1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2025-01-24 13:56:33 +02:00
FFmpeg/libavcodec/wavpackenc.c
Anton Khirnov 8d73f3ce56 lavc: support AV_CODEC_CAP_ENCODER_REORDERED_OPAQUE in all no-delay encoders
Including fake-delay encoders marked with FF_CODEC_CAP_EOF_FLUSH.
2023-01-29 09:22:57 +01:00

2979 lines
96 KiB
C

/*
* WavPack lossless audio encoder
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#define BITSTREAM_WRITER_LE
#include "libavutil/channel_layout.h"
#include "libavutil/intreadwrite.h"
#include "libavutil/opt.h"
#include "avcodec.h"
#include "codec_internal.h"
#include "encode.h"
#include "put_bits.h"
#include "bytestream.h"
#include "wavpackenc.h"
#include "wavpack.h"
#define UPDATE_WEIGHT(weight, delta, source, result) \
if ((source) && (result)) { \
int32_t s = (int32_t) ((source) ^ (result)) >> 31; \
weight = ((delta) ^ s) + ((weight) - s); \
}
#define APPLY_WEIGHT_F(weight, sample) ((((((sample) & 0xffff) * (weight)) >> 9) + \
((((sample) & ~0xffff) >> 9) * (weight)) + 1) >> 1)
#define APPLY_WEIGHT_I(weight, sample) (((weight) * (sample) + 512) >> 10)
#define APPLY_WEIGHT(weight, sample) ((sample) != (short) (sample) ? \
APPLY_WEIGHT_F(weight, sample) : APPLY_WEIGHT_I (weight, sample))
#define CLEAR(destin) memset(&destin, 0, sizeof(destin));
#define SHIFT_LSB 13
#define SHIFT_MASK (0x1FU << SHIFT_LSB)
#define MAG_LSB 18
#define MAG_MASK (0x1FU << MAG_LSB)
#define SRATE_LSB 23
#define SRATE_MASK (0xFU << SRATE_LSB)
#define EXTRA_TRY_DELTAS 1
#define EXTRA_ADJUST_DELTAS 2
#define EXTRA_SORT_FIRST 4
#define EXTRA_BRANCHES 8
#define EXTRA_SORT_LAST 16
typedef struct WavPackExtraInfo {
struct Decorr dps[MAX_TERMS];
int nterms, log_limit, gt16bit;
uint32_t best_bits;
} WavPackExtraInfo;
typedef struct WavPackWords {
int pend_data, holding_one, zeros_acc;
int holding_zero, pend_count;
WvChannel c[2];
} WavPackWords;
typedef struct WavPackEncodeContext {
AVClass *class;
AVCodecContext *avctx;
PutBitContext pb;
int block_samples;
int buffer_size;
int sample_index;
int stereo, stereo_in;
int ch_offset;
int32_t *samples[2];
int samples_size[2];
int32_t *sampleptrs[MAX_TERMS+2][2];
int sampleptrs_size[MAX_TERMS+2][2];
int32_t *temp_buffer[2][2];
int temp_buffer_size[2][2];
int32_t *best_buffer[2];
int best_buffer_size[2];
int32_t *js_left, *js_right;
int js_left_size, js_right_size;
int32_t *orig_l, *orig_r;
int orig_l_size, orig_r_size;
unsigned extra_flags;
int optimize_mono;
int decorr_filter;
int joint;
int num_branches;
uint32_t flags;
uint32_t crc_x;
WavPackWords w;
uint8_t int32_sent_bits, int32_zeros, int32_ones, int32_dups;
uint8_t float_flags, float_shift, float_max_exp, max_exp;
int32_t shifted_ones, shifted_zeros, shifted_both;
int32_t false_zeros, neg_zeros, ordata;
int num_terms, shift, joint_stereo, false_stereo;
int num_decorrs, num_passes, best_decorr, mask_decorr;
struct Decorr decorr_passes[MAX_TERMS];
const WavPackDecorrSpec *decorr_specs;
float delta_decay;
} WavPackEncodeContext;
static av_cold int wavpack_encode_init(AVCodecContext *avctx)
{
WavPackEncodeContext *s = avctx->priv_data;
s->avctx = avctx;
if (avctx->ch_layout.nb_channels > 255) {
av_log(avctx, AV_LOG_ERROR, "Invalid channel count: %d\n", avctx->ch_layout.nb_channels);
return AVERROR(EINVAL);
}
if (!avctx->frame_size) {
int block_samples;
if (!(avctx->sample_rate & 1))
block_samples = avctx->sample_rate / 2;
else
block_samples = avctx->sample_rate;
while (block_samples * avctx->ch_layout.nb_channels > WV_MAX_SAMPLES)
block_samples /= 2;
while (block_samples * avctx->ch_layout.nb_channels < 40000)
block_samples *= 2;
avctx->frame_size = block_samples;
} else if (avctx->frame_size && (avctx->frame_size < 128 ||
avctx->frame_size > WV_MAX_SAMPLES)) {
av_log(avctx, AV_LOG_ERROR, "invalid block size: %d\n", avctx->frame_size);
return AVERROR(EINVAL);
}
if (avctx->compression_level != FF_COMPRESSION_DEFAULT) {
if (avctx->compression_level >= 3) {
s->decorr_filter = 3;
s->num_passes = 9;
if (avctx->compression_level >= 8) {
s->num_branches = 4;
s->extra_flags = EXTRA_TRY_DELTAS|EXTRA_ADJUST_DELTAS|EXTRA_SORT_FIRST|EXTRA_SORT_LAST|EXTRA_BRANCHES;
} else if (avctx->compression_level >= 7) {
s->num_branches = 3;
s->extra_flags = EXTRA_TRY_DELTAS|EXTRA_ADJUST_DELTAS|EXTRA_SORT_FIRST|EXTRA_BRANCHES;
} else if (avctx->compression_level >= 6) {
s->num_branches = 2;
s->extra_flags = EXTRA_TRY_DELTAS|EXTRA_ADJUST_DELTAS|EXTRA_SORT_FIRST|EXTRA_BRANCHES;
} else if (avctx->compression_level >= 5) {
s->num_branches = 1;
s->extra_flags = EXTRA_TRY_DELTAS|EXTRA_ADJUST_DELTAS|EXTRA_SORT_FIRST|EXTRA_BRANCHES;
} else if (avctx->compression_level >= 4) {
s->num_branches = 1;
s->extra_flags = EXTRA_TRY_DELTAS|EXTRA_ADJUST_DELTAS|EXTRA_BRANCHES;
}
} else if (avctx->compression_level == 2) {
s->decorr_filter = 2;
s->num_passes = 4;
} else if (avctx->compression_level == 1) {
s->decorr_filter = 1;
s->num_passes = 2;
} else if (avctx->compression_level < 1) {
s->decorr_filter = 0;
s->num_passes = 0;
}
}
s->num_decorrs = decorr_filter_sizes[s->decorr_filter];
s->decorr_specs = decorr_filters[s->decorr_filter];
s->delta_decay = 2.0;
return 0;
}
static void shift_mono(int32_t *samples, int nb_samples, int shift)
{
int i;
for (i = 0; i < nb_samples; i++)
samples[i] >>= shift;
}
static void shift_stereo(int32_t *left, int32_t *right,
int nb_samples, int shift)
{
int i;
for (i = 0; i < nb_samples; i++) {
left [i] >>= shift;
right[i] >>= shift;
}
}
#define FLOAT_SHIFT_ONES 1
#define FLOAT_SHIFT_SAME 2
#define FLOAT_SHIFT_SENT 4
#define FLOAT_ZEROS_SENT 8
#define FLOAT_NEG_ZEROS 0x10
#define FLOAT_EXCEPTIONS 0x20
#define get_mantissa(f) ((f) & 0x7fffff)
#define get_exponent(f) (((f) >> 23) & 0xff)
#define get_sign(f) (((f) >> 31) & 0x1)
static void process_float(WavPackEncodeContext *s, int32_t *sample)
{
int32_t shift_count, value, f = *sample;
if (get_exponent(f) == 255) {
s->float_flags |= FLOAT_EXCEPTIONS;
value = 0x1000000;
shift_count = 0;
} else if (get_exponent(f)) {
shift_count = s->max_exp - get_exponent(f);
value = 0x800000 + get_mantissa(f);
} else {
shift_count = s->max_exp ? s->max_exp - 1 : 0;
value = get_mantissa(f);
}
if (shift_count < 25)
value >>= shift_count;
else
value = 0;
if (!value) {
if (get_exponent(f) || get_mantissa(f))
s->false_zeros++;
else if (get_sign(f))
s->neg_zeros++;
} else if (shift_count) {
int32_t mask = (1 << shift_count) - 1;
if (!(get_mantissa(f) & mask))
s->shifted_zeros++;
else if ((get_mantissa(f) & mask) == mask)
s->shifted_ones++;
else
s->shifted_both++;
}
s->ordata |= value;
*sample = get_sign(f) ? -value : value;
}
static int scan_float(WavPackEncodeContext *s,
int32_t *samples_l, int32_t *samples_r,
int nb_samples)
{
uint32_t crc = 0xffffffffu;
int i;
s->shifted_ones = s->shifted_zeros = s->shifted_both = s->ordata = 0;
s->float_shift = s->float_flags = 0;
s->false_zeros = s->neg_zeros = 0;
s->max_exp = 0;
if (s->flags & WV_MONO_DATA) {
for (i = 0; i < nb_samples; i++) {
int32_t f = samples_l[i];
crc = crc * 27 + get_mantissa(f) * 9 + get_exponent(f) * 3 + get_sign(f);
if (get_exponent(f) > s->max_exp && get_exponent(f) < 255)
s->max_exp = get_exponent(f);
}
} else {
for (i = 0; i < nb_samples; i++) {
int32_t f;
f = samples_l[i];
crc = crc * 27 + get_mantissa(f) * 9 + get_exponent(f) * 3 + get_sign(f);
if (get_exponent(f) > s->max_exp && get_exponent(f) < 255)
s->max_exp = get_exponent(f);
f = samples_r[i];
crc = crc * 27 + get_mantissa(f) * 9 + get_exponent(f) * 3 + get_sign(f);
if (get_exponent(f) > s->max_exp && get_exponent(f) < 255)
s->max_exp = get_exponent(f);
}
}
s->crc_x = crc;
if (s->flags & WV_MONO_DATA) {
for (i = 0; i < nb_samples; i++)
process_float(s, &samples_l[i]);
} else {
for (i = 0; i < nb_samples; i++) {
process_float(s, &samples_l[i]);
process_float(s, &samples_r[i]);
}
}
s->float_max_exp = s->max_exp;
if (s->shifted_both)
s->float_flags |= FLOAT_SHIFT_SENT;
else if (s->shifted_ones && !s->shifted_zeros)
s->float_flags |= FLOAT_SHIFT_ONES;
else if (s->shifted_ones && s->shifted_zeros)
s->float_flags |= FLOAT_SHIFT_SAME;
else if (s->ordata && !(s->ordata & 1)) {
do {
s->float_shift++;
s->ordata >>= 1;
} while (!(s->ordata & 1));
if (s->flags & WV_MONO_DATA)
shift_mono(samples_l, nb_samples, s->float_shift);
else
shift_stereo(samples_l, samples_r, nb_samples, s->float_shift);
}
s->flags &= ~MAG_MASK;
while (s->ordata) {
s->flags += 1 << MAG_LSB;
s->ordata >>= 1;
}
if (s->false_zeros || s->neg_zeros)
s->float_flags |= FLOAT_ZEROS_SENT;
if (s->neg_zeros)
s->float_flags |= FLOAT_NEG_ZEROS;
return s->float_flags & (FLOAT_EXCEPTIONS | FLOAT_ZEROS_SENT |
FLOAT_SHIFT_SENT | FLOAT_SHIFT_SAME);
}
static void scan_int23(WavPackEncodeContext *s,
int32_t *samples_l, int32_t *samples_r,
int nb_samples)
{
uint32_t magdata = 0, ordata = 0, xordata = 0, anddata = ~0;
int i, total_shift = 0;
s->int32_sent_bits = s->int32_zeros = s->int32_ones = s->int32_dups = 0;
if (s->flags & WV_MONO_DATA) {
for (i = 0; i < nb_samples; i++) {
int32_t M = samples_l[i];
magdata |= (M < 0) ? ~M : M;
xordata |= M ^ -(M & 1);
anddata &= M;
ordata |= M;
if ((ordata & 1) && !(anddata & 1) && (xordata & 2))
return;
}
} else {
for (i = 0; i < nb_samples; i++) {
int32_t L = samples_l[i];
int32_t R = samples_r[i];
magdata |= (L < 0) ? ~L : L;
magdata |= (R < 0) ? ~R : R;
xordata |= L ^ -(L & 1);
xordata |= R ^ -(R & 1);
anddata &= L & R;
ordata |= L | R;
