1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2024-12-12 19:18:44 +02:00
FFmpeg/libavcodec/wmalosslessdec.c
Andreas Rheinhardt 790f793844 avutil/common: Don't auto-include mem.h
There are lots of files that don't need it: The number of object
files that actually need it went down from 2011 to 884 here.

Keep it for external users in order to not cause breakages.

Also improve the other headers a bit while just at it.

Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
2024-03-31 00:08:43 +01:00

1348 lines
50 KiB
C

/*
* Windows Media Audio Lossless decoder
* Copyright (c) 2007 Baptiste Coudurier, Benjamin Larsson, Ulion
* Copyright (c) 2008 - 2011 Sascha Sommer, Benjamin Larsson
* Copyright (c) 2011 Andreas Öman
* Copyright (c) 2011 - 2012 Mashiat Sarker Shakkhar
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <inttypes.h>
#include "libavutil/attributes.h"
#include "libavutil/avassert.h"
#include "libavutil/mem.h"
#include "libavutil/mem_internal.h"
#include "avcodec.h"
#include "codec_internal.h"
#include "decode.h"
#include "get_bits.h"
#include "put_bits.h"
#include "lossless_audiodsp.h"
#include "wma_common.h"
/** current decoder limitations */
#define WMALL_MAX_CHANNELS 8 ///< max number of handled channels
#define MAX_SUBFRAMES 32 ///< max number of subframes per channel
#define MAX_BANDS 29 ///< max number of scale factor bands
#define MAX_FRAMESIZE 32768 ///< maximum compressed frame size
#define MAX_ORDER 256
#define WMALL_BLOCK_MIN_BITS 6 ///< log2 of min block size
#define WMALL_BLOCK_MAX_BITS 14 ///< log2 of max block size
#define WMALL_BLOCK_MAX_SIZE (1 << WMALL_BLOCK_MAX_BITS) ///< maximum block size
#define WMALL_BLOCK_SIZES (WMALL_BLOCK_MAX_BITS - WMALL_BLOCK_MIN_BITS + 1) ///< possible block sizes
#define WMALL_COEFF_PAD_SIZE 16 ///< pad coef buffers with 0 for use with SIMD
/**
* @brief frame-specific decoder context for a single channel
*/
typedef struct WmallChannelCtx {
int16_t prev_block_len; ///< length of the previous block
uint8_t transmit_coefs;
uint8_t num_subframes;
uint16_t subframe_len[MAX_SUBFRAMES]; ///< subframe length in samples
uint16_t subframe_offsets[MAX_SUBFRAMES]; ///< subframe positions in the current frame
uint8_t cur_subframe; ///< current subframe number
uint16_t decoded_samples; ///< number of already processed samples
int quant_step; ///< quantization step for the current subframe
int transient_counter; ///< number of transient samples from the beginning of the transient zone
} WmallChannelCtx;
/**
* @brief main decoder context
*/
typedef struct WmallDecodeCtx {
/* generic decoder variables */
AVCodecContext *avctx;
AVFrame *frame;
LLAudDSPContext dsp; ///< accelerated DSP functions
uint8_t *frame_data; ///< compressed frame data
int max_frame_size; ///< max bitstream size
PutBitContext pb; ///< context for filling the frame_data buffer
/* frame size dependent frame information (set during initialization) */
uint32_t decode_flags; ///< used compression features
int len_prefix; ///< frame is prefixed with its length
int dynamic_range_compression; ///< frame contains DRC data
uint8_t bits_per_sample; ///< integer audio sample size for the unscaled IMDCT output (used to scale to [-1.0, 1.0])
uint16_t samples_per_frame; ///< number of samples to output
uint16_t log2_frame_size;
int8_t num_channels; ///< number of channels in the stream (same as AVCodecContext.num_channels)
int8_t lfe_channel; ///< lfe channel index
uint8_t max_num_subframes;
uint8_t subframe_len_bits; ///< number of bits used for the subframe length
uint8_t max_subframe_len_bit; ///< flag indicating that the subframe is of maximum size when the first subframe length bit is 1
uint16_t min_samples_per_subframe;
/* packet decode state */
GetBitContext pgb; ///< bitstream reader context for the packet
int next_packet_start; ///< start offset of the next WMA packet in the demuxer packet
uint8_t packet_offset; ///< offset to the frame in the packet
uint8_t packet_sequence_number; ///< current packet number
int num_saved_bits; ///< saved number of bits
int frame_offset; ///< frame offset in the bit reservoir
int subframe_offset; ///< subframe offset in the bit reservoir
uint8_t packet_loss; ///< set in case of bitstream error
uint8_t packet_done; ///< set when a packet is fully decoded
/* frame decode state */
uint32_t frame_num; ///< current frame number (not used for decoding)
GetBitContext gb; ///< bitstream reader context
int buf_bit_size; ///< buffer size in bits
int16_t *samples_16[WMALL_MAX_CHANNELS]; ///< current sample buffer pointer (16-bit)
int32_t *samples_32[WMALL_MAX_CHANNELS]; ///< current sample buffer pointer (24-bit)
uint8_t drc_gain; ///< gain for the DRC tool
int8_t skip_frame; ///< skip output step
int8_t parsed_all_subframes; ///< all subframes decoded?
