);
|
|
int end_y = FFMIN(2 * (s->rows - row), h4);
|
|
int tx = 4 * s->lossless + b->tx, uvtx = b->uvtx + 4 * s->lossless;
|
|
int uvstep1d = 1 << b->uvtx, p;
|
|
uint8_t *dst = s->dst[0];
|
|
|
|
// y itxfm add
|
|
for (n = 0, y = 0; y < end_y; y += step1d) {
|
|
uint8_t *ptr = dst;
|
|
for (x = 0; x < end_x; x += step1d, ptr += 4 * step1d, n += step) {
|
|
int eob = b->tx > TX_8X8 ? AV_RN16A(&s->eob[n]) : s->eob[n];
|
|
|
|
if (eob)
|
|
s->dsp.itxfm_add[tx][DCT_DCT](ptr, s->y_stride,
|
|
s->block + 16 * n, eob);
|
|
}
|
|
dst += 4 * s->y_stride * step1d;
|
|
}
|
|
|
|
// uv itxfm add
|
|
end_x >>= 1;
|
|
end_y >>= 1;
|
|
step = 1 << (b->uvtx * 2);
|
|
for (p = 0; p < 2; p++) {
|
|
dst = s->dst[p + 1];
|
|
for (n = 0, y = 0; y < end_y; y += uvstep1d) {
|
|
uint8_t *ptr = dst;
|
|
for (x = 0; x < end_x; x += uvstep1d, ptr += 4 * uvstep1d, n += step) {
|
|
int eob = b->uvtx > TX_8X8 ? AV_RN16A(&s->uveob[p][n]) : s->uveob[p][n];
|
|
|
|
if (eob)
|
|
s->dsp.itxfm_add[uvtx][DCT_DCT](ptr, s->uv_stride,
|
|
s->uvblock[p] + 16 * n, eob);
|
|
}
|
|
dst += 4 * uvstep1d * s->uv_stride;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static av_always_inline void mask_edges(struct VP9Filter *lflvl, int is_uv,
|
|
int row_and_7, int col_and_7,
|
|
int w, int h, int col_end, int row_end,
|
|
enum TxfmMode tx, int skip_inter)
|
|
{
|
|
// FIXME I'm pretty sure all loops can be replaced by a single LUT if
|
|
// we make VP9Filter.mask uint64_t (i.e. row/col all single variable)
|
|
// and make the LUT 5-indexed (bl, bp, is_uv, tx and row/col), and then
|
|
// use row_and_7/col_and_7 as shifts (1*col_and_7+8*row_and_7)
|
|
|
|
// the intended behaviour of the vp9 loopfilter is to work on 8-pixel
|
|
// edges. This means that for UV, we work on two subsampled blocks at
|
|
// a time, and we only use the topleft block's mode information to set
|
|
// things like block strength. Thus, for any block size smaller than
|
|
// 16x16, ignore the odd portion of the block.
|
|
if (tx == TX_4X4 && is_uv) {
|
|
if (h == 1) {
|
|
if (row_and_7 & 1)
|
|
return;
|
|
if (!row_end)
|
|
h += 1;
|
|
}
|
|
if (w == 1) {
|
|
if (col_and_7 & 1)
|
|
return;
|
|
if (!col_end)
|
|
w += 1;
|
|
}
|
|
}
|
|
|
|
if (tx == TX_4X4 && !skip_inter) {
|
|
int t = 1 << col_and_7, m_col = (t << w) - t, y;
|
|
int m_col_odd = (t << (w - 1)) - t;
|
|
|
|
// on 32-px edges, use the 8-px wide loopfilter; else, use 4-px wide
|
|
if (is_uv) {
|
|
int m_row_8 = m_col & 0x01, m_row_4 = m_col - m_row_8;
|
|
|
|
for (y = row_and_7; y < h + row_and_7; y++) {
|
|
int col_mask_id = 2 - !(y & 7);
|
|
|
|
lflvl->mask[is_uv][0][y][1] |= m_row_8;
|
|
lflvl->mask[is_uv][0][y][2] |= m_row_4;
|
|
// for odd lines, if the odd col is not being filtered,
|
|
// skip odd row also:
|
|
// .---. <-- a
|
|
// | |
|
|
// |___| <-- b
|
|
// ^ ^
|
|
// c d
|
|
//
|
|
// if a/c are even row/col and b/d are odd, and d is skipped,
|
|
// e.g. right edge of size-66x66.webm, then skip b also (bug)
|
|
if ((col_end & 1) && (y & 1)) {
|
|
lflvl->mask[is_uv][1][y][col_mask_id] |= m_col_odd;
|
|
} else {
|
|
lflvl->mask[is_uv][1][y][col_mask_id] |= m_col;
|
|
}
|
|
}
|
|
} else {
|
|
int m_row_8 = m_col & 0x11, m_row_4 = m_col - m_row_8;
|
|
|
|
for (y = row_and_7; y < h + row_and_7; y++) {
|
|
int col_mask_id = 2 - !(y & 3);
|
|
|
|
lflvl->mask[is_uv][0][y][1] |= m_row_8; // row edge
|
|
lflvl->mask[is_uv][0][y][2] |= m_row_4;
|
|
lflvl->mask[is_uv][1][y][col_mask_id] |= m_col; // col edge
|
|
lflvl->mask[is_uv][0][y][3] |= m_col;
|
|
lflvl->mask[is_uv][1][y][3] |= m_col;
|
|
}
|
|
}
|
|
} else {
|
|
int y, t = 1 << col_and_7, m_col = (t << w) - t;
|
|
|
|
if (!skip_inter) {
|
|
int mask_id = (tx == TX_8X8);
|
|
int l2 = tx + is_uv - 1, step1d = 1 << l2;
|
|
static const unsigned masks[4] = { 0xff, 0x55, 0x11, 0x01 };
|
|
int m_row = m_col & masks[l2];
|
|
|
|
// at odd UV col/row edges tx16/tx32 loopfilter edges, force
|
|
// 8wd loopfilter to prevent going off the visible edge.
|
|
if (is_uv && tx > TX_8X8 && (w ^ (w - 1)) == 1) {
|
|
int m_row_16 = ((t << (w - 1)) - t) & masks[l2];
|
|
int m_row_8 = m_row - m_row_16;
|
|
|
|
for (y = row_and_7; y < h + row_and_7; y++) {
|
|
lflvl->mask[is_uv][0][y][0] |= m_row_16;
|
|
lflvl->mask[is_uv][0][y][1] |= m_row_8;
|
|
}
|
|
} else {
|
|
for (y = row_and_7; y < h + row_and_7; y++)
|
|
lflvl->mask[is_uv][0][y][mask_id] |= m_row;
|
|
}
|
|
|
|
if (is_uv && tx > TX_8X8 && (h ^ (h - 1)) == 1) {
|
|
for (y = row_and_7; y < h + row_and_7 - 1; y += step1d)
|
|
lflvl->mask[is_uv][1][y][0] |= m_col;
|
|
if (y - row_and_7 == h - 1)
|
|
lflvl->mask[is_uv][1][y][1] |= m_col;
|
|
} else {
|
|
for (y = row_and_7; y < h + row_and_7; y += step1d)
|
|
lflvl->mask[is_uv][1][y][mask_id] |= m_col;
|
|
}
|
|
} else if (tx != TX_4X4) {
|
|
int mask_id;
|
|
|
|
mask_id = (tx == TX_8X8) || (is_uv && h == 1);
|
|
lflvl->mask[is_uv][1][row_and_7][mask_id] |= m_col;
|
|
mask_id = (tx == TX_8X8) || (is_uv && w == 1);
|
|
for (y = row_and_7; y < h + row_and_7; y++)
|
|
lflvl->mask[is_uv][0][y][mask_id] |= t;
|
|
} else if (is_uv) {
|
|
int t8 = t & 0x01, t4 = t - t8;
|
|
|
|
for (y = row_and_7; y < h + row_and_7; y++) {
|
|
lflvl->mask[is_uv][0][y][2] |= t4;
|
|
lflvl->mask[is_uv][0][y][1] |= t8;
|
|
}
|
|
lflvl->mask[is_uv][1][row_and_7][2 - !(row_and_7 & 7)] |= m_col;
|
|
} else {
|
|
int t8 = t & 0x11, t4 = t - t8;
|
|
|
|
for (y = row_and_7; y < h + row_and_7; y++) {
|
|
lflvl->mask[is_uv][0][y][2] |= t4;
|
|
lflvl->mask[is_uv][0][y][1] |= t8;
|
|
}
|
|
lflvl->mask[is_uv][1][row_and_7][2 - !(row_and_7 & 3)] |= m_col;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void decode_b(AVCodecContext *ctx, int row, int col,
|
|
struct VP9Filter *lflvl, ptrdiff_t yoff, ptrdiff_t uvoff,
