1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2025-01-08 13:22:53 +02:00
FFmpeg/libavcodec/vc1.c
Andreas Rheinhardt 1669fe8631 avcodec/vc1: Move ff_vc1_init_common() to vc1dec.c
This is possible given that it is no longer used
by the parser.

Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
2022-11-06 17:41:26 +01:00

1339 lines
50 KiB
C

/*
* VC-1 and WMV3 decoder common code
* Copyright (c) 2011 Mashiat Sarker Shakkhar
* Copyright (c) 2006-2007 Konstantin Shishkov
* Partly based on vc9.c (c) 2005 Anonymous, Alex Beregszaszi, Michael Niedermayer
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* VC-1 and WMV3 decoder common code
*/
#include "avcodec.h"
#include "decode.h"
#include "mpegvideo.h"
#include "vc1.h"
#include "vc1data.h"
#include "wmv2data.h"
#include "unary.h"
/***********************************************************************/
/**
* @name VC-1 Bitplane decoding
* @see 8.7, p56
* @{
*/
/** Decode rows by checking if they are skipped
* @param plane Buffer to store decoded bits
* @param[in] width Width of this buffer
* @param[in] height Height of this buffer
* @param[in] stride of this buffer
*/
static void decode_rowskip(uint8_t* plane, int width, int height, int stride,
GetBitContext *gb)
{
int x, y;
for (y = 0; y < height; y++) {
if (!get_bits1(gb)) //rowskip
memset(plane, 0, width);
else
for (x = 0; x < width; x++)
plane[x] = get_bits1(gb);
plane += stride;
}
}
/** Decode columns by checking if they are skipped
* @param plane Buffer to store decoded bits
* @param[in] width Width of this buffer
* @param[in] height Height of this buffer
* @param[in] stride of this buffer
* @todo FIXME: Optimize
*/
static void decode_colskip(uint8_t* plane, int width, int height, int stride,
GetBitContext *gb)
{
int x, y;
for (x = 0; x < width; x++) {
if (!get_bits1(gb)) //colskip
for (y = 0; y < height; y++)
plane[y*stride] = 0;
else
for (y = 0; y < height; y++)
plane[y*stride] = get_bits1(gb);
plane ++;
}
}
/** Decode a bitplane's bits
* @param data bitplane where to store the decode bits
* @param[out] raw_flag pointer to the flag indicating that this bitplane is not coded explicitly
* @param v VC-1 context for bit reading and logging
* @return Status
* @todo FIXME: Optimize
*/
static int bitplane_decoding(uint8_t* data, int *raw_flag, VC1Context *v)
{
GetBitContext *gb = &v->s.gb;
int imode, x, y, code, offset;
uint8_t invert, *planep = data;
int width, height, stride;
width = v->s.mb_width;
height = v->s.mb_height >> v->field_mode;
stride = v->s.mb_stride;
invert = get_bits1(gb);
imode = get_vlc2(gb, ff_vc1_imode_vlc.table, VC1_IMODE_VLC_BITS, 1);
*raw_flag = 0;
switch (imode) {
case IMODE_RAW:
//Data is actually read in the MB layer (same for all tests == "raw")
*raw_flag = 1; //invert ignored
return invert;
case IMODE_DIFF2:
case IMODE_NORM2:
if ((height * width) & 1) {
*planep++ = get_bits1(gb);
y = offset = 1;
if (offset == width) {
offset = 0;
planep += stride - width;
}
}
else
y = offset = 0;
// decode bitplane as one long line
for (; y < height * width; y += 2) {
code = get_vlc2(gb, ff_vc1_norm2_vlc.table, VC1_NORM2_VLC_BITS, 1);
*planep++ = code & 1;
offset++;
if (offset == width) {
offset = 0;
planep += stride - width;
}
*planep++ = code >> 1;
offset++;
if (offset == width) {
offset = 0;
planep += stride - width;
}
}
break;
case IMODE_DIFF6:
case IMODE_NORM6:
if (!(height % 3) && (width % 3)) { // use 2x3 decoding
for (y = 0; y < height; y += 3) {
for (x = width & 1; x < width; x += 2) {
code = get_vlc2(gb, ff_vc1_norm6_vlc.table, VC1_NORM6_VLC_BITS, 2);
if (code < 0) {
av_log(v->s.avctx, AV_LOG_DEBUG, "invalid NORM-6 VLC\n");
return -1;
}
planep[x + 0] = (code >> 0) & 1;
planep[x + 1] = (code >> 1) & 1;
planep[x + 0 + stride] = (code >> 2) & 1;
planep[x + 1 + stride] = (code >> 3) & 1;
planep[x + 0 + stride * 2] = (code >> 4) & 1;
planep[x + 1 + stride * 2] = (code >> 5) & 1;
}
planep += stride * 3;
}
if (width & 1)
decode_colskip(data, 1, height, stride, &v->s.gb);
} else { // 3x2
planep += (height & 1) * stride;
for (y = height & 1; y < height; y += 2) {
for (x = width % 3; x < width; x += 3) {
code = get_vlc2(gb, ff_vc1_norm6_vlc.table, VC1_NORM6_VLC_BITS, 2);
if (code < 0) {
av_log(v->s.avctx, AV_LOG_DEBUG, "invalid NORM-6 VLC\n");
return -1;
}
planep[x + 0] = (code >> 0) & 1;
planep[x + 1] = (code >> 1) & 1;
planep[x + 2] = (code >> 2) & 1;
planep[x + 0 + stride] = (code >> 3) & 1;
planep[x + 1 + stride] = (code >> 4) & 1;
planep[x + 2 + stride] = (code >> 5) & 1;
}
planep += stride * 2;
}
x = width % 3;
if (x)
decode_colskip(data, x, height, stride, &v->s.gb);
if (height & 1)
decode_rowskip(data + x, width - x, 1, stride, &v->s.gb);
}
break;
case IMODE_ROWSKIP:
decode_rowskip(data, width, height, stride, &v->s.gb);
break;
case IMODE_COLSKIP:
decode_colskip(data, width, height, stride, &v->s.gb);
break;
default:
break;
}
/* Applying diff operator */
if (imode == IMODE_DIFF2 || imode == IMODE_DIFF6) {
planep = data;
planep[0] ^= invert;
for (x = 1; x < width; x++)
planep[x] ^= planep[x-1];
for (y = 1; y < height; y++) {
planep += stride;
planep[0] ^= planep[-stride];
for (x = 1; x < width; x++) {
if (planep[x-1] != planep[x-stride]) planep[x] ^= invert;
else planep[x] ^= planep[x-1];
}
}
} else if (invert) {
planep = data;
for (x = 0; x < stride * height; x++)
planep[x] = !planep[x]; //FIXME stride
}
return (imode << 1) + invert;
}
/** @} */ //Bitplane group
/***********************************************************************/
/** VOP Dquant decoding
* @param v VC-1 Context
*/
static int vop_dquant_decoding(VC1Context *v)
{
GetBitContext *gb = &v->s.gb;
int pqdiff;
//variable size
if (v->dquant != 2) {
v->dquantfrm = get_bits1(gb);
if (!v->dquantfrm)
return 0;
v->dqprofile = get_bits(gb, 2);
switch (v->dqprofile) {
case DQPROFILE_SINGLE_EDGE:
case DQPROFILE_DOUBLE_EDGES:
v->dqsbedge = get_bits(gb, 2);
break;
case DQPROFILE_ALL_MBS:
v->dqbilevel = get_bits1(gb);
if (!v->dqbilevel) {
v->halfpq = 0;
return 0;
}
default:
break; //Forbidden ?