if ((ordata & 1) && !(anddata & 1) && (xordata & 2))
return;
}
}
s->flags &= ~MAG_MASK;
while (magdata) {
s->flags += 1 << MAG_LSB;
magdata >>= 1;
}
if (!(s->flags & MAG_MASK))
return;
if (!(ordata & 1)) {
do {
s->flags -= 1 << MAG_LSB;
s->int32_zeros++;
total_shift++;
ordata >>= 1;
} while (!(ordata & 1));
} else if (anddata & 1) {
do {
s->flags -= 1 << MAG_LSB;
s->int32_ones++;
total_shift++;
anddata >>= 1;
} while (anddata & 1);
} else if (!(xordata & 2)) {
do {
s->flags -= 1 << MAG_LSB;
s->int32_dups++;
total_shift++;
xordata >>= 1;
} while (!(xordata & 2));
}
if (total_shift) {
s->flags |= WV_INT32_DATA;
if (s->flags & WV_MONO_DATA)
shift_mono(samples_l, nb_samples, total_shift);
else
shift_stereo(samples_l, samples_r, nb_samples, total_shift);
}
}
static int scan_int32(WavPackEncodeContext *s,
int32_t *samples_l, int32_t *samples_r,
int nb_samples)
{
uint32_t magdata = 0, ordata = 0, xordata = 0, anddata = ~0;
uint32_t crc = 0xffffffffu;
int i, total_shift = 0;
s->int32_sent_bits = s->int32_zeros = s->int32_ones = s->int32_dups = 0;
if (s->flags & WV_MONO_DATA) {
for (i = 0; i < nb_samples; i++) {
int32_t M = samples_l[i];
crc = crc * 9 + (M & 0xffff) * 3 + ((M >> 16) & 0xffff);
magdata |= (M < 0) ? ~M : M;
xordata |= M ^ -(M & 1);
anddata &= M;
ordata |= M;
}
} else {
for (i = 0; i < nb_samples; i++) {
int32_t L = samples_l[i];
int32_t R = samples_r[i];
crc = crc * 9 + (L & 0xffff) * 3 + ((L >> 16) & 0xffff);
crc = crc * 9 + (R & 0xffff) * 3 + ((R >> 16) & 0xffff);
magdata |= (L < 0) ? ~L : L;
magdata |= (R < 0) ? ~R : R;
xordata |= L ^ -(L & 1);
xordata |= R ^ -(R & 1);
anddata &= L & R;
ordata |= L | R;
}
}
s->crc_x = crc;
s->flags &= ~MAG_MASK;
while (magdata) {
s->flags += 1 << MAG_LSB;
magdata >>= 1;
}
if (!((s->flags & MAG_MASK) >> MAG_LSB)) {
s->flags &= ~WV_INT32_DATA;
return 0;
}
if (!(ordata & 1))
do {
s->flags -= 1 << MAG_LSB;
s->int32_zeros++;
total_shift++;
ordata >>= 1;
} while (!(ordata & 1));
else if (anddata & 1)
do {
s->flags -= 1 << MAG_LSB;
s->int32_ones++;
total_shift++;
anddata >>= 1;
} while (anddata & 1);
else if (!(xordata & 2))
do {
s->flags -= 1 << MAG_LSB;
s->int32_dups++;
total_shift++;
xordata >>= 1;
} while (!(xordata & 2));
if (((s->flags & MAG_MASK) >> MAG_LSB) > 23) {
s->int32_sent_bits = (uint8_t)(((s->flags & MAG_MASK) >> MAG_LSB) - 23);
total_shift += s->int32_sent_bits;
s->flags &= ~MAG_MASK;
s->flags += 23 << MAG_LSB;
}
if (total_shift) {
s->flags |= WV_INT32_DATA;
if (s->flags & WV_MONO_DATA)
shift_mono(samples_l, nb_samples, total_shift);
else
shift_stereo(samples_l, samples_r, nb_samples, total_shift);
}
return s->int32_sent_bits;
}
static int8_t store_weight(int weight)
{
weight = av_clip(weight, -1024, 1024);
if (weight > 0)
weight -= (weight + 64) >> 7;
return (weight + 4) >> 3;
}
static int restore_weight(int8_t weight)
{
int result = 8 * weight;
if (result > 0)
result += (result + 64) >> 7;
return result;
}
static int log2s(int32_t value)
{
return (value < 0) ? -wp_log2(-value) : wp_log2(value);
}
static void decorr_mono(int32_t *in_samples, int32_t *out_samples,
int nb_samples, struct Decorr *dpp, int dir)
{
int m = 0, i;
dpp->sumA = 0;
if (dir < 0) {
out_samples += (nb_samples - 1);
in_samples += (nb_samples - 1);
}
dpp->weightA = restore_weight(store_weight(dpp->weightA));
for (i = 0; i < MAX_TERM; i++)
dpp->samplesA[i] = wp_exp2(log2s(dpp->samplesA[i]));
if (dpp->value > MAX_TERM) {
while (nb_samples--) {
int32_t left, sam_A;
sam_A = ((3 - (dpp->value & 1)) * dpp->samplesA[0] - dpp->samplesA[1]) >> !(dpp->value & 1);
dpp->samplesA[1] = dpp->samplesA[0];
dpp->samplesA[0] = left = in_samples[0];
left -= APPLY_WEIGHT(dpp->weightA, sam_A);
UPDATE_WEIGHT(dpp->weightA, dpp->delta, sam_A, left);
dpp->sumA += dpp->weightA;
out_samples[0] = left;
in_samples += dir;
out_samples += dir;
}
} else if (dpp->value > 0) {
while (nb_samples--) {
int k = (m + dpp->value) & (MAX_TERM - 1);
int32_t left, sam_A;
sam_A = dpp->samplesA[m];
dpp->samplesA[k] = left = in_samples[0];
m = (m + 1) & (MAX_TERM - 1);
left -= APPLY_WEIGHT(dpp->weightA, sam_A);
UPDATE_WEIGHT(dpp->weightA, dpp->delta, sam_A, left);
dpp->sumA += dpp->weightA;
out_samples[0] = left;
in_samples += dir;
out_samples += dir;
}
}
if (m && dpp->value > 0 && dpp->value <= MAX_TERM) {
int32_t temp_A[MAX_TERM];
memcpy(temp_A, dpp->samplesA, sizeof(dpp->samplesA));
for (i = 0; i < MAX_TERM; i++) {
dpp->samplesA[i] = temp_A[m];
m = (m + 1) & (MAX_TERM - 1);
}
}
}
static void reverse_mono_decorr(struct Decorr *dpp)
{
if (dpp->value > MAX_TERM) {
int32_t sam_A;
if (dpp->value & 1)
sam_A = 2 * dpp->samplesA[0] - dpp->samplesA[1];
else
sam_A = (3 * dpp->samplesA[0] - dpp->samplesA[1]) >> 1;
dpp->samplesA[1] = dpp->samplesA[0];
dpp->samplesA[0] = sam_A;
if (dpp->value & 1)
sam_A = 2 * dpp->samplesA[0] - dpp->samplesA[1];
else
sam_A = (3 * dpp->samplesA[0] - dpp->samplesA[1]) >> 1;
dpp->samplesA[1] = sam_A;
} else if (dpp->value > 1) {
int i, j, k;
for (i = 0, j = dpp->value - 1, k = 0; k < dpp->value / 2; i++, j--, k++) {
i &= (MAX_TERM - 1);
j &= (MAX_TERM - 1);
dpp->samplesA[i] ^= dpp->samplesA[j];
dpp->samplesA[j] ^= dpp->samplesA[i];
dpp->samplesA[i] ^= dpp->samplesA[j];
}
}
}
#define count_bits(av) ((av) ? 32 - ff_clz(av) : 0)
static uint32_t log2sample(uint32_t v, int limit, uint32_t *result)
{
uint32_t dbits = count_bits(v);
if ((v += v >> 9) < (1 << 8)) {
*result += (dbits << 8) + ff_wp_log2_table[(v << (9 - dbits)) & 0xff];
} else {
*result += dbits = (dbits << 8) + ff_wp_log2_table[(v >> (dbits - 9)) & 0xff];
if (limit && dbits >= limit)
return 1;
}
return 0;
}
static uint32_t log2mono(int32_t *samples, int nb_samples, int limit)
{
uint32_t result = 0;
while (nb_samples--) {
if (log2sample(abs(*samples++), limit, &result))
return UINT32_MAX;
}
return result;
}
static uint32_t log2stereo(int32_t *samples_l, int32_t *samples_r,
int nb_samples, int limit)
{
uint32_t result = 0;
while (nb_samples--) {
if (log2sample(abs(*samples_l++), limit, &result) ||
log2sample(abs(*samples_r++), limit, &result))
return UINT32_MAX;
}
return result;
}
static void decorr_mono_buffer(int32_t *samples, int32_t *outsamples,
int nb_samples, struct Decorr *dpp,
int tindex)
{
struct Decorr dp, *dppi = dpp + tindex;
int delta = dppi->delta, pre_delta, term = dppi->value;
if (delta == 7)
pre_delta = 7;
else if (delta < 2)
pre_delta = 3;
else
pre_delta = delta + 1;
CLEAR(dp);
dp.value = term;
dp.delta = pre_delta;
decorr_mono(samples, outsamples, FFMIN(2048, nb_samples), &dp, -1);
dp.delta = delta;
if (tindex == 0)
reverse_mono_decorr(&dp);
else
CLEAR(dp.samplesA);
memcpy(dppi->samplesA, dp.samplesA, sizeof(dp.samplesA));
dppi->weightA = dp.weightA;
if (delta == 0) {
dp.delta = 1;
decorr_mono(samples, outsamples, nb_samples, &dp, 1);
dp.delta = 0;
memcpy(dp.samplesA, dppi->samplesA, sizeof(dp.samplesA));
dppi->weightA = dp.weightA = dp.sumA / nb_samples;
}
decorr_mono(samples, outsamples, nb_samples, &dp, 1);
}
static void recurse_mono(WavPackEncodeContext *s, WavPackExtraInfo *info,
int depth, int delta, uint32_t input_bits)
{
int term, branches = s->num_branches - depth;
int32_t *samples, *outsamples;
uint32_t term_bits[22], bits;
if (branches < 1 || depth + 1 == info->nterms)
branches = 1;
CLEAR(term_bits);
samples = s->sampleptrs[depth][0];
outsamples = s->sampleptrs[depth + 1][0];
for (term = 1; term <= 18; term++) {
if (term == 17 && branches == 1 && depth + 1 < info->nterms)
continue;
if (term > 8 && term < 17)
continue;
if (!s->extra_flags && (term > 4 && term < 17))
continue;
info->dps[depth].value = term;
info->dps[depth].delta = delta;
decorr_mono_buffer(samples, outsamples, s->block_samples, info->dps, depth);
bits = log2mono(outsamples, s->block_samples, info->log_limit);
if (bits < info->best_bits) {
info->best_bits = bits;
CLEAR(s->decorr_passes);
memcpy(s->decorr_passes, info->dps, sizeof(info->dps[0]) * (depth + 1));
memcpy(s->sampleptrs[info->nterms + 1][0],
s->sampleptrs[depth + 1][0], s->block_samples * 4);
}
term_bits[term + 3] = bits;
}
while (depth + 1 < info->nterms && branches--) {
uint32_t local_best_bits = input_bits;
int best_term = 0, i;
for (i = 0; i < 22; i++)
if (term_bits[i] && term_bits[i] < local_best_bits) {
local_best_bits = term_bits[i];
best_term = i - 3;
}
if (!best_term)
break;
term_bits[best_term + 3] = 0;
info->dps[depth].value = best_term;
info->dps[depth].delta = delta;
decorr_mono_buffer(samples, outsamples, s->block_samples, info->dps, depth);
recurse_mono(s, info, depth + 1, delta, local_best_bits);
}
}
static void sort_mono(WavPackEncodeContext *s, WavPackExtraInfo *info)
{
int reversed = 1;
uint32_t bits;
while (reversed) {
int ri, i;
memcpy(info->dps, s->decorr_passes, sizeof(s->decorr_passes));
reversed = 0;
for (ri = 0; ri < info->nterms && s->decorr_passes[ri].value; ri++) {
if (ri + 1 >= info->nterms || !s->decorr_passes[ri+1].value)
break;
if (s->decorr_passes[ri].value == s->decorr_passes[ri+1].value) {
decorr_mono_buffer(s->sampleptrs[ri][0], s->sampleptrs[ri+1][0],
s->block_samples, info->dps, ri);
continue;
}
info->dps[ri ] = s->decorr_passes[ri+1];
info->dps[ri+1] = s->decorr_passes[ri ];
for (i = ri; i < info->nterms && s->decorr_passes[i].value; i++)
decorr_mono_buffer(s->sampleptrs[i][0], s->sampleptrs[i+1][0],
s->block_samples, info->dps, i);
bits = log2mono(s->sampleptrs[i][0], s->block_samples, info->log_limit);
