mirror of
https://github.com/FFmpeg/FFmpeg.git
synced 2024-12-18 03:19:31 +02:00
1105 lines
47 KiB
C
1105 lines
47 KiB
C
/*
|
|
* Copyright (c) 2012 Clément Bœsch
|
|
*
|
|
* This file is part of FFmpeg.
|
|
*
|
|
* FFmpeg is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*
|
|
* FFmpeg is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with FFmpeg; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
|
|
/**
|
|
* @file
|
|
* EBU R.128 implementation
|
|
* @see http://tech.ebu.ch/loudness
|
|
* @see https://www.youtube.com/watch?v=iuEtQqC-Sqo "EBU R128 Introduction - Florian Camerer"
|
|
* @todo implement start/stop/reset through filter command injection
|
|
*/
|
|
|
|
#include <math.h>
|
|
|
|
#include "libavutil/avassert.h"
|
|
#include "libavutil/avstring.h"
|
|
#include "libavutil/channel_layout.h"
|
|
#include "libavutil/dict.h"
|
|
#include "libavutil/ffmath.h"
|
|
#include "libavutil/xga_font_data.h"
|
|
#include "libavutil/opt.h"
|
|
#include "libavutil/timestamp.h"
|
|
#include "libswresample/swresample.h"
|
|
#include "audio.h"
|
|
#include "avfilter.h"
|
|
#include "filters.h"
|
|
#include "formats.h"
|
|
#include "internal.h"
|
|
|
|
#define ABS_THRES -70 ///< silence gate: we discard anything below this absolute (LUFS) threshold
|
|
#define ABS_UP_THRES 10 ///< upper loud limit to consider (ABS_THRES being the minimum)
|
|
#define HIST_GRAIN 100 ///< defines histogram precision
|
|
#define HIST_SIZE ((ABS_UP_THRES - ABS_THRES) * HIST_GRAIN + 1)
|
|
|
|
/**
|
|
* A histogram is an array of HIST_SIZE hist_entry storing all the energies
|
|
* recorded (with an accuracy of 1/HIST_GRAIN) of the loudnesses from ABS_THRES
|
|
* (at 0) to ABS_UP_THRES (at HIST_SIZE-1).
|
|
* This fixed-size system avoids the need of a list of energies growing
|
|
* infinitely over the time and is thus more scalable.
|
|
*/
|
|
struct hist_entry {
|
|
unsigned count; ///< how many times the corresponding value occurred
|
|
double energy; ///< E = 10^((L + 0.691) / 10)
|
|
double loudness; ///< L = -0.691 + 10 * log10(E)
|
|
};
|
|
|
|
struct integrator {
|
|
double **cache; ///< window of filtered samples (N ms)
|
|
int cache_pos; ///< focus on the last added bin in the cache array
|
|
int cache_size;
|
|
double *sum; ///< sum of the last N ms filtered samples (cache content)
|
|
int filled; ///< 1 if the cache is completely filled, 0 otherwise
|
|
double rel_threshold; ///< relative threshold
|
|
double sum_kept_powers; ///< sum of the powers (weighted sums) above absolute threshold
|
|
int nb_kept_powers; ///< number of sum above absolute threshold
|
|
struct hist_entry *histogram; ///< histogram of the powers, used to compute LRA and I
|
|
};
|
|
|
|
struct rect { int x, y, w, h; };
|
|
|
|
typedef struct EBUR128Context {
|
|
const AVClass *class; ///< AVClass context for log and options purpose
|
|
|
|
/* peak metering */
|
|
int peak_mode; ///< enabled peak modes
|
|
double *true_peaks; ///< true peaks per channel
|
|
double *sample_peaks; ///< sample peaks per channel
|
|
double *true_peaks_per_frame; ///< true peaks in a frame per channel
|
|
#if CONFIG_SWRESAMPLE
|
|
SwrContext *swr_ctx; ///< over-sampling context for true peak metering
|
|
double *swr_buf; ///< resampled audio data for true peak metering
|
|
int swr_linesize;
|
|
#endif
|
|
|
|
/* video */
|
|
int do_video; ///< 1 if video output enabled, 0 otherwise
|
|
int w, h; ///< size of the video output
|
|
struct rect text; ///< rectangle for the LU legend on the left
|
|
struct rect graph; ///< rectangle for the main graph in the center
|
|
struct rect gauge; ///< rectangle for the gauge on the right
|
|
AVFrame *outpicref; ///< output picture reference, updated regularly
|
|
int meter; ///< select a EBU mode between +9 and +18
|
|
int scale_range; ///< the range of LU values according to the meter
|
|
int y_zero_lu; ///< the y value (pixel position) for 0 LU
|
|
int y_opt_max; ///< the y value (pixel position) for 1 LU
|
|
int y_opt_min; ///< the y value (pixel position) for -1 LU
|
|
int *y_line_ref; ///< y reference values for drawing the LU lines in the graph and the gauge
|
|
|
|
/* audio */
|
|
int nb_channels; ///< number of channels in the input
|
|
double *ch_weighting; ///< channel weighting mapping
|
|
int sample_count; ///< sample count used for refresh frequency, reset at refresh
|
|
int nb_samples; ///< number of samples to consume per single input frame
|
|
int idx_insample; ///< current sample position of processed samples in single input frame
|
|
AVFrame *insamples; ///< input samples reference, updated regularly
|
|
|
|
/* Filter caches.