|
|
enum BlockLevel bl, enum BlockPartition bp)
|
|
{
|
|
VP9Context *s = ctx->priv_data;
|
|
VP9Block *b = s->b;
|
|
enum BlockSize bs = bl * 3 + bp;
|
|
int w4 = bwh_tab[1][bs][0], h4 = bwh_tab[1][bs][1], lvl;
|
|
int emu[2];
|
|
AVFrame *f = s->frames[CUR_FRAME].tf.f;
|
|
|
|
s->row = row;
|
|
s->row7 = row & 7;
|
|
s->col = col;
|
|
s->col7 = col & 7;
|
|
s->min_mv.x = -(128 + col * 64);
|
|
s->min_mv.y = -(128 + row * 64);
|
|
s->max_mv.x = 128 + (s->cols - col - w4) * 64;
|
|
s->max_mv.y = 128 + (s->rows - row - h4) * 64;
|
|
if (s->pass < 2) {
|
|
b->bs = bs;
|
|
b->bl = bl;
|
|
b->bp = bp;
|
|
decode_mode(ctx);
|
|
b->uvtx = b->tx - (w4 * 2 == (1 << b->tx) || h4 * 2 == (1 << b->tx));
|
|
|
|
if (!b->skip) {
|
|
decode_coeffs(ctx);
|
|
} else {
|
|
int row7 = s->row7;
|
|
|
|
#define SPLAT_ZERO_CTX(v, n) \
|
|
switch (n) { \
|
|
case 1: v = 0; break; \
|
|
case 2: AV_ZERO16(&v); break; \
|
|
case 4: AV_ZERO32(&v); break; \
|
|
case 8: AV_ZERO64(&v); break; \
|
|
case 16: AV_ZERO128(&v); break; \
|
|
}
|
|
#define SPLAT_ZERO_YUV(dir, var, off, n) \
|
|
do { \
|
|
SPLAT_ZERO_CTX(s->dir##_y_##var[off * 2], n * 2); \
|
|
SPLAT_ZERO_CTX(s->dir##_uv_##var[0][off], n); \
|
|
SPLAT_ZERO_CTX(s->dir##_uv_##var[1][off], n); \
|
|
} while (0)
|
|
|
|
switch (w4) {
|
|
case 1: SPLAT_ZERO_YUV(above, nnz_ctx, col, 1); break;
|
|
case 2: SPLAT_ZERO_YUV(above, nnz_ctx, col, 2); break;
|
|
case 4: SPLAT_ZERO_YUV(above, nnz_ctx, col, 4); break;
|
|
case 8: SPLAT_ZERO_YUV(above, nnz_ctx, col, 8); break;
|
|
}
|
|
switch (h4) {
|
|
case 1: SPLAT_ZERO_YUV(left, nnz_ctx, row7, 1); break;
|
|
case 2: SPLAT_ZERO_YUV(left, nnz_ctx, row7, 2); break;
|
|
case 4: SPLAT_ZERO_YUV(left, nnz_ctx, row7, 4); break;
|
|
case 8: SPLAT_ZERO_YUV(left, nnz_ctx, row7, 8); break;
|
|
}
|
|
}
|
|
if (s->pass == 1) {
|
|
s->b++;
|
|
s->block += w4 * h4 * 64;
|
|
s->uvblock[0] += w4 * h4 * 16;
|
|
s->uvblock[1] += w4 * h4 * 16;
|
|
s->eob += 4 * w4 * h4;
|
|
s->uveob[0] += w4 * h4;
|
|
s->uveob[1] += w4 * h4;
|
|
|
|
return;
|
|
}
|
|
}
|
|
|
|
// emulated overhangs if the stride of the target buffer can't hold. This
|
|
// allows to support emu-edge and so on even if we have large block
|
|
// overhangs
|
|
emu[0] = (col + w4) * 8 > f->linesize[0] ||
|
|
(row + h4) > s->rows;
|
|
emu[1] = (col + w4) * 4 > f->linesize[1] ||
|
|
(row + h4) > s->rows;
|
|
if (emu[0]) {
|
|
s->dst[0] = s->tmp_y;
|
|
s->y_stride = 64;
|
|
} else {
|
|
s->dst[0] = f->data[0] + yoff;
|
|
s->y_stride = f->linesize[0];
|
|
}
|
|
if (emu[1]) {
|
|
s->dst[1] = s->tmp_uv[0];
|
|
s->dst[2] = s->tmp_uv[1];
|
|
s->uv_stride = 32;
|
|
} else {
|
|
s->dst[1] = f->data[1] + uvoff;
|
|
s->dst[2] = f->data[2] + uvoff;
|
|
s->uv_stride = f->linesize[1];
|
|
}
|
|
if (b->intra) {
|
|
intra_recon(ctx, yoff, uvoff);
|
|
} else {
|
|
inter_recon(ctx);
|
|
}
|
|
if (emu[0]) {
|
|
int w = FFMIN(s->cols - col, w4) * 8, h = FFMIN(s->rows - row, h4) * 8, n, o = 0;
|
|
|
|
for (n = 0; o < w; n++) {
|
|
int bw = 64 >> n;
|
|
|
|
av_assert2(n <= 4);
|
|
if (w & bw) {
|
|
s->dsp.mc[n][0][0][0][0](f->data[0] + yoff + o, f->linesize[0],
|
|
s->tmp_y + o, 64, h, 0, 0);
|
|
o += bw;
|
|
}
|
|
}
|
|
}
|
|
if (emu[1]) {
|
|
int w = FFMIN(s->cols - col, w4) * 4, h = FFMIN(s->rows - row, h4) * 4, n, o = 0;
|
|
|
|
for (n = 1; o < w; n++) {
|
|
int bw = 64 >> n;
|
|
|
|
av_assert2(n <= 4);
|
|
if (w & bw) {
|
|
s->dsp.mc[n][0][0][0][0](f->data[1] + uvoff + o, f->linesize[1],
|
|
s->tmp_uv[0] + o, 32, h, 0, 0);
|
|
s->dsp.mc[n][0][0][0][0](f->data[2] + uvoff + o, f->linesize[2],
|
|
s->tmp_uv[1] + o, 32, h, 0, 0);
|
|
o += bw;
|
|
}
|
|
}
|
|
}
|
|
|
|
// pick filter level and find edges to apply filter to
|
|
if (s->filter.level &&
|
|
(lvl = s->segmentation.feat[b->seg_id].lflvl[b->intra ? 0 : b->ref[0] + 1]
|
|
[b->mode[3] != ZEROMV]) > 0) {
|
|
int x_end = FFMIN(s->cols - col, w4), y_end = FFMIN(s->rows - row, h4);
|
|
int skip_inter = !b->intra && b->skip, col7 = s->col7, row7 = s->row7;
|
|
|
|
setctx_2d(&lflvl->level[row7 * 8 + col7], w4, h4, 8, lvl);
|
|
mask_edges(lflvl, 0, row7, col7, x_end, y_end, 0, 0, b->tx, skip_inter);
|
|
mask_edges(lflvl, 1, row7, col7, x_end, y_end,
|
|
s->cols & 1 && col + w4 >= s->cols ? s->cols & 7 : 0,
|
|
s->rows & 1 && row + h4 >= s->rows ? s->rows & 7 : 0,
|
|
b->uvtx, skip_inter);
|
|
|
|
if (!s->filter.lim_lut[lvl]) {
|
|
int sharp = s->filter.sharpness;
|
|
int limit = lvl;
|
|
|
|
if (sharp > 0) {
|
|
limit >>= (sharp + 3) >> 2;
|
|
limit = FFMIN(limit, 9 - sharp);
|
|
}
|
|
limit = FFMAX(limit, 1);
|
|
|
|
s->filter.lim_lut[lvl] = limit;
|
|
s->filter.mblim_lut[lvl] = 2 * (lvl + 2) + limit;
|
|
}
|
|
}
|
|
|
|
if (s->pass == 2) {
|
|
s->b++;
|
|
s->block += w4 * h4 * 64;
|
|
s->uvblock[0] += w4 * h4 * 16;
|
|
s->uvblock[1] += w4 * h4 * 16;
|
|
s->eob += 4 * w4 * h4;
|
|
s->uveob[0] += w4 * h4;
|
|
s->uveob[1] += w4 * h4;
|
|
}
|
|
}
|
|
|
|
static void decode_sb(AVCodecContext *ctx, int row, int col, struct VP9Filter *lflvl,
|
|
ptrdiff_t yoff, ptrdiff_t uvoff, enum BlockLevel bl)
|
|
{
|
|
VP9Context *s = ctx->priv_data;
|
|
int c = ((s->above_partition_ctx[col] >> (3 - bl)) & 1) |
|
|
(((s->left_partition_ctx[row & 0x7] >> (3 - bl)) & 1) << 1);
|
|
const uint8_t *p = s->keyframe ? vp9_default_kf_partition_probs[bl][c] :
|
|
s->prob.p.partition[bl][c];
|
|
enum BlockPartition bp;
|
|
ptrdiff_t hbs = 4 >> bl;
|
|
AVFrame *f = s->frames[CUR_FRAME].tf.f;
|
|
ptrdiff_t y_stride = f->linesize[0], uv_stride = f->linesize[1];
|
|
|
|
if (bl == BL_8X8) {
|
|
bp = vp8_rac_get_tree(&s->c, vp9_partition_tree, p);
|
|
decode_b(ctx, row, col, lflvl, yoff, uvoff, bl, bp);
|
|
} else if (col + hbs < s->cols) { // FIXME why not <=?
