1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2024-12-02 03:06:28 +02:00
FFmpeg/libavcodec/ppc/dsputil_altivec.c
Brian Foley 9c76bd48aa * altivec and pix_norm patch by Brian Foley
Originally committed as revision 1269 to svn://svn.ffmpeg.org/ffmpeg/trunk
2002-11-22 07:53:06 +00:00

535 lines
17 KiB
C

/*
* Copyright (c) 2002 Brian Foley
* Copyright (c) 2002 Dieter Shirley
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include "../dsputil.h"
#include "dsputil_altivec.h"
#if CONFIG_DARWIN
#include <sys/sysctl.h>
#endif
int pix_abs16x16_x2_altivec(uint8_t *pix1, uint8_t *pix2, int line_size)
{
int s, i;
vector unsigned char *tv, zero;
vector unsigned char pix1v, pix2v, pix2iv, avgv, t5;
vector unsigned int sad;
vector signed int sumdiffs;
s = 0;
zero = vec_splat_u8(0);
sad = vec_splat_u32(0);
for(i=0;i<16;i++) {
/*
Read unaligned pixels into our vectors. The vectors are as follows:
pix1v: pix1[0]-pix1[15]
pix2v: pix2[0]-pix2[15] pix2iv: pix2[1]-pix2[16]
*/
tv = (vector unsigned char *) pix1;
pix1v = vec_perm(tv[0], tv[1], vec_lvsl(0, pix1));
tv = (vector unsigned char *) &pix2[0];
pix2v = vec_perm(tv[0], tv[1], vec_lvsl(0, &pix2[0]));
tv = (vector unsigned char *) &pix2[1];
pix2iv = vec_perm(tv[0], tv[1], vec_lvsl(0, &pix2[1]));
/* Calculate the average vector */
avgv = vec_avg(pix2v, pix2iv);
/* Calculate a sum of abs differences vector */
t5 = vec_sub(vec_max(pix1v, avgv), vec_min(pix1v, avgv));
/* Add each 4 pixel group together and put 4 results into sad */
sad = vec_sum4s(t5, sad);
pix1 += line_size;
pix2 += line_size;
}
/* Sum up the four partial sums, and put the result into s */
sumdiffs = vec_sums((vector signed int) sad, (vector signed int) zero);
sumdiffs = vec_splat(sumdiffs, 3);
vec_ste(sumdiffs, 0, &s);
return s;
}
int pix_abs16x16_y2_altivec(uint8_t *pix1, uint8_t *pix2, int line_size)
{
int s, i;
vector unsigned char *tv, zero;
vector unsigned char pix1v, pix2v, pix3v, avgv, t5;
vector unsigned int sad;
vector signed int sumdiffs;
uint8_t *pix3 = pix2 + line_size;
s = 0;
zero = vec_splat_u8(0);
sad = vec_splat_u32(0);
/*
Due to the fact that pix3 = pix2 + line_size, the pix3 of one
iteration becomes pix2 in the next iteration. We can use this
fact to avoid a potentially expensive unaligned read, each
time around the loop.
Read unaligned pixels into our vectors. The vectors are as follows:
pix2v: pix2[0]-pix2[15]
Split the pixel vectors into shorts
*/
tv = (vector unsigned char *) &pix2[0];
pix2v = vec_perm(tv[0], tv[1], vec_lvsl(0, &pix2[0]));
for(i=0;i<16;i++) {
/*
Read unaligned pixels into our vectors. The vectors are as follows:
pix1v: pix1[0]-pix1[15]
pix3v: pix3[0]-pix3[15]
*/
tv = (vector unsigned char *) pix1;
pix1v = vec_perm(tv[0], tv[1], vec_lvsl(0, pix1));
tv = (vector unsigned char *) &pix3[0];
pix3v = vec_perm(tv[0], tv[1], vec_lvsl(0, &pix3[0]));
/* Calculate the average vector */
avgv = vec_avg(pix2v, pix3v);
/* Calculate a sum of abs differences vector */
t5 = vec_sub(vec_max(pix1v, avgv), vec_min(pix1v, avgv));
/* Add each 4 pixel group together and put 4 results into sad */
sad = vec_sum4s(t5, sad);
pix1 += line_size;
pix2v = pix3v;
pix3 += line_size;
}
/* Sum up the four partial sums, and put the result into s */
sumdiffs = vec_sums((vector signed int) sad, (vector signed int) zero);
sumdiffs = vec_splat(sumdiffs, 3);
vec_ste(sumdiffs, 0, &s);
return s;
}
int pix_abs16x16_xy2_altivec(uint8_t *pix1, uint8_t *pix2, int line_size)
{
int s, i;
uint8_t *pix3 = pix2 + line_size;
vector unsigned char *tv, avgv, t5, zero;
vector unsigned char pix1v, pix2v, pix3v, pix2iv, pix3iv;
vector unsigned short pix2lv, pix2hv, pix2ilv, pix2ihv;
vector unsigned short pix3lv, pix3hv, pix3ilv, pix3ihv;
vector unsigned short avghv, avglv, two;
vector unsigned short t1, t2, t3, t4;
vector unsigned int sad;
vector signed int sumdiffs;
zero = vec_splat_u8(0);
two = vec_splat_u16(2);
sad = vec_splat_u32(0);
s = 0;
/*
Due to the fact that pix3 = pix2 + line_size, the pix3 of one
iteration becomes pix2 in the next iteration. We can use this
fact to avoid a potentially expensive unaligned read, as well
as some splitting, and vector addition each time around the loop.