}
}
pqdiff = get_bits(gb, 3);
if (pqdiff == 7)
v->altpq = get_bits(gb, 5);
else
v->altpq = v->pq + pqdiff + 1;
return 0;
}
static int decode_sequence_header_adv(VC1Context *v, GetBitContext *gb);
/**
* Decode Simple/Main Profiles sequence header
* @see Figure 7-8, p16-17
* @param avctx Codec context
* @param gb GetBit context initialized from Codec context extra_data
* @return Status
*/
int ff_vc1_decode_sequence_header(AVCodecContext *avctx, VC1Context *v, GetBitContext *gb)
{
av_log(avctx, AV_LOG_DEBUG, "Header: %0X\n", show_bits_long(gb, 32));
v->profile = get_bits(gb, 2);
if (v->profile == PROFILE_COMPLEX) {
av_log(avctx, AV_LOG_WARNING, "WMV3 Complex Profile is not fully supported\n");
}
if (v->profile == PROFILE_ADVANCED) {
v->zz_8x4 = ff_vc1_adv_progressive_8x4_zz;
v->zz_4x8 = ff_vc1_adv_progressive_4x8_zz;
return decode_sequence_header_adv(v, gb);
} else {
v->chromaformat = 1;
v->zz_8x4 = ff_wmv2_scantableA;
v->zz_4x8 = ff_wmv2_scantableB;
v->res_y411 = get_bits1(gb);
v->res_sprite = get_bits1(gb);
if (v->res_y411) {
av_log(avctx, AV_LOG_ERROR,
"Old interlaced mode is not supported\n");
return -1;
}
}
// (fps-2)/4 (->30)
v->frmrtq_postproc = get_bits(gb, 3); //common
// (bitrate-32kbps)/64kbps
v->bitrtq_postproc = get_bits(gb, 5); //common
v->s.loop_filter = get_bits1(gb); //common
if (v->s.loop_filter == 1 && v->profile == PROFILE_SIMPLE) {
av_log(avctx, AV_LOG_ERROR,
"LOOPFILTER shall not be enabled in Simple Profile\n");
}
if (v->s.avctx->skip_loop_filter >= AVDISCARD_ALL)
v->s.loop_filter = 0;
v->res_x8 = get_bits1(gb); //reserved
v->multires = get_bits1(gb);
v->res_fasttx = get_bits1(gb);
v->fastuvmc = get_bits1(gb); //common
if (!v->profile && !v->fastuvmc) {
av_log(avctx, AV_LOG_ERROR,
"FASTUVMC unavailable in Simple Profile\n");
return -1;
}
v->extended_mv = get_bits1(gb); //common
if (!v->profile && v->extended_mv) {
av_log(avctx, AV_LOG_ERROR,
"Extended MVs unavailable in Simple Profile\n");
return -1;
}
v->dquant = get_bits(gb, 2); //common
v->vstransform = get_bits1(gb); //common
v->res_transtab = get_bits1(gb);
if (v->res_transtab) {
av_log(avctx, AV_LOG_ERROR,
"1 for reserved RES_TRANSTAB is forbidden\n");
return -1;
}
v->overlap = get_bits1(gb); //common
v->resync_marker = get_bits1(gb);
v->rangered = get_bits1(gb);
if (v->rangered && v->profile == PROFILE_SIMPLE) {
av_log(avctx, AV_LOG_INFO,
"RANGERED should be set to 0 in Simple Profile\n");
}
v->s.max_b_frames = avctx->max_b_frames = get_bits(gb, 3); //common
v->quantizer_mode = get_bits(gb, 2); //common
v->finterpflag = get_bits1(gb); //common
if (v->res_sprite) {
int w = get_bits(gb, 11);
int h = get_bits(gb, 11);
int ret = ff_set_dimensions(v->s.avctx, w, h);
if (ret < 0) {
av_log(avctx, AV_LOG_ERROR, "Failed to set dimensions %d %d\n", w, h);
return ret;
}
skip_bits(gb, 5); //frame rate
v->res_x8 = get_bits1(gb);
if (get_bits1(gb)) { // something to do with DC VLC selection
av_log(avctx, AV_LOG_ERROR, "Unsupported sprite feature\n");
return -1;
}
skip_bits(gb, 3); //slice code
v->res_rtm_flag = 0;
} else {
v->res_rtm_flag = get_bits1(gb); //reserved
}
//TODO: figure out what they mean (always 0x402F)
if (!v->res_fasttx)
skip_bits(gb, 16);
av_log(avctx, AV_LOG_DEBUG,
"Profile %i:\nfrmrtq_postproc=%i, bitrtq_postproc=%i\n"
"LoopFilter=%i, MultiRes=%i, FastUVMC=%i, Extended MV=%i\n"
"Rangered=%i, VSTransform=%i, Overlap=%i, SyncMarker=%i\n"
"DQuant=%i, Quantizer mode=%i, Max B-frames=%i\n",
v->profile, v->frmrtq_postproc, v->bitrtq_postproc,
v->s.loop_filter, v->multires, v->fastuvmc, v->extended_mv,
v->rangered, v->vstransform, v->overlap, v->resync_marker,
v->dquant, v->quantizer_mode, avctx->max_b_frames);
return 0;
}
static int decode_sequence_header_adv(VC1Context *v, GetBitContext *gb)
{
v->res_rtm_flag = 1;
v->level = get_bits(gb, 3);
if (v->level >= 5) {
av_log(v->s.avctx, AV_LOG_ERROR, "Reserved LEVEL %i\n",v->level);
}
v->chromaformat = get_bits(gb, 2);
if (v->chromaformat != 1) {
av_log(v->s.avctx, AV_LOG_ERROR,
"Only 4:2:0 chroma format supported\n");
return -1;
}
// (fps-2)/4 (->30)
v->frmrtq_postproc = get_bits(gb, 3); //common
// (bitrate-32kbps)/64kbps
v->bitrtq_postproc = get_bits(gb, 5); //common
v->postprocflag = get_bits1(gb); //common
v->max_coded_width = (get_bits(gb, 12) + 1) << 1;
v->max_coded_height = (get_bits(gb, 12) + 1) << 1;
v->broadcast = get_bits1(gb);
v->interlace = get_bits1(gb);
v->tfcntrflag = get_bits1(gb);
v->finterpflag = get_bits1(gb);
skip_bits1(gb); // reserved
av_log(v->s.avctx, AV_LOG_DEBUG,
"Advanced Profile level %i:\nfrmrtq_postproc=%i, bitrtq_postproc=%i\n"