/* subframe/block decode state */
int16_t subframe_len; ///< current subframe length
int8_t channels_for_cur_subframe; ///< number of channels that contain the subframe
int8_t channel_indexes_for_cur_subframe[WMALL_MAX_CHANNELS];
WmallChannelCtx channel[WMALL_MAX_CHANNELS]; ///< per channel data
// WMA Lossless-specific
uint8_t do_arith_coding;
uint8_t do_ac_filter;
uint8_t do_inter_ch_decorr;
uint8_t do_mclms;
uint8_t do_lpc;
int8_t acfilter_order;
int8_t acfilter_scaling;
int16_t acfilter_coeffs[16];
int acfilter_prevvalues[WMALL_MAX_CHANNELS][16];
int8_t mclms_order;
int8_t mclms_scaling;
int16_t mclms_coeffs[WMALL_MAX_CHANNELS * WMALL_MAX_CHANNELS * 32];
int16_t mclms_coeffs_cur[WMALL_MAX_CHANNELS * WMALL_MAX_CHANNELS];
int32_t mclms_prevvalues[WMALL_MAX_CHANNELS * 2 * 32];
int32_t mclms_updates[WMALL_MAX_CHANNELS * 2 * 32];
int mclms_recent;
int movave_scaling;
int quant_stepsize;
struct {
int order;
int scaling;
int coefsend;
int bitsend;
DECLARE_ALIGNED(16, int16_t, coefs)[MAX_ORDER + WMALL_COEFF_PAD_SIZE/sizeof(int16_t)];
DECLARE_ALIGNED(16, int32_t, lms_prevvalues)[MAX_ORDER * 2 + WMALL_COEFF_PAD_SIZE/sizeof(int16_t)];
DECLARE_ALIGNED(16, int16_t, lms_updates)[MAX_ORDER * 2 + WMALL_COEFF_PAD_SIZE/sizeof(int16_t)];
int recent;
} cdlms[WMALL_MAX_CHANNELS][9];
int cdlms_ttl[WMALL_MAX_CHANNELS];
int bV3RTM;
int is_channel_coded[WMALL_MAX_CHANNELS];
int update_speed[WMALL_MAX_CHANNELS];
int transient[WMALL_MAX_CHANNELS];
int transient_pos[WMALL_MAX_CHANNELS];
int seekable_tile;
unsigned ave_sum[WMALL_MAX_CHANNELS];
int channel_residues[WMALL_MAX_CHANNELS][WMALL_BLOCK_MAX_SIZE];
int lpc_coefs[WMALL_MAX_CHANNELS][40];
int lpc_order;
int lpc_scaling;
int lpc_intbits;
} WmallDecodeCtx;
/** Get sign of integer (1 for positive, -1 for negative and 0 for zero) */
#define WMASIGN(x) (((x) > 0) - ((x) < 0))
static av_cold int decode_init(AVCodecContext *avctx)
{
WmallDecodeCtx *s = avctx->priv_data;
uint8_t *edata_ptr = avctx->extradata;
unsigned int channel_mask;
int i, log2_max_num_subframes;
if (avctx->block_align <= 0 || avctx->block_align > (1<<21)) {
av_log(avctx, AV_LOG_ERROR, "block_align is not set or invalid\n");
return AVERROR(EINVAL);
}
if (avctx->extradata_size >= 18) {
s->decode_flags = AV_RL16(edata_ptr + 14);
channel_mask = AV_RL32(edata_ptr + 2);
s->bits_per_sample = AV_RL16(edata_ptr);
if (s->bits_per_sample == 16)
avctx->sample_fmt = AV_SAMPLE_FMT_S16P;
else if (s->bits_per_sample == 24) {
avctx->sample_fmt = AV_SAMPLE_FMT_S32P;
avctx->bits_per_raw_sample = 24;
} else {
av_log(avctx, AV_LOG_ERROR, "Unknown bit-depth: %"PRIu8"\n",
s->bits_per_sample);
return AVERROR_INVALIDDATA;
}
/* dump the extradata */
for (i = 0; i < avctx->extradata_size; i++)
ff_dlog(avctx, "[%x] ", avctx->extradata[i]);
ff_dlog(avctx, "\n");
} else {
avpriv_request_sample(avctx, "Unsupported extradata size");
return AVERROR_PATCHWELCOME;
}
if (channel_mask) {
av_channel_layout_uninit(&avctx->ch_layout);
av_channel_layout_from_mask(&avctx->ch_layout, channel_mask);
}
av_assert0(avctx->ch_layout.nb_channels >= 0);
if (avctx->ch_layout.nb_channels > WMALL_MAX_CHANNELS) {
avpriv_request_sample(avctx,
"More than " AV_STRINGIFY(WMALL_MAX_CHANNELS) " channels");
return AVERROR_PATCHWELCOME;
}
s->num_channels = avctx->ch_layout.nb_channels;
/* extract lfe channel position */
s->lfe_channel = -1;
if (channel_mask & 8) {
unsigned int mask;
for (mask = 1; mask < 16; mask <<= 1)
if (channel_mask & mask)
++s->lfe_channel;
}
s->max_frame_size = MAX_FRAMESIZE * avctx->ch_layout.nb_channels;
s->frame_data = av_mallocz(s->max_frame_size + AV_INPUT_BUFFER_PADDING_SIZE);
if (!s->frame_data)
return AVERROR(ENOMEM);
s->avctx = avctx;
ff_llauddsp_init(&s->dsp);
init_put_bits(&s->pb, s->frame_data, s->max_frame_size);
/* generic init */
s->log2_frame_size = av_log2(avctx->block_align) + 4;
/* frame info */
s->skip_frame = 1; /* skip first frame */
s->packet_loss = 1;
s->len_prefix = s->decode_flags & 0x40;
/* get frame len */
s->samples_per_frame = 1 << ff_wma_get_frame_len_bits(avctx->sample_rate,
3, s->decode_flags);
av_assert0(s->samples_per_frame <= WMALL_BLOCK_MAX_SIZE);
/* init previous block len */
for (i = 0; i < avctx->ch_layout.nb_channels; i++)
s->channel[i].prev_block_len = s->samples_per_frame;
/* subframe info */
log2_max_num_subframes = (s->decode_flags & 0x38) >> 3;
s->max_num_subframes = 1 << log2_max_num_subframes;
s->max_subframe_len_bit = 0;
s->subframe_len_bits = av_log2(log2_max_num_subframes) + 1;
s->min_samples_per_subframe = s->samples_per_frame / s->max_num_subframes;
s->dynamic_range_compression = s->decode_flags & 0x80;
s->bV3RTM = s->decode_flags & 0x100;
if (s->max_num_subframes > MAX_SUBFRAMES) {
av_log(avctx, AV_LOG_ERROR, "invalid number of subframes %"PRIu8"\n",
s->max_num_subframes);
return AVERROR_INVALIDDATA;
}
s->frame = av_frame_alloc();
if (!s->frame)
return AVERROR(ENOMEM);
return 0;
}
/**
* @brief Decode the subframe length.
* @param s context
* @param offset sample offset in the frame
* @return decoded subframe length on success, < 0 in case of an error
*/
static int decode_subframe_length(WmallDecodeCtx *s, int offset)
{
int frame_len_ratio, subframe_len, len;
/* no need to read from the bitstream when only one length is possible */
if (offset == s->samples_per_frame - s->min_samples_per_subframe)
return s->min_samples_per_subframe;
len = av_log2(s->max_num_subframes - 1) + 1;
frame_len_ratio = get_bits(&s->gb, len);
subframe_len = s->min_samples_per_subframe * (frame_len_ratio + 1);
/* sanity check the length */
if (subframe_len < s->min_samples_per_subframe ||
subframe_len > s->samples_per_frame) {
av_log(s->avctx, AV_LOG_ERROR, "broken frame: subframe_len %i\n",
subframe_len);
return AVERROR_INVALIDDATA;
}
return subframe_len;
}
/**
* @brief Decode how the data in the frame is split into subframes.