Read unaligned pixels into our vectors. The vectors are as follows:
pix2v: pix2[0]-pix2[15] pix2iv: pix2[1]-pix2[16]
Split the pixel vectors into shorts
*/
tv = (vector unsigned char *) &pix2[0];
pix2v = vec_perm(tv[0], tv[1], vec_lvsl(0, &pix2[0]));
tv = (vector unsigned char *) &pix2[1];
pix2iv = vec_perm(tv[0], tv[1], vec_lvsl(0, &pix2[1]));
pix2hv = (vector unsigned short) vec_mergeh(zero, pix2v);
pix2lv = (vector unsigned short) vec_mergel(zero, pix2v);
pix2ihv = (vector unsigned short) vec_mergeh(zero, pix2iv);
pix2ilv = (vector unsigned short) vec_mergel(zero, pix2iv);
t1 = vec_add(pix2hv, pix2ihv);
t2 = vec_add(pix2lv, pix2ilv);
for(i=0;i<16;i++) {
/*
Read unaligned pixels into our vectors. The vectors are as follows:
pix1v: pix1[0]-pix1[15]
pix3v: pix3[0]-pix3[15] pix3iv: pix3[1]-pix3[16]
*/
tv = (vector unsigned char *) pix1;
pix1v = vec_perm(tv[0], tv[1], vec_lvsl(0, pix1));
tv = (vector unsigned char *) &pix3[0];
pix3v = vec_perm(tv[0], tv[1], vec_lvsl(0, &pix3[0]));
tv = (vector unsigned char *) &pix3[1];
pix3iv = vec_perm(tv[0], tv[1], vec_lvsl(0, &pix3[1]));
/*
Note that Altivec does have vec_avg, but this works on vector pairs
and rounds up. We could do avg(avg(a,b),avg(c,d)), but the rounding
would mean that, for example, avg(3,0,0,1) = 2, when it should be 1.
Instead, we have to split the pixel vectors into vectors of shorts,
and do the averaging by hand.
*/
/* Split the pixel vectors into shorts */
pix3hv = (vector unsigned short) vec_mergeh(zero, pix3v);
pix3lv = (vector unsigned short) vec_mergel(zero, pix3v);
pix3ihv = (vector unsigned short) vec_mergeh(zero, pix3iv);
pix3ilv = (vector unsigned short) vec_mergel(zero, pix3iv);
/* Do the averaging on them */
t3 = vec_add(pix3hv, pix3ihv);
t4 = vec_add(pix3lv, pix3ilv);
avghv = vec_sr(vec_add(vec_add(t1, t3), two), two);
avglv = vec_sr(vec_add(vec_add(t2, t4), two), two);
/* Pack the shorts back into a result */
avgv = vec_pack(avghv, avglv);
/* Calculate a sum of abs differences vector */
t5 = vec_sub(vec_max(pix1v, avgv), vec_min(pix1v, avgv));
/* Add each 4 pixel group together and put 4 results into sad */
sad = vec_sum4s(t5, sad);
pix1 += line_size;
pix3 += line_size;
/* Transfer the calculated values for pix3 into pix2 */
t1 = t3;
t2 = t4;
}
/* Sum up the four partial sums, and put the result into s */
sumdiffs = vec_sums((vector signed int) sad, (vector signed int) zero);
sumdiffs = vec_splat(sumdiffs, 3);
vec_ste(sumdiffs, 0, &s);
return s;
}
int pix_abs16x16_altivec(uint8_t *pix1, uint8_t *pix2, int line_size)
{
int i, s;
vector unsigned char perm1, perm2, *pix1v, *pix2v;
vector unsigned char t1, t2, t3,t4, t5;
vector unsigned int sad, zero;
vector signed int sumdiffs;
zero = (vector unsigned int) (0);
sad = (vector unsigned int) (0);
for(i=0;i<16;i++) {
/* Read potentially unaligned pixels into t1 and t2 */
perm1 = vec_lvsl(0, pix1);
pix1v = (vector unsigned char *) pix1;
perm2 = vec_lvsl(0, pix2);
pix2v = (vector unsigned char *) pix2;
t1 = vec_perm(pix1v[0], pix1v[1], perm1);