|
|
if (row + hbs < s->rows) { // FIXME why not <=?
|
|
bp = vp8_rac_get_tree(&s->c, vp9_partition_tree, p);
|
|
switch (bp) {
|
|
case PARTITION_NONE:
|
|
decode_b(ctx, row, col, lflvl, yoff, uvoff, bl, bp);
|
|
break;
|
|
case PARTITION_H:
|
|
decode_b(ctx, row, col, lflvl, yoff, uvoff, bl, bp);
|
|
yoff += hbs * 8 * y_stride;
|
|
uvoff += hbs * 4 * uv_stride;
|
|
decode_b(ctx, row + hbs, col, lflvl, yoff, uvoff, bl, bp);
|
|
break;
|
|
case PARTITION_V:
|
|
decode_b(ctx, row, col, lflvl, yoff, uvoff, bl, bp);
|
|
yoff += hbs * 8;
|
|
uvoff += hbs * 4;
|
|
decode_b(ctx, row, col + hbs, lflvl, yoff, uvoff, bl, bp);
|
|
break;
|
|
case PARTITION_SPLIT:
|
|
decode_sb(ctx, row, col, lflvl, yoff, uvoff, bl + 1);
|
|
decode_sb(ctx, row, col + hbs, lflvl,
|
|
yoff + 8 * hbs, uvoff + 4 * hbs, bl + 1);
|
|
yoff += hbs * 8 * y_stride;
|
|
uvoff += hbs * 4 * uv_stride;
|
|
decode_sb(ctx, row + hbs, col, lflvl, yoff, uvoff, bl + 1);
|
|
decode_sb(ctx, row + hbs, col + hbs, lflvl,
|
|
yoff + 8 * hbs, uvoff + 4 * hbs, bl + 1);
|
|
break;
|
|
default:
|
|
av_assert0(0);
|
|
}
|
|
} else if (vp56_rac_get_prob_branchy(&s->c, p[1])) {
|
|
bp = PARTITION_SPLIT;
|
|
decode_sb(ctx, row, col, lflvl, yoff, uvoff, bl + 1);
|
|
decode_sb(ctx, row, col + hbs, lflvl,
|
|
yoff + 8 * hbs, uvoff + 4 * hbs, bl + 1);
|
|
} else {
|
|
bp = PARTITION_H;
|
|
decode_b(ctx, row, col, lflvl, yoff, uvoff, bl, bp);
|
|
}
|
|
} else if (row + hbs < s->rows) { // FIXME why not <=?
|
|
if (vp56_rac_get_prob_branchy(&s->c, p[2])) {
|
|
bp = PARTITION_SPLIT;
|
|
decode_sb(ctx, row, col, lflvl, yoff, uvoff, bl + 1);
|
|
yoff += hbs * 8 * y_stride;
|
|
uvoff += hbs * 4 * uv_stride;
|
|
decode_sb(ctx, row + hbs, col, lflvl, yoff, uvoff, bl + 1);
|
|
} else {
|
|
bp = PARTITION_V;
|
|
decode_b(ctx, row, col, lflvl, yoff, uvoff, bl, bp);
|
|
}
|
|
} else {
|
|
bp = PARTITION_SPLIT;
|
|
decode_sb(ctx, row, col, lflvl, yoff, uvoff, bl + 1);
|
|
}
|
|
s->counts.partition[bl][c][bp]++;
|
|
}
|
|
|
|
static void decode_sb_mem(AVCodecContext *ctx, int row, int col, struct VP9Filter *lflvl,
|
|
ptrdiff_t yoff, ptrdiff_t uvoff, enum BlockLevel bl)
|
|
{
|
|
VP9Context *s = ctx->priv_data;
|
|
VP9Block *b = s->b;
|
|
ptrdiff_t hbs = 4 >> bl;
|
|
AVFrame *f = s->frames[CUR_FRAME].tf.f;
|
|
ptrdiff_t y_stride = f->linesize[0], uv_stride = f->linesize[1];
|
|
|
|
if (bl == BL_8X8) {
|
|
av_assert2(b->bl == BL_8X8);
|
|
decode_b(ctx, row, col, lflvl, yoff, uvoff, b->bl, b->bp);
|
|
} else if (s->b->bl == bl) {
|
|
decode_b(ctx, row, col, lflvl, yoff, uvoff, b->bl, b->bp);
|
|
if (b->bp == PARTITION_H && row + hbs < s->rows) {
|
|
yoff += hbs * 8 * y_stride;
|
|
uvoff += hbs * 4 * uv_stride;
|
|
decode_b(ctx, row + hbs, col, lflvl, yoff, uvoff, b->bl, b->bp);
|
|
} else if (b->bp == PARTITION_V && col + hbs < s->cols) {
|
|
yoff += hbs * 8;
|
|
uvoff += hbs * 4;
|
|
decode_b(ctx, row, col + hbs, lflvl, yoff, uvoff, b->bl, b->bp);
|
|
}
|
|
} else {
|
|
decode_sb_mem(ctx, row, col, lflvl, yoff, uvoff, bl + 1);
|
|
if (col + hbs < s->cols) { // FIXME why not <=?
|
|
if (row + hbs < s->rows) {
|
|
decode_sb_mem(ctx, row, col + hbs, lflvl, yoff + 8 * hbs,
|
|
uvoff + 4 * hbs, bl + 1);
|
|
yoff += hbs * 8 * y_stride;
|
|
uvoff += hbs * 4 * uv_stride;
|
|
decode_sb_mem(ctx, row + hbs, col, lflvl, yoff, uvoff, bl + 1);
|
|
decode_sb_mem(ctx, row + hbs, col + hbs, lflvl,
|
|
yoff + 8 * hbs, uvoff + 4 * hbs, bl + 1);
|
|
} else {
|
|
yoff += hbs * 8;
|
|
uvoff += hbs * 4;
|
|
decode_sb_mem(ctx, row, col + hbs, lflvl, yoff, uvoff, bl + 1);
|
|
}
|
|
} else if (row + hbs < s->rows) {
|
|
yoff += hbs * 8 * y_stride;
|
|
uvoff += hbs * 4 * uv_stride;
|
|
decode_sb_mem(ctx, row + hbs, col, lflvl, yoff, uvoff, bl + 1);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void loopfilter_sb(AVCodecContext *ctx, struct VP9Filter *lflvl,
|
|
int row, int col, ptrdiff_t yoff, ptrdiff_t uvoff)
|
|
{
|
|
VP9Context *s = ctx->priv_data;
|
|
AVFrame *f = s->frames[CUR_FRAME].tf.f;
|
|
uint8_t *dst = f->data[0] + yoff, *lvl = lflvl->level;
|
|
ptrdiff_t ls_y = f->linesize[0], ls_uv = f->linesize[1];
|
|
int y, x, p;
|
|
|
|
// FIXME in how far can we interleave the v/h loopfilter calls? E.g.