* Every WMA frame contains the encoded data for a fixed number of
* samples per channel. The data for every channel might be split
* into several subframes. This function will reconstruct the list of
* subframes for every channel.
*
* If the subframes are not evenly split, the algorithm estimates the
* channels with the lowest number of total samples.
* Afterwards, for each of these channels a bit is read from the
* bitstream that indicates if the channel contains a subframe with the
* next subframe size that is going to be read from the bitstream or not.
* If a channel contains such a subframe, the subframe size gets added to
* the channel's subframe list.
* The algorithm repeats these steps until the frame is properly divided
* between the individual channels.
*
* @param s context
* @return 0 on success, < 0 in case of an error
*/
static int decode_tilehdr(WmallDecodeCtx *s)
{
uint16_t num_samples[WMALL_MAX_CHANNELS] = { 0 }; /* sum of samples for all currently known subframes of a channel */
uint8_t contains_subframe[WMALL_MAX_CHANNELS]; /* flag indicating if a channel contains the current subframe */
int channels_for_cur_subframe = s->num_channels; /* number of channels that contain the current subframe */
int fixed_channel_layout = 0; /* flag indicating that all channels use the same subfra2me offsets and sizes */
int min_channel_len = 0; /* smallest sum of samples (channels with this length will be processed first) */
int c, tile_aligned;
/* reset tiling information */
for (c = 0; c < s->num_channels; c++)
s->channel[c].num_subframes = 0;
tile_aligned = get_bits1(&s->gb);
if (s->max_num_subframes == 1 || tile_aligned)
fixed_channel_layout = 1;
/* loop until the frame data is split between the subframes */
do {
int subframe_len, in_use = 0;
/* check which channels contain the subframe */
for (c = 0; c < s->num_channels; c++) {
if (num_samples[c] == min_channel_len) {
if (fixed_channel_layout || channels_for_cur_subframe == 1 ||
(min_channel_len == s->samples_per_frame - s->min_samples_per_subframe)) {
contains_subframe[c] = 1;
} else {
contains_subframe[c] = get_bits1(&s->gb);
}
in_use |= contains_subframe[c];
} else
contains_subframe[c] = 0;
}
if (!in_use) {
av_log(s->avctx, AV_LOG_ERROR,
"Found empty subframe\n");
return AVERROR_INVALIDDATA;
}
/* get subframe length, subframe_len == 0 is not allowed */
if ((subframe_len = decode_subframe_length(s, min_channel_len)) <= 0)
return AVERROR_INVALIDDATA;
/* add subframes to the individual channels and find new min_channel_len */
min_channel_len += subframe_len;
for (c = 0; c < s->num_channels; c++) {
WmallChannelCtx *chan = &s->channel[c];
if (contains_subframe[c]) {
if (chan->num_subframes >= MAX_SUBFRAMES) {
av_log(s->avctx, AV_LOG_ERROR,
"broken frame: num subframes > 31\n");
return AVERROR_INVALIDDATA;
}
chan->subframe_len[chan->num_subframes] = subframe_len;
num_samples[c] += subframe_len;
++chan->num_subframes;
if (num_samples[c] > s->samples_per_frame) {
av_log(s->avctx, AV_LOG_ERROR, "broken frame: "
"channel len(%"PRIu16") > samples_per_frame(%"PRIu16")\n",
num_samples[c], s->samples_per_frame);
return AVERROR_INVALIDDATA;
}
} else if (num_samples[c] <= min_channel_len) {
if (num_samples[c] < min_channel_len) {
channels_for_cur_subframe = 0;
min_channel_len = num_samples[c];
}
++channels_for_cur_subframe;
}
}
} while (min_channel_len < s->samples_per_frame);
for (c = 0; c < s->num_channels; c++) {
int i, offset = 0;
for (i = 0; i < s->channel[c].num_subframes; i++) {
s->channel[c].subframe_offsets[i] = offset;
offset += s->channel[c].subframe_len[i];
}
}
return 0;
}
static void decode_ac_filter(WmallDecodeCtx *s)
{
int i;
s->acfilter_order = get_bits(&s->gb, 4) + 1;
s->acfilter_scaling = get_bits(&s->gb, 4);
for (i = 0; i < s->acfilter_order; i++)
s->acfilter_coeffs[i] = get_bitsz(&s->gb, s->acfilter_scaling) + 1;
}
static void decode_mclms(WmallDecodeCtx *s)
{
s->mclms_order = (get_bits(&s->gb, 4) + 1) * 2;
s->mclms_scaling = get_bits(&s->gb, 4);
if (get_bits1(&s->gb)) {
int i, send_coef_bits;
int cbits = av_log2(s->mclms_scaling + 1);
if (1 << cbits < s->mclms_scaling + 1)
cbits++;
send_coef_bits = get_bitsz(&s->gb, cbits) + 2;
for (i = 0; i < s->mclms_order * s->num_channels * s->num_channels; i++)
s->mclms_coeffs[i] = get_bits(&s->gb, send_coef_bits);
for (i = 0; i < s->num_channels; i++) {