t2 = vec_perm(pix2v[0], pix2v[1], perm2);
/* Calculate a sum of abs differences vector */
t3 = vec_max(t1, t2);
t4 = vec_min(t1, t2);
t5 = vec_sub(t3, t4);
/* Add each 4 pixel group together and put 4 results into sad */
sad = vec_sum4s(t5, sad);
pix1 += line_size;
pix2 += line_size;
}
/* Sum up the four partial sums, and put the result into s */
sumdiffs = vec_sums((vector signed int) sad, (vector signed int) zero);
sumdiffs = vec_splat(sumdiffs, 3);
vec_ste(sumdiffs, 0, &s);
return s;
}
int pix_abs8x8_altivec(uint8_t *pix1, uint8_t *pix2, int line_size)
{
int i, s;
vector unsigned char perm1, perm2, permclear, *pix1v, *pix2v;
vector unsigned char t1, t2, t3,t4, t5;
vector unsigned int sad, zero;
vector signed int sumdiffs;
zero = (vector unsigned int) (0);
sad = (vector unsigned int) (0);
permclear = (vector unsigned char) (255,255,255,255,255,255,255,255,0,0,0,0,0,0,0,0);
for(i=0;i<8;i++) {
/* Read potentially unaligned pixels into t1 and t2
Since we're reading 16 pixels, and actually only want 8,
mask out the last 8 pixels. The 0s don't change the sum. */
perm1 = vec_lvsl(0, pix1);
pix1v = (vector unsigned char *) pix1;
perm2 = vec_lvsl(0, pix2);
pix2v = (vector unsigned char *) pix2;
t1 = vec_and(vec_perm(pix1v[0], pix1v[1], perm1), permclear);
t2 = vec_and(vec_perm(pix2v[0], pix2v[1], perm2), permclear);
/* Calculate a sum of abs differences vector */
t3 = vec_max(t1, t2);
t4 = vec_min(t1, t2);
t5 = vec_sub(t3, t4);
/* Add each 4 pixel group together and put 4 results into sad */
sad = vec_sum4s(t5, sad);
pix1 += line_size;
pix2 += line_size;
}
/* Sum up the four partial sums, and put the result into s */
sumdiffs = vec_sums((vector signed int) sad, (vector signed int) zero);
sumdiffs = vec_splat(sumdiffs, 3);
vec_ste(sumdiffs, 0, &s);
return s;
}
int pix_norm1_altivec(uint8_t *pix, int line_size)
{
int s, i;
vector unsigned char *tv, zero;
vector unsigned char pixv;
vector unsigned int sv;
vector signed int sum;
zero = vec_splat_u8(0);
sv = vec_splat_u32(0);
s = 0;
for (i = 0; i < 16; i++) {
/* Read in the potentially unaligned pixels */
tv = (vector unsigned char *) pix;
pixv = vec_perm(tv[0], tv[1], vec_lvsl(0, pix));
/* Square the values, and add them to our sum */
sv = vec_msum(pixv, pixv, sv);
pix += line_size;
}
/* Sum up the four partial sums, and put the result into s */
sum = vec_sums((vector signed int) sv, (vector signed int) zero);
sum = vec_splat(sum, 3);
vec_ste(sum, 0, &s);
return s;
}
int pix_norm_altivec(uint8_t *pix1, uint8_t *pix2, int line_size)
{
int s, i;
vector unsigned char *tv, zero;
vector unsigned char pix1v, pix2v, t5;
vector unsigned int sv;
vector signed int sum;
zero = vec_splat_u8(0);
sv = vec_splat_u32(0);
s = 0;
for (i = 0; i < 16; i++) {
/* Read in the potentially unaligned pixels */
tv = (vector unsigned char *) pix1;
pix1v = vec_perm(tv[0], tv[1], vec_lvsl(0, pix1));
tv = (vector unsigned char *) pix2;
pix2v = vec_perm(tv[0], tv[1], vec_lvsl(0, pix2));
/*
Since we want to use unsigned chars, we can take advantage
of the fact that abs(a-b)^2 = (a-b)^2.