"LoopFilter=%i, ChromaFormat=%i, Pulldown=%i, Interlace: %i\n"
"TFCTRflag=%i, FINTERPflag=%i\n",
v->level, v->frmrtq_postproc, v->bitrtq_postproc,
v->s.loop_filter, v->chromaformat, v->broadcast, v->interlace,
v->tfcntrflag, v->finterpflag);
v->psf = get_bits1(gb);
if (v->psf) { //PsF, 6.1.13
av_log(v->s.avctx, AV_LOG_ERROR, "Progressive Segmented Frame mode: not supported (yet)\n");
return -1;
}
v->s.max_b_frames = v->s.avctx->max_b_frames = 7;
if (get_bits1(gb)) { //Display Info - decoding is not affected by it
int w, h, ar = 0;
av_log(v->s.avctx, AV_LOG_DEBUG, "Display extended info:\n");
w = get_bits(gb, 14) + 1;
h = get_bits(gb, 14) + 1;
av_log(v->s.avctx, AV_LOG_DEBUG, "Display dimensions: %ix%i\n", w, h);
if (get_bits1(gb))
ar = get_bits(gb, 4);
if (ar && ar < 14) {
v->s.avctx->sample_aspect_ratio = ff_vc1_pixel_aspect[ar];
} else if (ar == 15) {
w = get_bits(gb, 8) + 1;
h = get_bits(gb, 8) + 1;
v->s.avctx->sample_aspect_ratio = (AVRational){w, h};
} else {
if (v->s.avctx->width > v->max_coded_width ||
v->s.avctx->height > v->max_coded_height) {
avpriv_request_sample(v->s.avctx, "Huge resolution");
} else
av_reduce(&v->s.avctx->sample_aspect_ratio.num,
&v->s.avctx->sample_aspect_ratio.den,
v->s.avctx->height * w,
v->s.avctx->width * h,
1 << 30);
}
ff_set_sar(v->s.avctx, v->s.avctx->sample_aspect_ratio);
av_log(v->s.avctx, AV_LOG_DEBUG, "Aspect: %i:%i\n",
v->s.avctx->sample_aspect_ratio.num,
v->s.avctx->sample_aspect_ratio.den);
if (get_bits1(gb)) { //framerate stuff
if (get_bits1(gb)) {
v->s.avctx->framerate.den = 32;
v->s.avctx->framerate.num = get_bits(gb, 16) + 1;
} else {
int nr, dr;
nr = get_bits(gb, 8);
dr = get_bits(gb, 4);
if (nr > 0 && nr < 8 && dr > 0 && dr < 3) {
v->s.avctx->framerate.den = ff_vc1_fps_dr[dr - 1];
v->s.avctx->framerate.num = ff_vc1_fps_nr[nr - 1] * 1000;
}
}
if (v->broadcast) { // Pulldown may be present
v->s.avctx->ticks_per_frame = 2;
}
}
if (get_bits1(gb)) {
v->color_prim = get_bits(gb, 8);
v->transfer_char = get_bits(gb, 8);
v->matrix_coef = get_bits(gb, 8);
}
}
v->hrd_param_flag = get_bits1(gb);
if (v->hrd_param_flag) {
int i;
v->hrd_num_leaky_buckets = get_bits(gb, 5);
skip_bits(gb, 4); //bitrate exponent
skip_bits(gb, 4); //buffer size exponent
for (i = 0; i < v->hrd_num_leaky_buckets; i++) {
skip_bits(gb, 16); //hrd_rate[n]
skip_bits(gb, 16); //hrd_buffer[n]
}
}
return 0;
}
int ff_vc1_decode_entry_point(AVCodecContext *avctx, VC1Context *v, GetBitContext *gb)
{
int i;
int w,h;
int ret;
av_log(avctx, AV_LOG_DEBUG, "Entry point: %08X\n", show_bits_long(gb, 32));
v->broken_link = get_bits1(gb);
v->closed_entry = get_bits1(gb);
v->panscanflag = get_bits1(gb);
v->refdist_flag = get_bits1(gb);
v->s.loop_filter = get_bits1(gb);
if (v->s.avctx->skip_loop_filter >= AVDISCARD_ALL)
v->s.loop_filter = 0;
v->fastuvmc = get_bits1(gb);
v->extended_mv = get_bits1(gb);
v->dquant = get_bits(gb, 2);
v->vstransform = get_bits1(gb);
v->overlap = get_bits1(gb);
v->quantizer_mode = get_bits(gb, 2);
if (v->hrd_param_flag) {
for (i = 0; i < v->hrd_num_leaky_buckets; i++) {
skip_bits(gb, 8); //hrd_full[n]
}
}
if(get_bits1(gb)){
w = (get_bits(gb, 12)+1)<<1;
h = (get_bits(gb, 12)+1)<<1;
} else {
w = v->max_coded_width;
h = v->max_coded_height;
}
if ((ret = ff_set_dimensions(avctx, w, h)) < 0) {
av_log(avctx, AV_LOG_ERROR, "Failed to set dimensions %d %d\n", w, h);
return ret;
}
if (v->extended_mv)
v->extended_dmv = get_bits1(gb);
if ((v->range_mapy_flag = get_bits1(gb))) {
av_log(avctx, AV_LOG_ERROR, "Luma scaling is not supported, expect wrong picture\n");
v->range_mapy = get_bits(gb, 3);
}
if ((v->range_mapuv_flag = get_bits1(gb))) {
av_log(avctx, AV_LOG_ERROR, "Chroma scaling is not supported, expect wrong picture\n");
v->range_mapuv = get_bits(gb, 3);
}
av_log(avctx, AV_LOG_DEBUG, "Entry point info:\n"
"BrokenLink=%i, ClosedEntry=%i, PanscanFlag=%i\n"
"RefDist=%i, Postproc=%i, FastUVMC=%i, ExtMV=%i\n"
"DQuant=%i, VSTransform=%i, Overlap=%i, Qmode=%i\n",
v->broken_link, v->closed_entry, v->panscanflag, v->refdist_flag, v->s.loop_filter,
v->fastuvmc, v->extended_mv, v->dquant, v->vstransform, v->overlap, v->quantizer_mode);
return 0;
}
/* fill lookup tables for intensity compensation */
#define INIT_LUT(lumscale, lumshift, luty, lutuv, chain) do { \
int scale, shift, i; \
if (!lumscale) { \
scale = -64; \
shift = (255 - lumshift * 2) * 64; \
if (lumshift > 31) \
shift += 128 << 6; \
} else { \
scale = lumscale + 32; \
if (lumshift > 31) \
shift = (lumshift - 64) * 64; \
else \
shift = lumshift << 6; \
} \
for (i = 0; i < 256; i++) { \
int iy = chain ? luty[i] : i; \