|
|
// if you think of them as acting on a 8x8 block max, we can interleave
|
|
// each v/h within the single x loop, but that only works if we work on
|
|
// 8 pixel blocks, and we won't always do that (we want at least 16px
|
|
// to use SSE2 optimizations, perhaps 32 for AVX2)
|
|
|
|
// filter edges between columns, Y plane (e.g. block1 | block2)
|
|
for (y = 0; y < 8; y += 2, dst += 16 * ls_y, lvl += 16) {
|
|
uint8_t *ptr = dst, *l = lvl, *hmask1 = lflvl->mask[0][0][y];
|
|
uint8_t *hmask2 = lflvl->mask[0][0][y + 1];
|
|
unsigned hm1 = hmask1[0] | hmask1[1] | hmask1[2], hm13 = hmask1[3];
|
|
unsigned hm2 = hmask2[1] | hmask2[2], hm23 = hmask2[3];
|
|
unsigned hm = hm1 | hm2 | hm13 | hm23;
|
|
|
|
for (x = 1; hm & ~(x - 1); x <<= 1, ptr += 8, l++) {
|
|
if (hm1 & x) {
|
|
int L = *l, H = L >> 4;
|
|
int E = s->filter.mblim_lut[L], I = s->filter.lim_lut[L];
|
|
|
|
if (col || x > 1) {
|
|
if (hmask1[0] & x) {
|
|
if (hmask2[0] & x) {
|
|
av_assert2(l[8] == L);
|
|
s->dsp.loop_filter_16[0](ptr, ls_y, E, I, H);
|
|
} else {
|
|
s->dsp.loop_filter_8[2][0](ptr, ls_y, E, I, H);
|
|
}
|
|
} else if (hm2 & x) {
|
|
L = l[8];
|
|
H |= (L >> 4) << 8;
|
|
E |= s->filter.mblim_lut[L] << 8;
|
|
I |= s->filter.lim_lut[L] << 8;
|
|
s->dsp.loop_filter_mix2[!!(hmask1[1] & x)]
|
|
[!!(hmask2[1] & x)]
|
|
[0](ptr, ls_y, E, I, H);
|
|
} else {
|
|
s->dsp.loop_filter_8[!!(hmask1[1] & x)]
|
|
[0](ptr, ls_y, E, I, H);
|
|
}
|
|
}
|
|
} else if (hm2 & x) {
|
|
int L = l[8], H = L >> 4;
|
|
int E = s->filter.mblim_lut[L], I = s->filter.lim_lut[L];
|
|
|
|
if (col || x > 1) {
|
|
s->dsp.loop_filter_8[!!(hmask2[1] & x)]
|
|
[0](ptr + 8 * ls_y, ls_y, E, I, H);
|
|
}
|
|
}
|
|
if (hm13 & x) {
|
|
int L = *l, H = L >> 4;
|
|
int E = s->filter.mblim_lut[L], I = s->filter.lim_lut[L];
|
|
|
|
if (hm23 & x) {
|
|
L = l[8];
|
|
H |= (L >> 4) << 8;
|
|
E |= s->filter.mblim_lut[L] << 8;
|
|
I |= s->filter.lim_lut[L] << 8;
|
|
s->dsp.loop_filter_mix2[0][0][0](ptr + 4, ls_y, E, I, H);
|
|
} else {
|
|
s->dsp.loop_filter_8[0][0](ptr + 4, ls_y, E, I, H);
|
|
}
|
|
} else if (hm23 & x) {
|
|
int L = l[8], H = L >> 4;
|
|
int E = s->filter.mblim_lut[L], I = s->filter.lim_lut[L];
|
|
|
|
s->dsp.loop_filter_8[0][0](ptr + 8 * ls_y + 4, ls_y, E, I, H);
|
|
}
|
|
}
|
|
}
|
|
|
|
// block1
|
|
// filter edges between rows, Y plane (e.g. ------)
|
|
// block2
|
|
dst = f->data[0] + yoff;
|
|
lvl = lflvl->level;
|
|
for (y = 0; y < 8; y++, dst += 8 * ls_y, lvl += 8) {
|
|
uint8_t *ptr = dst, *l = lvl, *vmask = lflvl->mask[0][1][y];
|
|
unsigned vm = vmask[0] | vmask[1] | vmask[2], vm3 = vmask[3];
|
|
|
|
for (x = 1; vm & ~(x - 1); x <<= 2, ptr += 16, l += 2) {
|
|
if (row || y) {
|
|
if (vm & x) {
|
|
int L = *l, H = L >> 4;
|
|
int E = s->filter.mblim_lut[L], I = s->filter.lim_lut[L];
|
|
|
|
if (vmask[0] & x) {
|
|
if (vmask[0] & (x << 1)) {
|
|
av_assert2(l[1] == L);
|
|
s->dsp.loop_filter_16[1](ptr, ls_y, E, I, H);
|
|
} else {
|
|
s->dsp.loop_filter_8[2][1](ptr, ls_y, E, I, H);
|
|
}
|
|
} else if (vm & (x << 1)) {
|
|
L = l[1];
|
|
H |= (L >> 4) << 8;
|
|
E |= s->filter.mblim_lut[L] << 8;
|
|
I |= s->filter.lim_lut[L] << 8;
|
|
s->dsp.loop_filter_mix2[!!(vmask[1] & x)]
|
|
[!!(vmask[1] & (x << 1))]
|
|
[1](ptr, ls_y, E, I, H);
|
|
} else {
|
|
s->dsp.loop_filter_8[!!(vmask[1] & x)]
|
|
[1](ptr, ls_y, E, I, H);
|
|
}
|
|
} else if (vm & (x << 1)) {
|
|
int L = l[1], H = L >> 4;
|
|
int E = s->filter.mblim_lut[L], I = s->filter.lim_lut[L];
|
|
|
|
s->dsp.loop_filter_8[!!(vmask[1] & (x << 1))]
|
|
[1](ptr + 8, ls_y, E, I, H);
|
|
}
|
|
}
|
|
if (vm3 & x) {
|
|
int L = *l, H = L >> 4;
|
|
int E = s->filter.mblim_lut[L], I = s->filter.lim_lut[L];
|
|
|
|
if (vm3 & (x << 1)) {
|
|
L = l[1];
|
|
H |= (L >> 4) << 8;
|
|
E |= s->filter.mblim_lut[L] << 8;
|
|
I |= s->filter.lim_lut[L] << 8;
|
|
s->dsp.loop_filter_mix2[0][0][1](ptr + ls_y * 4, ls_y, E, I, H);
|
|
} else {
|
|
s->dsp.loop_filter_8[0][1](ptr + ls_y * 4, ls_y, E, I, H);
|
|
}
|
|
} else if (vm3 & (x << 1)) {
|
|
int L = l[1], H = L >> 4;
|
|
int E = s->filter.mblim_lut[L], I = s->filter.lim_lut[L];
|
|
|
|
s->dsp.loop_filter_8[0][1](ptr + ls_y * 4 + 8, ls_y, E, I, H);
|
|
}
|
|
}
|
|
}
|
|
|
|
// same principle but for U/V planes
|
|
for (p = 0; p < 2; p++) {
|
|
lvl = lflvl->level;
|
|
dst = f->data[1 + p] + uvoff;
|
|
for (y = 0; y < 8; y += 4, dst += 16 * ls_uv, lvl += 32) {
|
|
uint8_t *ptr = dst, *l = lvl, *hmask1 = lflvl->mask[1][0][y];
|
|
uint8_t *hmask2 = lflvl->mask[1][0][y + 2];
|
|
unsigned hm1 = hmask1[0] | hmask1[1] | hmask1[2];
|
|
unsigned hm2 = hmask2[1] | hmask2[2], hm = hm1 | hm2;
|
|
|
|
for (x = 1; hm & ~(x - 1); x <<= 1, ptr += 4) {
|
|
if (col || x > 1) {
|
|
if (hm1 & x) {
|
|
int L = *l, H = L >> 4;
|
|
int E = s->filter.mblim_lut[L], I = s->filter.lim_lut[L];
|
|
|
|
if (hmask1[0] & x) {
|
|
if (hmask2[0] & x) {
|
|
av_assert2(l[16] == L);
|
|
s->dsp.loop_filter_16[0](ptr, ls_uv, E, I, H);
|
|
} else {
|
|
s->dsp.loop_filter_8[2][0](ptr, ls_uv, E, I, H);
|
|
}
|
|
} else if (hm2 & x) {
|
|
L = l[16];
|
|
H |= (L >> 4) << 8;
|
|
E |= s->filter.mblim_lut[L] << 8;
|
|
I |= s->filter.lim_lut[L] << 8;
|
|
s->dsp.loop_filter_mix2[!!(hmask1[1] & x)]
|
|
[!!(hmask2[1] & x)]
|
|
[0](ptr, ls_uv, E, I, H);
|
|
} else {
|
|
s->dsp.loop_filter_8[!!(hmask1[1] & x)]
|
|
[0](ptr, ls_uv, E, I, H);
|
|
}
|
|
} else if (hm2 & x) {
|
|
int L = l[16], H = L >> 4;