int c;
for (c = 0; c < i; c++)
s->mclms_coeffs_cur[i * s->num_channels + c] = get_bits(&s->gb, send_coef_bits);
}
}
}
static int decode_cdlms(WmallDecodeCtx *s)
{
int c, i;
int cdlms_send_coef = get_bits1(&s->gb);
for (c = 0; c < s->num_channels; c++) {
s->cdlms_ttl[c] = get_bits(&s->gb, 3) + 1;
for (i = 0; i < s->cdlms_ttl[c]; i++) {
s->cdlms[c][i].order = (get_bits(&s->gb, 7) + 1) * 8;
if (s->cdlms[c][i].order > MAX_ORDER) {
av_log(s->avctx, AV_LOG_ERROR,
"Order[%d][%d] %d > max (%d), not supported\n",
c, i, s->cdlms[c][i].order, MAX_ORDER);
s->cdlms[0][0].order = 0;
return AVERROR_INVALIDDATA;
}
if(s->cdlms[c][i].order & 8 && s->bits_per_sample == 16) {
static int warned;
if(!warned)
avpriv_request_sample(s->avctx, "CDLMS of order %d",
s->cdlms[c][i].order);
warned = 1;
}
}
for (i = 0; i < s->cdlms_ttl[c]; i++)
s->cdlms[c][i].scaling = get_bits(&s->gb, 4);
if (cdlms_send_coef) {
for (i = 0; i < s->cdlms_ttl[c]; i++) {
int cbits, shift_l, shift_r, j;
cbits = av_log2(s->cdlms[c][i].order);
if ((1 << cbits) < s->cdlms[c][i].order)
cbits++;
s->cdlms[c][i].coefsend = get_bits(&s->gb, cbits) + 1;
cbits = av_log2(s->cdlms[c][i].scaling + 1);
if ((1 << cbits) < s->cdlms[c][i].scaling + 1)
cbits++;
s->cdlms[c][i].bitsend = get_bitsz(&s->gb, cbits) + 2;
shift_l = 32 - s->cdlms[c][i].bitsend;
shift_r = 32 - s->cdlms[c][i].scaling - 2;
for (j = 0; j < s->cdlms[c][i].coefsend; j++)
s->cdlms[c][i].coefs[j] =
(get_bits(&s->gb, s->cdlms[c][i].bitsend) << shift_l) >> shift_r;
}
}
for (i = 0; i < s->cdlms_ttl[c]; i++)
memset(s->cdlms[c][i].coefs + s->cdlms[c][i].order,
0, WMALL_COEFF_PAD_SIZE);
}
return 0;
}
static int decode_channel_residues(WmallDecodeCtx *s, int ch, int tile_size)
{
int i = 0;
unsigned int ave_mean;
s->transient[ch] = get_bits1(&s->gb);
if (s->transient[ch]) {
s->transient_pos[ch] = get_bits(&s->gb, av_log2(tile_size));
if (s->transient_pos[ch])
s->transient[ch] = 0;
s->channel[ch].transient_counter =
FFMAX(s->channel[ch].transient_counter, s->samples_per_frame / 2);
} else if (s->channel[ch].transient_counter)
s->transient[ch] = 1;
if (s->seekable_tile) {
ave_mean = get_bits(&s->gb, s->bits_per_sample);
s->ave_sum[ch] = ave_mean << (s->movave_scaling + 1);
}
if (s->seekable_tile) {
if (s->do_inter_ch_decorr)
s->channel_residues[ch][0] = get_sbits_long(&s->gb, s->bits_per_sample + 1);
else
s->channel_residues[ch][0] = get_sbits_long(&s->gb, s->bits_per_sample);
i++;
}
for (; i < tile_size; i++) {
int rem, rem_bits;
unsigned quo = 0, residue;
while(get_bits1(&s->gb)) {
quo++;
if (get_bits_left(&s->gb) <= 0)
return -1;
}
if (quo >= 32)
quo += get_bits_long(&s->gb, get_bits(&s->gb, 5) + 1);
ave_mean = (s->ave_sum[ch] + (1 << s->movave_scaling)) >> (s->movave_scaling + 1);
if (ave_mean <= 1)
residue = quo;
else {
rem_bits = av_ceil_log2(ave_mean);
rem = get_bits_long(&s->gb, rem_bits);
residue = (quo << rem_bits) + rem;
}
s->ave_sum[ch] = residue + s->ave_sum[ch] -
(s->ave_sum[ch] >> s->movave_scaling);
residue = (residue >> 1) ^ -(residue & 1);
s->channel_residues[ch][i] = residue;
}
return 0;
}
static void decode_lpc(WmallDecodeCtx *s)
{
int ch, i, cbits;
s->lpc_order = get_bits(&s->gb, 5) + 1;
s->lpc_scaling = get_bits(&s->gb, 4);
s->lpc_intbits = get_bits(&s->gb, 3) + 1;
cbits = s->lpc_scaling + s->lpc_intbits;
for (ch = 0; ch < s->num_channels; ch++)
for (i = 0; i < s->lpc_order; i++)
s->lpc_coefs[ch][i] = get_sbits(&s->gb, cbits);
}
static void clear_codec_buffers(WmallDecodeCtx *s)
{
int ich, ilms;
memset(s->acfilter_coeffs, 0, sizeof(s->acfilter_coeffs));
memset(s->acfilter_prevvalues, 0, sizeof(s->acfilter_prevvalues));
memset(s->lpc_coefs, 0, sizeof(s->lpc_coefs));
memset(s->mclms_coeffs, 0, sizeof(s->mclms_coeffs));
memset(s->mclms_coeffs_cur, 0, sizeof(s->mclms_coeffs_cur));
memset(s->mclms_prevvalues, 0, sizeof(s->mclms_prevvalues));
memset(s->mclms_updates, 0, sizeof(s->mclms_updates));
for (ich = 0; ich < s->num_channels; ich++) {
for (ilms = 0; ilms < s->cdlms_ttl[ich]; ilms++) {
memset(s->cdlms[ich][ilms].coefs, 0,
sizeof(s->cdlms[ich][ilms].coefs));
memset(s->cdlms[ich][ilms].lms_prevvalues, 0,
sizeof(s->cdlms[ich][ilms].lms_prevvalues));
memset(s->cdlms[ich][ilms].lms_updates, 0,
sizeof(s->cdlms[ich][ilms].lms_updates));
}
s->ave_sum[ich] = 0;
}
}
/**
* @brief Reset filter parameters and transient area at new seekable tile.