|
|
* The mult by 3 in the following is for X[i], X[i-1] and X[i-2] */
|
|
double *x; ///< 3 input samples cache for each channel
|
|
double *y; ///< 3 pre-filter samples cache for each channel
|
|
double *z; ///< 3 RLB-filter samples cache for each channel
|
|
double pre_b[3]; ///< pre-filter numerator coefficients
|
|
double pre_a[3]; ///< pre-filter denominator coefficients
|
|
double rlb_b[3]; ///< rlb-filter numerator coefficients
|
|
double rlb_a[3]; ///< rlb-filter denominator coefficients
|
|
|
|
struct integrator i400; ///< 400ms integrator, used for Momentary loudness (M), and Integrated loudness (I)
|
|
struct integrator i3000; ///< 3s integrator, used for Short term loudness (S), and Loudness Range (LRA)
|
|
|
|
/* I and LRA specific */
|
|
double integrated_loudness; ///< integrated loudness in LUFS (I)
|
|
double loudness_range; ///< loudness range in LU (LRA)
|
|
double lra_low, lra_high; ///< low and high LRA values
|
|
|
|
/* misc */
|
|
int loglevel; ///< log level for frame logging
|
|
int metadata; ///< whether or not to inject loudness results in frames
|
|
int dual_mono; ///< whether or not to treat single channel input files as dual-mono
|
|
double pan_law; ///< pan law value used to calculate dual-mono measurements
|
|
int target; ///< target level in LUFS used to set relative zero LU in visualization
|
|
int gauge_type; ///< whether gauge shows momentary or short
|
|
int scale; ///< display scale type of statistics
|
|
} EBUR128Context;
|
|
|
|
enum {
|
|
PEAK_MODE_NONE = 0,
|
|
PEAK_MODE_SAMPLES_PEAKS = 1<<1,
|
|
PEAK_MODE_TRUE_PEAKS = 1<<2,
|
|
};
|
|
|
|
enum {
|
|
GAUGE_TYPE_MOMENTARY = 0,
|
|
GAUGE_TYPE_SHORTTERM = 1,
|
|
};
|
|
|
|
enum {
|
|
SCALE_TYPE_ABSOLUTE = 0,
|
|
SCALE_TYPE_RELATIVE = 1,
|
|
};
|
|
|
|
#define OFFSET(x) offsetof(EBUR128Context, x)
|
|
#define A AV_OPT_FLAG_AUDIO_PARAM
|
|
#define V AV_OPT_FLAG_VIDEO_PARAM
|
|
#define F AV_OPT_FLAG_FILTERING_PARAM
|
|
static const AVOption ebur128_options[] = {
|
|
{ "video", "set video output", OFFSET(do_video), AV_OPT_TYPE_BOOL, {.i64 = 0}, 0, 1, V|F },
|
|
{ "size", "set video size", OFFSET(w), AV_OPT_TYPE_IMAGE_SIZE, {.str = "640x480"}, 0, 0, V|F },
|
|
{ "meter", "set scale meter (+9 to +18)", OFFSET(meter), AV_OPT_TYPE_INT, {.i64 = 9}, 9, 18, V|F },
|
|
{ "framelog", "force frame logging level", OFFSET(loglevel), AV_OPT_TYPE_INT, {.i64 = -1}, INT_MIN, INT_MAX, A|V|F, "level" },
|
|
{ "info", "information logging level", 0, AV_OPT_TYPE_CONST, {.i64 = AV_LOG_INFO}, INT_MIN, INT_MAX, A|V|F, "level" },
|
|
{ "verbose", "verbose logging level", 0, AV_OPT_TYPE_CONST, {.i64 = AV_LOG_VERBOSE}, INT_MIN, INT_MAX, A|V|F, "level" },
|
|
{ "metadata", "inject metadata in the filtergraph", OFFSET(metadata), AV_OPT_TYPE_BOOL, {.i64 = 0}, 0, 1, A|V|F },
|
|
{ "peak", "set peak mode", OFFSET(peak_mode), AV_OPT_TYPE_FLAGS, {.i64 = PEAK_MODE_NONE}, 0, INT_MAX, A|F, "mode" },
|
|
{ "none", "disable any peak mode", 0, AV_OPT_TYPE_CONST, {.i64 = PEAK_MODE_NONE}, INT_MIN, INT_MAX, A|F, "mode" },
|
|
{ "sample", "enable peak-sample mode", 0, AV_OPT_TYPE_CONST, {.i64 = PEAK_MODE_SAMPLES_PEAKS}, INT_MIN, INT_MAX, A|F, "mode" },
|
|
{ "true", "enable true-peak mode", 0, AV_OPT_TYPE_CONST, {.i64 = PEAK_MODE_TRUE_PEAKS}, INT_MIN, INT_MAX, A|F, "mode" },
|
|
{ "dualmono", "treat mono input files as dual-mono", OFFSET(dual_mono), AV_OPT_TYPE_BOOL, {.i64 = 0}, 0, 1, A|F },
|
|
{ "panlaw", "set a specific pan law for dual-mono files", OFFSET(pan_law), AV_OPT_TYPE_DOUBLE, {.dbl = -3.01029995663978}, -10.0, 0.0, A|F },
|
|
{ "target", "set a specific target level in LUFS (-23 to 0)", OFFSET(target), AV_OPT_TYPE_INT, {.i64 = -23}, -23, 0, V|F },
|
|
{ "gauge", "set gauge display type", OFFSET(gauge_type), AV_OPT_TYPE_INT, {.i64 = 0 }, GAUGE_TYPE_MOMENTARY, GAUGE_TYPE_SHORTTERM, V|F, "gaugetype" },
|
|
{ "momentary", "display momentary value", 0, AV_OPT_TYPE_CONST, {.i64 = GAUGE_TYPE_MOMENTARY}, INT_MIN, INT_MAX, V|F, "gaugetype" },
|
|
{ "m", "display momentary value", 0, AV_OPT_TYPE_CONST, {.i64 = GAUGE_TYPE_MOMENTARY}, INT_MIN, INT_MAX, V|F, "gaugetype" },
|
|
{ "shortterm", "display short-term value", 0, AV_OPT_TYPE_CONST, {.i64 = GAUGE_TYPE_SHORTTERM}, INT_MIN, INT_MAX, V|F, "gaugetype" },
|
|
{ "s", "display short-term value", 0, AV_OPT_TYPE_CONST, {.i64 = GAUGE_TYPE_SHORTTERM}, INT_MIN, INT_MAX, V|F, "gaugetype" },
|
|
{ "scale", "sets display method for the stats", OFFSET(scale), AV_OPT_TYPE_INT, {.i64 = 0}, SCALE_TYPE_ABSOLUTE, SCALE_TYPE_RELATIVE, V|F, "scaletype" },
|
|
{ "absolute", "display absolute values (LUFS)", 0, AV_OPT_TYPE_CONST, {.i64 = SCALE_TYPE_ABSOLUTE}, INT_MIN, INT_MAX, V|F, "scaletype" },
|
|
{ "LUFS", "display absolute values (LUFS)", 0, AV_OPT_TYPE_CONST, {.i64 = SCALE_TYPE_ABSOLUTE}, INT_MIN, INT_MAX, V|F, "scaletype" },
|
|
{ "relative", "display values relative to target (LU)", 0, AV_OPT_TYPE_CONST, {.i64 = SCALE_TYPE_RELATIVE}, INT_MIN, INT_MAX, V|F, "scaletype" },
|
|
{ "LU", "display values relative to target (LU)", 0, AV_OPT_TYPE_CONST, {.i64 = SCALE_TYPE_RELATIVE}, INT_MIN, INT_MAX, V|F, "scaletype" },
|
|
{ NULL },
|
|
};
|
|
|
|
AVFILTER_DEFINE_CLASS(ebur128);
|
|
|
|
static const uint8_t graph_colors[] = {
|
|
0xdd, 0x66, 0x66, // value above 1LU non reached below -1LU (impossible)
|
|
0x66, 0x66, 0xdd, // value below 1LU non reached below -1LU
|
|
0x96, 0x33, 0x33, // value above 1LU reached below -1LU (impossible)
|
|
0x33, 0x33, 0x96, // value below 1LU reached below -1LU
|
|
0xdd, 0x96, 0x96, // value above 1LU line non reached below -1LU (impossible)
|
|
0x96, 0x96, 0xdd, // value below 1LU line non reached below -1LU
|
|
0xdd, 0x33, 0x33, // value above 1LU line reached below -1LU (impossible)
|
|
0x33, 0x33, 0xdd, // value below 1LU line reached below -1LU
|
|
0xdd, 0x66, 0x66, // value above 1LU non reached above -1LU
|
|
0x66, 0xdd, 0x66, // value below 1LU non reached above -1LU
|
|
0x96, 0x33, 0x33, // value above 1LU reached above -1LU
|
|
0x33, 0x96, 0x33, // value below 1LU reached above -1LU
|
|
0xdd, 0x96, 0x96, // value above 1LU line non reached above -1LU
|
|
0x96, 0xdd, 0x96, // value below 1LU line non reached above -1LU
|
|
0xdd, 0x33, 0x33, // value above 1LU line reached above -1LU
|
|
0x33, 0xdd, 0x33, // value below 1LU line reached above -1LU
|
|
};
|
|
|
|
static const uint8_t *get_graph_color(const EBUR128Context *ebur128, int v, int y)
|
|
{
|
|
const int above_opt_max = y > ebur128->y_opt_max;
|
|
const int below_opt_min = y < ebur128->y_opt_min;
|
|
const int reached = y >= v;
|
|
const int line = ebur128->y_line_ref[y] || y == ebur128->y_zero_lu;
|
|
const int colorid = 8*below_opt_min+ 4*line + 2*reached + above_opt_max;
|
|
return graph_colors + 3*colorid;
|
|
}
|
|
|
|
static inline int lu_to_y(const EBUR128Context *ebur128, double v)
|
|
{
|
|
v += 2 * ebur128->meter; // make it in range [0;...]