|
|
int E = s->filter.mblim_lut[L], I = s->filter.lim_lut[L];
|
|
|
|
s->dsp.loop_filter_8[!!(hmask2[1] & x)]
|
|
[0](ptr + 8 * ls_uv, ls_uv, E, I, H);
|
|
}
|
|
}
|
|
if (x & 0xAA)
|
|
l += 2;
|
|
}
|
|
}
|
|
lvl = lflvl->level;
|
|
dst = f->data[1 + p] + uvoff;
|
|
for (y = 0; y < 8; y++, dst += 4 * ls_uv) {
|
|
uint8_t *ptr = dst, *l = lvl, *vmask = lflvl->mask[1][1][y];
|
|
unsigned vm = vmask[0] | vmask[1] | vmask[2];
|
|
|
|
for (x = 1; vm & ~(x - 1); x <<= 4, ptr += 16, l += 4) {
|
|
if (row || y) {
|
|
if (vm & x) {
|
|
int L = *l, H = L >> 4;
|
|
int E = s->filter.mblim_lut[L], I = s->filter.lim_lut[L];
|
|
|
|
if (vmask[0] & x) {
|
|
if (vmask[0] & (x << 2)) {
|
|
av_assert2(l[2] == L);
|
|
s->dsp.loop_filter_16[1](ptr, ls_uv, E, I, H);
|
|
} else {
|
|
s->dsp.loop_filter_8[2][1](ptr, ls_uv, E, I, H);
|
|
}
|
|
} else if (vm & (x << 2)) {
|
|
L = l[2];
|
|
H |= (L >> 4) << 8;
|
|
E |= s->filter.mblim_lut[L] << 8;
|
|
I |= s->filter.lim_lut[L] << 8;
|
|
s->dsp.loop_filter_mix2[!!(vmask[1] & x)]
|
|
[!!(vmask[1] & (x << 2))]
|
|
[1](ptr, ls_uv, E, I, H);
|
|
} else {
|
|
s->dsp.loop_filter_8[!!(vmask[1] & x)]
|
|
[1](ptr, ls_uv, E, I, H);
|
|
}
|
|
} else if (vm & (x << 2)) {
|
|
int L = l[2], H = L >> 4;
|
|
int E = s->filter.mblim_lut[L], I = s->filter.lim_lut[L];
|
|
|
|
s->dsp.loop_filter_8[!!(vmask[1] & (x << 2))]
|
|
[1](ptr + 8, ls_uv, E, I, H);
|
|
}
|
|
}
|
|
}
|
|
if (y & 1)
|
|
lvl += 16;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void set_tile_offset(int *start, int *end, int idx, int log2_n, int n)
|
|
{
|
|
int sb_start = ( idx * n) >> log2_n;
|
|
int sb_end = ((idx + 1) * n) >> log2_n;
|
|
*start = FFMIN(sb_start, n) << 3;
|
|
*end = FFMIN(sb_end, n) << 3;
|
|
}
|
|
|
|
static av_always_inline void adapt_prob(uint8_t *p, unsigned ct0, unsigned ct1,
|
|
int max_count, int update_factor)
|
|
{
|
|
unsigned ct = ct0 + ct1, p2, p1;
|
|
|
|
if (!ct)
|
|
return;
|
|
|
|
p1 = *p;
|
|
p2 = ((ct0 << 8) + (ct >> 1)) / ct;
|
|
p2 = av_clip(p2, 1, 255);
|
|
ct = FFMIN(ct, max_count);
|
|
update_factor = FASTDIV(update_factor * ct, max_count);
|
|
|
|
// (p1 * (256 - update_factor) + p2 * update_factor + 128) >> 8
|
|
*p = p1 + (((p2 - p1) * update_factor + 128) >> 8);
|
|
}
|
|
|
|
static void adapt_probs(VP9Context *s)
|
|
{
|
|
int i, j, k, l, m;
|
|
prob_context *p = &s->prob_ctx[s->framectxid].p;
|
|
int uf = (s->keyframe || s->intraonly || !s->last_keyframe) ? 112 : 128;
|
|
|
|
// coefficients
|
|
for (i = 0; i < 4; i++)
|
|
for (j = 0; j < 2; j++)
|
|
for (k = 0; k < 2; k++)
|
|
for (l = 0; l < 6; l++)
|
|
for (m = 0; m < 6; m++) {
|
|
uint8_t *pp = s->prob_ctx[s->framectxid].coef[i][j][k][l][m];
|
|
unsigned *e = s->counts.eob[i][j][k][l][m];
|
|
unsigned *c = s->counts.coef[i][j][k][l][m];
|
|
|
|
if (l == 0 && m >= 3) // dc only has 3 pt
|
|
break;
|
|
|
|
adapt_prob(&pp[0], e[0], e[1], 24, uf);
|
|
adapt_prob(&pp[1], c[0], c[1] + c[2], 24, uf);
|
|
adapt_prob(&pp[2], c[1], c[2], 24, uf);
|
|
}
|
|
|
|
if (s->keyframe || s->intraonly) {
|
|
memcpy(p->skip, s->prob.p.skip, sizeof(p->skip));
|
|
memcpy(p->tx32p, s->prob.p.tx32p, sizeof(p->tx32p));
|
|
memcpy(p->tx16p, s->prob.p.tx16p, sizeof(p->tx16p));
|
|
memcpy(p->tx8p, s->prob.p.tx8p, sizeof(p->tx8p));
|
|
return;
|
|
}
|
|
|
|
// skip flag
|
|
for (i = 0; i < 3; i++)
|
|
adapt_prob(&p->skip[i], s->counts.skip[i][0], s->counts.skip[i][1], 20, 128);
|
|
|
|
// intra/inter flag
|
|
for (i = 0; i < 4; i++)
|
|
adapt_prob(&p->intra[i], s->counts.intra[i][0], s->counts.intra[i][1], 20, 128);
|
|
|
|
// comppred flag
|
|
if (s->comppredmode == PRED_SWITCHABLE) {
|
|
for (i = 0; i < 5; i++)
|
|
adapt_prob(&p->comp[i], s->counts.comp[i][0], s->counts.comp[i][1], 20, 128);
|
|
}
|
|
|
|
// reference frames
|
|
if (s->comppredmode != PRED_SINGLEREF) {
|
|
for (i = 0; i < 5; i++)
|
|
adapt_prob(&p->comp_ref[i], s->counts.comp_ref[i][0],
|
|
s->counts.comp_ref[i][1], 20, 128);
|
|
}
|
|
|
|
if (s->comppredmode != PRED_COMPREF) {
|
|
for (i = 0; i < 5; i++) {
|
|
uint8_t *pp = p->single_ref[i];
|
|
unsigned (*c)[2] = s->counts.single_ref[i];
|
|
|
|
adapt_prob(&pp[0], c[0][0], c[0][1], 20, 128);
|
|
adapt_prob(&pp[1], c[1][0], c[1][1], 20, 128);
|
|
}
|
|
}
|
|
|
|
// block partitioning
|
|
for (i = 0; i < 4; i++)
|
|
for (j = 0; j < 4; j++) {
|
|
uint8_t *pp = p->partition[i][j];
|
|
unsigned *c = s->counts.partition[i][j];
|
|
|
|
adapt_prob(&pp[0], c[0], c[1] + c[2] + c[3], 20, 128);
|
|
adapt_prob(&pp[1], c[1], c[2] + c[3], 20, 128);
|
|
adapt_prob(&pp[2], c[2], c[3], 20, 128);
|
|
}
|
|
|
|
// tx size
|
|
if (s->txfmmode == TX_SWITCHABLE) {
|
|
for (i = 0; i < 2; i++) {
|
|
unsigned *c16 = s->counts.tx16p[i], *c32 = s->counts.tx32p[i];
|
|
|
|
adapt_prob(&p->tx8p[i], s->counts.tx8p[i][0], s->counts.tx8p[i][1], 20, 128);
|
|
adapt_prob(&p->tx16p[i][0], c16[0], c16[1] + c16[2], 20, 128);
|
|
adapt_prob(&p->tx16p[i][1], c16[1], c16[2], 20, 128);
|
|
adapt_prob(&p->tx32p[i][0], c32[0], c32[1] + c32[2] + c32[3], 20, 128);
|
|
adapt_prob(&p->tx32p[i][1], c32[1], c32[2] + c32[3], 20, 128);
|
|
adapt_prob(&p->tx32p[i][2], c32[2], c32[3], 20, 128);
|
|
}
|
|
}
|
|
|
|
// interpolation filter
|
|
if (s->filtermode == FILTER_SWITCHABLE) {
|
|
for (i = 0; i < 4; i++) {
|
|
uint8_t *pp = p->filter[i];
|
|
unsigned *c = s->counts.filter[i];
|
|
|
|
adapt_prob(&pp[0], c[0], c[1] + c[2], 20, 128);
|
|