int iu = chain ? lutuv[i] : i; \
luty[i] = av_clip_uint8((scale * iy + shift + 32) >> 6); \
lutuv[i] = av_clip_uint8((scale * (iu - 128) + 128*64 + 32) >> 6);\
} \
} while(0)
static void rotate_luts(VC1Context *v)
{
#define ROTATE(DEF, L, N, C, A) do { \
if (v->s.pict_type == AV_PICTURE_TYPE_BI || v->s.pict_type == AV_PICTURE_TYPE_B) { \
C = A; \
} else { \
DEF; \
memcpy(&tmp, L , sizeof(tmp)); \
memcpy(L , N , sizeof(tmp)); \
memcpy(N , &tmp, sizeof(tmp)); \
C = N; \
} \
} while(0)
ROTATE(int tmp, &v->last_use_ic, &v->next_use_ic, v->curr_use_ic, &v->aux_use_ic);
ROTATE(uint8_t tmp[2][256], v->last_luty, v->next_luty, v->curr_luty, v->aux_luty);
ROTATE(uint8_t tmp[2][256], v->last_lutuv, v->next_lutuv, v->curr_lutuv, v->aux_lutuv);
INIT_LUT(32, 0, v->curr_luty[0], v->curr_lutuv[0], 0);
INIT_LUT(32, 0, v->curr_luty[1], v->curr_lutuv[1], 0);
*v->curr_use_ic = 0;
}
static int read_bfraction(VC1Context *v, GetBitContext* gb) {
int bfraction_lut_index = get_bits(gb, 3);
if (bfraction_lut_index == 7)
bfraction_lut_index = 7 + get_bits(gb, 4);
if (bfraction_lut_index == 21) {
av_log(v->s.avctx, AV_LOG_ERROR, "bfraction invalid\n");
return AVERROR_INVALIDDATA;
}
v->bfraction_lut_index = bfraction_lut_index;
v->bfraction = ff_vc1_bfraction_lut[v->bfraction_lut_index];
return 0;
}
int ff_vc1_parse_frame_header(VC1Context *v, GetBitContext* gb)
{
int pqindex, lowquant, status;
v->field_mode = 0;
v->fcm = PROGRESSIVE;
if (v->finterpflag)
v->interpfrm = get_bits1(gb);
if (v->s.avctx->codec_id == AV_CODEC_ID_MSS2)
v->respic =
v->rangered =
v->multires = get_bits(gb, 2) == 1;
else
skip_bits(gb, 2); //framecnt unused
v->rangeredfrm = 0;
if (v->rangered)
v->rangeredfrm = get_bits1(gb);
if (get_bits1(gb)) {
v->s.pict_type = AV_PICTURE_TYPE_P;
} else {
if (v->s.avctx->max_b_frames && !get_bits1(gb)) {
v->s.pict_type = AV_PICTURE_TYPE_B;
} else
v->s.pict_type = AV_PICTURE_TYPE_I;
}
v->bi_type = 0;
if (v->s.pict_type == AV_PICTURE_TYPE_B) {
if (read_bfraction(v, gb) < 0)
return AVERROR_INVALIDDATA;
if (v->bfraction == 0) {
v->s.pict_type = AV_PICTURE_TYPE_BI;
}
}
if (v->s.pict_type == AV_PICTURE_TYPE_I || v->s.pict_type == AV_PICTURE_TYPE_BI)
skip_bits(gb, 7); // skip buffer fullness
if (v->parse_only)
return 0;
/* calculate RND */
if (v->s.pict_type == AV_PICTURE_TYPE_I || v->s.pict_type == AV_PICTURE_TYPE_BI)
v->rnd = 1;
if (v->s.pict_type == AV_PICTURE_TYPE_P)
v->rnd ^= 1;
if (get_bits_left(gb) < 5)
return AVERROR_INVALIDDATA;
/* Quantizer stuff */
pqindex = get_bits(gb, 5);
if (!pqindex)
return -1;
if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
v->pq = ff_vc1_pquant_table[0][pqindex];
else
v->pq = ff_vc1_pquant_table[1][pqindex];
v->pqindex = pqindex;
if (pqindex < 9)
v->halfpq = get_bits1(gb);
else
v->halfpq = 0;
switch (v->quantizer_mode) {
case QUANT_FRAME_IMPLICIT:
v->pquantizer = pqindex < 9;
break;
case QUANT_NON_UNIFORM:
v->pquantizer = 0;
break;
case QUANT_FRAME_EXPLICIT:
v->pquantizer = get_bits1(gb);
break;
default:
v->pquantizer = 1;
break;
}
v->dquantfrm = 0;
if (v->extended_mv == 1)
v->mvrange = get_unary(gb, 0, 3);
v->k_x = v->mvrange + 9 + (v->mvrange >> 1); //k_x can be 9 10 12 13
v->k_y = v->mvrange + 8; //k_y can be 8 9 10 11
v->range_x = 1 << (v->k_x - 1);
v->range_y = 1 << (v->k_y - 1);
if (v->multires && v->s.pict_type != AV_PICTURE_TYPE_B)
v->respic = get_bits(gb, 2);
if (v->res_x8 && (v->s.pict_type == AV_PICTURE_TYPE_I || v->s.pict_type == AV_PICTURE_TYPE_BI)) {
v->x8_type = get_bits1(gb);
} else
v->x8_type = 0;
ff_dlog(v->s.avctx, "%c Frame: QP=[%i]%i (+%i/2) %i\n",
(v->s.pict_type == AV_PICTURE_TYPE_P) ? 'P' : ((v->s.pict_type == AV_PICTURE_TYPE_I) ? 'I' : 'B'),
pqindex, v->pq, v->halfpq, v->rangeredfrm);
if (v->first_pic_header_flag)
rotate_luts(v);
switch (v->s.pict_type) {
case AV_PICTURE_TYPE_P:
v->tt_index = (v->pq > 4) + (v->pq > 12);
lowquant = (v->pq > 12) ? 0 : 1;
v->mv_mode = ff_vc1_mv_pmode_table[lowquant][get_unary(gb, 1, 4)];
if (v->mv_mode == MV_PMODE_INTENSITY_COMP) {
v->mv_mode2 = ff_vc1_mv_pmode_table2[lowquant][get_unary(gb, 1, 3)];
v->lumscale = get_bits(gb, 6);
v->lumshift = get_bits(gb, 6);
v->last_use_ic = 1;
/* fill lookup tables for intensity compensation */
INIT_LUT(v->lumscale, v->lumshift, v->last_luty[0], v->last_lutuv[0], 1);
INIT_LUT(v->lumscale, v->lumshift, v->last_luty[1], v->last_lutuv[1], 1);
}
v->qs_last = v->s.quarter_sample;
if (v->mv_mode == MV_PMODE_INTENSITY_COMP) {
v->s.quarter_sample = (v->mv_mode2 != MV_PMODE_1MV_HPEL &&
v->mv_mode2 != MV_PMODE_1MV_HPEL_BILIN);
v->s.mspel = (v->mv_mode2 != MV_PMODE_1MV_HPEL_BILIN);
} else {