|
|
v = av_clipf(v, 0, ebur128->scale_range); // make sure it's in the graph scale
|
|
v = ebur128->scale_range - v; // invert value (y=0 is on top)
|
|
return v * ebur128->graph.h / ebur128->scale_range; // rescale from scale range to px height
|
|
}
|
|
|
|
#define FONT8 0
|
|
#define FONT16 1
|
|
|
|
static const uint8_t font_colors[] = {
|
|
0xdd, 0xdd, 0x00,
|
|
0x00, 0x96, 0x96,
|
|
};
|
|
|
|
static void drawtext(AVFrame *pic, int x, int y, int ftid, const uint8_t *color, const char *fmt, ...)
|
|
{
|
|
int i;
|
|
char buf[128] = {0};
|
|
const uint8_t *font;
|
|
int font_height;
|
|
va_list vl;
|
|
|
|
if (ftid == FONT16) font = avpriv_vga16_font, font_height = 16;
|
|
else if (ftid == FONT8) font = avpriv_cga_font, font_height = 8;
|
|
else return;
|
|
|
|
va_start(vl, fmt);
|
|
vsnprintf(buf, sizeof(buf), fmt, vl);
|
|
va_end(vl);
|
|
|
|
for (i = 0; buf[i]; i++) {
|
|
int char_y, mask;
|
|
uint8_t *p = pic->data[0] + y*pic->linesize[0] + (x + i*8)*3;
|
|
|
|
for (char_y = 0; char_y < font_height; char_y++) {
|
|
for (mask = 0x80; mask; mask >>= 1) {
|
|
if (font[buf[i] * font_height + char_y] & mask)
|
|
memcpy(p, color, 3);
|
|
else
|
|
memcpy(p, "\x00\x00\x00", 3);
|
|
p += 3;
|
|
}
|
|
p += pic->linesize[0] - 8*3;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void drawline(AVFrame *pic, int x, int y, int len, int step)
|
|
{
|
|
int i;
|
|
uint8_t *p = pic->data[0] + y*pic->linesize[0] + x*3;
|
|
|
|
for (i = 0; i < len; i++) {
|
|
memcpy(p, "\x00\xff\x00", 3);
|
|
p += step;
|
|
}
|
|
}
|
|
|
|
static int config_video_output(AVFilterLink *outlink)
|
|
{
|
|
int i, x, y;
|
|
uint8_t *p;
|
|
AVFilterContext *ctx = outlink->src;
|
|
AVFilterLink *inlink = ctx->inputs[0];
|
|
EBUR128Context *ebur128 = ctx->priv;
|
|
AVFrame *outpicref;
|
|
|
|
/* check if there is enough space to represent everything decently */
|
|
if (ebur128->w < 640 || ebur128->h < 480) {
|
|
av_log(ctx, AV_LOG_ERROR, "Video size %dx%d is too small, "
|
|
"minimum size is 640x480\n", ebur128->w, ebur128->h);
|
|
return AVERROR(EINVAL);
|
|
}
|
|
outlink->w = ebur128->w;
|
|
outlink->h = ebur128->h;
|
|
outlink->sample_aspect_ratio = (AVRational){1,1};
|
|
outlink->time_base = inlink->time_base;
|
|
outlink->frame_rate = av_make_q(10, 1);
|
|
|
|
#define PAD 8
|
|
|
|
/* configure text area position and size */
|
|
ebur128->text.x = PAD;
|
|
ebur128->text.y = 40;
|
|
ebur128->text.w = 3 * 8; // 3 characters
|
|
ebur128->text.h = ebur128->h - PAD - ebur128->text.y;
|
|
|
|
/* configure gauge position and size */
|
|
ebur128->gauge.w = 20;
|
|
ebur128->gauge.h = ebur128->text.h;
|
|
ebur128->gauge.x = ebur128->w - PAD - ebur128->gauge.w;
|
|
ebur128->gauge.y = ebur128->text.y;
|
|
|
|
/* configure graph position and size */
|
|
ebur128->graph.x = ebur128->text.x + ebur128->text.w + PAD;
|
|
ebur128->graph.y = ebur128->gauge.y;
|
|
ebur128->graph.w = ebur128->gauge.x - ebur128->graph.x - PAD;
|
|
ebur128->graph.h = ebur128->gauge.h;
|
|
|
|
/* graph and gauge share the LU-to-pixel code */
|
|
av_assert0(ebur128->graph.h == ebur128->gauge.h);
|
|
|
|
/* prepare the initial picref buffer */
|
|
av_frame_free(&ebur128->outpicref);
|
|
ebur128->outpicref = outpicref =
|
|
ff_get_video_buffer(outlink, outlink->w, outlink->h);
|
|
if (!outpicref)
|
|
return AVERROR(ENOMEM);
|
|
outpicref->sample_aspect_ratio = (AVRational){1,1};
|
|
|
|
/* init y references values (to draw LU lines) */
|
|
ebur128->y_line_ref = av_calloc(ebur128->graph.h + 1, sizeof(*ebur128->y_line_ref));
|
|
if (!ebur128->y_line_ref)
|
|
return AVERROR(ENOMEM);
|
|
|
|
/* black background */
|
|
memset(outpicref->data[0], 0, ebur128->h * outpicref->linesize[0]);
|
|
|
|
/* draw LU legends */
|
|
drawtext(outpicref, PAD, PAD+16, FONT8, font_colors+3, " LU");
|
|
for (i = ebur128->meter; i >= -ebur128->meter * 2; i--) {
|
|
y = lu_to_y(ebur128, i);
|
|
x = PAD + (i < 10 && i > -10) * 8;
|
|
ebur128->y_line_ref[y] = i;
|
|
y -= 4; // -4 to center vertically
|
|
drawtext(outpicref, x, y + ebur128->graph.y, FONT8, font_colors+3,
|
|
"%c%d", i < 0 ? '-' : i > 0 ? '+' : ' ', FFABS(i));
|
|
}
|
|
|
|
/* draw graph */
|
|
ebur128->y_zero_lu = lu_to_y(ebur128, 0);
|
|
ebur128->y_opt_max = lu_to_y(ebur128, 1);
|
|
ebur128->y_opt_min = lu_to_y(ebur128, -1);
|
|
p = outpicref->data[0] + ebur128->graph.y * outpicref->linesize[0]
|
|
+ ebur128->graph.x * 3;
|
|
for (y = 0; y < ebur128->graph.h; y++) {
|
|
const uint8_t *c = get_graph_color(ebur128, INT_MAX, y);
|
|
|
|
for (x = 0; x < ebur128->graph.w; x++)
|
|
memcpy(p + x*3, c, 3);
|
|
p += outpicref->linesize[0];
|
|
}
|
|
|
|
/* draw fancy rectangles around the graph and the gauge */
|
|
#define DRAW_RECT(r) do { \
|
|
drawline(outpicref, r.x, r.y - 1, r.w, 3); \
|
|
drawline(outpicref, r.x, r.y + r.h, r.w, 3); \
|
|
drawline(outpicref, r.x - 1, r.y, r.h, outpicref->linesize[0]); \
|
|
drawline(outpicref, r.x + r.w, r.y, r.h, outpicref->linesize[0]); \
|
|
} while (0)
|
|
DRAW_RECT(ebur128->graph);
|
|
DRAW_RECT(ebur128->gauge);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int config_audio_input(AVFilterLink *inlink)
|
|
{
|
|
AVFilterContext *ctx = inlink->dst;
|
|
EBUR128Context *ebur128 = ctx->priv;
|
|
|
|
/* Unofficial reversed parametrization of PRE
|
|
* and RLB from 48kHz */
|
|
|
|
double f0 = 1681.974450955533;
|
|
double G = 3.999843853973347;
|
|
double Q = 0.7071752369554196;
|
|
|
|
double K = tan(M_PI * f0 / (double)inlink->sample_rate);
|
|
double Vh = pow(10.0, G / 20.0);
|
|
double Vb = pow(Vh, 0.4996667741545416);
|
|
|
|
double a0 = 1.0 + K / Q + K * K;
|
|
|
|
ebur128->pre_b[0] = (Vh + Vb * K / Q + K * K) / a0;
|
|
ebur128->pre_b[1] = 2.0 * (K * K - Vh) / a0;
|
|
ebur128->pre_b[2] = (Vh - Vb * K / Q + K * K) / a0;
|
|
ebur128->pre_a[1] = 2.0 * (K * K - 1.0) / a0;
|
|
ebur128->pre_a[2] = (1.0 - K / Q + K * K) / a0;
|
|
|
|
f0 = 38.13547087602444;
|
|
Q = 0.5003270373238773;
|
|
K = tan(M_PI * f0 / (double)inlink->sample_rate);
|
|
|
|
ebur128->rlb_b[0] = 1.0;
|
|
ebur128->rlb_b[1] = -2.0;
|
|
ebur128->rlb_b[2] = 1.0;
|
|
ebur128->rlb_a[1] = 2.0 * (K * K - 1.0) / (1.0 + K / Q + K * K);
|
|
ebur128->rlb_a[2] = (1.0 - K / Q + K * K) / (1.0 + K / Q + K * K);
|
|
|
|
/* Force 100ms framing in case of metadata injection: the frames must have
|
|
* a granularity of the window overlap to be accurately exploited.