adapt_prob(&pp[1], c[1], c[2], 20, 128);
|
|
}
|
|
}
|
|
|
|
// inter modes
|
|
for (i = 0; i < 7; i++) {
|
|
uint8_t *pp = p->mv_mode[i];
|
|
unsigned *c = s->counts.mv_mode[i];
|
|
|
|
adapt_prob(&pp[0], c[2], c[1] + c[0] + c[3], 20, 128);
|
|
adapt_prob(&pp[1], c[0], c[1] + c[3], 20, 128);
|
|
adapt_prob(&pp[2], c[1], c[3], 20, 128);
|
|
}
|
|
|
|
// mv joints
|
|
{
|
|
uint8_t *pp = p->mv_joint;
|
|
unsigned *c = s->counts.mv_joint;
|
|
|
|
adapt_prob(&pp[0], c[0], c[1] + c[2] + c[3], 20, 128);
|
|
adapt_prob(&pp[1], c[1], c[2] + c[3], 20, 128);
|
|
adapt_prob(&pp[2], c[2], c[3], 20, 128);
|
|
}
|
|
|
|
// mv components
|
|
for (i = 0; i < 2; i++) {
|
|
uint8_t *pp;
|
|
unsigned *c, (*c2)[2], sum;
|
|
|
|
adapt_prob(&p->mv_comp[i].sign, s->counts.mv_comp[i].sign[0],
|
|
s->counts.mv_comp[i].sign[1], 20, 128);
|
|
|
|
pp = p->mv_comp[i].classes;
|
|
c = s->counts.mv_comp[i].classes;
|
|
sum = c[1] + c[2] + c[3] + c[4] + c[5] + c[6] + c[7] + c[8] + c[9] + c[10];
|
|
adapt_prob(&pp[0], c[0], sum, 20, 128);
|
|
sum -= c[1];
|
|
adapt_prob(&pp[1], c[1], sum, 20, 128);
|
|
sum -= c[2] + c[3];
|
|
adapt_prob(&pp[2], c[2] + c[3], sum, 20, 128);
|
|
adapt_prob(&pp[3], c[2], c[3], 20, 128);
|
|
sum -= c[4] + c[5];
|
|
adapt_prob(&pp[4], c[4] + c[5], sum, 20, 128);
|
|
adapt_prob(&pp[5], c[4], c[5], 20, 128);
|
|
sum -= c[6];
|
|
adapt_prob(&pp[6], c[6], sum, 20, 128);
|
|
adapt_prob(&pp[7], c[7] + c[8], c[9] + c[10], 20, 128);
|
|
adapt_prob(&pp[8], c[7], c[8], 20, 128);
|
|
adapt_prob(&pp[9], c[9], c[10], 20, 128);
|
|
|
|
adapt_prob(&p->mv_comp[i].class0, s->counts.mv_comp[i].class0[0],
|
|
s->counts.mv_comp[i].class0[1], 20, 128);
|
|
pp = p->mv_comp[i].bits;
|
|
c2 = s->counts.mv_comp[i].bits;
|
|
for (j = 0; j < 10; j++)
|
|
adapt_prob(&pp[j], c2[j][0], c2[j][1], 20, 128);
|
|
|
|
for (j = 0; j < 2; j++) {
|
|
pp = p->mv_comp[i].class0_fp[j];
|
|
c = s->counts.mv_comp[i].class0_fp[j];
|
|
adapt_prob(&pp[0], c[0], c[1] + c[2] + c[3], 20, 128);
|
|
adapt_prob(&pp[1], c[1], c[2] + c[3], 20, 128);
|
|
adapt_prob(&pp[2], c[2], c[3], 20, 128);
|
|
}
|
|
pp = p->mv_comp[i].fp;
|
|
c = s->counts.mv_comp[i].fp;
|
|
adapt_prob(&pp[0], c[0], c[1] + c[2] + c[3], 20, 128);
|
|
adapt_prob(&pp[1], c[1], c[2] + c[3], 20, 128);
|
|
adapt_prob(&pp[2], c[2], c[3], 20, 128);
|
|
|
|
if (s->highprecisionmvs) {
|
|
adapt_prob(&p->mv_comp[i].class0_hp, s->counts.mv_comp[i].class0_hp[0],
|
|
s->counts.mv_comp[i].class0_hp[1], 20, 128);
|
|
adapt_prob(&p->mv_comp[i].hp, s->counts.mv_comp[i].hp[0],
|
|
s->counts.mv_comp[i].hp[1], 20, 128);
|
|
}
|
|
}
|
|
|
|
// y intra modes
|
|
for (i = 0; i < 4; i++) {
|
|
uint8_t *pp = p->y_mode[i];
|
|
unsigned *c = s->counts.y_mode[i], sum, s2;
|
|
|
|
sum = c[0] + c[1] + c[3] + c[4] + c[5] + c[6] + c[7] + c[8] + c[9];
|
|
adapt_prob(&pp[0], c[DC_PRED], sum, 20, 128);
|
|
sum -= c[TM_VP8_PRED];
|
|
adapt_prob(&pp[1], c[TM_VP8_PRED], sum, 20, 128);
|
|
sum -= c[VERT_PRED];
|
|
adapt_prob(&pp[2], c[VERT_PRED], sum, 20, 128);
|
|
s2 = c[HOR_PRED] + c[DIAG_DOWN_RIGHT_PRED] + c[VERT_RIGHT_PRED];
|
|
sum -= s2;
|
|
adapt_prob(&pp[3], s2, sum, 20, 128);
|
|
s2 -= c[HOR_PRED];
|
|
adapt_prob(&pp[4], c[HOR_PRED], s2, 20, 128);
|
|
adapt_prob(&pp[5], c[DIAG_DOWN_RIGHT_PRED], c[VERT_RIGHT_PRED], 20, 128);
|
|
sum -= c[DIAG_DOWN_LEFT_PRED];
|
|
adapt_prob(&pp[6], c[DIAG_DOWN_LEFT_PRED], sum, 20, 128);
|
|
sum -= c[VERT_LEFT_PRED];
|
|
adapt_prob(&pp[7], c[VERT_LEFT_PRED], sum, 20, 128);
|
|
adapt_prob(&pp[8], c[HOR_DOWN_PRED], c[HOR_UP_PRED], 20, 128);
|
|
}
|
|
|
|
// uv intra modes
|
|
for (i = 0; i < 10; i++) {
|
|
uint8_t *pp = p->uv_mode[i];
|
|
unsigned *c = s->counts.uv_mode[i], sum, s2;
|
|
|
|
sum = c[0] + c[1] + c[3] + c[4] + c[5] + c[6] + c[7] + c[8] + c[9];
|
|
adapt_prob(&pp[0], c[DC_PRED], sum, 20, 128);
|
|
sum -= c[TM_VP8_PRED];
|
|
adapt_prob(&pp[1], c[TM_VP8_PRED], sum, 20, 128);
|
|
sum -= c[VERT_PRED];
|
|
adapt_prob(&pp[2], c[VERT_PRED], sum, 20, 128);
|
|
s2 = c[HOR_PRED] + c[DIAG_DOWN_RIGHT_PRED] + c[VERT_RIGHT_PRED];
|
|
sum -= s2;
|
|
adapt_prob(&pp[3], s2, sum, 20, 128);
|
|
s2 -= c[HOR_PRED];
|
|
adapt_prob(&pp[4], c[HOR_PRED], s2, 20, 128);
|
|
adapt_prob(&pp[5], c[DIAG_DOWN_RIGHT_PRED], c[VERT_RIGHT_PRED], 20, 128);
|
|
sum -= c[DIAG_DOWN_LEFT_PRED];
|
|
adapt_prob(&pp[6], c[DIAG_DOWN_LEFT_PRED], sum, 20, 128);
|
|
sum -= c[VERT_LEFT_PRED];
|
|
adapt_prob(&pp[7], c[VERT_LEFT_PRED], sum, 20, 128);
|
|
adapt_prob(&pp[8], c[HOR_DOWN_PRED], c[HOR_UP_PRED], 20, 128);
|
|
}
|
|
}
|
|
|
|
static void free_buffers(VP9Context *s)
|
|
{
|
|
av_freep(&s->intra_pred_data[0]);
|
|
av_freep(&s->b_base);
|
|
av_freep(&s->block_base);
|
|
}
|
|
|
|
static av_cold int vp9_decode_free(AVCodecContext *ctx)
|
|
{
|
|
VP9Context *s = ctx->priv_data;
|
|
int i;
|
|
|
|
for (i = 0; i < 2; i++) {
|
|
if (s->frames[i].tf.f->data[0])
|
|
vp9_unref_frame(ctx, &s->frames[i]);
|
|
av_frame_free(&s->frames[i].tf.f);
|
|
}
|
|
for (i = 0; i < 8; i++) {
|
|
if (s->refs[i].f->data[0])
|
|
ff_thread_release_buffer(ctx, &s->refs[i]);
|
|
av_frame_free(&s->refs[i].f);
|
|
if (s->next_refs[i].f->data[0])
|
|
ff_thread_release_buffer(ctx, &s->next_refs[i]);
|
|
av_frame_free(&s->next_refs[i].f);
|
|
}
|
|
free_buffers(s);
|
|
av_freep(&s->c_b);
|
|
s->c_b_size = 0;
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int vp9_decode_frame(AVCodecContext *ctx, void *frame,
|
|
int *got_frame, AVPacket *pkt)