if (bits < info->best_bits) {
reversed = 1;
info->best_bits = bits;
CLEAR(s->decorr_passes);
memcpy(s->decorr_passes, info->dps, sizeof(info->dps[0]) * i);
memcpy(s->sampleptrs[info->nterms + 1][0], s->sampleptrs[i][0],
s->block_samples * 4);
} else {
info->dps[ri ] = s->decorr_passes[ri];
info->dps[ri+1] = s->decorr_passes[ri+1];
decorr_mono_buffer(s->sampleptrs[ri][0], s->sampleptrs[ri+1][0],
s->block_samples, info->dps, ri);
}
}
}
}
static void delta_mono(WavPackEncodeContext *s, WavPackExtraInfo *info)
{
int lower = 0, delta, d;
uint32_t bits;
if (!s->decorr_passes[0].value)
return;
delta = s->decorr_passes[0].delta;
for (d = delta - 1; d >= 0; d--) {
int i;
for (i = 0; i < info->nterms && s->decorr_passes[i].value; i++) {
info->dps[i].value = s->decorr_passes[i].value;
info->dps[i].delta = d;
decorr_mono_buffer(s->sampleptrs[i][0], s->sampleptrs[i+1][0],
s->block_samples, info->dps, i);
}
bits = log2mono(s->sampleptrs[i][0], s->block_samples, info->log_limit);
if (bits >= info->best_bits)
break;
lower = 1;
info->best_bits = bits;
CLEAR(s->decorr_passes);
memcpy(s->decorr_passes, info->dps, sizeof(info->dps[0]) * i);
memcpy(s->sampleptrs[info->nterms + 1][0], s->sampleptrs[i][0],
s->block_samples * 4);
}
for (d = delta + 1; !lower && d <= 7; d++) {
int i;
for (i = 0; i < info->nterms && s->decorr_passes[i].value; i++) {
info->dps[i].value = s->decorr_passes[i].value;
info->dps[i].delta = d;
decorr_mono_buffer(s->sampleptrs[i][0], s->sampleptrs[i+1][0],
s->block_samples, info->dps, i);
}
bits = log2mono(s->sampleptrs[i][0], s->block_samples, info->log_limit);
if (bits >= info->best_bits)
break;
info->best_bits = bits;
CLEAR(s->decorr_passes);
memcpy(s->decorr_passes, info->dps, sizeof(info->dps[0]) * i);
memcpy(s->sampleptrs[info->nterms + 1][0], s->sampleptrs[i][0],
s->block_samples * 4);
}
}
static int allocate_buffers2(WavPackEncodeContext *s, int nterms)
{
int i;
for (i = 0; i < nterms + 2; i++) {
av_fast_padded_malloc(&s->sampleptrs[i][0], &s->sampleptrs_size[i][0],
s->block_samples * 4);
if (!s->sampleptrs[i][0])
return AVERROR(ENOMEM);
if (!(s->flags & WV_MONO_DATA)) {
av_fast_padded_malloc(&s->sampleptrs[i][1], &s->sampleptrs_size[i][1],
s->block_samples * 4);
if (!s->sampleptrs[i][1])
return AVERROR(ENOMEM);
}
}
return 0;
}
static int allocate_buffers(WavPackEncodeContext *s)
{
int i;
for (i = 0; i < 2; i++) {
av_fast_padded_malloc(&s->best_buffer[0], &s->best_buffer_size[0],
s->block_samples * 4);
if (!s->best_buffer[0])
return AVERROR(ENOMEM);
av_fast_padded_malloc(&s->temp_buffer[i][0], &s->temp_buffer_size[i][0],
s->block_samples * 4);
if (!s->temp_buffer[i][0])
return AVERROR(ENOMEM);
if (!(s->flags & WV_MONO_DATA)) {
av_fast_padded_malloc(&s->best_buffer[1], &s->best_buffer_size[1],
s->block_samples * 4);
if (!s->best_buffer[1])
return AVERROR(ENOMEM);
av_fast_padded_malloc(&s->temp_buffer[i][1], &s->temp_buffer_size[i][1],
s->block_samples * 4);
if (!s->temp_buffer[i][1])
return AVERROR(ENOMEM);
}
}
return 0;
}
static void analyze_mono(WavPackEncodeContext *s, int32_t *samples, int do_samples)
{
WavPackExtraInfo info;
int i;
info.log_limit = (((s->flags & MAG_MASK) >> MAG_LSB) + 4) * 256;
info.log_limit = FFMIN(6912, info.log_limit);
info.nterms = s->num_terms;
if (allocate_buffers2(s, s->num_terms))
return;
memcpy(info.dps, s->decorr_passes, sizeof(info.dps));
memcpy(s->sampleptrs[0][0], samples, s->block_samples * 4);
for (i = 0; i < info.nterms && info.dps[i].value; i++)
decorr_mono(s->sampleptrs[i][0], s->sampleptrs[i + 1][0],
s->block_samples, info.dps + i, 1);
info.best_bits = log2mono(s->sampleptrs[info.nterms][0], s->block_samples, 0) * 1;
memcpy(s->sampleptrs[info.nterms + 1][0], s->sampleptrs[i][0], s->block_samples * 4);
if (s->extra_flags & EXTRA_BRANCHES)
recurse_mono(s, &info, 0, (int) floor(s->delta_decay + 0.5),
log2mono(s->sampleptrs[0][0], s->block_samples, 0));
if (s->extra_flags & EXTRA_SORT_FIRST)
sort_mono(s, &info);
if (s->extra_flags & EXTRA_TRY_DELTAS) {
delta_mono(s, &info);
if ((s->extra_flags & EXTRA_ADJUST_DELTAS) && s->decorr_passes[0].value)
s->delta_decay = (float)((s->delta_decay * 2.0 + s->decorr_passes[0].delta) / 3.0);
else
s->delta_decay = 2.0;
}
if (s->extra_flags & EXTRA_SORT_LAST)
sort_mono(s, &info);
if (do_samples)
memcpy(samples, s->sampleptrs[info.nterms + 1][0], s->block_samples * 4);
for (i = 0; i < info.nterms; i++)
if (!s->decorr_passes[i].value)
break;
s->num_terms = i;
}
static void scan_word(WavPackEncodeContext *s, WvChannel *c,
int32_t *samples, int nb_samples, int dir)
{
if (dir < 0)
samples += nb_samples - 1;
while (nb_samples--) {
uint32_t low, value = labs(samples[0]);
if (value < GET_MED(0)) {
DEC_MED(0);
} else {
low = GET_MED(0);
INC_MED(0);
if (value - low < GET_MED(1)) {
DEC_MED(1);
} else {
low += GET_MED(1);
INC_MED(1);
if (value - low < GET_MED(2)) {
DEC_MED(2);
} else {
INC_MED(2);
}
}
}
samples += dir;
}
}
static int wv_mono(WavPackEncodeContext *s, int32_t *samples,
int no_history, int do_samples)
{
struct Decorr temp_decorr_pass, save_decorr_passes[MAX_TERMS] = {{0}};
int nb_samples = s->block_samples;
int buf_size = sizeof(int32_t) * nb_samples;
uint32_t best_size = UINT32_MAX, size;
int log_limit, pi, i, ret;
for (i = 0; i < nb_samples; i++)
if (samples[i])
break;
if (i == nb_samples) {
CLEAR(s->decorr_passes);
CLEAR(s->w);
s->num_terms = 0;
return 0;
}
log_limit = (((s->flags & MAG_MASK) >> MAG_LSB) + 4) * 256;
log_limit = FFMIN(6912, log_limit);
if ((ret = allocate_buffers(s)) < 0)
return ret;
if (no_history || s->num_passes >= 7)
s->best_decorr = s->mask_decorr = 0;
for (pi = 0; pi < s->num_passes;) {
const WavPackDecorrSpec *wpds;
int nterms, c, j;
if (!pi) {
c = s->best_decorr;
} else {
if (s->mask_decorr == 0)
c = 0;
else
c = (s->best_decorr & (s->mask_decorr - 1)) | s->mask_decorr;
if (c == s->best_decorr) {
s->mask_decorr = s->mask_decorr ? ((s->mask_decorr << 1) & (s->num_decorrs - 1)) : 1;
continue;
}
}
wpds = &s->decorr_specs[c];
nterms = decorr_filter_nterms[s->decorr_filter];
while (1) {
memcpy(s->temp_buffer[0][0], samples, buf_size);
CLEAR(save_decorr_passes);
for (j = 0; j < nterms; j++) {
CLEAR(temp_decorr_pass);
temp_decorr_pass.delta = wpds->delta;
temp_decorr_pass.value = wpds->terms[j];
if (temp_decorr_pass.value < 0)
temp_decorr_pass.value = 1;
decorr_mono(s->temp_buffer[j&1][0], s->temp_buffer[~j&1][0],
FFMIN(nb_samples, 2048), &temp_decorr_pass, -1);
if (j) {
CLEAR(temp_decorr_pass.samplesA);
} else {
reverse_mono_decorr(&temp_decorr_pass);
}
memcpy(save_decorr_passes + j, &temp_decorr_pass, sizeof(struct Decorr));
decorr_mono(s->temp_buffer[j&1][0], s->temp_buffer[~j&1][0],
nb_samples, &temp_decorr_pass, 1);
}
size = log2mono(s->temp_buffer[j&1][0], nb_samples, log_limit);
if (size != UINT32_MAX || !nterms)
break;
nterms >>= 1;
}
if (size < best_size) {
memcpy(s->best_buffer[0], s->temp_buffer[j&1][0], buf_size);
memcpy(s->decorr_passes, save_decorr_passes, sizeof(struct Decorr) * MAX_TERMS);
s->num_terms = nterms;
s->best_decorr = c;
best_size = size;
}
if (pi++)
s->mask_decorr = s->mask_decorr ? ((s->mask_decorr << 1) & (s->num_decorrs - 1)) : 1;
}
if (s->extra_flags)
analyze_mono(s, samples, do_samples);
else if (do_samples)
memcpy(samples, s->best_buffer[0], buf_size);
if (no_history || s->extra_flags) {
CLEAR(s->w);
scan_word(s, &s->w.c[0], s->best_buffer[0], nb_samples, -1);
}
return 0;
}
static void decorr_stereo(int32_t *in_left, int32_t *in_right,
int32_t *out_left, int32_t *out_right,
int nb_samples, struct Decorr *dpp, int dir)
{
int m = 0, i;
dpp->sumA = dpp->sumB = 0;
if (dir < 0) {
out_left += nb_samples - 1;
out_right += nb_samples - 1;
in_left += nb_samples - 1;
in_right += nb_samples - 1;
}
dpp->weightA = restore_weight(store_weight(dpp->weightA));
dpp->weightB = restore_weight(store_weight(dpp->weightB));
for (i = 0; i < MAX_TERM; i++) {
dpp->samplesA[i] = wp_exp2(log2s(dpp->samplesA[i]));
dpp->samplesB[i] = wp_exp2(log2s(dpp->samplesB[i]));
}
switch (dpp->value) {
case 2:
while (nb_samples--) {
int32_t sam, tmp;
sam = dpp->samplesA[0];
dpp->samplesA[0] = dpp->samplesA[1];
out_left[0] = tmp = (dpp->samplesA[1] = in_left[0]) - APPLY_WEIGHT(dpp->weightA, sam);
UPDATE_WEIGHT(dpp->weightA, dpp->delta, sam, tmp);
dpp->sumA += dpp->weightA;
sam = dpp->samplesB[0];
dpp->samplesB[0] = dpp->samplesB[1];
out_right[0] = tmp = (dpp->samplesB[1] = in_right[0]) - APPLY_WEIGHT(dpp->weightB, sam);
UPDATE_WEIGHT(dpp->weightB, dpp->delta, sam, tmp);
dpp->sumB += dpp->weightB;
in_left += dir;
out_left += dir;
in_right += dir;
out_right += dir;
}
break;
case 17:
while (nb_samples--) {
int32_t sam, tmp;
sam = 2 * dpp->samplesA[0] - dpp->samplesA[1];
dpp->samplesA[1] = dpp->samplesA[0];
out_left[0] = tmp = (dpp->samplesA[0] = in_left[0]) - APPLY_WEIGHT(dpp->weightA, sam);
UPDATE_WEIGHT(dpp->weightA, dpp->delta, sam, tmp);
dpp->sumA += dpp->weightA;
sam = 2 * dpp->samplesB[0] - dpp->samplesB[1];
dpp->samplesB[1] = dpp->samplesB[0];
out_right[0] = tmp = (dpp->samplesB[0] = in_right[0]) - APPLY_WEIGHT (dpp->weightB, sam);
UPDATE_WEIGHT(dpp->weightB, dpp->delta, sam, tmp);
dpp->sumB += dpp->weightB;
in_left += dir;
out_left += dir;
in_right += dir;
out_right += dir;
}
break;
case 18:
while (nb_samples--) {
int32_t sam, tmp;
sam = dpp->samplesA[0] + ((dpp->samplesA[0] - dpp->samplesA[1]) >> 1);
dpp->samplesA[1] = dpp->samplesA[0];