|
|
* As for the true peaks mode, it just simplifies the resampling buffer
|
|
* allocation and the lookup in it (since sample buffers differ in size, it
|
|
* can be more complex to integrate in the one-sample loop of
|
|
* filter_frame()). */
|
|
if (ebur128->metadata || (ebur128->peak_mode & PEAK_MODE_TRUE_PEAKS))
|
|
ebur128->nb_samples = inlink->sample_rate / 10;
|
|
return 0;
|
|
}
|
|
|
|
static int config_audio_output(AVFilterLink *outlink)
|
|
{
|
|
int i;
|
|
AVFilterContext *ctx = outlink->src;
|
|
EBUR128Context *ebur128 = ctx->priv;
|
|
const int nb_channels = outlink->ch_layout.nb_channels;
|
|
|
|
#define BACK_MASK (AV_CH_BACK_LEFT |AV_CH_BACK_CENTER |AV_CH_BACK_RIGHT| \
|
|
AV_CH_TOP_BACK_LEFT|AV_CH_TOP_BACK_CENTER|AV_CH_TOP_BACK_RIGHT| \
|
|
AV_CH_SIDE_LEFT |AV_CH_SIDE_RIGHT| \
|
|
AV_CH_SURROUND_DIRECT_LEFT |AV_CH_SURROUND_DIRECT_RIGHT)
|
|
|
|
ebur128->nb_channels = nb_channels;
|
|
ebur128->x = av_calloc(nb_channels, 3 * sizeof(*ebur128->x));
|
|
ebur128->y = av_calloc(nb_channels, 3 * sizeof(*ebur128->y));
|
|
ebur128->z = av_calloc(nb_channels, 3 * sizeof(*ebur128->z));
|
|
ebur128->ch_weighting = av_calloc(nb_channels, sizeof(*ebur128->ch_weighting));
|
|
if (!ebur128->ch_weighting || !ebur128->x || !ebur128->y || !ebur128->z)
|
|
return AVERROR(ENOMEM);
|
|
|
|
#define I400_BINS(x) ((x) * 4 / 10)
|
|
#define I3000_BINS(x) ((x) * 3)
|
|
|
|
ebur128->i400.sum = av_calloc(nb_channels, sizeof(*ebur128->i400.sum));
|
|
ebur128->i3000.sum = av_calloc(nb_channels, sizeof(*ebur128->i3000.sum));
|
|
ebur128->i400.cache = av_calloc(nb_channels, sizeof(*ebur128->i400.cache));
|
|
ebur128->i3000.cache = av_calloc(nb_channels, sizeof(*ebur128->i3000.cache));
|
|
if (!ebur128->i400.sum || !ebur128->i3000.sum ||
|
|
!ebur128->i400.cache || !ebur128->i3000.cache)
|
|
return AVERROR(ENOMEM);
|
|
|
|
for (i = 0; i < nb_channels; i++) {
|
|
/* channel weighting */
|
|
const enum AVChannel chl = av_channel_layout_channel_from_index(&outlink->ch_layout, i);
|
|
if (chl == AV_CHAN_LOW_FREQUENCY || chl == AV_CHAN_LOW_FREQUENCY_2) {
|
|
ebur128->ch_weighting[i] = 0;
|
|
} else if (chl < 64 && (1ULL << chl) & BACK_MASK) {
|
|
ebur128->ch_weighting[i] = 1.41;
|
|
} else {
|
|
ebur128->ch_weighting[i] = 1.0;
|
|
}
|
|
|
|
if (!ebur128->ch_weighting[i])
|
|
continue;
|
|
|
|
/* bins buffer for the two integration window (400ms and 3s) */
|
|
ebur128->i400.cache_size = I400_BINS(outlink->sample_rate);
|
|
ebur128->i3000.cache_size = I3000_BINS(outlink->sample_rate);
|
|
ebur128->i400.cache[i] = av_calloc(ebur128->i400.cache_size, sizeof(*ebur128->i400.cache[0]));
|
|
ebur128->i3000.cache[i] = av_calloc(ebur128->i3000.cache_size, sizeof(*ebur128->i3000.cache[0]));
|
|
if (!ebur128->i400.cache[i] || !ebur128->i3000.cache[i])
|
|
return AVERROR(ENOMEM);
|
|
}
|
|
|
|
#if CONFIG_SWRESAMPLE
|
|
if (ebur128->peak_mode & PEAK_MODE_TRUE_PEAKS) {
|
|
int ret;
|
|
|
|
ebur128->swr_buf = av_malloc_array(nb_channels, 19200 * sizeof(double));
|
|
ebur128->true_peaks = av_calloc(nb_channels, sizeof(*ebur128->true_peaks));
|
|
ebur128->true_peaks_per_frame = av_calloc(nb_channels, sizeof(*ebur128->true_peaks_per_frame));
|
|
ebur128->swr_ctx = swr_alloc();
|
|
if (!ebur128->swr_buf || !ebur128->true_peaks ||
|
|
!ebur128->true_peaks_per_frame || !ebur128->swr_ctx)
|
|
return AVERROR(ENOMEM);
|
|
|
|
av_opt_set_chlayout(ebur128->swr_ctx, "in_chlayout", &outlink->ch_layout, 0);
|
|
av_opt_set_int(ebur128->swr_ctx, "in_sample_rate", outlink->sample_rate, 0);
|
|
av_opt_set_sample_fmt(ebur128->swr_ctx, "in_sample_fmt", outlink->format, 0);
|
|
|
|
av_opt_set_chlayout(ebur128->swr_ctx, "out_chlayout", &outlink->ch_layout, 0);
|
|
av_opt_set_int(ebur128->swr_ctx, "out_sample_rate", 192000, 0);
|
|
av_opt_set_sample_fmt(ebur128->swr_ctx, "out_sample_fmt", outlink->format, 0);
|
|
|
|
ret = swr_init(ebur128->swr_ctx);
|
|
if (ret < 0)
|
|
return ret;
|
|
}
|
|
#endif
|
|
|
|
if (ebur128->peak_mode & PEAK_MODE_SAMPLES_PEAKS) {
|
|
ebur128->sample_peaks = av_calloc(nb_channels, sizeof(*ebur128->sample_peaks));
|
|
if (!ebur128->sample_peaks)
|
|
return AVERROR(ENOMEM);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
#define ENERGY(loudness) (ff_exp10(((loudness) + 0.691) / 10.))