|
|
{
|
|
const uint8_t *data = pkt->data;
|
|
int size = pkt->size;
|
|
VP9Context *s = ctx->priv_data;
|
|
int res, tile_row, tile_col, i, ref, row, col;
|
|
ptrdiff_t yoff, uvoff, ls_y, ls_uv;
|
|
AVFrame *f;
|
|
|
|
if ((res = decode_frame_header(ctx, data, size, &ref)) < 0) {
|
|
return res;
|
|
} else if (res == 0) {
|
|
if (!s->refs[ref].f->data[0]) {
|
|
av_log(ctx, AV_LOG_ERROR, "Requested reference %d not available\n", ref);
|
|
return AVERROR_INVALIDDATA;
|
|
}
|
|
if ((res = av_frame_ref(frame, s->refs[ref].f)) < 0)
|
|
return res;
|
|
*got_frame = 1;
|
|
return 0;
|
|
}
|
|
data += res;
|
|
size -= res;
|
|
|
|
if (s->frames[LAST_FRAME].tf.f->data[0])
|
|
vp9_unref_frame(ctx, &s->frames[LAST_FRAME]);
|
|
if (!s->keyframe && s->frames[CUR_FRAME].tf.f->data[0] &&
|
|
(res = vp9_ref_frame(ctx, &s->frames[LAST_FRAME], &s->frames[CUR_FRAME])) < 0)
|
|
return res;
|
|
if (s->frames[CUR_FRAME].tf.f->data[0])
|
|
vp9_unref_frame(ctx, &s->frames[CUR_FRAME]);
|
|
if ((res = vp9_alloc_frame(ctx, &s->frames[CUR_FRAME])) < 0)
|
|
return res;
|
|
f = s->frames[CUR_FRAME].tf.f;
|
|
f->key_frame = s->keyframe;
|
|
f->pict_type = s->keyframe ? AV_PICTURE_TYPE_I : AV_PICTURE_TYPE_P;
|
|
ls_y = f->linesize[0];
|
|
ls_uv =f->linesize[1];
|
|
|
|
// ref frame setup
|
|
for (i = 0; i < 8; i++) {
|
|
if (s->next_refs[i].f->data[0])
|
|
ff_thread_release_buffer(ctx, &s->next_refs[i]);
|
|
if (s->refreshrefmask & (1 << i)) {
|
|
res = ff_thread_ref_frame(&s->next_refs[i], &s->frames[CUR_FRAME].tf);
|
|
} else {
|
|
res = ff_thread_ref_frame(&s->next_refs[i], &s->refs[i]);
|
|
}
|
|
if (res < 0)
|
|
return res;
|
|
}
|
|
|
|
if (s->fullrange)
|
|
ctx->color_range = AVCOL_RANGE_JPEG;
|
|
else
|
|
ctx->color_range = AVCOL_RANGE_MPEG;
|
|
|
|
switch (s->colorspace) {
|
|
case 1: ctx->colorspace = AVCOL_SPC_BT470BG; break;
|
|
case 2: ctx->colorspace = AVCOL_SPC_BT709; break;
|
|
case 3: ctx->colorspace = AVCOL_SPC_SMPTE170M; break;
|
|
case 4: ctx->colorspace = AVCOL_SPC_SMPTE240M; break;
|
|
}
|
|
|
|
// main tile decode loop
|
|
memset(s->above_partition_ctx, 0, s->cols);
|
|
memset(s->above_skip_ctx, 0, s->cols);
|
|
if (s->keyframe || s->intraonly) {
|
|
memset(s->above_mode_ctx, DC_PRED, s->cols * 2);
|
|
} else {
|
|
memset(s->above_mode_ctx, NEARESTMV, s->cols);
|
|
}
|
|
memset(s->above_y_nnz_ctx, 0, s->sb_cols * 16);
|
|
memset(s->above_uv_nnz_ctx[0], 0, s->sb_cols * 8);
|
|
memset(s->above_uv_nnz_ctx[1], 0, s->sb_cols * 8);
|
|
memset(s->above_segpred_ctx, 0, s->cols);
|
|
s->pass = s->uses_2pass =
|
|
ctx->active_thread_type == FF_THREAD_FRAME && s->refreshctx && !s->parallelmode;
|
|
if ((res = update_block_buffers(ctx)) < 0) {
|
|
av_log(ctx, AV_LOG_ERROR,
|
|
"Failed to allocate block buffers\n");
|
|
return res;
|
|
}
|
|
if (s->refreshctx && s->parallelmode) {
|
|
int j, k, l, m;
|
|
|
|
for (i = 0; i < 4; i++) {
|
|
for (j = 0; j < 2; j++)
|
|
for (k = 0; k < 2; k++)
|
|
for (l = 0; l < 6; l++)
|
|
for (m = 0; m < 6; m++)
|
|
memcpy(s->prob_ctx[s->framectxid].coef[i][j][k][l][m],
|
|
s->prob.coef[i][j][k][l][m], 3);
|
|
if (s->txfmmode == i)
|
|
break;
|
|
}
|
|
s->prob_ctx[s->framectxid].p = s->prob.p;
|
|
ff_thread_finish_setup(ctx);
|
|
}
|
|
|
|
do {
|
|
yoff = uvoff = 0;
|
|
s->b = s->b_base;
|
|
s->block = s->block_base;
|
|
s->uvblock[0] = s->uvblock_base[0];
|
|
s->uvblock[1] = s->uvblock_base[1];
|
|
s->eob = s->eob_base;
|
|
s->uveob[0] = s->uveob_base[0];
|
|
s->uveob[1] = s->uveob_base[1];
|
|
|
|
for (tile_row = 0; tile_row < s->tiling.tile_rows; tile_row++) {
|
|
set_tile_offset(&s->tiling.tile_row_start, &s->tiling.tile_row_end,
|
|
tile_row, s->tiling.log2_tile_rows, s->sb_rows);
|
|
if (s->pass != 2) {
|
|
for (tile_col = 0; tile_col < s->tiling.tile_cols; tile_col++) {
|
|
unsigned tile_size;
|
|
|
|
if (tile_col == s->tiling.tile_cols - 1 &&
|
|
tile_row == s->tiling.tile_rows - 1) {
|
|
tile_size = size;
|
|
} else {
|
|
tile_size = AV_RB32(data);
|
|
data += 4;
|
|
size -= 4;
|
|
}
|
|
if (tile_size > size) {
|
|
ff_thread_report_progress(&s->frames[CUR_FRAME].tf, INT_MAX, 0);
|
|
return AVERROR_INVALIDDATA;
|
|
}
|
|
ff_vp56_init_range_decoder(&s->c_b[tile_col], data, tile_size);
|
|
if (vp56_rac_get_prob_branchy(&s->c_b[tile_col], 128)) { // marker bit
|
|
ff_thread_report_progress(&s->frames[CUR_FRAME].tf, INT_MAX, 0);
|
|
return AVERROR_INVALIDDATA;
|
|
}
|
|
data += tile_size;
|
|
size -= tile_size;
|
|
}
|
|
}
|
|
|
|
for (row = s->tiling.tile_row_start; row < s->tiling.tile_row_end;
|
|
row += 8, yoff += ls_y * 64, uvoff += ls_uv * 32) {
|
|
struct VP9Filter *lflvl_ptr = s->lflvl;
|
|
ptrdiff_t yoff2 = yoff, uvoff2 = uvoff;
|
|
|
|
for (tile_col = 0; tile_col < s->tiling.tile_cols; tile_col++) {
|
|
set_tile_offset(&s->tiling.tile_col_start, &s->tiling.tile_col_end,
|
|
tile_col, s->tiling.log2_tile_cols, s->sb_cols);
|
|
|
|
if (s->pass != 2) {
|
|
memset(s->left_partition_ctx, 0, 8);
|
|
memset(s->left_skip_ctx, 0, 8);
|
|
if (s->keyframe || s->intraonly) {
|
|
memset(s->left_mode_ctx, DC_PRED, 16);
|
|
} else {
|
|
memset(s->left_mode_ctx, NEARESTMV, 8);
|
|
}
|
|
memset(s->left_y_nnz_ctx, 0, 16);
|
|
memset(s->left_uv_nnz_ctx, 0, 16);
|
|
memset(s->left_segpred_ctx, 0, 8);
|
|
|
|
memcpy(&s->c, &s->c_b[tile_col], sizeof(s->c));
|
|
}
|
|
|
|
for (col = s->tiling.tile_col_start;
|
|
col < s->tiling.tile_col_end;
|
|