v->s.quarter_sample = (v->mv_mode != MV_PMODE_1MV_HPEL &&
v->mv_mode != MV_PMODE_1MV_HPEL_BILIN);
v->s.mspel = (v->mv_mode != MV_PMODE_1MV_HPEL_BILIN);
}
if ((v->mv_mode == MV_PMODE_INTENSITY_COMP &&
v->mv_mode2 == MV_PMODE_MIXED_MV) ||
v->mv_mode == MV_PMODE_MIXED_MV) {
status = bitplane_decoding(v->mv_type_mb_plane, &v->mv_type_is_raw, v);
if (status < 0)
return -1;
av_log(v->s.avctx, AV_LOG_DEBUG, "MB MV Type plane encoding: "
"Imode: %i, Invert: %i\n", status>>1, status&1);
} else {
v->mv_type_is_raw = 0;
memset(v->mv_type_mb_plane, 0, v->s.mb_stride * v->s.mb_height);
}
status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
if (status < 0)
return -1;
av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
"Imode: %i, Invert: %i\n", status>>1, status&1);
if (get_bits_left(gb) < 4)
return AVERROR_INVALIDDATA;
/* Hopefully this is correct for P-frames */
v->s.mv_table_index = get_bits(gb, 2); //but using ff_vc1_ tables
v->cbptab = get_bits(gb, 2);
v->cbpcy_vlc = &ff_vc1_cbpcy_p_vlc[v->cbptab];
if (v->dquant) {
av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
vop_dquant_decoding(v);
}
if (v->vstransform) {
v->ttmbf = get_bits1(gb);
if (v->ttmbf) {
v->ttfrm = ff_vc1_ttfrm_to_tt[get_bits(gb, 2)];
} else
v->ttfrm = 0; //FIXME Is that so ?
} else {
v->ttmbf = 1;
v->ttfrm = TT_8X8;
}
break;
case AV_PICTURE_TYPE_B:
v->tt_index = (v->pq > 4) + (v->pq > 12);
v->mv_mode = get_bits1(gb) ? MV_PMODE_1MV : MV_PMODE_1MV_HPEL_BILIN;
v->qs_last = v->s.quarter_sample;
v->s.quarter_sample = (v->mv_mode == MV_PMODE_1MV);
v->s.mspel = v->s.quarter_sample;
status = bitplane_decoding(v->direct_mb_plane, &v->dmb_is_raw, v);
if (status < 0)
return -1;
av_log(v->s.avctx, AV_LOG_DEBUG, "MB Direct Type plane encoding: "
"Imode: %i, Invert: %i\n", status>>1, status&1);
status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
if (status < 0)
return -1;
av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
"Imode: %i, Invert: %i\n", status>>1, status&1);
v->s.mv_table_index = get_bits(gb, 2);
v->cbptab = get_bits(gb, 2);
v->cbpcy_vlc = &ff_vc1_cbpcy_p_vlc[v->cbptab];
if (v->dquant) {
av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
vop_dquant_decoding(v);
}
if (v->vstransform) {
v->ttmbf = get_bits1(gb);
if (v->ttmbf) {
v->ttfrm = ff_vc1_ttfrm_to_tt[get_bits(gb, 2)];
} else
v->ttfrm = 0;
} else {
v->ttmbf = 1;
v->ttfrm = TT_8X8;
}
break;
}
if (!v->x8_type) {
/* AC Syntax */
v->c_ac_table_index = decode012(gb);
if (v->s.pict_type == AV_PICTURE_TYPE_I || v->s.pict_type == AV_PICTURE_TYPE_BI) {
v->y_ac_table_index = decode012(gb);
}
/* DC Syntax */
v->s.dc_table_index = get_bits1(gb);
}
if (v->s.pict_type == AV_PICTURE_TYPE_BI) {
v->s.pict_type = AV_PICTURE_TYPE_B;
v->bi_type = 1;
}
return 0;
}
int ff_vc1_parse_frame_header_adv(VC1Context *v, GetBitContext* gb)
{
int pqindex, lowquant;
int status;
int field_mode, fcm;
v->numref = 0;
v->p_frame_skipped = 0;
if (v->second_field) {
if (v->fcm != ILACE_FIELD || v->field_mode!=1)
return -1;
if (v->fptype & 4)
v->s.pict_type = (v->fptype & 1) ? AV_PICTURE_TYPE_BI : AV_PICTURE_TYPE_B;
else
v->s.pict_type = (v->fptype & 1) ? AV_PICTURE_TYPE_P : AV_PICTURE_TYPE_I;
v->s.current_picture_ptr->f->pict_type = v->s.pict_type;
if (!v->pic_header_flag)
goto parse_common_info;
}
field_mode = 0;
if (v->interlace) {
fcm = decode012(gb);
if (fcm) {
if (fcm == ILACE_FIELD)
field_mode = 1;
}
} else {
fcm = PROGRESSIVE;
}
if (!v->first_pic_header_flag && v->field_mode != field_mode)
return AVERROR_INVALIDDATA;
v->field_mode = field_mode;
v->fcm = fcm;
av_assert0( v->s.mb_height == v->s.height + 15 >> 4
|| v->s.mb_height == FFALIGN(v->s.height + 15 >> 4, 2));
if (v->field_mode) {
v->s.mb_height = FFALIGN(v->s.height + 15 >> 4, 2);
v->fptype = get_bits(gb, 3);
if (v->fptype & 4) // B-picture
v->s.pict_type = (v->fptype & 2) ? AV_PICTURE_TYPE_BI : AV_PICTURE_TYPE_B;
else
v->s.pict_type = (v->fptype & 2) ? AV_PICTURE_TYPE_P : AV_PICTURE_TYPE_I;
} else {
v->s.mb_height = v->s.height + 15 >> 4;
switch (get_unary(gb, 0, 4)) {
case 0:
v->s.pict_type = AV_PICTURE_TYPE_P;
break;
case 1:
v->s.pict_type = AV_PICTURE_TYPE_B;
break;
case 2:
v->s.pict_type = AV_PICTURE_TYPE_I;
break;
case 3:
v->s.pict_type = AV_PICTURE_TYPE_BI;
break;
case 4:
v->s.pict_type = AV_PICTURE_TYPE_P; // skipped pic
v->p_frame_skipped = 1;
break;
}
}
if (v->tfcntrflag)
skip_bits(gb, 8);
if (v->broadcast) {
if (!v->interlace || v->psf) {
v->rptfrm = get_bits(gb, 2);
} else {
v->tff = get_bits1(gb);
v->rff = get_bits1(gb);
}
} else {
v->tff = 1;
}
if (v->panscanflag) {
avpriv_report_missing_feature(v->s.avctx, "Pan-scan");
//...