|
|
#define LOUDNESS(energy) (-0.691 + 10 * log10(energy))
|
|
#define DBFS(energy) (20 * log10(energy))
|
|
|
|
static struct hist_entry *get_histogram(void)
|
|
{
|
|
int i;
|
|
struct hist_entry *h = av_calloc(HIST_SIZE, sizeof(*h));
|
|
|
|
if (!h)
|
|
return NULL;
|
|
for (i = 0; i < HIST_SIZE; i++) {
|
|
h[i].loudness = i / (double)HIST_GRAIN + ABS_THRES;
|
|
h[i].energy = ENERGY(h[i].loudness);
|
|
}
|
|
return h;
|
|
}
|
|
|
|
static av_cold int init(AVFilterContext *ctx)
|
|
{
|
|
EBUR128Context *ebur128 = ctx->priv;
|
|
AVFilterPad pad;
|
|
int ret;
|
|
|
|
if (ebur128->loglevel != AV_LOG_INFO &&
|
|
ebur128->loglevel != AV_LOG_VERBOSE) {
|
|
if (ebur128->do_video || ebur128->metadata)
|
|
ebur128->loglevel = AV_LOG_VERBOSE;
|
|
else
|
|
ebur128->loglevel = AV_LOG_INFO;
|
|
}
|
|
|
|
if (!CONFIG_SWRESAMPLE && (ebur128->peak_mode & PEAK_MODE_TRUE_PEAKS)) {
|
|
av_log(ctx, AV_LOG_ERROR,
|
|
"True-peak mode requires libswresample to be performed\n");
|
|
return AVERROR(EINVAL);
|
|
}
|
|
|
|
// if meter is +9 scale, scale range is from -18 LU to +9 LU (or 3*9)
|
|
// if meter is +18 scale, scale range is from -36 LU to +18 LU (or 3*18)
|
|
ebur128->scale_range = 3 * ebur128->meter;
|
|
|
|
ebur128->i400.histogram = get_histogram();
|
|
ebur128->i3000.histogram = get_histogram();
|
|
if (!ebur128->i400.histogram || !ebur128->i3000.histogram)
|
|
return AVERROR(ENOMEM);
|
|
|
|
ebur128->integrated_loudness = ABS_THRES;
|
|
ebur128->loudness_range = 0;
|
|
|
|
/* insert output pads */
|
|
if (ebur128->do_video) {
|
|
pad = (AVFilterPad){
|
|
.name = "out0",
|
|
.type = AVMEDIA_TYPE_VIDEO,
|
|
.config_props = config_video_output,
|
|
};
|
|
ret = ff_append_outpad(ctx, &pad);
|
|
if (ret < 0)
|
|
return ret;
|
|
}
|
|
pad = (AVFilterPad){
|
|
.name = ebur128->do_video ? "out1" : "out0",
|
|
.type = AVMEDIA_TYPE_AUDIO,
|
|
.config_props = config_audio_output,
|
|
};
|
|
ret = ff_append_outpad(ctx, &pad);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
/* summary */
|
|
av_log(ctx, AV_LOG_VERBOSE, "EBU +%d scale\n", ebur128->meter);
|
|
|
|
return 0;
|
|
}
|
|
|
|
#define HIST_POS(power) (int)(((power) - ABS_THRES) * HIST_GRAIN)
|
|
|
|
/* loudness and power should be set such as loudness = -0.691 +
|
|
* 10*log10(power), we just avoid doing that calculus two times */
|
|
static int gate_update(struct integrator *integ, double power,
|
|
double loudness, int gate_thres)
|
|
{
|
|
int ipower;
|
|
double relative_threshold;
|
|
int gate_hist_pos;
|
|
|
|
/* update powers histograms by incrementing current power count */
|
|
ipower = av_clip(HIST_POS(loudness), 0, HIST_SIZE - 1);
|
|
integ->histogram[ipower].count++;
|
|
|
|
/* compute relative threshold and get its position in the histogram */
|
|
integ->sum_kept_powers += power;
|
|
integ->nb_kept_powers++;
|
|
relative_threshold = integ->sum_kept_powers / integ->nb_kept_powers;
|
|
if (!relative_threshold)
|
|
relative_threshold = 1e-12;
|
|
integ->rel_threshold = LOUDNESS(relative_threshold) + gate_thres;
|
|
gate_hist_pos = av_clip(HIST_POS(integ->rel_threshold), 0, HIST_SIZE - 1);
|
|
|
|
return gate_hist_pos;
|
|
}
|
|
|
|
static int filter_frame(AVFilterLink *inlink, AVFrame *insamples)
|
|
{
|
|
int i, ch, idx_insample;
|
|
AVFilterContext *ctx = inlink->dst;
|
|
EBUR128Context *ebur128 = ctx->priv;
|
|
const int nb_channels = ebur128->nb_channels;
|
|
const int nb_samples = insamples->nb_samples;
|
|
const double *samples = (double *)insamples->data[0];
|
|
AVFrame *pic = ebur128->outpicref;
|
|
|
|
#if CONFIG_SWRESAMPLE
|
|
if (ebur128->peak_mode & PEAK_MODE_TRUE_PEAKS && ebur128->idx_insample == 0) {
|
|
const double *swr_samples = ebur128->swr_buf;
|
|
int ret = swr_convert(ebur128->swr_ctx, (uint8_t**)&ebur128->swr_buf, 19200,
|
|
(const uint8_t **)insamples->data, nb_samples);
|
|
if (ret < 0)
|
|
return ret;
|
|
for (ch = 0; ch < nb_channels; ch++)
|
|
ebur128->true_peaks_per_frame[ch] = 0.0;
|
|
for (idx_insample = 0; idx_insample < ret; idx_insample++) {
|
|
for (ch = 0; ch < nb_channels; ch++) {
|
|
ebur128->true_peaks[ch] = FFMAX(ebur128->true_peaks[ch], fabs(*swr_samples));
|
|
ebur128->true_peaks_per_frame[ch] = FFMAX(ebur128->true_peaks_per_frame[ch],
|
|
fabs(*swr_samples));
|
|
swr_samples++;
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
for (idx_insample = ebur128->idx_insample; idx_insample < nb_samples; idx_insample++) {
|
|
const int bin_id_400 = ebur128->i400.cache_pos;
|
|
const int bin_id_3000 = ebur128->i3000.cache_pos;
|
|
|
|
#define MOVE_TO_NEXT_CACHED_ENTRY(time) do { \
|
|
ebur128->i##time.cache_pos++; \
|
|
if (ebur128->i##time.cache_pos == \
|
|
ebur128->i##time.cache_size) { \
|
|
ebur128->i##time.filled = 1; \
|
|
ebur128->i##time.cache_pos = 0; \
|
|
} \
|
|
} while (0)
|
|
|
|
MOVE_TO_NEXT_CACHED_ENTRY(400);
|
|
MOVE_TO_NEXT_CACHED_ENTRY(3000);
|
|
|
|
for (ch = 0; ch < nb_channels; ch++) {
|
|
double bin;
|
|
|
|
if (ebur128->peak_mode & PEAK_MODE_SAMPLES_PEAKS)
|
|
ebur128->sample_peaks[ch] = FFMAX(ebur128->sample_peaks[ch], fabs(samples[idx_insample * nb_channels + ch]));
|
|
|
|
ebur128->x[ch * 3] = samples[idx_insample * nb_channels + ch]; // set X[i]
|
|
|
|
if (!ebur128->ch_weighting[ch])
|
|
continue;
|
|
|
|
/* Y[i] = X[i]*b0 + X[i-1]*b1 + X[i-2]*b2 - Y[i-1]*a1 - Y[i-2]*a2 */
|
|
#define FILTER(Y, X, NUM, DEN) do { \
|
|
double *dst = ebur128->Y + ch*3; \
|
|
double *src = ebur128->X + ch*3; \
|
|
dst[2] = dst[1]; \
|
|
dst[1] = dst[0]; \
|
|
dst[0] = src[0]*NUM[0] + src[1]*NUM[1] + src[2]*NUM[2] \
|
|
- dst[1]*DEN[1] - dst[2]*DEN[2]; \
|
|
} while (0)
|
|
|
|
// TODO: merge both filters in one?