col += 8, yoff2 += 64, uvoff2 += 32, lflvl_ptr++) {
|
|
// FIXME integrate with lf code (i.e. zero after each
|
|
// use, similar to invtxfm coefficients, or similar)
|
|
if (s->pass != 1) {
|
|
memset(lflvl_ptr->mask, 0, sizeof(lflvl_ptr->mask));
|
|
}
|
|
|
|
if (s->pass == 2) {
|
|
decode_sb_mem(ctx, row, col, lflvl_ptr,
|
|
yoff2, uvoff2, BL_64X64);
|
|
} else {
|
|
decode_sb(ctx, row, col, lflvl_ptr,
|
|
yoff2, uvoff2, BL_64X64);
|
|
}
|
|
}
|
|
if (s->pass != 2) {
|
|
memcpy(&s->c_b[tile_col], &s->c, sizeof(s->c));
|
|
}
|
|
}
|
|
|
|
if (s->pass == 1) {
|
|
continue;
|
|
}
|
|
|
|
// backup pre-loopfilter reconstruction data for intra
|
|
// prediction of next row of sb64s
|
|
if (row + 8 < s->rows) {
|
|
memcpy(s->intra_pred_data[0],
|
|
f->data[0] + yoff + 63 * ls_y,
|
|
8 * s->cols);
|
|
memcpy(s->intra_pred_data[1],
|
|
f->data[1] + uvoff + 31 * ls_uv,
|
|
4 * s->cols);
|
|
memcpy(s->intra_pred_data[2],
|
|
f->data[2] + uvoff + 31 * ls_uv,
|
|
4 * s->cols);
|
|
}
|
|
|
|
// loopfilter one row
|
|
if (s->filter.level) {
|
|
yoff2 = yoff;
|
|
uvoff2 = uvoff;
|
|
lflvl_ptr = s->lflvl;
|
|
for (col = 0; col < s->cols;
|
|
col += 8, yoff2 += 64, uvoff2 += 32, lflvl_ptr++) {
|
|
loopfilter_sb(ctx, lflvl_ptr, row, col, yoff2, uvoff2);
|
|
}
|
|
}
|
|
|
|
// FIXME maybe we can make this more finegrained by running the
|
|
// loopfilter per-block instead of after each sbrow
|
|
// In fact that would also make intra pred left preparation easier?
|
|
ff_thread_report_progress(&s->frames[CUR_FRAME].tf, row >> 3, 0);
|
|
}
|
|
}
|
|
|
|
if (s->pass < 2 && s->refreshctx && !s->parallelmode) {
|
|
adapt_probs(s);
|
|
ff_thread_finish_setup(ctx);
|
|
}
|
|
} while (s->pass++ == 1);
|
|
ff_thread_report_progress(&s->frames[CUR_FRAME].tf, INT_MAX, 0);
|
|
|
|
// ref frame setup
|
|
for (i = 0; i < 8; i++) {
|
|
if (s->refs[i].f->data[0])
|
|
ff_thread_release_buffer(ctx, &s->refs[i]);
|
|
ff_thread_ref_frame(&s->refs[i], &s->next_refs[i]);
|
|
}
|
|
|
|
if (!s->invisible) {
|
|
if ((res = av_frame_ref(frame, s->frames[CUR_FRAME].tf.f)) < 0)
|
|
return res;
|
|
*got_frame = 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void vp9_decode_flush(AVCodecContext *ctx)
|
|
{
|
|
VP9Context *s = ctx->priv_data;
|
|
int i;
|
|
|
|
for (i = 0; i < 2; i++)
|
|
vp9_unref_frame(ctx, &s->frames[i]);
|
|
for (i = 0; i < 8; i++)
|
|
ff_thread_release_buffer(ctx, &s->refs[i]);
|
|
}
|
|
|
|
static int init_frames(AVCodecContext *ctx)
|
|
{
|
|
VP9Context *s = ctx->priv_data;
|
|
int i;
|
|
|
|
for (i = 0; i < 2; i++) {
|
|
s->frames[i].tf.f = av_frame_alloc();
|
|
if (!s->frames[i].tf.f) {
|
|
vp9_decode_free(ctx);
|
|
av_log(ctx, AV_LOG_ERROR, "Failed to allocate frame buffer %d\n", i);
|
|
return AVERROR(ENOMEM);
|
|
}
|
|
}
|
|
for (i = 0; i < 8; i++) {
|
|
s->refs[i].f = av_frame_alloc();
|
|
s->next_refs[i].f = av_frame_alloc();
|
|
if (!s->refs[i].f || !s->next_refs[i].f) {
|
|
vp9_decode_free(ctx);
|
|
av_log(ctx, AV_LOG_ERROR, "Failed to allocate frame buffer %d\n", i);
|
|
return AVERROR(ENOMEM);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static av_cold int vp9_decode_init(AVCodecContext *ctx)
|
|
{
|
|
VP9Context *s = ctx->priv_data;
|
|
|
|
ctx->internal->allocate_progress = 1;
|
|
ctx->pix_fmt = AV_PIX_FMT_YUV420P;
|
|
ff_vp9dsp_init(&s->dsp);
|
|
ff_videodsp_init(&s->vdsp, 8);
|
|
s->filter.sharpness = -1;
|
|
|
|
return init_frames(ctx);
|
|
}
|
|
|
|
static av_cold int vp9_decode_init_thread_copy(AVCodecContext *avctx)
|
|
{
|
|
return init_frames(avctx);
|
|
}
|
|
|
|
static int vp9_decode_update_thread_context(AVCodecContext *dst, const AVCodecContext *src)
|
|
{
|
|
int i, res;
|
|
VP9Context *s = dst->priv_data, *ssrc = src->priv_data;
|
|
|
|
// detect size changes in other threads
|
|
if (s->intra_pred_data[0] &&
|
|
(!ssrc->intra_pred_data[0] || s->cols != ssrc->cols || s->rows != ssrc->rows)) {
|
|
free_buffers(s);
|
|
}
|
|
|
|
for (i = 0; i < 2; i++) {
|
|
if (s->frames[i].tf.f->data[0])
|
|
vp9_unref_frame(dst, &s->frames[i]);
|
|
if (ssrc->frames[i].tf.f->data[0]) {
|
|
if ((res = vp9_ref_frame(dst, &s->frames[i], &ssrc->frames[i])) < 0)
|
|
return res;
|
|
}
|
|
}
|
|
for (i = 0; i < 8; i++) {
|
|
if (s->refs[i].f->data[0])
|
|
ff_thread_release_buffer(dst, &s->refs[i]);
|
|
if (ssrc->next_refs[i].f->data[0]) {
|
|
if ((res = ff_thread_ref_frame(&s->refs[i], &ssrc->next_refs[i])) < 0)
|
|
return res;
|
|
}
|
|
}
|
|
|
|
s->invisible = ssrc->invisible;
|
|
s->keyframe = ssrc->keyframe;
|
|
s->uses_2pass = ssrc->uses_2pass;
|
|
memcpy(&s->prob_ctx, &ssrc->prob_ctx, sizeof(s->prob_ctx));
|
|
memcpy(&s->lf_delta, &ssrc->lf_delta, sizeof(s->lf_delta));
|
|
if (ssrc->segmentation.enabled) {
|
|
memcpy(&s->segmentation.feat, &ssrc->segmentation.feat,
|
|
sizeof(s->segmentation.feat));
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
AVCodec ff_vp9_decoder = {
|
|
.name = "vp9",
|
|
.long_name = NULL_IF_CONFIG_SMALL("Google VP9"),
|
|
.type = AVMEDIA_TYPE_VIDEO,
|
|
.id = AV_CODEC_ID_VP9,
|
|
.priv_data_size = sizeof(VP9Context),
|
|
.init = vp9_decode_init,
|
|
.close = vp9_decode_free,
|
|
.decode = vp9_decode_frame,
|
|
.capabilities = CODEC_CAP_DR1 | CODEC_CAP_FRAME_THREADS,
|
|
.flush = vp9_decode_flush,
|
|
.init_thread_copy = ONLY_IF_THREADS_ENABLED(vp9_decode_init_thread_copy),
|
|
.update_thread_context = ONLY_IF_THREADS_ENABLED(vp9_decode_update_thread_context),
|
|
};
|