out_left[0] = tmp = (dpp->samplesA[0] = in_left[0]) - APPLY_WEIGHT(dpp->weightA, sam);
UPDATE_WEIGHT(dpp->weightA, dpp->delta, sam, tmp);
dpp->sumA += dpp->weightA;
sam = dpp->samplesB[0] + ((dpp->samplesB[0] - dpp->samplesB[1]) >> 1);
dpp->samplesB[1] = dpp->samplesB[0];
out_right[0] = tmp = (dpp->samplesB[0] = in_right[0]) - APPLY_WEIGHT(dpp->weightB, sam);
UPDATE_WEIGHT(dpp->weightB, dpp->delta, sam, tmp);
dpp->sumB += dpp->weightB;
in_left += dir;
out_left += dir;
in_right += dir;
out_right += dir;
}
break;
default: {
int k = dpp->value & (MAX_TERM - 1);
while (nb_samples--) {
int32_t sam, tmp;
sam = dpp->samplesA[m];
out_left[0] = tmp = (dpp->samplesA[k] = in_left[0]) - APPLY_WEIGHT(dpp->weightA, sam);
UPDATE_WEIGHT(dpp->weightA, dpp->delta, sam, tmp);
dpp->sumA += dpp->weightA;
sam = dpp->samplesB[m];
out_right[0] = tmp = (dpp->samplesB[k] = in_right[0]) - APPLY_WEIGHT(dpp->weightB, sam);
UPDATE_WEIGHT(dpp->weightB, dpp->delta, sam, tmp);
dpp->sumB += dpp->weightB;
in_left += dir;
out_left += dir;
in_right += dir;
out_right += dir;
m = (m + 1) & (MAX_TERM - 1);
k = (k + 1) & (MAX_TERM - 1);
}
if (m) {
int32_t temp_A[MAX_TERM], temp_B[MAX_TERM];
int k;
memcpy(temp_A, dpp->samplesA, sizeof(dpp->samplesA));
memcpy(temp_B, dpp->samplesB, sizeof(dpp->samplesB));
for (k = 0; k < MAX_TERM; k++) {
dpp->samplesA[k] = temp_A[m];
dpp->samplesB[k] = temp_B[m];
m = (m + 1) & (MAX_TERM - 1);
}
}
break;
}
case -1:
while (nb_samples--) {
int32_t sam_A, sam_B, tmp;
sam_A = dpp->samplesA[0];
out_left[0] = tmp = (sam_B = in_left[0]) - APPLY_WEIGHT(dpp->weightA, sam_A);
UPDATE_WEIGHT_CLIP(dpp->weightA, dpp->delta, sam_A, tmp);
dpp->sumA += dpp->weightA;
out_right[0] = tmp = (dpp->samplesA[0] = in_right[0]) - APPLY_WEIGHT(dpp->weightB, sam_B);
UPDATE_WEIGHT_CLIP(dpp->weightB, dpp->delta, sam_B, tmp);
dpp->sumB += dpp->weightB;
in_left += dir;
out_left += dir;
in_right += dir;
out_right += dir;
}
break;
case -2:
while (nb_samples--) {
int32_t sam_A, sam_B, tmp;
sam_B = dpp->samplesB[0];
out_right[0] = tmp = (sam_A = in_right[0]) - APPLY_WEIGHT(dpp->weightB, sam_B);
UPDATE_WEIGHT_CLIP(dpp->weightB, dpp->delta, sam_B, tmp);
dpp->sumB += dpp->weightB;
out_left[0] = tmp = (dpp->samplesB[0] = in_left[0]) - APPLY_WEIGHT(dpp->weightA, sam_A);
UPDATE_WEIGHT_CLIP(dpp->weightA, dpp->delta, sam_A, tmp);
dpp->sumA += dpp->weightA;
in_left += dir;
out_left += dir;
in_right += dir;
out_right += dir;
}
break;
case -3:
while (nb_samples--) {
int32_t sam_A, sam_B, tmp;
sam_A = dpp->samplesA[0];
sam_B = dpp->samplesB[0];
dpp->samplesA[0] = tmp = in_right[0];
out_right[0] = tmp -= APPLY_WEIGHT(dpp->weightB, sam_B);
UPDATE_WEIGHT_CLIP(dpp->weightB, dpp->delta, sam_B, tmp);
dpp->sumB += dpp->weightB;
dpp->samplesB[0] = tmp = in_left[0];
out_left[0] = tmp -= APPLY_WEIGHT(dpp->weightA, sam_A);
UPDATE_WEIGHT_CLIP(dpp->weightA, dpp->delta, sam_A, tmp);
dpp->sumA += dpp->weightA;
in_left += dir;
out_left += dir;
in_right += dir;
out_right += dir;
}
break;
}
}
static void reverse_decorr(struct Decorr *dpp)
{
if (dpp->value > MAX_TERM) {
int32_t sam_A, sam_B;
if (dpp->value & 1) {
sam_A = 2 * dpp->samplesA[0] - dpp->samplesA[1];
sam_B = 2 * dpp->samplesB[0] - dpp->samplesB[1];
} else {
sam_A = (3 * dpp->samplesA[0] - dpp->samplesA[1]) >> 1;
sam_B = (3 * dpp->samplesB[0] - dpp->samplesB[1]) >> 1;
}
dpp->samplesA[1] = dpp->samplesA[0];
dpp->samplesB[1] = dpp->samplesB[0];
dpp->samplesA[0] = sam_A;
dpp->samplesB[0] = sam_B;
if (dpp->value & 1) {
sam_A = 2 * dpp->samplesA[0] - dpp->samplesA[1];
sam_B = 2 * dpp->samplesB[0] - dpp->samplesB[1];
} else {
sam_A = (3 * dpp->samplesA[0] - dpp->samplesA[1]) >> 1;
sam_B = (3 * dpp->samplesB[0] - dpp->samplesB[1]) >> 1;
}
dpp->samplesA[1] = sam_A;
dpp->samplesB[1] = sam_B;
} else if (dpp->value > 1) {
int i, j, k;
for (i = 0, j = dpp->value - 1, k = 0; k < dpp->value / 2; i++, j--, k++) {
i &= (MAX_TERM - 1);
j &= (MAX_TERM - 1);
dpp->samplesA[i] ^= dpp->samplesA[j];
dpp->samplesA[j] ^= dpp->samplesA[i];
dpp->samplesA[i] ^= dpp->samplesA[j];
dpp->samplesB[i] ^= dpp->samplesB[j];
dpp->samplesB[j] ^= dpp->samplesB[i];
dpp->samplesB[i] ^= dpp->samplesB[j];
}
}
}
static void decorr_stereo_quick(int32_t *in_left, int32_t *in_right,
int32_t *out_left, int32_t *out_right,
int nb_samples, struct Decorr *dpp)
{
int m = 0, i;
dpp->weightA = restore_weight(store_weight(dpp->weightA));
dpp->weightB = restore_weight(store_weight(dpp->weightB));
for (i = 0; i < MAX_TERM; i++) {
dpp->samplesA[i] = wp_exp2(log2s(dpp->samplesA[i]));
dpp->samplesB[i] = wp_exp2(log2s(dpp->samplesB[i]));
}
switch (dpp->value) {
case 2:
for (i = 0; i < nb_samples; i++) {
int32_t sam, tmp;
sam = dpp->samplesA[0];
dpp->samplesA[0] = dpp->samplesA[1];
out_left[i] = tmp = (dpp->samplesA[1] = in_left[i]) - APPLY_WEIGHT_I(dpp->weightA, sam);
UPDATE_WEIGHT(dpp->weightA, dpp->delta, sam, tmp);
sam = dpp->samplesB[0];
dpp->samplesB[0] = dpp->samplesB[1];
out_right[i] = tmp = (dpp->samplesB[1] = in_right[i]) - APPLY_WEIGHT_I(dpp->weightB, sam);
UPDATE_WEIGHT(dpp->weightB, dpp->delta, sam, tmp);
}
break;
case 17:
for (i = 0; i < nb_samples; i++) {
int32_t sam, tmp;
sam = 2 * dpp->samplesA[0] - dpp->samplesA[1];
dpp->samplesA[1] = dpp->samplesA[0];
out_left[i] = tmp = (dpp->samplesA[0] = in_left[i]) - APPLY_WEIGHT_I(dpp->weightA, sam);
UPDATE_WEIGHT(dpp->weightA, dpp->delta, sam, tmp);
sam = 2 * dpp->samplesB[0] - dpp->samplesB[1];
dpp->samplesB[1] = dpp->samplesB[0];
out_right[i] = tmp = (dpp->samplesB[0] = in_right[i]) - APPLY_WEIGHT_I(dpp->weightB, sam);
UPDATE_WEIGHT(dpp->weightB, dpp->delta, sam, tmp);
}
break;
case 18:
for (i = 0; i < nb_samples; i++) {
int32_t sam, tmp;
sam = dpp->samplesA[0] + ((dpp->samplesA[0] - dpp->samplesA[1]) >> 1);
dpp->samplesA[1] = dpp->samplesA[0];
out_left[i] = tmp = (dpp->samplesA[0] = in_left[i]) - APPLY_WEIGHT_I(dpp->weightA, sam);
UPDATE_WEIGHT(dpp->weightA, dpp->delta, sam, tmp);
sam = dpp->samplesB[0] + ((dpp->samplesB[0] - dpp->samplesB[1]) >> 1);
dpp->samplesB[1] = dpp->samplesB[0];
out_right[i] = tmp = (dpp->samplesB[0] = in_right[i]) - APPLY_WEIGHT_I(dpp->weightB, sam);
UPDATE_WEIGHT(dpp->weightB, dpp->delta, sam, tmp);
}
break;
default: {
int k = dpp->value & (MAX_TERM - 1);
for (i = 0; i < nb_samples; i++) {
int32_t sam, tmp;
sam = dpp->samplesA[m];
out_left[i] = tmp = (dpp->samplesA[k] = in_left[i]) - APPLY_WEIGHT_I(dpp->weightA, sam);
UPDATE_WEIGHT(dpp->weightA, dpp->delta, sam, tmp);
sam = dpp->samplesB[m];
out_right[i] = tmp = (dpp->samplesB[k] = in_right[i]) - APPLY_WEIGHT_I(dpp->weightB, sam);
UPDATE_WEIGHT(dpp->weightB, dpp->delta, sam, tmp);
m = (m + 1) & (MAX_TERM - 1);
k = (k + 1) & (MAX_TERM - 1);
}
if (m) {
int32_t temp_A[MAX_TERM], temp_B[MAX_TERM];
int k;
memcpy(temp_A, dpp->samplesA, sizeof(dpp->samplesA));
memcpy(temp_B, dpp->samplesB, sizeof(dpp->samplesB));
for (k = 0; k < MAX_TERM; k++) {
dpp->samplesA[k] = temp_A[m];
dpp->samplesB[k] = temp_B[m];
m = (m + 1) & (MAX_TERM - 1);
}
}
break;
}
case -1:
for (i = 0; i < nb_samples; i++) {
int32_t sam_A, sam_B, tmp;
sam_A = dpp->samplesA[0];
out_left[i] = tmp = (sam_B = in_left[i]) - APPLY_WEIGHT_I(dpp->weightA, sam_A);
UPDATE_WEIGHT_CLIP(dpp->weightA, dpp->delta, sam_A, tmp);
out_right[i] = tmp = (dpp->samplesA[0] = in_right[i]) - APPLY_WEIGHT_I(dpp->weightB, sam_B);
UPDATE_WEIGHT_CLIP(dpp->weightB, dpp->delta, sam_B, tmp);
}
break;
case -2:
for (i = 0; i < nb_samples; i++) {
int32_t sam_A, sam_B, tmp;
sam_B = dpp->samplesB[0];
out_right[i] = tmp = (sam_A = in_right[i]) - APPLY_WEIGHT_I(dpp->weightB, sam_B);
UPDATE_WEIGHT_CLIP(dpp->weightB, dpp->delta, sam_B, tmp);
out_left[i] = tmp = (dpp->samplesB[0] = in_left[i]) - APPLY_WEIGHT_I(dpp->weightA, sam_A);
UPDATE_WEIGHT_CLIP(dpp->weightA, dpp->delta, sam_A, tmp);
}
break;
case -3:
for (i = 0; i < nb_samples; i++) {
int32_t sam_A, sam_B, tmp;
sam_A = dpp->samplesA[0];
sam_B = dpp->samplesB[0];
dpp->samplesA[0] = tmp = in_right[i];
out_right[i] = tmp -= APPLY_WEIGHT_I(dpp->weightB, sam_B);
UPDATE_WEIGHT_CLIP(dpp->weightB, dpp->delta, sam_B, tmp);
dpp->samplesB[0] = tmp = in_left[i];
out_left[i] = tmp -= APPLY_WEIGHT_I(dpp->weightA, sam_A);
UPDATE_WEIGHT_CLIP(dpp->weightA, dpp->delta, sam_A, tmp);
}
break;
}
}
static void decorr_stereo_buffer(WavPackExtraInfo *info,
int32_t *in_left, int32_t *in_right,
int32_t *out_left, int32_t *out_right,
int nb_samples, int tindex)
{
struct Decorr dp = {0}, *dppi = info->dps + tindex;
int delta = dppi->delta, pre_delta;
int term = dppi->value;
if (delta == 7)
pre_delta = 7;
else if (delta < 2)
pre_delta = 3;
else
pre_delta = delta + 1;
dp.value = term;
dp.delta = pre_delta;
decorr_stereo(in_left, in_right, out_left, out_right,
FFMIN(2048, nb_samples), &dp, -1);
dp.delta = delta;
if (tindex == 0) {
reverse_decorr(&dp);
} else {
CLEAR(dp.samplesA);
CLEAR(dp.samplesB);
}
memcpy(dppi->samplesA, dp.samplesA, sizeof(dp.samplesA));
memcpy(dppi->samplesB, dp.samplesB, sizeof(dp.samplesB));
dppi->weightA = dp.weightA;
dppi->weightB = dp.weightB;
if (delta == 0) {
dp.delta = 1;
decorr_stereo(in_left, in_right, out_left, out_right, nb_samples, &dp, 1);
dp.delta = 0;
memcpy(dp.samplesA, dppi->samplesA, sizeof(dp.samplesA));
memcpy(dp.samplesB, dppi->samplesB, sizeof(dp.samplesB));
dppi->weightA = dp.weightA = dp.sumA / nb_samples;
dppi->weightB = dp.weightB = dp.sumB / nb_samples;
}
if (info->gt16bit)