|
|
FILTER(y, x, ebur128->pre_b, ebur128->pre_a); // apply pre-filter
|
|
ebur128->x[ch * 3 + 2] = ebur128->x[ch * 3 + 1];
|
|
ebur128->x[ch * 3 + 1] = ebur128->x[ch * 3 ];
|
|
FILTER(z, y, ebur128->rlb_b, ebur128->rlb_a); // apply RLB-filter
|
|
|
|
bin = ebur128->z[ch * 3] * ebur128->z[ch * 3];
|
|
|
|
/* add the new value, and limit the sum to the cache size (400ms or 3s)
|
|
* by removing the oldest one */
|
|
ebur128->i400.sum [ch] = ebur128->i400.sum [ch] + bin - ebur128->i400.cache [ch][bin_id_400];
|
|
ebur128->i3000.sum[ch] = ebur128->i3000.sum[ch] + bin - ebur128->i3000.cache[ch][bin_id_3000];
|
|
|
|
/* override old cache entry with the new value */
|
|
ebur128->i400.cache [ch][bin_id_400 ] = bin;
|
|
ebur128->i3000.cache[ch][bin_id_3000] = bin;
|
|
}
|
|
|
|
/* For integrated loudness, gating blocks are 400ms long with 75%
|
|
* overlap (see BS.1770-2 p5), so a re-computation is needed each 100ms
|
|
* (4800 samples at 48kHz). */
|
|
if (++ebur128->sample_count == inlink->sample_rate / 10) {
|
|
double loudness_400, loudness_3000;
|
|
double power_400 = 1e-12, power_3000 = 1e-12;
|
|
AVFilterLink *outlink = ctx->outputs[0];
|
|
const int64_t pts = insamples->pts +
|
|
av_rescale_q(idx_insample, (AVRational){ 1, inlink->sample_rate },
|
|
outlink->time_base);
|
|
|
|
ebur128->sample_count = 0;
|
|
|
|
#define COMPUTE_LOUDNESS(m, time) do { \
|
|
if (ebur128->i##time.filled) { \
|
|
/* weighting sum of the last <time> ms */ \
|
|
for (ch = 0; ch < nb_channels; ch++) \
|
|
power_##time += ebur128->ch_weighting[ch] * ebur128->i##time.sum[ch]; \
|
|
power_##time /= I##time##_BINS(inlink->sample_rate); \
|
|
} \
|
|
loudness_##time = LOUDNESS(power_##time); \
|
|
} while (0)
|
|
|
|
COMPUTE_LOUDNESS(M, 400);
|
|
COMPUTE_LOUDNESS(S, 3000);
|
|
|
|
/* Integrated loudness */
|
|
#define I_GATE_THRES -10 // initially defined to -8 LU in the first EBU standard
|
|
|
|
if (loudness_400 >= ABS_THRES) {
|
|
double integrated_sum = 0.0;
|
|
uint64_t nb_integrated = 0;
|
|
int gate_hist_pos = gate_update(&ebur128->i400, power_400,
|
|
loudness_400, I_GATE_THRES);
|
|
|
|
/* compute integrated loudness by summing the histogram values
|
|
* above the relative threshold */
|
|
for (i = gate_hist_pos; i < HIST_SIZE; i++) {
|
|
const unsigned nb_v = ebur128->i400.histogram[i].count;
|
|
nb_integrated += nb_v;
|
|
integrated_sum += nb_v * ebur128->i400.histogram[i].energy;
|
|
}
|
|
if (nb_integrated) {
|
|
ebur128->integrated_loudness = LOUDNESS(integrated_sum / nb_integrated);
|
|
/* dual-mono correction */
|
|
if (nb_channels == 1 && ebur128->dual_mono) {
|
|
ebur128->integrated_loudness -= ebur128->pan_law;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* LRA */
|
|
#define LRA_GATE_THRES -20
|
|
#define LRA_LOWER_PRC 10
|
|
#define LRA_HIGHER_PRC 95
|
|
|
|
/* XXX: example code in EBU 3342 is ">=" but formula in BS.1770
|
|
* specs is ">" */
|
|
if (loudness_3000 >= ABS_THRES) {
|
|
uint64_t nb_powers = 0;
|
|
int gate_hist_pos = gate_update(&ebur128->i3000, power_3000,
|
|
loudness_3000, LRA_GATE_THRES);
|
|
|
|
for (i = gate_hist_pos; i < HIST_SIZE; i++)
|
|
nb_powers += ebur128->i3000.histogram[i].count;
|
|
if (nb_powers) {
|
|
uint64_t n, nb_pow;
|
|
|
|
/* get lower loudness to consider */
|
|
n = 0;
|
|
nb_pow = LRA_LOWER_PRC * nb_powers * 0.01 + 0.5;
|
|
for (i = gate_hist_pos; i < HIST_SIZE; i++) {
|
|
n += ebur128->i3000.histogram[i].count;
|
|
if (n >= nb_pow) {
|
|
ebur128->lra_low = ebur128->i3000.histogram[i].loudness;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* get higher loudness to consider */
|
|
n = nb_powers;
|
|
nb_pow = LRA_HIGHER_PRC * nb_powers * 0.01 + 0.5;
|
|
for (i = HIST_SIZE - 1; i >= 0; i--) {
|
|
n -= FFMIN(n, ebur128->i3000.histogram[i].count);
|
|
if (n < nb_pow) {
|
|
ebur128->lra_high = ebur128->i3000.histogram[i].loudness;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// XXX: show low & high on the graph?