*/
static void reset_codec(WmallDecodeCtx *s)
{
int ich, ilms;
s->mclms_recent = s->mclms_order * s->num_channels;
for (ich = 0; ich < s->num_channels; ich++) {
for (ilms = 0; ilms < s->cdlms_ttl[ich]; ilms++)
s->cdlms[ich][ilms].recent = s->cdlms[ich][ilms].order;
/* first sample of a seekable subframe is considered as the starting of
a transient area which is samples_per_frame samples long */
s->channel[ich].transient_counter = s->samples_per_frame;
s->transient[ich] = 1;
s->transient_pos[ich] = 0;
}
}
static void mclms_update(WmallDecodeCtx *s, int icoef, int *pred)
{
int i, j, ich, pred_error;
int order = s->mclms_order;
int num_channels = s->num_channels;
int range = 1 << (s->bits_per_sample - 1);
for (ich = 0; ich < num_channels; ich++) {
pred_error = s->channel_residues[ich][icoef] - (unsigned)pred[ich];
if (pred_error > 0) {
for (i = 0; i < order * num_channels; i++)
s->mclms_coeffs[i + ich * order * num_channels] +=
s->mclms_updates[s->mclms_recent + i];
for (j = 0; j < ich; j++)
s->mclms_coeffs_cur[ich * num_channels + j] += WMASIGN(s->channel_residues[j][icoef]);
} else if (pred_error < 0) {
for (i = 0; i < order * num_channels; i++)
s->mclms_coeffs[i + ich * order * num_channels] -=
s->mclms_updates[s->mclms_recent + i];
for (j = 0; j < ich; j++)
s->mclms_coeffs_cur[ich * num_channels + j] -= WMASIGN(s->channel_residues[j][icoef]);
}
}
for (ich = num_channels - 1; ich >= 0; ich--) {
s->mclms_recent--;
s->mclms_prevvalues[s->mclms_recent] = av_clip(s->channel_residues[ich][icoef],
-range, range - 1);
s->mclms_updates[s->mclms_recent] = WMASIGN(s->channel_residues[ich][icoef]);
}
if (s->mclms_recent == 0) {
memcpy(&s->mclms_prevvalues[order * num_channels],
s->mclms_prevvalues,
sizeof(int32_t) * order * num_channels);
memcpy(&s->mclms_updates[order * num_channels],
s->mclms_updates,
sizeof(int32_t) * order * num_channels);
s->mclms_recent = num_channels * order;
}
}
static void mclms_predict(WmallDecodeCtx *s, int icoef, int *pred)
{
int ich, i;
int order = s->mclms_order;
int num_channels = s->num_channels;
for (ich = 0; ich < num_channels; ich++) {
pred[ich] = 0;
if (!s->is_channel_coded[ich])
continue;
for (i = 0; i < order * num_channels; i++)
pred[ich] += (uint32_t)s->mclms_prevvalues[i + s->mclms_recent] *
s->mclms_coeffs[i + order * num_channels * ich];
for (i = 0; i < ich; i++)
pred[ich] += (uint32_t)s->channel_residues[i][icoef] *
s->mclms_coeffs_cur[i + num_channels * ich];
pred[ich] += (1U << s->mclms_scaling) >> 1;
pred[ich] >>= s->mclms_scaling;
s->channel_residues[ich][icoef] += (unsigned)pred[ich];
}
}
static void revert_mclms(WmallDecodeCtx *s, int tile_size)
{
int icoef, pred[WMALL_MAX_CHANNELS] = { 0 };
for (icoef = 0; icoef < tile_size; icoef++) {
mclms_predict(s, icoef, pred);
mclms_update(s, icoef, pred);
}
}
static void use_high_update_speed(WmallDecodeCtx *s, int ich)
{
int ilms, recent, icoef;
for (ilms = s->cdlms_ttl[ich] - 1; ilms >= 0; ilms--) {
recent = s->cdlms[ich][ilms].recent;
if (s->update_speed[ich] == 16)
continue;
if (s->bV3RTM) {
for (icoef = 0; icoef < s->cdlms[ich][ilms].order; icoef++)
s->cdlms[ich][ilms].lms_updates[icoef + recent] *= 2;
} else {
for (icoef = 0; icoef < s->cdlms[ich][ilms].order; icoef++)
s->cdlms[ich][ilms].lms_updates[icoef] *= 2;
}
}
s->update_speed[ich] = 16;
}
static void use_normal_update_speed(WmallDecodeCtx *s, int ich)
{
int ilms, recent, icoef;
for (ilms = s->cdlms_ttl[ich] - 1; ilms >= 0; ilms--) {
recent = s->cdlms[ich][ilms].recent;
if (s->update_speed[ich] == 8)
continue;
if (s->bV3RTM)
for (icoef = 0; icoef < s->cdlms[ich][ilms].order; icoef++)
s->cdlms[ich][ilms].lms_updates[icoef + recent] /= 2;
else
for (icoef = 0; icoef < s->cdlms[ich][ilms].order; icoef++)
s->cdlms[ich][ilms].lms_updates[icoef] /= 2;
}
s->update_speed[ich] = 8;
}
#define CD_LMS(bits, ROUND) \
static void lms_update ## bits (WmallDecodeCtx *s, int ich, int ilms, int input) \
{ \
int recent = s->cdlms[ich][ilms].recent; \
int range = 1 << s->bits_per_sample - 1; \
int order = s->cdlms[ich][ilms].order; \
int ##bits##_t *prev = (int##bits##_t *)s->cdlms[ich][ilms].lms_prevvalues; \
\
if (recent) \
recent--; \
else { \
memcpy(prev + order, prev, (bits/8) * order); \
memcpy(s->cdlms[ich][ilms].lms_updates + order, \
s->cdlms[ich][ilms].lms_updates, \
sizeof(*s->cdlms[ich][ilms].lms_updates) * order); \
recent = order - 1; \
} \
\
prev[recent] = av_clip(input, -range, range - 1); \
s->cdlms[ich][ilms].lms_updates[recent] = WMASIGN(input) * s->update_speed[ich]; \
\
s->cdlms[ich][ilms].lms_updates[recent + (order >> 4)] >>= 2; \
s->cdlms[ich][ilms].lms_updates[recent + (order >> 3)] >>= 1; \
s->cdlms[ich][ilms].recent = recent; \
memset(s->cdlms[ich][ilms].lms_updates + recent + order, 0, \
sizeof(s->cdlms[ich][ilms].lms_updates) - \
sizeof(*s->cdlms[ich][ilms].lms_updates)*(recent+order)); \
} \
\
static void revert_cdlms ## bits (WmallDecodeCtx *s, int ch, \
int coef_begin, int coef_end) \
{ \
int icoef, ilms, num_lms, residue, input; \
unsigned pred;\
\
num_lms = s->cdlms_ttl[ch]; \
for (ilms = num_lms - 1; ilms >= 0; ilms--) { \
for (icoef = coef_begin; icoef < coef_end; icoef++) { \
int##bits##_t *prevvalues = (int##bits##_t *)s->cdlms[ch][ilms].lms_prevvalues; \
pred = (1 << s->cdlms[ch][ilms].scaling) >> 1; \
residue = s->channel_residues[ch][icoef]; \
pred += s->dsp.scalarproduct_and_madd_int## bits (s->cdlms[ch][ilms].coefs, \
prevvalues + s->cdlms[ch][ilms].recent, \
s->cdlms[ch][ilms].lms_updates + \
s->cdlms[ch][ilms].recent, \
FFALIGN(s->cdlms[ch][ilms].order, ROUND), \
WMASIGN(residue)); \
input = residue + (unsigned)((int)pred >> s->cdlms[ch][ilms].scaling); \
lms_update ## bits(s, ch, ilms, input); \
s->channel_residues[ch][icoef] = input; \
} \
} \
}
CD_LMS(16, WMALL_COEFF_PAD_SIZE)
CD_LMS(32, 8)
static void revert_inter_ch_decorr(WmallDecodeCtx *s, int tile_size)
{
if (s->num_channels != 2)
return;
else if (s->is_channel_coded[0] || s->is_channel_coded[1]) {
int icoef;
for (icoef = 0; icoef < tile_size; icoef++) {