}
if (v->p_frame_skipped) {
return 0;
}
v->rnd = get_bits1(gb);
if (v->interlace)
v->uvsamp = get_bits1(gb);
if (v->field_mode) {
if (!v->refdist_flag)
v->refdist = 0;
else if ((v->s.pict_type != AV_PICTURE_TYPE_B) && (v->s.pict_type != AV_PICTURE_TYPE_BI)) {
v->refdist = get_bits(gb, 2);
if (v->refdist == 3)
v->refdist += get_unary(gb, 0, 14);
if (v->refdist > 16)
return AVERROR_INVALIDDATA;
}
if ((v->s.pict_type == AV_PICTURE_TYPE_B) || (v->s.pict_type == AV_PICTURE_TYPE_BI)) {
if (read_bfraction(v, gb) < 0)
return AVERROR_INVALIDDATA;
v->frfd = (v->bfraction * v->refdist) >> 8;
v->brfd = v->refdist - v->frfd - 1;
if (v->brfd < 0)
v->brfd = 0;
}
goto parse_common_info;
}
if (v->fcm == PROGRESSIVE) {
if (v->finterpflag)
v->interpfrm = get_bits1(gb);
if (v->s.pict_type == AV_PICTURE_TYPE_B) {
if (read_bfraction(v, gb) < 0)
return AVERROR_INVALIDDATA;
if (v->bfraction == 0) {
v->s.pict_type = AV_PICTURE_TYPE_BI; /* XXX: should not happen here */
}
}
}
parse_common_info:
if (v->field_mode)
v->cur_field_type = !(v->tff ^ v->second_field);
pqindex = get_bits(gb, 5);
if (!pqindex)
return -1;
if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
v->pq = ff_vc1_pquant_table[0][pqindex];
else
v->pq = ff_vc1_pquant_table[1][pqindex];
v->pqindex = pqindex;
if (pqindex < 9)
v->halfpq = get_bits1(gb);
else
v->halfpq = 0;
switch (v->quantizer_mode) {
case QUANT_FRAME_IMPLICIT:
v->pquantizer = pqindex < 9;
break;
case QUANT_NON_UNIFORM:
v->pquantizer = 0;
break;
case QUANT_FRAME_EXPLICIT:
v->pquantizer = get_bits1(gb);
break;
default:
v->pquantizer = 1;
break;
}
v->dquantfrm = 0;
if (v->postprocflag)
v->postproc = get_bits(gb, 2);
if (v->parse_only)
return 0;
if (v->first_pic_header_flag)
rotate_luts(v);
switch (v->s.pict_type) {
case AV_PICTURE_TYPE_I:
case AV_PICTURE_TYPE_BI:
if (v->fcm == ILACE_FRAME) { //interlace frame picture
status = bitplane_decoding(v->fieldtx_plane, &v->fieldtx_is_raw, v);
if (status < 0)
return -1;
av_log(v->s.avctx, AV_LOG_DEBUG, "FIELDTX plane encoding: "
"Imode: %i, Invert: %i\n", status>>1, status&1);
} else
v->fieldtx_is_raw = 0;
status = bitplane_decoding(v->acpred_plane, &v->acpred_is_raw, v);
if (status < 0)
return -1;
av_log(v->s.avctx, AV_LOG_DEBUG, "ACPRED plane encoding: "
"Imode: %i, Invert: %i\n", status>>1, status&1);
v->condover = CONDOVER_NONE;
if (v->overlap && v->pq <= 8) {
v->condover = decode012(gb);
if (v->condover == CONDOVER_SELECT) {
status = bitplane_decoding(v->over_flags_plane, &v->overflg_is_raw, v);
if (status < 0)
return -1;
av_log(v->s.avctx, AV_LOG_DEBUG, "CONDOVER plane encoding: "
"Imode: %i, Invert: %i\n", status>>1, status&1);
}
}
break;
case AV_PICTURE_TYPE_P:
if (v->field_mode) {
v->numref = get_bits1(gb);
if (!v->numref) {
v->reffield = get_bits1(gb);
v->ref_field_type[0] = v->reffield ^ !v->cur_field_type;
}
}
if (v->extended_mv)
v->mvrange = get_unary(gb, 0, 3);
else
v->mvrange = 0;
if (v->interlace) {
if (v->extended_dmv)
v->dmvrange = get_unary(gb, 0, 3);
else
v->dmvrange = 0;
if (v->fcm == ILACE_FRAME) { // interlaced frame picture
v->fourmvswitch = get_bits1(gb);
v->intcomp = get_bits1(gb);
if (v->intcomp) {
v->lumscale = get_bits(gb, 6);
v->lumshift = get_bits(gb, 6);
INIT_LUT(v->lumscale, v->lumshift, v->last_luty[0], v->last_lutuv[0], 1);
INIT_LUT(v->lumscale, v->lumshift, v->last_luty[1], v->last_lutuv[1], 1);
v->last_use_ic = 1;
}
status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
if (status < 0)
return -1;
av_log(v->s.avctx, AV_LOG_DEBUG, "SKIPMB plane encoding: "
"Imode: %i, Invert: %i\n", status>>1, status&1);
v->mbmodetab = get_bits(gb, 2);
if (v->fourmvswitch)
v->mbmode_vlc = &ff_vc1_intfr_4mv_mbmode_vlc[v->mbmodetab];
else
v->mbmode_vlc = &ff_vc1_intfr_non4mv_mbmode_vlc[v->mbmodetab];
v->imvtab = get_bits(gb, 2);
v->imv_vlc = &ff_vc1_1ref_mvdata_vlc[v->imvtab];
// interlaced p-picture cbpcy range is [1, 63]
v->icbptab = get_bits(gb, 3);
v->cbpcy_vlc = &ff_vc1_icbpcy_vlc[v->icbptab];
v->twomvbptab = get_bits(gb, 2);
v->twomvbp_vlc = &ff_vc1_2mv_block_pattern_vlc[v->twomvbptab];
if (v->fourmvswitch) {