|
|
ebur128->loudness_range = ebur128->lra_high - ebur128->lra_low;
|
|
}
|
|
}
|
|
|
|
/* dual-mono correction */
|
|
if (nb_channels == 1 && ebur128->dual_mono) {
|
|
loudness_400 -= ebur128->pan_law;
|
|
loudness_3000 -= ebur128->pan_law;
|
|
}
|
|
|
|
#define LOG_FMT "TARGET:%d LUFS M:%6.1f S:%6.1f I:%6.1f %s LRA:%6.1f LU"
|
|
|
|
/* push one video frame */
|
|
if (ebur128->do_video) {
|
|
AVFrame *clone;
|
|
int x, y;
|
|
uint8_t *p;
|
|
double gauge_value;
|
|
int y_loudness_lu_graph, y_loudness_lu_gauge;
|
|
|
|
if (ebur128->gauge_type == GAUGE_TYPE_MOMENTARY) {
|
|
gauge_value = loudness_400 - ebur128->target;
|
|
} else {
|
|
gauge_value = loudness_3000 - ebur128->target;
|
|
}
|
|
|
|
y_loudness_lu_graph = lu_to_y(ebur128, loudness_3000 - ebur128->target);
|
|
y_loudness_lu_gauge = lu_to_y(ebur128, gauge_value);
|
|
|
|
av_frame_make_writable(pic);
|
|
/* draw the graph using the short-term loudness */
|
|
p = pic->data[0] + ebur128->graph.y*pic->linesize[0] + ebur128->graph.x*3;
|
|
for (y = 0; y < ebur128->graph.h; y++) {
|
|
const uint8_t *c = get_graph_color(ebur128, y_loudness_lu_graph, y);
|
|
|
|
memmove(p, p + 3, (ebur128->graph.w - 1) * 3);
|
|
memcpy(p + (ebur128->graph.w - 1) * 3, c, 3);
|
|
p += pic->linesize[0];
|
|
}
|
|
|
|
/* draw the gauge using either momentary or short-term loudness */
|
|
p = pic->data[0] + ebur128->gauge.y*pic->linesize[0] + ebur128->gauge.x*3;
|
|
for (y = 0; y < ebur128->gauge.h; y++) {
|
|
const uint8_t *c = get_graph_color(ebur128, y_loudness_lu_gauge, y);
|
|
|
|
for (x = 0; x < ebur128->gauge.w; x++)
|
|
memcpy(p + x*3, c, 3);
|
|
p += pic->linesize[0];
|
|
}
|
|
|
|
/* draw textual info */
|
|
if (ebur128->scale == SCALE_TYPE_ABSOLUTE) {
|
|
drawtext(pic, PAD, PAD - PAD/2, FONT16, font_colors,
|
|
LOG_FMT " ", // padding to erase trailing characters
|
|
ebur128->target, loudness_400, loudness_3000,
|
|
ebur128->integrated_loudness, "LUFS", ebur128->loudness_range);
|
|
} else {
|
|
drawtext(pic, PAD, PAD - PAD/2, FONT16, font_colors,
|
|
LOG_FMT " ", // padding to erase trailing characters
|
|
ebur128->target, loudness_400-ebur128->target, loudness_3000-ebur128->target,
|
|
ebur128->integrated_loudness-ebur128->target, "LU", ebur128->loudness_range);
|
|
}
|
|
|
|
/* set pts and push frame */
|
|
pic->pts = pts;
|
|
clone = av_frame_clone(pic);
|
|
if (!clone)
|
|
return AVERROR(ENOMEM);
|
|
ebur128->idx_insample = idx_insample + 1;
|
|
ff_filter_set_ready(ctx, 100);
|
|
return ff_filter_frame(outlink, clone);
|
|
}
|
|
|
|
if (ebur128->metadata) { /* happens only once per filter_frame call */
|
|
char metabuf[128];
|
|
#define META_PREFIX "lavfi.r128."
|
|
|
|
#define SET_META(name, var) do { \
|
|
snprintf(metabuf, sizeof(metabuf), "%.3f", var); \
|
|
av_dict_set(&insamples->metadata, name, metabuf, 0); \
|
|
} while (0)
|
|
|
|
#define SET_META_PEAK(name, ptype) do { \
|
|
if (ebur128->peak_mode & PEAK_MODE_ ## ptype ## _PEAKS) { \
|
|
double max_peak = 0.0; \
|
|
char key[64]; \
|
|
for (ch = 0; ch < nb_channels; ch++) { \
|
|
snprintf(key, sizeof(key), \
|
|
META_PREFIX AV_STRINGIFY(name) "_peaks_ch%d", ch); \
|
|
max_peak = fmax(max_peak, ebur128->name##_peaks[ch]); \
|
|
SET_META(key, ebur128->name##_peaks[ch]); \
|
|
} \
|
|
snprintf(key, sizeof(key), \
|
|
META_PREFIX AV_STRINGIFY(name) "_peak"); \
|
|
SET_META(key, max_peak); \
|
|
} \
|
|
} while (0)
|
|
|
|
SET_META(META_PREFIX "M", loudness_400);
|
|
SET_META(META_PREFIX "S", loudness_3000);
|
|
SET_META(META_PREFIX "I", ebur128->integrated_loudness);
|
|
SET_META(META_PREFIX "LRA", ebur128->loudness_range);
|
|
SET_META(META_PREFIX "LRA.low", ebur128->lra_low);
|
|
SET_META(META_PREFIX "LRA.high", ebur128->lra_high);
|
|
|
|
SET_META_PEAK(sample, SAMPLES);
|
|
SET_META_PEAK(true, TRUE);
|
|
}
|
|
|
|
if (ebur128->scale == SCALE_TYPE_ABSOLUTE) {
|
|
av_log(ctx, ebur128->loglevel, "t: %-10s " LOG_FMT,
|
|
av_ts2timestr(pts, &outlink->time_base),
|
|
ebur128->target, loudness_400, loudness_3000,
|
|
ebur128->integrated_loudness, "LUFS", ebur128->loudness_range);
|
|
} else {
|
|
av_log(ctx, ebur128->loglevel, "t: %-10s " LOG_FMT,
|
|
av_ts2timestr(pts, &outlink->time_base),
|
|
ebur128->target, loudness_400-ebur128->target, loudness_3000-ebur128->target,
|
|
ebur128->integrated_loudness-ebur128->target, "LU", ebur128->loudness_range);
|
|
}
|
|
|
|
#define PRINT_PEAKS(str, sp, ptype) do { \
|
|
if (ebur128->peak_mode & PEAK_MODE_ ## ptype ## _PEAKS) { \
|
|
av_log(ctx, ebur128->loglevel, " " str ":"); \
|
|
for (ch = 0; ch < nb_channels; ch++) \
|
|
av_log(ctx, ebur128->loglevel, " %5.1f", DBFS(sp[ch])); \
|
|
av_log(ctx, ebur128->loglevel, " dBFS"); \
|
|
} \
|
|
} while (0)
|
|
|
|
PRINT_PEAKS("SPK", ebur128->sample_peaks, SAMPLES);
|
|
PRINT_PEAKS("FTPK", ebur128->true_peaks_per_frame, TRUE);
|
|
PRINT_PEAKS("TPK", ebur128->true_peaks, TRUE);
|
|
av_log(ctx, ebur128->loglevel, "\n");
|
|
|
|
}
|
|
}
|
|
|
|
ebur128->idx_insample = 0;
|
|
ebur128->insamples = NULL;
|
|
|
|
return ff_filter_frame(ctx->outputs[ebur128->do_video], insamples);
|
|
}
|
|
|
|
static int activate(AVFilterContext *ctx)
|
|
{
|
|
AVFilterLink *inlink = ctx->inputs[0];
|
|
EBUR128Context *ebur128 = ctx->priv;
|
|
AVFilterLink *voutlink = ctx->outputs[0];
|
|