s->channel_residues[0][icoef] -= (unsigned)(s->channel_residues[1][icoef] >> 1);
s->channel_residues[1][icoef] += (unsigned) s->channel_residues[0][icoef];
}
}
}
static void revert_acfilter(WmallDecodeCtx *s, int tile_size)
{
int ich, pred, i, j;
int16_t *filter_coeffs = s->acfilter_coeffs;
int scaling = s->acfilter_scaling;
int order = s->acfilter_order;
for (ich = 0; ich < s->num_channels; ich++) {
int *prevvalues = s->acfilter_prevvalues[ich];
for (i = 0; i < order; i++) {
pred = 0;
for (j = 0; j < order; j++) {
if (i <= j)
pred += (uint32_t)filter_coeffs[j] * prevvalues[j - i];
else
pred += (uint32_t)s->channel_residues[ich][i - j - 1] * filter_coeffs[j];
}
pred >>= scaling;
s->channel_residues[ich][i] += (unsigned)pred;
}
for (i = order; i < tile_size; i++) {
pred = 0;
for (j = 0; j < order; j++)
pred += (uint32_t)s->channel_residues[ich][i - j - 1] * filter_coeffs[j];
pred >>= scaling;
s->channel_residues[ich][i] += (unsigned)pred;
}
for (j = order - 1; j >= 0; j--)
if (tile_size <= j) {
prevvalues[j] = prevvalues[j - tile_size];
}else
prevvalues[j] = s->channel_residues[ich][tile_size - j - 1];
}
}
static int decode_subframe(WmallDecodeCtx *s)
{
int offset = s->samples_per_frame;
int subframe_len = s->samples_per_frame;
int total_samples = s->samples_per_frame * s->num_channels;
int i, j, rawpcm_tile, padding_zeroes, res;
s->subframe_offset = get_bits_count(&s->gb);
/* reset channel context and find the next block offset and size
== the next block of the channel with the smallest number of
decoded samples */
for (i = 0; i < s->num_channels; i++) {
if (offset > s->channel[i].decoded_samples) {
offset = s->channel[i].decoded_samples;
subframe_len =
s->channel[i].subframe_len[s->channel[i].cur_subframe];
}
}
/* get a list of all channels that contain the estimated block */
s->channels_for_cur_subframe = 0;
for (i = 0; i < s->num_channels; i++) {
const int cur_subframe = s->channel[i].cur_subframe;
/* subtract already processed samples */
total_samples -= s->channel[i].decoded_samples;
/* and count if there are multiple subframes that match our profile */
if (offset == s->channel[i].decoded_samples &&
subframe_len == s->channel[i].subframe_len[cur_subframe]) {
total_samples -= s->channel[i].subframe_len[cur_subframe];
s->channel[i].decoded_samples +=
s->channel[i].subframe_len[cur_subframe];
s->channel_indexes_for_cur_subframe[s->channels_for_cur_subframe] = i;
++s->channels_for_cur_subframe;
}
}
/* check if the frame will be complete after processing the
estimated block */
if (!total_samples)
s->parsed_all_subframes = 1;
s->seekable_tile = get_bits1(&s->gb);
if (s->seekable_tile) {
clear_codec_buffers(s);
s->do_arith_coding = get_bits1(&s->gb);
if (s->do_arith_coding) {
avpriv_request_sample(s->avctx, "Arithmetic coding");
return AVERROR_PATCHWELCOME;
}
s->do_ac_filter = get_bits1(&s->gb);
s->do_inter_ch_decorr = get_bits1(&s->gb);
s->do_mclms = get_bits1(&s->gb);
if (s->do_ac_filter)
decode_ac_filter(s);
if (s->do_mclms)
decode_mclms(s);
if ((res = decode_cdlms(s)) < 0)
return res;
s->movave_scaling = get_bits(&s->gb, 3);
s->quant_stepsize = get_bits(&s->gb, 8) + 1;
reset_codec(s);
}
rawpcm_tile = get_bits1(&s->gb);
if (!rawpcm_tile && !s->cdlms[0][0].order) {
av_log(s->avctx, AV_LOG_DEBUG,
"Waiting for seekable tile\n");
av_frame_unref(s->frame);
return -1;
}
for (i = 0; i < s->num_channels; i++)
s->is_channel_coded[i] = 1;
if (!rawpcm_tile) {
for (i = 0; i < s->num_channels; i++)
s->is_channel_coded[i] = get_bits1(&s->gb);
if (s->bV3RTM) {
// LPC
s->do_lpc = get_bits1(&s->gb);
if (s->do_lpc) {
decode_lpc(s);
avpriv_request_sample(s->avctx, "Expect wrong output since "
"inverse LPC filter");
}
} else
s->do_lpc = 0;
}
if (get_bits_left(&s->gb) < 1)
return AVERROR_INVALIDDATA;
if (get_bits1(&s->gb))
padding_zeroes = get_bits(&s->gb, 5);
else
padding_zeroes = 0;
if (rawpcm_tile) {
int bits = s->bits_per_sample - padding_zeroes;
if (bits <= 0) {
av_log(s->avctx, AV_LOG_ERROR,
"Invalid number of padding bits in raw PCM tile\n");
return AVERROR_INVALIDDATA;
}
ff_dlog(s->avctx, "RAWPCM %d bits per sample. "
"total %d bits, remain=%d\n", bits,
bits * s->num_channels * subframe_len, get_bits_count(&s->gb));
for (i = 0; i < s->num_channels; i++)
for (j = 0; j < subframe_len; j++)
s->channel_residues[i][j] = get_sbits_long(&s->gb, bits);
} else {
if (s->bits_per_sample < padding_zeroes)
return AVERROR_INVALIDDATA;
for (i = 0; i < s->num_channels; i++) {
if (s->is_channel_coded[i]) {
decode_channel_residues(s, i, subframe_len);
if (s->seekable_tile)
use_high_update_speed(s, i);
else
use_normal_update_speed(s, i);
if (s->bits_per_sample > 16)
revert_cdlms32(s, i, 0, subframe_len);
else
revert_cdlms16(s, i, 0, subframe_len);
} else {
memset(s->channel_residues[i], 0, sizeof(**s->channel_residues) * subframe_len);
}
}
if (s->do_mclms)
revert_mclms(s, subframe_len);
if (s->do_inter_ch_decorr)
revert_inter_ch_decorr(s, subframe_len);
if (s->do_ac_filter)
revert_acfilter(s, subframe_len);
/* Dequantize */
if (s->quant_stepsize != 1)
for (i = 0; i < s->num_channels; i++)
for (j = 0; j < subframe_len; j++)
s->channel_residues[i][j] *= (unsigned)s->quant_stepsize;
}
/* Write to proper output buffer depending on bit-depth */
for (i = 0; i < s->channels_for_cur_subframe; i++) {
int c = s->channel_indexes_for_cur_subframe[i];
int subframe_len = s->channel[c].subframe_len[s->channel[c].cur_subframe];
for (j = 0; j < subframe_len; j++) {
if (s->bits_per_sample == 16) {
*s->samples_16[c]++ = (int16_t) s->channel_residues[c][j] * (1 << padding_zeroes);
} else {
*s->samples_32[c]++ = s->channel_residues[c][j] * (256U << padding_zeroes);
}
}
}
/* handled one subframe */
for (i = 0; i < s->channels_for_cur_subframe; i++) {
int c = s->channel_indexes_for_cur_subframe[i];
if (s->channel[c].cur_subframe >= s->channel[c].num_subframes) {
av_log(s->avctx, AV_LOG_ERROR, "broken subframe\n");
return AVERROR_INVALIDDATA;
}
++s->channel[c].cur_subframe;
}
return 0;
}
/**
* @brief Decode one WMA frame.