v->fourmvbptab = get_bits(gb, 2);
v->fourmvbp_vlc = &ff_vc1_4mv_block_pattern_vlc[v->fourmvbptab];
}
}
}
v->k_x = v->mvrange + 9 + (v->mvrange >> 1); //k_x can be 9 10 12 13
v->k_y = v->mvrange + 8; //k_y can be 8 9 10 11
v->range_x = 1 << (v->k_x - 1);
v->range_y = 1 << (v->k_y - 1);
v->tt_index = (v->pq > 4) + (v->pq > 12);
if (v->fcm != ILACE_FRAME) {
int mvmode;
mvmode = get_unary(gb, 1, 4);
lowquant = (v->pq > 12) ? 0 : 1;
v->mv_mode = ff_vc1_mv_pmode_table[lowquant][mvmode];
if (v->mv_mode == MV_PMODE_INTENSITY_COMP) {
int mvmode2;
mvmode2 = get_unary(gb, 1, 3);
v->mv_mode2 = ff_vc1_mv_pmode_table2[lowquant][mvmode2];
if (v->field_mode) {
v->intcompfield = decode210(gb) ^ 3;
} else
v->intcompfield = 3;
v->lumscale2 = v->lumscale = 32;
v->lumshift2 = v->lumshift = 0;
if (v->intcompfield & 1) {
v->lumscale = get_bits(gb, 6);
v->lumshift = get_bits(gb, 6);
}
if ((v->intcompfield & 2) && v->field_mode) {
v->lumscale2 = get_bits(gb, 6);
v->lumshift2 = get_bits(gb, 6);
} else if(!v->field_mode) {
v->lumscale2 = v->lumscale;
v->lumshift2 = v->lumshift;
}
if (v->field_mode && v->second_field) {
if (v->cur_field_type) {
INIT_LUT(v->lumscale , v->lumshift , v->curr_luty[v->cur_field_type^1], v->curr_lutuv[v->cur_field_type^1], 0);
INIT_LUT(v->lumscale2, v->lumshift2, v->last_luty[v->cur_field_type ], v->last_lutuv[v->cur_field_type ], 1);
} else {
INIT_LUT(v->lumscale2, v->lumshift2, v->curr_luty[v->cur_field_type^1], v->curr_lutuv[v->cur_field_type^1], 0);
INIT_LUT(v->lumscale , v->lumshift , v->last_luty[v->cur_field_type ], v->last_lutuv[v->cur_field_type ], 1);
}
v->next_use_ic = *v->curr_use_ic = 1;
} else {
INIT_LUT(v->lumscale , v->lumshift , v->last_luty[0], v->last_lutuv[0], 1);
INIT_LUT(v->lumscale2, v->lumshift2, v->last_luty[1], v->last_lutuv[1], 1);
}
v->last_use_ic = 1;
}
v->qs_last = v->s.quarter_sample;
if (v->mv_mode == MV_PMODE_INTENSITY_COMP) {
v->s.quarter_sample = (v->mv_mode2 != MV_PMODE_1MV_HPEL &&
v->mv_mode2 != MV_PMODE_1MV_HPEL_BILIN);
v->s.mspel = (v->mv_mode2 != MV_PMODE_1MV_HPEL_BILIN);
} else {
v->s.quarter_sample = (v->mv_mode != MV_PMODE_1MV_HPEL &&
v->mv_mode != MV_PMODE_1MV_HPEL_BILIN);
v->s.mspel = (v->mv_mode != MV_PMODE_1MV_HPEL_BILIN);
}
}
if (v->fcm == PROGRESSIVE) { // progressive
if ((v->mv_mode == MV_PMODE_INTENSITY_COMP &&
v->mv_mode2 == MV_PMODE_MIXED_MV)
|| v->mv_mode == MV_PMODE_MIXED_MV) {
status = bitplane_decoding(v->mv_type_mb_plane, &v->mv_type_is_raw, v);
if (status < 0)
return -1;
av_log(v->s.avctx, AV_LOG_DEBUG, "MB MV Type plane encoding: "
"Imode: %i, Invert: %i\n", status>>1, status&1);
} else {
v->mv_type_is_raw = 0;
memset(v->mv_type_mb_plane, 0, v->s.mb_stride * v->s.mb_height);
}
status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
if (status < 0)
return -1;
av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
"Imode: %i, Invert: %i\n", status>>1, status&1);
/* Hopefully this is correct for P-frames */
v->s.mv_table_index = get_bits(gb, 2); //but using ff_vc1_ tables
v->cbptab = get_bits(gb, 2);
v->cbpcy_vlc = &ff_vc1_cbpcy_p_vlc[v->cbptab];
} else if (v->fcm == ILACE_FRAME) { // frame interlaced
v->qs_last = v->s.quarter_sample;
v->s.quarter_sample = 1;
v->s.mspel = 1;
} else { // field interlaced
v->mbmodetab = get_bits(gb, 3);
v->imvtab = get_bits(gb, 2 + v->numref);
if (!v->numref)
v->imv_vlc = &ff_vc1_1ref_mvdata_vlc[v->imvtab];
else
v->imv_vlc = &ff_vc1_2ref_mvdata_vlc[v->imvtab];
v->icbptab = get_bits(gb, 3);
v->cbpcy_vlc = &ff_vc1_icbpcy_vlc[v->icbptab];
if ((v->mv_mode == MV_PMODE_INTENSITY_COMP &&
v->mv_mode2 == MV_PMODE_MIXED_MV) || v->mv_mode == MV_PMODE_MIXED_MV) {
v->fourmvbptab = get_bits(gb, 2);
v->fourmvbp_vlc = &ff_vc1_4mv_block_pattern_vlc[v->fourmvbptab];
v->mbmode_vlc = &ff_vc1_if_mmv_mbmode_vlc[v->mbmodetab];
} else {
v->mbmode_vlc = &ff_vc1_if_1mv_mbmode_vlc[v->mbmodetab];
}
}
if (v->dquant) {
av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
vop_dquant_decoding(v);
}
if (v->vstransform) {
v->ttmbf = get_bits1(gb);
if (v->ttmbf) {
v->ttfrm = ff_vc1_ttfrm_to_tt[get_bits(gb, 2)];
} else
v->ttfrm = 0; //FIXME Is that so ?