decorr_stereo(in_left, in_right, out_left, out_right,
nb_samples, &dp, 1);
else
decorr_stereo_quick(in_left, in_right, out_left, out_right,
nb_samples, &dp);
}
static void sort_stereo(WavPackEncodeContext *s, WavPackExtraInfo *info)
{
int reversed = 1;
uint32_t bits;
while (reversed) {
int ri, i;
memcpy(info->dps, s->decorr_passes, sizeof(s->decorr_passes));
reversed = 0;
for (ri = 0; ri < info->nterms && s->decorr_passes[ri].value; ri++) {
if (ri + 1 >= info->nterms || !s->decorr_passes[ri+1].value)
break;
if (s->decorr_passes[ri].value == s->decorr_passes[ri+1].value) {
decorr_stereo_buffer(info,
s->sampleptrs[ri ][0], s->sampleptrs[ri ][1],
s->sampleptrs[ri+1][0], s->sampleptrs[ri+1][1],
s->block_samples, ri);
continue;
}
info->dps[ri ] = s->decorr_passes[ri+1];
info->dps[ri+1] = s->decorr_passes[ri ];
for (i = ri; i < info->nterms && s->decorr_passes[i].value; i++)
decorr_stereo_buffer(info,
s->sampleptrs[i ][0], s->sampleptrs[i ][1],
s->sampleptrs[i+1][0], s->sampleptrs[i+1][1],
s->block_samples, i);
bits = log2stereo(s->sampleptrs[i][0], s->sampleptrs[i][1],
s->block_samples, info->log_limit);
if (bits < info->best_bits) {
reversed = 1;
info->best_bits = bits;
CLEAR(s->decorr_passes);
memcpy(s->decorr_passes, info->dps, sizeof(info->dps[0]) * i);
memcpy(s->sampleptrs[info->nterms + 1][0],
s->sampleptrs[i][0], s->block_samples * 4);
memcpy(s->sampleptrs[info->nterms + 1][1],
s->sampleptrs[i][1], s->block_samples * 4);
} else {
info->dps[ri ] = s->decorr_passes[ri ];
info->dps[ri+1] = s->decorr_passes[ri+1];
decorr_stereo_buffer(info,
s->sampleptrs[ri ][0], s->sampleptrs[ri ][1],
s->sampleptrs[ri+1][0], s->sampleptrs[ri+1][1],
s->block_samples, ri);
}
}
}
}
static void delta_stereo(WavPackEncodeContext *s, WavPackExtraInfo *info)
{
int lower = 0, delta, d, i;
uint32_t bits;
if (!s->decorr_passes[0].value)
return;
delta = s->decorr_passes[0].delta;
for (d = delta - 1; d >= 0; d--) {
for (i = 0; i < info->nterms && s->decorr_passes[i].value; i++) {
info->dps[i].value = s->decorr_passes[i].value;
info->dps[i].delta = d;
decorr_stereo_buffer(info,
s->sampleptrs[i ][0], s->sampleptrs[i ][1],
s->sampleptrs[i+1][0], s->sampleptrs[i+1][1],
s->block_samples, i);
}
bits = log2stereo(s->sampleptrs[i][0], s->sampleptrs[i][1],
s->block_samples, info->log_limit);
if (bits >= info->best_bits)
break;
lower = 1;
info->best_bits = bits;
CLEAR(s->decorr_passes);
memcpy(s->decorr_passes, info->dps, sizeof(info->dps[0]) * i);
memcpy(s->sampleptrs[info->nterms + 1][0], s->sampleptrs[i][0],
s->block_samples * 4);
memcpy(s->sampleptrs[info->nterms + 1][1], s->sampleptrs[i][1],
s->block_samples * 4);
}
for (d = delta + 1; !lower && d <= 7; d++) {
for (i = 0; i < info->nterms && s->decorr_passes[i].value; i++) {
info->dps[i].value = s->decorr_passes[i].value;
info->dps[i].delta = d;
decorr_stereo_buffer(info,
s->sampleptrs[i ][0], s->sampleptrs[i ][1],
s->sampleptrs[i+1][0], s->sampleptrs[i+1][1],
s->block_samples, i);
}
bits = log2stereo(s->sampleptrs[i][0], s->sampleptrs[i][1],
s->block_samples, info->log_limit);
if (bits < info->best_bits) {
info->best_bits = bits;
CLEAR(s->decorr_passes);
memcpy(s->decorr_passes, info->dps, sizeof(info->dps[0]) * i);
memcpy(s->sampleptrs[info->nterms + 1][0],
s->sampleptrs[i][0], s->block_samples * 4);
memcpy(s->sampleptrs[info->nterms + 1][1],
s->sampleptrs[i][1], s->block_samples * 4);
}
else
break;
}
}
static void recurse_stereo(WavPackEncodeContext *s, WavPackExtraInfo *info,
int depth, int delta, uint32_t input_bits)
{
int term, branches = s->num_branches - depth;
int32_t *in_left, *in_right, *out_left, *out_right;
uint32_t term_bits[22], bits;
if (branches < 1 || depth + 1 == info->nterms)
branches = 1;
CLEAR(term_bits);
in_left = s->sampleptrs[depth ][0];
in_right = s->sampleptrs[depth ][1];
out_left = s->sampleptrs[depth + 1][0];
out_right = s->sampleptrs[depth + 1][1];
for (term = -3; term <= 18; term++) {
if (!term || (term > 8 && term < 17))
continue;
if (term == 17 && branches == 1 && depth + 1 < info->nterms)
continue;
if (term == -1 || term == -2)
if (!(s->flags & WV_CROSS_DECORR))
continue;
if (!s->extra_flags && (term > 4 && term < 17))
continue;
info->dps[depth].value = term;
info->dps[depth].delta = delta;
decorr_stereo_buffer(info, in_left, in_right, out_left, out_right,
s->block_samples, depth);
bits = log2stereo(out_left, out_right, s->block_samples, info->log_limit);
if (bits < info->best_bits) {
info->best_bits = bits;
CLEAR(s->decorr_passes);
memcpy(s->decorr_passes, info->dps, sizeof(info->dps[0]) * (depth + 1));
memcpy(s->sampleptrs[info->nterms + 1][0], s->sampleptrs[depth + 1][0],
s->block_samples * 4);
memcpy(s->sampleptrs[info->nterms + 1][1], s->sampleptrs[depth + 1][1],
s->block_samples * 4);
}
term_bits[term + 3] = bits;
}
while (depth + 1 < info->nterms && branches--) {
uint32_t local_best_bits = input_bits;
int best_term = 0, i;
for (i = 0; i < 22; i++)
if (term_bits[i] && term_bits[i] < local_best_bits) {
local_best_bits = term_bits[i];
best_term = i - 3;
}
if (!best_term)
break;
term_bits[best_term + 3] = 0;
info->dps[depth].value = best_term;
info->dps[depth].delta = delta;
decorr_stereo_buffer(info, in_left, in_right, out_left, out_right,
s->block_samples, depth);
recurse_stereo(s, info, depth + 1, delta, local_best_bits);
}
}
static void analyze_stereo(WavPackEncodeContext *s,
int32_t *in_left, int32_t *in_right,
int do_samples)
{
WavPackExtraInfo info;
int i;
info.gt16bit = ((s->flags & MAG_MASK) >> MAG_LSB) >= 16;
info.log_limit = (((s->flags & MAG_MASK) >> MAG_LSB) + 4) * 256;
info.log_limit = FFMIN(6912, info.log_limit);
info.nterms = s->num_terms;
if (allocate_buffers2(s, s->num_terms))
return;
memcpy(info.dps, s->decorr_passes, sizeof(info.dps));
memcpy(s->sampleptrs[0][0], in_left, s->block_samples * 4);
memcpy(s->sampleptrs[0][1], in_right, s->block_samples * 4);
for (i = 0; i < info.nterms && info.dps[i].value; i++)
if (info.gt16bit)
decorr_stereo(s->sampleptrs[i ][0], s->sampleptrs[i ][1],
s->sampleptrs[i + 1][0], s->sampleptrs[i + 1][1],
s->block_samples, info.dps + i, 1);
else
decorr_stereo_quick(s->sampleptrs[i ][0], s->sampleptrs[i ][1],
s->sampleptrs[i + 1][0], s->sampleptrs[i + 1][1],
s->block_samples, info.dps + i);
info.best_bits = log2stereo(s->sampleptrs[info.nterms][0], s->sampleptrs[info.nterms][1],
s->block_samples, 0);
memcpy(s->sampleptrs[info.nterms + 1][0], s->sampleptrs[i][0], s->block_samples * 4);
memcpy(s->sampleptrs[info.nterms + 1][1], s->sampleptrs[i][1], s->block_samples * 4);
if (s->extra_flags & EXTRA_BRANCHES)
recurse_stereo(s, &info, 0, (int) floor(s->delta_decay + 0.5),
log2stereo(s->sampleptrs[0][0], s->sampleptrs[0][1],
s->block_samples, 0));
if (s->extra_flags & EXTRA_SORT_FIRST)
sort_stereo(s, &info);
if (s->extra_flags & EXTRA_TRY_DELTAS) {
delta_stereo(s, &info);
if ((s->extra_flags & EXTRA_ADJUST_DELTAS) && s->decorr_passes[0].value)
s->delta_decay = (float)((s->delta_decay * 2.0 + s->decorr_passes[0].delta) / 3.0);
else
s->delta_decay = 2.0;
}
if (s->extra_flags & EXTRA_SORT_LAST)
sort_stereo(s, &info);
if (do_samples) {
memcpy(in_left, s->sampleptrs[info.nterms + 1][0], s->block_samples * 4);
memcpy(in_right, s->sampleptrs[info.nterms + 1][1], s->block_samples * 4);
}
for (i = 0; i < info.nterms; i++)
if (!s->decorr_passes[i].value)
break;
s->num_terms = i;
}
static int wv_stereo(WavPackEncodeContext *s,
int32_t *samples_l, int32_t *samples_r,
int no_history, int do_samples)
{
struct Decorr temp_decorr_pass, save_decorr_passes[MAX_TERMS] = {{0}};
int nb_samples = s->block_samples, ret;
int buf_size = sizeof(int32_t) * nb_samples;
int log_limit, force_js = 0, force_ts = 0, got_js = 0, pi, i;
uint32_t best_size = UINT32_MAX, size;
for (i = 0; i < nb_samples; i++)
if (samples_l[i] || samples_r[i])
break;
if (i == nb_samples) {
s->flags &= ~((uint32_t) WV_JOINT_STEREO);
CLEAR(s->decorr_passes);
CLEAR(s->w);
s->num_terms = 0;
return 0;
}
log_limit = (((s->flags & MAG_MASK) >> MAG_LSB) + 4) * 256;
log_limit = FFMIN(6912, log_limit);
if (s->joint != -1) {
force_js = s->joint;
force_ts = !s->joint;
}
if ((ret = allocate_buffers(s)) < 0)
return ret;
if (no_history || s->num_passes >= 7)
s->best_decorr = s->mask_decorr = 0;
for (pi = 0; pi < s->num_passes;) {
const WavPackDecorrSpec *wpds;
int nterms, c, j;
if (!pi)
c = s->best_decorr;
else {
if (s->mask_decorr == 0)
c = 0;
else
c = (s->best_decorr & (s->mask_decorr - 1)) | s->mask_decorr;
if (c == s->best_decorr) {
s->mask_decorr = s->mask_decorr ? ((s->mask_decorr << 1) & (s->num_decorrs - 1)) : 1;
continue;
}
}
wpds = &s->decorr_specs[c];
nterms = decorr_filter_nterms[s->decorr_filter];
while (1) {
if (force_js || (wpds->joint_stereo && !force_ts)) {
if (!got_js) {
av_fast_padded_malloc(&s->js_left, &s->js_left_size, buf_size);
av_fast_padded_malloc(&s->js_right, &s->js_right_size, buf_size);
memcpy(s->js_left, samples_l, buf_size);
memcpy(s->js_right, samples_r, buf_size);
for (i = 0; i < nb_samples; i++)
s->js_right[i] += ((s->js_left[i] -= s->js_right[i]) >> 1);
got_js = 1;
}
memcpy(s->temp_buffer[0][0], s->js_left, buf_size);
memcpy(s->temp_buffer[0][1], s->js_right, buf_size);
} else {
memcpy(s->temp_buffer[0][0], samples_l, buf_size);
memcpy(s->temp_buffer[0][1], samples_r, buf_size);
}
CLEAR(save_decorr_passes);
for (j = 0; j < nterms; j++) {
CLEAR(temp_decorr_pass);
temp_decorr_pass.delta = wpds->delta;