* @param s codec context
* @return 0 if the trailer bit indicates that this is the last frame,
* 1 if there are additional frames
*/
static int decode_frame(WmallDecodeCtx *s)
{
GetBitContext* gb = &s->gb;
int more_frames = 0, len = 0, i, ret;
s->frame->nb_samples = s->samples_per_frame;
if ((ret = ff_get_buffer(s->avctx, s->frame, 0)) < 0) {
/* return an error if no frame could be decoded at all */
s->packet_loss = 1;
s->frame->nb_samples = 0;
return ret;
}
for (i = 0; i < s->num_channels; i++) {
s->samples_16[i] = (int16_t *)s->frame->extended_data[i];
s->samples_32[i] = (int32_t *)s->frame->extended_data[i];
}
/* get frame length */
if (s->len_prefix)
len = get_bits(gb, s->log2_frame_size);
/* decode tile information */
if ((ret = decode_tilehdr(s))) {
s->packet_loss = 1;
av_frame_unref(s->frame);
return ret;
}
/* read drc info */
if (s->dynamic_range_compression)
s->drc_gain = get_bits(gb, 8);
/* no idea what these are for, might be the number of samples
that need to be skipped at the beginning or end of a stream */
if (get_bits1(gb)) {
int av_unused skip;
/* usually true for the first frame */
if (get_bits1(gb)) {
skip = get_bits(gb, av_log2(s->samples_per_frame * 2));
ff_dlog(s->avctx, "start skip: %i\n", skip);
}
/* sometimes true for the last frame */
if (get_bits1(gb)) {
skip = get_bits(gb, av_log2(s->samples_per_frame * 2));
ff_dlog(s->avctx, "end skip: %i\n", skip);
s->frame->nb_samples -= skip;
if (s->frame->nb_samples <= 0)
return AVERROR_INVALIDDATA;
}
}
/* reset subframe states */
s->parsed_all_subframes = 0;
for (i = 0; i < s->num_channels; i++) {
s->channel[i].decoded_samples = 0;
s->channel[i].cur_subframe = 0;
}
/* decode all subframes */
while (!s->parsed_all_subframes) {
int decoded_samples = s->channel[0].decoded_samples;
if (decode_subframe(s) < 0) {
s->packet_loss = 1;
if (s->frame->nb_samples)
s->frame->nb_samples = decoded_samples;
return 0;
}
}
ff_dlog(s->avctx, "Frame done\n");
s->skip_frame = 0;
if (s->len_prefix) {
if (len != (get_bits_count(gb) - s->frame_offset) + 2) {
/* FIXME: not sure if this is always an error */
av_log(s->avctx, AV_LOG_ERROR,
"frame[%"PRIu32"] would have to skip %i bits\n",
s->frame_num,
len - (get_bits_count(gb) - s->frame_offset) - 1);
s->packet_loss = 1;
return 0;
}
/* skip the rest of the frame data */
skip_bits_long(gb, len - (get_bits_count(gb) - s->frame_offset) - 1);
}
/* decode trailer bit */
more_frames = get_bits1(gb);
++s->frame_num;
return more_frames;
}
/**
* @brief Calculate remaining input buffer length.
* @param s codec context
* @param gb bitstream reader context
* @return remaining size in bits
*/
static int remaining_bits(WmallDecodeCtx *s, GetBitContext *gb)
{
return s->buf_bit_size - get_bits_count(gb);
}
/**
* @brief Fill the bit reservoir with a (partial) frame.