} else {
v->ttmbf = 1;
v->ttfrm = TT_8X8;
}
break;
case AV_PICTURE_TYPE_B:
if (v->fcm == ILACE_FRAME) {
if (read_bfraction(v, gb) < 0)
return AVERROR_INVALIDDATA;
if (v->bfraction == 0) {
return -1;
}
}
if (v->extended_mv)
v->mvrange = get_unary(gb, 0, 3);
else
v->mvrange = 0;
v->k_x = v->mvrange + 9 + (v->mvrange >> 1); //k_x can be 9 10 12 13
v->k_y = v->mvrange + 8; //k_y can be 8 9 10 11
v->range_x = 1 << (v->k_x - 1);
v->range_y = 1 << (v->k_y - 1);
v->tt_index = (v->pq > 4) + (v->pq > 12);
if (v->field_mode) {
int mvmode;
av_log(v->s.avctx, AV_LOG_DEBUG, "B Fields\n");
if (v->extended_dmv)
v->dmvrange = get_unary(gb, 0, 3);
mvmode = get_unary(gb, 1, 3);
lowquant = (v->pq > 12) ? 0 : 1;
v->mv_mode = ff_vc1_mv_pmode_table2[lowquant][mvmode];
v->qs_last = v->s.quarter_sample;
v->s.quarter_sample = (v->mv_mode == MV_PMODE_1MV || v->mv_mode == MV_PMODE_MIXED_MV);
v->s.mspel = (v->mv_mode != MV_PMODE_1MV_HPEL_BILIN);
status = bitplane_decoding(v->forward_mb_plane, &v->fmb_is_raw, v);
if (status < 0)
return -1;
av_log(v->s.avctx, AV_LOG_DEBUG, "MB Forward Type plane encoding: "
"Imode: %i, Invert: %i\n", status>>1, status&1);
v->mbmodetab = get_bits(gb, 3);
if (v->mv_mode == MV_PMODE_MIXED_MV)
v->mbmode_vlc = &ff_vc1_if_mmv_mbmode_vlc[v->mbmodetab];
else
v->mbmode_vlc = &ff_vc1_if_1mv_mbmode_vlc[v->mbmodetab];
v->imvtab = get_bits(gb, 3);
v->imv_vlc = &ff_vc1_2ref_mvdata_vlc[v->imvtab];
v->icbptab = get_bits(gb, 3);
v->cbpcy_vlc = &ff_vc1_icbpcy_vlc[v->icbptab];
if (v->mv_mode == MV_PMODE_MIXED_MV) {
v->fourmvbptab = get_bits(gb, 2);
v->fourmvbp_vlc = &ff_vc1_4mv_block_pattern_vlc[v->fourmvbptab];
}
v->numref = 1; // interlaced field B pictures are always 2-ref
} else if (v->fcm == ILACE_FRAME) {
if (v->extended_dmv)
v->dmvrange = get_unary(gb, 0, 3);
if (get_bits1(gb)) /* intcomp - present but shall always be 0 */
av_log(v->s.avctx, AV_LOG_WARNING, "Intensity compensation set for B picture\n");
v->intcomp = 0;
v->mv_mode = MV_PMODE_1MV;
v->fourmvswitch = 0;
v->qs_last = v->s.quarter_sample;
v->s.quarter_sample = 1;
v->s.mspel = 1;
status = bitplane_decoding(v->direct_mb_plane, &v->dmb_is_raw, v);
if (status < 0)
return -1;
av_log(v->s.avctx, AV_LOG_DEBUG, "MB Direct Type plane encoding: "
"Imode: %i, Invert: %i\n", status>>1, status&1);
status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
if (status < 0)
return -1;
av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
"Imode: %i, Invert: %i\n", status>>1, status&1);
v->mbmodetab = get_bits(gb, 2);
v->mbmode_vlc = &ff_vc1_intfr_non4mv_mbmode_vlc[v->mbmodetab];
v->imvtab = get_bits(gb, 2);
v->imv_vlc = &ff_vc1_1ref_mvdata_vlc[v->imvtab];
// interlaced p/b-picture cbpcy range is [1, 63]
v->icbptab = get_bits(gb, 3);
v->cbpcy_vlc = &ff_vc1_icbpcy_vlc[v->icbptab];
v->twomvbptab = get_bits(gb, 2);
v->twomvbp_vlc = &ff_vc1_2mv_block_pattern_vlc[v->twomvbptab];
v->fourmvbptab = get_bits(gb, 2);
v->fourmvbp_vlc = &ff_vc1_4mv_block_pattern_vlc[v->fourmvbptab];
} else {
v->mv_mode = get_bits1(gb) ? MV_PMODE_1MV : MV_PMODE_1MV_HPEL_BILIN;
v->qs_last = v->s.quarter_sample;
v->s.quarter_sample = (v->mv_mode == MV_PMODE_1MV);
v->s.mspel = v->s.quarter_sample;
status = bitplane_decoding(v->direct_mb_plane, &v->dmb_is_raw, v);
if (status < 0)
return -1;
av_log(v->s.avctx, AV_LOG_DEBUG, "MB Direct Type plane encoding: "
"Imode: %i, Invert: %i\n", status>>1, status&1);
status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
if (status < 0)
return -1;
av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
"Imode: %i, Invert: %i\n", status>>1, status&1);
v->s.mv_table_index = get_bits(gb, 2);
v->cbptab = get_bits(gb, 2);
v->cbpcy_vlc = &ff_vc1_cbpcy_p_vlc[v->cbptab];
}
if (v->dquant) {
av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
vop_dquant_decoding(v);
}
if (v->vstransform) {
v->ttmbf = get_bits1(gb);
if (v->ttmbf) {
v->ttfrm = ff_vc1_ttfrm_to_tt[get_bits(gb, 2)];
} else
v->ttfrm = 0;
} else {
v->ttmbf = 1;
v->ttfrm = TT_8X8;
}
break;
}
/* AC Syntax */
v->c_ac_table_index = decode012(gb);
if (v->s.pict_type == AV_PICTURE_TYPE_I || v->s.pict_type == AV_PICTURE_TYPE_BI) {
v->y_ac_table_index = decode012(gb);
}
else if (v->fcm != PROGRESSIVE && !v->s.quarter_sample) {
v->range_x <<= 1;
v->range_y <<= 1;
}
/* DC Syntax */
v->s.dc_table_index = get_bits1(gb);
if ((v->s.pict_type == AV_PICTURE_TYPE_I || v->s.pict_type == AV_PICTURE_TYPE_BI)
&& v->dquant) {
av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
vop_dquant_decoding(v);
}
v->bi_type = (v->s.pict_type == AV_PICTURE_TYPE_BI);
if (v->bi_type)
v->s.pict_type = AV_PICTURE_TYPE_B;
return 0;
}