temp_decorr_pass.value = wpds->terms[j];
if (temp_decorr_pass.value < 0 && !(s->flags & WV_CROSS_DECORR))
temp_decorr_pass.value = -3;
decorr_stereo(s->temp_buffer[ j&1][0], s->temp_buffer[ j&1][1],
s->temp_buffer[~j&1][0], s->temp_buffer[~j&1][1],
FFMIN(2048, nb_samples), &temp_decorr_pass, -1);
if (j) {
CLEAR(temp_decorr_pass.samplesA);
CLEAR(temp_decorr_pass.samplesB);
} else {
reverse_decorr(&temp_decorr_pass);
}
memcpy(save_decorr_passes + j, &temp_decorr_pass, sizeof(struct Decorr));
if (((s->flags & MAG_MASK) >> MAG_LSB) >= 16)
decorr_stereo(s->temp_buffer[ j&1][0], s->temp_buffer[ j&1][1],
s->temp_buffer[~j&1][0], s->temp_buffer[~j&1][1],
nb_samples, &temp_decorr_pass, 1);
else
decorr_stereo_quick(s->temp_buffer[ j&1][0], s->temp_buffer[ j&1][1],
s->temp_buffer[~j&1][0], s->temp_buffer[~j&1][1],
nb_samples, &temp_decorr_pass);
}
size = log2stereo(s->temp_buffer[j&1][0], s->temp_buffer[j&1][1],
nb_samples, log_limit);
if (size != UINT32_MAX || !nterms)
break;
nterms >>= 1;
}
if (size < best_size) {
memcpy(s->best_buffer[0], s->temp_buffer[j&1][0], buf_size);
memcpy(s->best_buffer[1], s->temp_buffer[j&1][1], buf_size);
memcpy(s->decorr_passes, save_decorr_passes, sizeof(struct Decorr) * MAX_TERMS);
s->num_terms = nterms;
s->best_decorr = c;
best_size = size;
}
if (pi++)
s->mask_decorr = s->mask_decorr ? ((s->mask_decorr << 1) & (s->num_decorrs - 1)) : 1;
}
if (force_js || (s->decorr_specs[s->best_decorr].joint_stereo && !force_ts))
s->flags |= WV_JOINT_STEREO;
else
s->flags &= ~((uint32_t) WV_JOINT_STEREO);
if (s->extra_flags) {
if (s->flags & WV_JOINT_STEREO) {
analyze_stereo(s, s->js_left, s->js_right, do_samples);
if (do_samples) {
memcpy(samples_l, s->js_left, buf_size);
memcpy(samples_r, s->js_right, buf_size);
}
} else
analyze_stereo(s, samples_l, samples_r, do_samples);
} else if (do_samples) {
memcpy(samples_l, s->best_buffer[0], buf_size);
memcpy(samples_r, s->best_buffer[1], buf_size);
}
if (s->extra_flags || no_history ||
s->joint_stereo != s->decorr_specs[s->best_decorr].joint_stereo) {
s->joint_stereo = s->decorr_specs[s->best_decorr].joint_stereo;
CLEAR(s->w);
scan_word(s, &s->w.c[0], s->best_buffer[0], nb_samples, -1);
scan_word(s, &s->w.c[1], s->best_buffer[1], nb_samples, -1);
}
return 0;
}
static void encode_flush(WavPackEncodeContext *s)
{
WavPackWords *w = &s->w;
PutBitContext *pb = &s->pb;
if (w->zeros_acc) {
int cbits = count_bits(w->zeros_acc);
do {
if (cbits > 31) {
put_bits(pb, 31, 0x7FFFFFFF);
cbits -= 31;
} else {
put_bits(pb, cbits, (1 << cbits) - 1);
cbits = 0;
}
} while (cbits);
put_bits(pb, 1, 0);
while (w->zeros_acc > 1) {
put_bits(pb, 1, w->zeros_acc & 1);
w->zeros_acc >>= 1;
}
w->zeros_acc = 0;
}
if (w->holding_one) {
if (w->holding_one >= 16) {
int cbits;
put_bits(pb, 16, (1 << 16) - 1);
put_bits(pb, 1, 0);
w->holding_one -= 16;
cbits = count_bits(w->holding_one);
do {
if (cbits > 31) {
put_bits(pb, 31, 0x7FFFFFFF);
cbits -= 31;
} else {
put_bits(pb, cbits, (1 << cbits) - 1);
cbits = 0;
}
} while (cbits);
put_bits(pb, 1, 0);
while (w->holding_one > 1) {
put_bits(pb, 1, w->holding_one & 1);
w->holding_one >>= 1;
}
w->holding_zero = 0;
} else {
put_bits(pb, w->holding_one, (1 << w->holding_one) - 1);
}
w->holding_one = 0;
}
if (w->holding_zero) {
put_bits(pb, 1, 0);
w->holding_zero = 0;
}
if (w->pend_count) {
put_bits(pb, w->pend_count, w->pend_data);
w->pend_data = w->pend_count = 0;
}
}
static void wavpack_encode_sample(WavPackEncodeContext *s, WvChannel *c, int32_t sample)
{
WavPackWords *w = &s->w;
uint32_t ones_count, low, high;
int sign = sample < 0;
if (s->w.c[0].median[0] < 2 && !s->w.holding_zero && s->w.c[1].median[0] < 2) {
if (w->zeros_acc) {
if (sample)
encode_flush(s);
else {
w->zeros_acc++;
return;
}
} else if (sample) {
put_bits(&s->pb, 1, 0);
} else {
CLEAR(s->w.c[0].median);
CLEAR(s->w.c[1].median);
w->zeros_acc = 1;
return;
}
}
if (sign)
sample = ~sample;
if (sample < (int32_t) GET_MED(0)) {
ones_count = low = 0;
high = GET_MED(0) - 1;
DEC_MED(0);
} else {
low = GET_MED(0);
INC_MED(0);
if (sample - low < GET_MED(1)) {
ones_count = 1;
high = low + GET_MED(1) - 1;
DEC_MED(1);
} else {
low += GET_MED(1);
INC_MED(1);
if (sample - low < GET_MED(2)) {
ones_count = 2;
high = low + GET_MED(2) - 1;
DEC_MED(2);
} else {
ones_count = 2 + (sample - low) / GET_MED(2);
low += (ones_count - 2) * GET_MED(2);
high = low + GET_MED(2) - 1;
INC_MED(2);
}
}
}
if (w->holding_zero) {
if (ones_count)
w->holding_one++;
encode_flush(s);
if (ones_count) {
w->holding_zero = 1;
ones_count--;
} else
w->holding_zero = 0;
} else
w->holding_zero = 1;
w->holding_one = ones_count * 2;
if (high != low) {
uint32_t maxcode = high - low, code = sample - low;
int bitcount = count_bits(maxcode);
uint32_t extras = (1 << bitcount) - maxcode - 1;
if (code < extras) {
w->pend_data |= code << w->pend_count;
w->pend_count += bitcount - 1;
} else {
w->pend_data |= ((code + extras) >> 1) << w->pend_count;
w->pend_count += bitcount - 1;
w->pend_data |= ((code + extras) & 1) << w->pend_count++;
}
}
w->pend_data |= ((int32_t) sign << w->pend_count++);
if (!w->holding_zero)
encode_flush(s);
}
static void pack_int32(WavPackEncodeContext *s,
int32_t *samples_l, int32_t *samples_r,
int nb_samples)
{
const int sent_bits = s->int32_sent_bits;
PutBitContext *pb = &s->pb;
int i, pre_shift;
pre_shift = s->int32_zeros + s->int32_ones + s->int32_dups;
if (!sent_bits)
return;
if (s->flags & WV_MONO_DATA) {
for (i = 0; i < nb_samples; i++) {
put_sbits(pb, sent_bits, samples_l[i] >> pre_shift);
}
} else {
for (i = 0; i < nb_samples; i++) {
put_sbits(pb, sent_bits, samples_l[i] >> pre_shift);
put_sbits(pb, sent_bits, samples_r[i] >> pre_shift);
}
}
}
static void pack_float_sample(WavPackEncodeContext *s, int32_t *sample)
{
const int max_exp = s->float_max_exp;
PutBitContext *pb = &s->pb;
int32_t value, shift_count;
if (get_exponent(*sample) == 255) {
if (get_mantissa(*sample)) {
put_bits(pb, 1, 1);
put_bits(pb, 23, get_mantissa(*sample));
} else {
put_bits(pb, 1, 0);
}
value = 0x1000000;
shift_count = 0;
} else if (get_exponent(*sample)) {
shift_count = max_exp - get_exponent(*sample);
value = 0x800000 + get_mantissa(*sample);
} else {
shift_count = max_exp ? max_exp - 1 : 0;
value = get_mantissa(*sample);
}
if (shift_count < 25)
value >>= shift_count;
else
value = 0;
if (!value) {
if (s->float_flags & FLOAT_ZEROS_SENT) {
if (get_exponent(*sample) || get_mantissa(*sample)) {
put_bits(pb, 1, 1);
put_bits(pb, 23, get_mantissa(*sample));
if (max_exp >= 25)
put_bits(pb, 8, get_exponent(*sample));
put_bits(pb, 1, get_sign(*sample));
} else {
put_bits(pb, 1, 0);
if (s->float_flags & FLOAT_NEG_ZEROS)
put_bits(pb, 1, get_sign(*sample));
}
}
} else if (shift_count) {
if (s->float_flags & FLOAT_SHIFT_SENT) {
put_sbits(pb, shift_count, get_mantissa(*sample));
} else if (s->float_flags & FLOAT_SHIFT_SAME) {
put_bits(pb, 1, get_mantissa(*sample) & 1);
}
}
}
static void pack_float(WavPackEncodeContext *s,
int32_t *samples_l, int32_t *samples_r,
int nb_samples)
{
int i;
if (s->flags & WV_MONO_DATA) {
for (i = 0; i < nb_samples; i++)
pack_float_sample(s, &samples_l[i]);
} else {
for (i = 0; i < nb_samples; i++) {
pack_float_sample(s, &samples_l[i]);
pack_float_sample(s, &samples_r[i]);
}
}
}
static void decorr_stereo_pass2(struct Decorr *dpp,
int32_t *samples_l, int32_t *samples_r,
int nb_samples)
{
int i, m, k;
switch (dpp->value) {
case 17:
for (i = 0; i < nb_samples; i++) {
int32_t sam, tmp;
sam = 2 * dpp->samplesA[0] - dpp->samplesA[1];
dpp->samplesA[1] = dpp->samplesA[0];
samples_l[i] = tmp = (dpp->samplesA[0] = samples_l[i]) - APPLY_WEIGHT(dpp->weightA, sam);
UPDATE_WEIGHT(dpp->weightA, dpp->delta, sam, tmp);
sam = 2 * dpp->samplesB[0] - dpp->samplesB[1];
dpp->samplesB[1] = dpp->samplesB[0];
samples_r[i] = tmp = (dpp->samplesB[0] = samples_r[i]) - APPLY_WEIGHT(dpp->weightB, sam);
UPDATE_WEIGHT(dpp->weightB, dpp->delta, sam, tmp);
}
break;
case 18:
for (i = 0; i < nb_samples; i++) {
int32_t sam, tmp;
sam = dpp->samplesA[0] + ((dpp->samplesA[0] - dpp->samplesA[1]) >> 1);
dpp->samplesA[1] = dpp->samplesA[0];
samples_l[i] = tmp = (dpp->samplesA[0] = samples_l[i]) - APPLY_WEIGHT(dpp->weightA, sam);
UPDATE_WEIGHT(dpp->weightA, dpp->delta, sam, tmp);
sam = dpp->samplesB[0] + ((dpp->samplesB[0] - dpp->samplesB[1]) >> 1);
dpp->samplesB[1] = dpp->samplesB[0];
samples_r[i] = tmp = (dpp->samplesB[0] = samples_r[i]) - APPLY_WEIGHT(dpp->weightB, sam);
UPDATE_WEIGHT(dpp->weightB, dpp->delta, sam, tmp);
}
break;
default:
for (m = 0, k = dpp->value & (MAX_TERM - 1), i = 0; i < nb_samples; i++) {
int32_t sam, tmp;
sam = dpp->samplesA[m];
samples_l[i] = tmp = (dpp->samplesA[k] = samples_l[i]) - APPLY_WEIGHT(dpp->weightA, sam);
UPDATE_WEIGHT(dpp->weightA, dpp->delta, sam, tmp);
sam = dpp->samplesB[m];
samples_r[i] = tmp = (dpp->samplesB[k] = samples_r[i]) - APPLY_WEIGHT(dpp->weightB, sam);
UPDATE_WEIGHT(dpp->weightB, dpp->delta, sam, tmp);
m = (m + 1) & (MAX_TERM - 1);
k = (k + 1) & (MAX_TERM - 1);
}
if (m) {
int32_t temp_A[MAX_TERM], temp_B[MAX_TERM];
memcpy(temp_A, dpp->samplesA, sizeof (dpp->samplesA));
memcpy(temp_B, dpp->samplesB, sizeof (dpp->samplesB));
for (k = 0; k < MAX_TERM; k++) {
dpp->samplesA[k] = temp_A[m];
dpp->samplesB[k] = temp_B[m];
m = (m + 1) & (MAX_TERM - 1);
}
}
break;
case -1:
for (i = 0; i < nb_samples; i++) {
int32_t sam_A, sam_B, tmp;
sam_A = dpp->samplesA[0];