AVFilterLink *outlink = ctx->outputs[ebur128->do_video];
|
|
int ret;
|
|
|
|
FF_FILTER_FORWARD_STATUS_BACK(outlink, inlink);
|
|
if (ebur128->do_video)
|
|
FF_FILTER_FORWARD_STATUS_BACK(voutlink, inlink);
|
|
|
|
if (!ebur128->insamples) {
|
|
AVFrame *in;
|
|
|
|
if (ebur128->nb_samples > 0) {
|
|
ret = ff_inlink_consume_samples(inlink, ebur128->nb_samples, ebur128->nb_samples, &in);
|
|
} else {
|
|
ret = ff_inlink_consume_frame(inlink, &in);
|
|
}
|
|
if (ret < 0)
|
|
return ret;
|
|
if (ret > 0)
|
|
ebur128->insamples = in;
|
|
}
|
|
|
|
if (ebur128->insamples)
|
|
ret = filter_frame(inlink, ebur128->insamples);
|
|
|
|
FF_FILTER_FORWARD_STATUS_ALL(inlink, ctx);
|
|
FF_FILTER_FORWARD_WANTED(outlink, inlink);
|
|
if (ebur128->do_video)
|
|
FF_FILTER_FORWARD_WANTED(voutlink, inlink);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int query_formats(AVFilterContext *ctx)
|
|
{
|
|
EBUR128Context *ebur128 = ctx->priv;
|
|
AVFilterFormats *formats;
|
|
AVFilterChannelLayouts *layouts;
|
|
AVFilterLink *inlink = ctx->inputs[0];
|
|
AVFilterLink *outlink = ctx->outputs[0];
|
|
int ret;
|
|
|
|
static const enum AVSampleFormat sample_fmts[] = { AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_NONE };
|
|
static const enum AVPixelFormat pix_fmts[] = { AV_PIX_FMT_RGB24, AV_PIX_FMT_NONE };
|
|
|
|
/* set optional output video format */
|
|
if (ebur128->do_video) {
|
|
formats = ff_make_format_list(pix_fmts);
|
|
if ((ret = ff_formats_ref(formats, &outlink->incfg.formats)) < 0)
|
|
return ret;
|
|
outlink = ctx->outputs[1];
|
|
}
|
|
|
|
/* set input and output audio formats
|
|
* Note: ff_set_common_* functions are not used because they affect all the
|
|
* links, and thus break the video format negotiation */
|
|
formats = ff_make_format_list(sample_fmts);
|
|
if ((ret = ff_formats_ref(formats, &inlink->outcfg.formats)) < 0 ||
|
|
(ret = ff_formats_ref(formats, &outlink->incfg.formats)) < 0)
|
|
return ret;
|
|
|
|
layouts = ff_all_channel_layouts();
|
|
if ((ret = ff_channel_layouts_ref(layouts, &inlink->outcfg.channel_layouts)) < 0 ||
|
|
(ret = ff_channel_layouts_ref(layouts, &outlink->incfg.channel_layouts)) < 0)
|
|
return ret;
|
|
|
|
formats = ff_all_samplerates();
|
|
if ((ret = ff_formats_ref(formats, &inlink->outcfg.samplerates)) < 0 ||
|
|
(ret = ff_formats_ref(formats, &outlink->incfg.samplerates)) < 0)
|
|
return ret;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static av_cold void uninit(AVFilterContext *ctx)
|
|
{
|
|
int i;
|
|
EBUR128Context *ebur128 = ctx->priv;
|
|
|
|
/* dual-mono correction */
|
|
if (ebur128->nb_channels == 1 && ebur128->dual_mono) {
|
|
ebur128->i400.rel_threshold -= ebur128->pan_law;
|
|
ebur128->i3000.rel_threshold -= ebur128->pan_law;
|
|
ebur128->lra_low -= ebur128->pan_law;
|
|
ebur128->lra_high -= ebur128->pan_law;
|
|
}
|
|
|
|
av_log(ctx, AV_LOG_INFO, "Summary:\n\n"
|
|
" Integrated loudness:\n"
|
|
" I: %5.1f LUFS\n"
|
|
" Threshold: %5.1f LUFS\n\n"
|
|
" Loudness range:\n"
|
|
" LRA: %5.1f LU\n"
|
|
" Threshold: %5.1f LUFS\n"
|
|
" LRA low: %5.1f LUFS\n"
|
|
" LRA high: %5.1f LUFS",
|
|
ebur128->integrated_loudness, ebur128->i400.rel_threshold,
|
|
ebur128->loudness_range, ebur128->i3000.rel_threshold,
|
|
ebur128->lra_low, ebur128->lra_high);
|
|
|
|
#define PRINT_PEAK_SUMMARY(str, sp, ptype) do { \
|
|
int ch; \
|
|
double maxpeak; \
|
|
maxpeak = 0.0; \
|
|
if (ebur128->peak_mode & PEAK_MODE_ ## ptype ## _PEAKS) { \
|
|
for (ch = 0; ch < ebur128->nb_channels; ch++) \
|
|
maxpeak = FFMAX(maxpeak, sp[ch]); \
|
|
av_log(ctx, AV_LOG_INFO, "\n\n " str " peak:\n" \
|
|
" Peak: %5.1f dBFS", \
|
|
DBFS(maxpeak)); \
|
|
} \
|
|
} while (0)
|
|
|
|
PRINT_PEAK_SUMMARY("Sample", ebur128->sample_peaks, SAMPLES);
|
|
PRINT_PEAK_SUMMARY("True", ebur128->true_peaks, TRUE);
|
|
av_log(ctx, AV_LOG_INFO, "\n");
|
|
|
|
av_freep(&ebur128->y_line_ref);
|
|
av_freep(&ebur128->x);
|
|
av_freep(&ebur128->y);
|
|
av_freep(&ebur128->z);
|
|
av_freep(&ebur128->ch_weighting);
|
|
av_freep(&ebur128->true_peaks);
|
|
av_freep(&ebur128->sample_peaks);
|
|
av_freep(&ebur128->true_peaks_per_frame);
|
|
av_freep(&ebur128->i400.sum);
|
|
av_freep(&ebur128->i3000.sum);
|
|
av_freep(&ebur128->i400.histogram);
|
|
av_freep(&ebur128->i3000.histogram);
|
|
for (i = 0; i < ebur128->nb_channels; i++) {
|
|
if (ebur128->i400.cache)
|
|
av_freep(&ebur128->i400.cache[i]);
|
|
if (ebur128->i3000.cache)
|
|
av_freep(&ebur128->i3000.cache[i]);
|
|
}
|
|
av_freep(&ebur128->i400.cache);
|
|
av_freep(&ebur128->i3000.cache);
|
|
av_frame_free(&ebur128->outpicref);
|
|
#if CONFIG_SWRESAMPLE
|
|
av_freep(&ebur128->swr_buf);
|
|
swr_free(&ebur128->swr_ctx);
|
|
#endif
|
|
}
|
|
|
|
static const AVFilterPad ebur128_inputs[] = {
|
|
{
|
|
.name = "default",
|
|
.type = AVMEDIA_TYPE_AUDIO,
|
|
.config_props = config_audio_input,
|
|
},
|
|
};
|
|
|
|
const AVFilter ff_af_ebur128 = {
|
|
.name = "ebur128",
|
|
.description = NULL_IF_CONFIG_SMALL("EBU R128 scanner."),
|
|
.priv_size = sizeof(EBUR128Context),
|
|
.init = init,
|
|
.uninit = uninit,
|
|
.activate = activate,
|
|
FILTER_INPUTS(ebur128_inputs),
|
|
.outputs = NULL,
|
|
FILTER_QUERY_FUNC(query_formats),
|
|
.priv_class = &ebur128_class,
|
|
.flags = AVFILTER_FLAG_DYNAMIC_OUTPUTS,
|
|
};
|