* @param s codec context
* @param gb bitstream reader context
* @param len length of the partial frame
* @param append decides whether to reset the buffer or not
*/
static void save_bits(WmallDecodeCtx *s, GetBitContext* gb, int len,
int append)
{
int buflen;
PutBitContext tmp;
/* when the frame data does not need to be concatenated, the input buffer
is reset and additional bits from the previous frame are copied
and skipped later so that a fast byte copy is possible */
if (!append) {
s->frame_offset = get_bits_count(gb) & 7;
s->num_saved_bits = s->frame_offset;
init_put_bits(&s->pb, s->frame_data, s->max_frame_size);
}
buflen = (s->num_saved_bits + len + 8) >> 3;
if (len <= 0 || buflen > s->max_frame_size) {
avpriv_request_sample(s->avctx, "Too small input buffer");
s->packet_loss = 1;
s->num_saved_bits = 0;
return;
}
s->num_saved_bits += len;
if (!append) {
ff_copy_bits(&s->pb, gb->buffer + (get_bits_count(gb) >> 3),
s->num_saved_bits);
} else {
int align = 8 - (get_bits_count(gb) & 7);
align = FFMIN(align, len);
put_bits(&s->pb, align, get_bits(gb, align));
len -= align;
ff_copy_bits(&s->pb, gb->buffer + (get_bits_count(gb) >> 3), len);
}
skip_bits_long(gb, len);
tmp = s->pb;
flush_put_bits(&tmp);
init_get_bits(&s->gb, s->frame_data, s->num_saved_bits);
skip_bits(&s->gb, s->frame_offset);
}
static int decode_packet(AVCodecContext *avctx, AVFrame *rframe,
int *got_frame_ptr, AVPacket* avpkt)
{
WmallDecodeCtx *s = avctx->priv_data;
GetBitContext* gb = &s->pgb;
const uint8_t* buf = avpkt->data;
int buf_size = avpkt->size;
int num_bits_prev_frame, packet_sequence_number, spliced_packet;
s->frame->nb_samples = 0;
if (!buf_size) {
s->packet_done = 0;
if (s->num_saved_bits <= get_bits_count(&s->gb))
return 0;
if (!decode_frame(s))
s->num_saved_bits = 0;
} else if (s->packet_done || s->packet_loss) {
s->packet_done = 0;
s->next_packet_start = buf_size - FFMIN(avctx->block_align, buf_size);
buf_size = FFMIN(avctx->block_align, buf_size);
s->buf_bit_size = buf_size << 3;
/* parse packet header */
init_get_bits(gb, buf, s->buf_bit_size);
packet_sequence_number = get_bits(gb, 4);
skip_bits(gb, 1); // Skip seekable_frame_in_packet, currently unused
spliced_packet = get_bits1(gb);
if (spliced_packet)
avpriv_request_sample(avctx, "Bitstream splicing");
/* get number of bits that need to be added to the previous frame */
num_bits_prev_frame = get_bits(gb, s->log2_frame_size);
/* check for packet loss */
if (!s->packet_loss &&
((s->packet_sequence_number + 1) & 0xF) != packet_sequence_number) {
s->packet_loss = 1;
av_log(avctx, AV_LOG_ERROR,
"Packet loss detected! seq %"PRIx8" vs %x\n",
s->packet_sequence_number, packet_sequence_number);
}
s->packet_sequence_number = packet_sequence_number;
if (num_bits_prev_frame > 0) {
int remaining_packet_bits = s->buf_bit_size - get_bits_count(gb);
if (num_bits_prev_frame >= remaining_packet_bits) {
num_bits_prev_frame = remaining_packet_bits;
s->packet_done = 1;
}
/* Append the previous frame data to the remaining data from the
* previous packet to create a full frame. */
save_bits(s, gb, num_bits_prev_frame, 1);
/* decode the cross packet frame if it is valid */
if (num_bits_prev_frame < remaining_packet_bits && !s->packet_loss)
decode_frame(s);
} else if (s->num_saved_bits - s->frame_offset) {
ff_dlog(avctx, "ignoring %x previously saved bits\n",
s->num_saved_bits - s->frame_offset);
}
if (s->packet_loss) {
/* Reset number of saved bits so that the decoder does not start
* to decode incomplete frames in the s->len_prefix == 0 case. */
s->num_saved_bits = 0;
s->packet_loss = 0;
init_put_bits(&s->pb, s->frame_data, s->max_frame_size);
}
} else {
int frame_size;
s->buf_bit_size = (avpkt->size - s->next_packet_start) << 3;
init_get_bits(gb, avpkt->data, s->buf_bit_size);
skip_bits(gb, s->packet_offset);
if (s->len_prefix && remaining_bits(s, gb) > s->log2_frame_size &&
(frame_size = show_bits(gb, s->log2_frame_size)) &&
frame_size <= remaining_bits(s, gb)) {
save_bits(s, gb, frame_size, 0);
if (!s->packet_loss)
s->packet_done = !decode_frame(s);
} else if (!s->len_prefix
&& s->num_saved_bits > get_bits_count(&s->gb)) {
/* when the frames do not have a length prefix, we don't know the
* compressed length of the individual frames however, we know what
* part of a new packet belongs to the previous frame therefore we
* save the incoming packet first, then we append the "previous
* frame" data from the next packet so that we get a buffer that
* only contains full frames */
s->packet_done = !decode_frame(s);
} else {
s->packet_done = 1;
}
}
if (remaining_bits(s, gb) < 0) {
av_log(avctx, AV_LOG_ERROR, "Overread %d\n", -remaining_bits(s, gb));
s->packet_loss = 1;
}
if (s->packet_done && !s->packet_loss &&
remaining_bits(s, gb) > 0) {
/* save the rest of the data so that it can be decoded
* with the next packet */
save_bits(s, gb, remaining_bits(s, gb), 0);
}
*got_frame_ptr = s->frame->nb_samples > 0;
av_frame_move_ref(rframe, s->frame);
s->packet_offset = get_bits_count(gb) & 7;
return (s->packet_loss) ? AVERROR_INVALIDDATA : get_bits_count(gb) >> 3;
}
static void flush(AVCodecContext *avctx)
{
WmallDecodeCtx *s = avctx->priv_data;
s->packet_loss = 1;
s->packet_done = 0;
s->num_saved_bits = 0;
s->frame_offset = 0;
s->next_packet_start = 0;
s->cdlms[0][0].order = 0;
s->frame->nb_samples = 0;
init_put_bits(&s->pb, s->frame_data, s->max_frame_size);
}
static av_cold int decode_close(AVCodecContext *avctx)
{
WmallDecodeCtx *s = avctx->priv_data;
av_frame_free(&s->frame);
av_freep(&s->frame_data);
return 0;
}
const FFCodec ff_wmalossless_decoder = {
.p.name = "wmalossless",
CODEC_LONG_NAME("Windows Media Audio Lossless"),
.p.type = AVMEDIA_TYPE_AUDIO,
.p.id = AV_CODEC_ID_WMALOSSLESS,
.priv_data_size = sizeof(WmallDecodeCtx),
.init = decode_init,
.close = decode_close,
FF_CODEC_DECODE_CB(decode_packet),
.flush = flush,
.p.capabilities =
#if FF_API_SUBFRAMES
AV_CODEC_CAP_SUBFRAMES |
#endif
AV_CODEC_CAP_DR1 | AV_CODEC_CAP_DELAY,
.caps_internal = FF_CODEC_CAP_INIT_CLEANUP,
.p.sample_fmts = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_S16P,
AV_SAMPLE_FMT_S32P,
AV_SAMPLE_FMT_NONE },
};