samples_l[i] = tmp = (sam_B = samples_l[i]) - APPLY_WEIGHT(dpp->weightA, sam_A);
UPDATE_WEIGHT_CLIP(dpp->weightA, dpp->delta, sam_A, tmp);
samples_r[i] = tmp = (dpp->samplesA[0] = samples_r[i]) - APPLY_WEIGHT(dpp->weightB, sam_B);
UPDATE_WEIGHT_CLIP(dpp->weightB, dpp->delta, sam_B, tmp);
}
break;
case -2:
for (i = 0; i < nb_samples; i++) {
int32_t sam_A, sam_B, tmp;
sam_B = dpp->samplesB[0];
samples_r[i] = tmp = (sam_A = samples_r[i]) - APPLY_WEIGHT(dpp->weightB, sam_B);
UPDATE_WEIGHT_CLIP(dpp->weightB, dpp->delta, sam_B, tmp);
samples_l[i] = tmp = (dpp->samplesB[0] = samples_l[i]) - APPLY_WEIGHT(dpp->weightA, sam_A);
UPDATE_WEIGHT_CLIP(dpp->weightA, dpp->delta, sam_A, tmp);
}
break;
case -3:
for (i = 0; i < nb_samples; i++) {
int32_t sam_A, sam_B, tmp;
sam_A = dpp->samplesA[0];
sam_B = dpp->samplesB[0];
dpp->samplesA[0] = tmp = samples_r[i];
samples_r[i] = tmp -= APPLY_WEIGHT(dpp->weightB, sam_B);
UPDATE_WEIGHT_CLIP(dpp->weightB, dpp->delta, sam_B, tmp);
dpp->samplesB[0] = tmp = samples_l[i];
samples_l[i] = tmp -= APPLY_WEIGHT(dpp->weightA, sam_A);
UPDATE_WEIGHT_CLIP(dpp->weightA, dpp->delta, sam_A, tmp);
}
break;
}
}
#define update_weight_d2(weight, delta, source, result) \
if (source && result) \
weight -= (((source ^ result) >> 29) & 4) - 2;
#define update_weight_clip_d2(weight, delta, source, result) \
if (source && result) { \
const int32_t s = (source ^ result) >> 31; \
if ((weight = (weight ^ s) + (2 - s)) > 1024) weight = 1024; \
weight = (weight ^ s) - s; \
}
static void decorr_stereo_pass_id2(struct Decorr *dpp,
int32_t *samples_l, int32_t *samples_r,
int nb_samples)
{
int i, m, k;
switch (dpp->value) {
case 17:
for (i = 0; i < nb_samples; i++) {
int32_t sam, tmp;
sam = 2 * dpp->samplesA[0] - dpp->samplesA[1];
dpp->samplesA[1] = dpp->samplesA[0];
samples_l[i] = tmp = (dpp->samplesA[0] = samples_l[i]) - APPLY_WEIGHT_I(dpp->weightA, sam);
update_weight_d2(dpp->weightA, dpp->delta, sam, tmp);
sam = 2 * dpp->samplesB[0] - dpp->samplesB[1];
dpp->samplesB[1] = dpp->samplesB[0];
samples_r[i] = tmp = (dpp->samplesB[0] = samples_r[i]) - APPLY_WEIGHT_I(dpp->weightB, sam);
update_weight_d2(dpp->weightB, dpp->delta, sam, tmp);
}
break;
case 18:
for (i = 0; i < nb_samples; i++) {
int32_t sam, tmp;
sam = dpp->samplesA[0] + ((dpp->samplesA[0] - dpp->samplesA[1]) >> 1);
dpp->samplesA[1] = dpp->samplesA[0];
samples_l[i] = tmp = (dpp->samplesA[0] = samples_l[i]) - APPLY_WEIGHT_I(dpp->weightA, sam);
update_weight_d2(dpp->weightA, dpp->delta, sam, tmp);
sam = dpp->samplesB[0] + ((dpp->samplesB[0] - dpp->samplesB[1]) >> 1);
dpp->samplesB[1] = dpp->samplesB[0];
samples_r[i] = tmp = (dpp->samplesB[0] = samples_r[i]) - APPLY_WEIGHT_I(dpp->weightB, sam);
update_weight_d2(dpp->weightB, dpp->delta, sam, tmp);
}
break;
default:
for (m = 0, k = dpp->value & (MAX_TERM - 1), i = 0; i < nb_samples; i++) {
int32_t sam, tmp;
sam = dpp->samplesA[m];
samples_l[i] = tmp = (dpp->samplesA[k] = samples_l[i]) - APPLY_WEIGHT_I(dpp->weightA, sam);
update_weight_d2(dpp->weightA, dpp->delta, sam, tmp);
sam = dpp->samplesB[m];
samples_r[i] = tmp = (dpp->samplesB[k] = samples_r[i]) - APPLY_WEIGHT_I(dpp->weightB, sam);
update_weight_d2(dpp->weightB, dpp->delta, sam, tmp);
m = (m + 1) & (MAX_TERM - 1);
k = (k + 1) & (MAX_TERM - 1);
}
if (m) {
int32_t temp_A[MAX_TERM], temp_B[MAX_TERM];
memcpy(temp_A, dpp->samplesA, sizeof(dpp->samplesA));
memcpy(temp_B, dpp->samplesB, sizeof(dpp->samplesB));
for (k = 0; k < MAX_TERM; k++) {
dpp->samplesA[k] = temp_A[m];
dpp->samplesB[k] = temp_B[m];
m = (m + 1) & (MAX_TERM - 1);
}
}
break;
case -1:
for (i = 0; i < nb_samples; i++) {
int32_t sam_A, sam_B, tmp;
sam_A = dpp->samplesA[0];
samples_l[i] = tmp = (sam_B = samples_l[i]) - APPLY_WEIGHT_I(dpp->weightA, sam_A);
update_weight_clip_d2(dpp->weightA, dpp->delta, sam_A, tmp);
samples_r[i] = tmp = (dpp->samplesA[0] = samples_r[i]) - APPLY_WEIGHT_I(dpp->weightB, sam_B);
update_weight_clip_d2(dpp->weightB, dpp->delta, sam_B, tmp);
}
break;
case -2:
for (i = 0; i < nb_samples; i++) {
int32_t sam_A, sam_B, tmp;
sam_B = dpp->samplesB[0];
samples_r[i] = tmp = (sam_A = samples_r[i]) - APPLY_WEIGHT_I(dpp->weightB, sam_B);
update_weight_clip_d2(dpp->weightB, dpp->delta, sam_B, tmp);
samples_l[i] = tmp = (dpp->samplesB[0] = samples_l[i]) - APPLY_WEIGHT_I(dpp->weightA, sam_A);
update_weight_clip_d2(dpp->weightA, dpp->delta, sam_A, tmp);
}
break;
case -3:
for (i = 0; i < nb_samples; i++) {
int32_t sam_A, sam_B, tmp;
sam_A = dpp->samplesA[0];
sam_B = dpp->samplesB[0];
dpp->samplesA[0] = tmp = samples_r[i];
samples_r[i] = tmp -= APPLY_WEIGHT_I(dpp->weightB, sam_B);
update_weight_clip_d2(dpp->weightB, dpp->delta, sam_B, tmp);
dpp->samplesB[0] = tmp = samples_l[i];
samples_l[i] = tmp -= APPLY_WEIGHT_I(dpp->weightA, sam_A);
update_weight_clip_d2(dpp->weightA, dpp->delta, sam_A, tmp);
}
break;
}
}
static void put_metadata_block(PutByteContext *pb, int flags, int size)
{
if (size & 1)
flags |= WP_IDF_ODD;
bytestream2_put_byte(pb, flags);
bytestream2_put_byte(pb, (size + 1) >> 1);
}
static int wavpack_encode_block(WavPackEncodeContext *s,
int32_t *samples_l, int32_t *samples_r,
uint8_t *out, int out_size)
{
int block_size, start, end, data_size, tcount, temp, m = 0;
int i, j, ret = 0, got_extra = 0, nb_samples = s->block_samples;
uint32_t crc = 0xffffffffu;
struct Decorr *dpp;
PutByteContext pb;
if (s->flags & WV_MONO_DATA) {
CLEAR(s->w);
}
if (!(s->flags & WV_MONO) && s->optimize_mono) {
int32_t lor = 0, diff = 0;
for (i = 0; i < nb_samples; i++) {
lor |= samples_l[i] | samples_r[i];
diff |= samples_l[i] - samples_r[i];
if (lor && diff)
break;
}
if (i == nb_samples && lor && !diff) {
s->flags &= ~(WV_JOINT_STEREO | WV_CROSS_DECORR);
s->flags |= WV_FALSE_STEREO;
if (!s->false_stereo) {
s->false_stereo = 1;
s->num_terms = 0;
CLEAR(s->w);
}
} else if (s->false_stereo) {
s->false_stereo = 0;
s->num_terms = 0;
CLEAR(s->w);
}
}
if (s->flags & SHIFT_MASK) {
int shift = (s->flags & SHIFT_MASK) >> SHIFT_LSB;
int mag = (s->flags & MAG_MASK) >> MAG_LSB;
if (s->flags & WV_MONO_DATA)
shift_mono(samples_l, nb_samples, shift);
else
shift_stereo(samples_l, samples_r, nb_samples, shift);
if ((mag -= shift) < 0)
s->flags &= ~MAG_MASK;
else
s->flags -= (1 << MAG_LSB) * shift;
}
if ((s->flags & WV_FLOAT_DATA) || (s->flags & MAG_MASK) >> MAG_LSB >= 24) {
av_fast_padded_malloc(&s->orig_l, &s->orig_l_size, sizeof(int32_t) * nb_samples);
memcpy(s->orig_l, samples_l, sizeof(int32_t) * nb_samples);
if (!(s->flags & WV_MONO_DATA)) {
av_fast_padded_malloc(&s->orig_r, &s->orig_r_size, sizeof(int32_t) * nb_samples);
memcpy(s->orig_r, samples_r, sizeof(int32_t) * nb_samples);
}
if (s->flags & WV_FLOAT_DATA)
got_extra = scan_float(s, samples_l, samples_r, nb_samples);
else
got_extra = scan_int32(s, samples_l, samples_r, nb_samples);
s->num_terms = 0;
} else {
scan_int23(s, samples_l, samples_r, nb_samples);
if (s->shift != s->int32_zeros + s->int32_ones + s->int32_dups) {
s->shift = s->int32_zeros + s->int32_ones + s->int32_dups;
s->num_terms = 0;
}
}
if (!s->num_passes && !s->num_terms) {
s->num_passes = 1;
if (s->flags & WV_MONO_DATA)
ret = wv_mono(s, samples_l, 1, 0);
else
ret = wv_stereo(s, samples_l, samples_r, 1, 0);
s->num_passes = 0;
}
if (s->flags & WV_MONO_DATA) {
for (i = 0; i < nb_samples; i++)
crc += (crc << 1) + samples_l[i];
if (s->num_passes)
ret = wv_mono(s, samples_l, !s->num_terms, 1);
} else {
for (i = 0; i < nb_samples; i++)
crc += (crc << 3) + ((uint32_t)samples_l[i] << 1) + samples_l[i] + samples_r[i];
if (s->num_passes)
ret = wv_stereo(s, samples_l, samples_r, !s->num_terms, 1);
}
if (ret < 0)
return ret;
if (!s->ch_offset)
s->flags |= WV_INITIAL_BLOCK;
s->ch_offset += 1 + !(s->flags & WV_MONO);
if (s->ch_offset == s->avctx->ch_layout.nb_channels)
s->flags |= WV_FINAL_BLOCK;
bytestream2_init_writer(&pb, out, out_size);
bytestream2_put_le32(&pb, MKTAG('w', 'v', 'p', 'k'));
bytestream2_put_le32(&pb, 0);
bytestream2_put_le16(&pb, 0x410);
bytestream2_put_le16(&pb, 0);
bytestream2_put_le32(&pb, 0);
bytestream2_put_le32(&pb, s->sample_index);
bytestream2_put_le32(&pb, nb_samples);
bytestream2_put_le32(&pb, s->flags);
bytestream2_put_le32(&pb, crc);
if (s->flags & WV_INITIAL_BLOCK &&
s->avctx->ch_layout.order == AV_CHANNEL_ORDER_NATIVE &&
s->avctx->ch_layout.u.mask != AV_CH_LAYOUT_MONO &&
s->avctx->ch_layout.u.mask != AV_CH_LAYOUT_STEREO) {
put_metadata_block(&pb, WP_ID_CHANINFO, 5);
bytestream2_put_byte(&pb, s->avctx->ch_layout.nb_channels);
bytestream2_put_le32(&pb, s->avctx->ch_layout.u.mask);
bytestream2_put_byte(&pb, 0);
}
if ((s->flags & SRATE_MASK) == SRATE_MASK) {
put_metadata_block(&pb, WP_ID_SAMPLE_RATE, 3);
bytestream2_put_le24(&pb, s->avctx->sample_rate);
bytestream2_put_byte(&pb, 0);
}
put_metadata_block(&pb, WP_ID_DECTERMS, s->num_terms);
for (i = 0; i < s->num_terms; i++) {
struct Decorr *dpp = &s->decorr_passes[i];
bytestream2_put_byte(&pb, ((dpp->value + 5) & 0x1f) | ((dpp->delta << 5) & 0xe0));
}
if (s->num_terms & 1)
bytestream2_put_byte(&pb, 0);
#define WRITE_DECWEIGHT(type) do { \
temp = store_weight(type); \
bytestream2_put_byte(&pb, temp); \
type = restore_weight(temp); \
} while (0)
bytestream2_put_byte(&pb, WP_ID_DECWEIGHTS);
bytestream2_put_byte(&pb, 0);
start = bytestream2_tell_p(&pb);
for (i = s->num_terms - 1; i >= 0; --i) {
struct Decorr *dpp = &s->decorr_passes[i];
if (store_weight(dpp->weightA) ||
(!(s->flags & WV_MONO_DATA) && store_weight(dpp->weightB)))
break;
}
tcount = i + 1;
for (i = 0; i < s->num_terms; i++) {
struct Decorr *dpp = &s->decorr_passes[i];
if (i < tcount) {
WRITE_DECWEIGHT(dpp->weightA);
if (!(s->flags & WV_MONO_DATA))
WRITE_DECWEIGHT(dpp->weightB);
} else {
dpp->weightA = dpp->weightB = 0;
}
}
end = bytestream2_tell_p(&pb);
out[start - 2] = WP_ID_DECWEIGHTS | (((end - start) & 1) ? WP_IDF_ODD: 0);
out[start - 1] = (end - start + 1) >> 1;
if ((end - start) & 1)
bytestream2_put_byte(&pb, 0);
#define WRITE_DECSAMPLE(type) do { \
temp = log2s(type); \
type = wp_exp2(temp); \
bytestream2_put_le16(&pb, temp); \
} while (0)
bytestream2_put_byte(&pb, WP_ID_DECSAMPLES);
bytestream2_put_byte(&pb, 0);
start = bytestream2_tell_p(&pb);
for (i = 0; i < s->num_terms; i++) {
struct Decorr *dpp = &s->decorr_passes[i];
if (i == 0) {
if (dpp->value > MAX_TERM) {
WRITE_DECSAMPLE(dpp->samplesA[0]);
WRITE_DECSAMPLE(dpp->samplesA[1]);
if (!(s->flags & WV_MONO_DATA)) {
WRITE_DECSAMPLE(dpp->samplesB[0]);
WRITE_DECSAMPLE(dpp->samplesB[1]);
}
} else if (dpp->value < 0) {
WRITE_DECSAMPLE(dpp->samplesA[0]);
WRITE_DECSAMPLE(dpp->samplesB[0]);
} else {
for (j = 0; j < dpp->value; j++) {
WRITE_DECSAMPLE(dpp->samplesA[j]);
if (!(s->flags & WV_MONO_DATA))
WRITE_DECSAMPLE(dpp->samplesB[j]);
}
}
} else {
CLEAR(dpp->samplesA);
CLEAR(dpp->samplesB);
}
}
end = bytestream2_tell_p(&pb);
out[start - 1] = (end - start) >> 1;
#define WRITE_CHAN_ENTROPY(chan) do { \
for (i = 0; i < 3; i++) { \
temp = wp_log2(s->w.c[chan].median[i]); \
bytestream2_put_le16(&pb, temp); \
s->w.c[chan].median[i] = wp_exp2(temp); \
} \
} while (0)
put_metadata_block(&pb, WP_ID_ENTROPY, 6 * (1 + (!(s->flags & WV_MONO_DATA))));
WRITE_CHAN_ENTROPY(0);
if (!(s->flags & WV_MONO_DATA))
WRITE_CHAN_ENTROPY(1);
if (s->flags & WV_FLOAT_DATA) {
put_metadata_block(&pb, WP_ID_FLOATINFO, 4);
bytestream2_put_byte(&pb, s->float_flags);
bytestream2_put_byte(&pb, s->float_shift);
bytestream2_put_byte(&pb, s->float_max_exp);
bytestream2_put_byte(&pb, 127);
}
if (s->flags & WV_INT32_DATA) {
put_metadata_block(&pb, WP_ID_INT32INFO, 4);
bytestream2_put_byte(&pb, s->int32_sent_bits);
bytestream2_put_byte(&pb, s->int32_zeros);
bytestream2_put_byte(&pb, s->int32_ones);
bytestream2_put_byte(&pb, s->int32_dups);
}
if (s->flags & WV_MONO_DATA && !s->num_passes) {
for (i = 0; i < nb_samples; i++) {
int32_t code = samples_l[i];
for (tcount = s->num_terms, dpp = s->decorr_passes; tcount--; dpp++) {
int32_t sam;
if (dpp->value > MAX_TERM) {
if (dpp->value & 1)
sam = 2 * dpp->samplesA[0] - dpp->samplesA[1];
else
sam = (3 * dpp->samplesA[0] - dpp->samplesA[1]) >> 1;
dpp->samplesA[1] = dpp->samplesA[0];
dpp->samplesA[0] = code;
} else {
sam = dpp->samplesA[m];
dpp->samplesA[(m + dpp->value) & (MAX_TERM - 1)] = code;
}
code -= APPLY_WEIGHT(dpp->weightA, sam);
UPDATE_WEIGHT(dpp->weightA, dpp->delta, sam, code);
}
m = (m + 1) & (MAX_TERM - 1);
samples_l[i] = code;
}
if (m) {
for (tcount = s->num_terms, dpp = s->decorr_passes; tcount--; dpp++)
if (dpp->value > 0 && dpp->value <= MAX_TERM) {
int32_t temp_A[MAX_TERM], temp_B[MAX_TERM];
int k;
memcpy(temp_A, dpp->samplesA, sizeof(dpp->samplesA));
memcpy(temp_B, dpp->samplesB, sizeof(dpp->samplesB));
for (k = 0; k < MAX_TERM; k++) {
dpp->samplesA[k] = temp_A[m];
dpp->samplesB[k] = temp_B[m];
m = (m + 1) & (MAX_TERM - 1);
}
}
}
} else if (!s->num_passes) {
if (s->flags & WV_JOINT_STEREO) {
for (i = 0; i < nb_samples; i++)
samples_r[i] += ((samples_l[i] -= samples_r[i]) >> 1);
}
for (i = 0; i < s->num_terms; i++) {
struct Decorr *dpp = &s->decorr_passes[i];
if (((s->flags & MAG_MASK) >> MAG_LSB) >= 16 || dpp->delta != 2)
decorr_stereo_pass2(dpp, samples_l, samples_r, nb_samples);
else
decorr_stereo_pass_id2(dpp, samples_l, samples_r, nb_samples);
}
}
bytestream2_put_byte(&pb, WP_ID_DATA | WP_IDF_LONG);
init_put_bits(&s->pb, pb.buffer + 3, bytestream2_get_bytes_left_p(&pb));
if (s->flags & WV_MONO_DATA) {
for (i = 0; i < nb_samples; i++)
wavpack_encode_sample(s, &s->w.c[0], s->samples[0][i]);
} else {
for (i = 0; i < nb_samples; i++) {
wavpack_encode_sample(s, &s->w.c[0], s->samples[0][i]);
wavpack_encode_sample(s, &s->w.c[1], s->samples[1][i]);
}
}
encode_flush(s);
flush_put_bits(&s->pb);
data_size = put_bytes_output(&s->pb);
bytestream2_put_le24(&pb, (data_size + 1) >> 1);
bytestream2_skip_p(&pb, data_size);
if (data_size & 1)
bytestream2_put_byte(&pb, 0);
if (got_extra) {
bytestream2_put_byte(&pb, WP_ID_EXTRABITS | WP_IDF_LONG);
init_put_bits(&s->pb, pb.buffer + 7, bytestream2_get_bytes_left_p(&pb));
if (s->flags & WV_FLOAT_DATA)
pack_float(s, s->orig_l, s->orig_r, nb_samples);
else
pack_int32(s, s->orig_l, s->orig_r, nb_samples);
flush_put_bits(&s->pb);
data_size = put_bytes_output(&s->pb);
bytestream2_put_le24(&pb, (data_size + 5) >> 1);
bytestream2_put_le32(&pb, s->crc_x);
bytestream2_skip_p(&pb, data_size);
if (data_size & 1)
bytestream2_put_byte(&pb, 0);
}
block_size = bytestream2_tell_p(&pb);
AV_WL32(out + 4, block_size - 8);
av_assert0(!bytestream2_get_eof(&pb));
return block_size;
}
static void fill_buffer(WavPackEncodeContext *s,
const int8_t *src, int32_t *dst,
int nb_samples)
{
int i;
#define COPY_SAMPLES(type, offset, shift) do { \
const type *sptr = (const type *)src; \
for (i = 0; i < nb_samples; i++) \
dst[i] = (sptr[i] - offset) >> shift; \
} while (0)
switch (s->avctx->sample_fmt) {
case AV_SAMPLE_FMT_U8P:
COPY_SAMPLES(int8_t, 0x80, 0);
break;
case AV_SAMPLE_FMT_S16P:
COPY_SAMPLES(int16_t, 0, 0);
break;
case AV_SAMPLE_FMT_S32P:
if (s->avctx->bits_per_raw_sample <= 24) {
COPY_SAMPLES(int32_t, 0, 8);
break;
}
case AV_SAMPLE_FMT_FLTP:
memcpy(dst, src, nb_samples * 4);
}
}
static void set_samplerate(WavPackEncodeContext *s)
{
int i;
for (i = 0; i < 15; i++) {
if (wv_rates[i] == s->avctx->sample_rate)
break;
}
s->flags = i << SRATE_LSB;
}
static int wavpack_encode_frame(AVCodecContext *avctx, AVPacket *avpkt,
const AVFrame *frame, int *got_packet_ptr)
{
WavPackEncodeContext *s = avctx->priv_data;
int buf_size, ret;
uint8_t *buf;
s->block_samples = frame->nb_samples;
av_fast_padded_malloc(&s->samples[0], &s->samples_size[0],
sizeof(int32_t) * s->block_samples);
if (!s->samples[0])
return AVERROR(ENOMEM);
if (avctx->ch_layout.nb_channels > 1) {
av_fast_padded_malloc(&s->samples[1], &s->samples_size[1],
sizeof(int32_t) * s->block_samples);
if (!s->samples[1])
return AVERROR(ENOMEM);
}
buf_size = s->block_samples * avctx->ch_layout.nb_channels * 8
+ 200 * avctx->ch_layout.nb_channels /* for headers */;
if ((ret = ff_alloc_packet(avctx, avpkt, buf_size)) < 0)
return ret;
buf = avpkt->data;
for (s->ch_offset = 0; s->ch_offset < avctx->ch_layout.nb_channels;) {
set_samplerate(s);
switch (s->avctx->sample_fmt) {
case AV_SAMPLE_FMT_S16P: s->flags |= 1; break;
case AV_SAMPLE_FMT_S32P: s->flags |= 3 - (s->avctx->bits_per_raw_sample <= 24); break;
case AV_SAMPLE_FMT_FLTP: s->flags |= 3 | WV_FLOAT_DATA;
}
fill_buffer(s, frame->extended_data[s->ch_offset], s->samples[0], s->block_samples);
if (avctx->ch_layout.nb_channels - s->ch_offset == 1) {
s->flags |= WV_MONO;
} else {
s->flags |= WV_CROSS_DECORR;
fill_buffer(s, frame->extended_data[s->ch_offset + 1], s->samples[1], s->block_samples);
}
s->flags += (1 << MAG_LSB) * ((s->flags & 3) * 8 + 7);
if ((ret = wavpack_encode_block(s, s->samples[0], s->samples[1],
buf, buf_size)) < 0)
return ret;
buf += ret;
buf_size -= ret;
}
s->sample_index += frame->nb_samples;
avpkt->size = buf - avpkt->data;
*got_packet_ptr = 1;
return 0;
}
static av_cold int wavpack_encode_close(AVCodecContext *avctx)
{
WavPackEncodeContext *s = avctx->priv_data;
int i;
for (i = 0; i < MAX_TERMS + 2; i++) {
av_freep(&s->sampleptrs[i][0]);
av_freep(&s->sampleptrs[i][1]);
s->sampleptrs_size[i][0] = s->sampleptrs_size[i][1] = 0;
}
for (i = 0; i < 2; i++) {
av_freep(&s->samples[i]);
s->samples_size[i] = 0;
av_freep(&s->best_buffer[i]);
s->best_buffer_size[i] = 0;
av_freep(&s->temp_buffer[i][0]);
av_freep(&s->temp_buffer[i][1]);
s->temp_buffer_size[i][0] = s->temp_buffer_size[i][1] = 0;
}
av_freep(&s->js_left);
av_freep(&s->js_right);
s->js_left_size = s->js_right_size = 0;
av_freep(&s->orig_l);
av_freep(&s->orig_r);
s->orig_l_size = s->orig_r_size = 0;
return 0;
}
#define OFFSET(x) offsetof(WavPackEncodeContext, x)
#define FLAGS AV_OPT_FLAG_ENCODING_PARAM | AV_OPT_FLAG_AUDIO_PARAM
static const AVOption options[] = {
{ "joint_stereo", "", OFFSET(joint), AV_OPT_TYPE_BOOL, {.i64=-1}, -1, 1, FLAGS },
{ "optimize_mono", "", OFFSET(optimize_mono), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1, FLAGS },
{ NULL },
};
static const AVClass wavpack_encoder_class = {
.class_name = "WavPack encoder",
.item_name = av_default_item_name,
.option = options,
.version = LIBAVUTIL_VERSION_INT,
};
const FFCodec ff_wavpack_encoder = {
.p.name = "wavpack",
CODEC_LONG_NAME("WavPack"),
.p.type = AVMEDIA_TYPE_AUDIO,
.p.id = AV_CODEC_ID_WAVPACK,
.p.capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_SMALL_LAST_FRAME |
AV_CODEC_CAP_ENCODER_REORDERED_OPAQUE,
.priv_data_size = sizeof(WavPackEncodeContext),
.p.priv_class = &wavpack_encoder_class,
.init = wavpack_encode_init,
FF_CODEC_ENCODE_CB(wavpack_encode_frame),
.close = wavpack_encode_close,
.p.sample_fmts = (const enum AVSampleFormat[]){ AV_SAMPLE_FMT_U8P,
AV_SAMPLE_FMT_S16P,
AV_SAMPLE_FMT_S32P,
AV_SAMPLE_FMT_FLTP,
AV_SAMPLE_FMT_NONE },
};