*/
/* Calculate a sum of abs differences vector */
t5 = vec_sub(vec_max(pix1v, pix2v), vec_min(pix1v, pix2v));
/* Square the values and add them to our sum */
sv = vec_msum(t5, t5, sv);
pix1 += line_size;
pix2 += line_size;
}
/* Sum up the four partial sums, and put the result into s */
sum = vec_sums((vector signed int) sv, (vector signed int) zero);
sum = vec_splat(sum, 3);
vec_ste(sum, 0, &s);
return s;
}
int pix_sum_altivec(UINT8 * pix, int line_size)
{
vector unsigned char perm, *pixv;
vector unsigned char t1;
vector unsigned int sad, zero;
vector signed int sumdiffs;
int s, i;
zero = (vector unsigned int) (0);
sad = (vector unsigned int) (0);
for (i = 0; i < 16; i++) {
/* Read the potentially unaligned 16 pixels into t1 */
perm = vec_lvsl(0, pix);
pixv = (vector unsigned char *) pix;
t1 = vec_perm(pixv[0], pixv[1], perm);
/* Add each 4 pixel group together and put 4 results into sad */
sad = vec_sum4s(t1, sad);
pix += line_size;
}
/* Sum up the four partial sums, and put the result into s */
sumdiffs = vec_sums((vector signed int) sad, (vector signed int) zero);
sumdiffs = vec_splat(sumdiffs, 3);
vec_ste(sumdiffs, 0, &s);
return s;
}
void get_pixels_altivec(DCTELEM *restrict block, const UINT8 *pixels, int line_size)
{
int i;
vector unsigned char perm, bytes, *pixv;
vector unsigned char zero = (vector unsigned char) (0);
vector signed short shorts;
for(i=0;i<8;i++)
{
// Read potentially unaligned pixels.
// We're reading 16 pixels, and actually only want 8,
// but we simply ignore the extras.
perm = vec_lvsl(0, pixels);
pixv = (vector unsigned char *) pixels;
bytes = vec_perm(pixv[0], pixv[1], perm);
// convert the bytes into shorts
shorts = (vector signed short)vec_mergeh(zero, bytes);
// save the data to the block, we assume the block is 16-byte aligned
vec_st(shorts, i*16, (vector signed short*)block);
pixels += line_size;
}
}
void diff_pixels_altivec(DCTELEM *restrict block, const UINT8 *s1,
const UINT8 *s2, int stride)
{
int i;
vector unsigned char perm, bytes, *pixv;
vector unsigned char zero = (vector unsigned char) (0);
vector signed short shorts1, shorts2;
for(i=0;i<4;i++)
{
// Read potentially unaligned pixels
// We're reading 16 pixels, and actually only want 8,
// but we simply ignore the extras.
perm = vec_lvsl(0, s1);
pixv = (vector unsigned char *) s1;
bytes = vec_perm(pixv[0], pixv[1], perm);
// convert the bytes into shorts
shorts1 = (vector signed short)vec_mergeh(zero, bytes);
// Do the same for the second block of pixels
perm = vec_lvsl(0, s2);
pixv = (vector unsigned char *) s2;
bytes = vec_perm(pixv[0], pixv[1], perm);
// convert the bytes into shorts
shorts2 = (vector signed short)vec_mergeh(zero, bytes);
// Do the subtraction
shorts1 = vec_sub(shorts1, shorts2);
// save the data to the block, we assume the block is 16-byte aligned
vec_st(shorts1, 0, (vector signed short*)block);
s1 += stride;
s2 += stride;
block += 8;
// The code below is a copy of the code above... This is a manual
// unroll.
// Read potentially unaligned pixels
// We're reading 16 pixels, and actually only want 8,
// but we simply ignore the extras.
perm = vec_lvsl(0, s1);
pixv = (vector unsigned char *) s1;
bytes = vec_perm(pixv[0], pixv[1], perm);
// convert the bytes into shorts
shorts1 = (vector signed short)vec_mergeh(zero, bytes);
// Do the same for the second block of pixels
perm = vec_lvsl(0, s2);
pixv = (vector unsigned char *) s2;
bytes = vec_perm(pixv[0], pixv[1], perm);
// convert the bytes into shorts
shorts2 = (vector signed short)vec_mergeh(zero, bytes);
// Do the subtraction
shorts1 = vec_sub(shorts1, shorts2);
// save the data to the block, we assume the block is 16-byte aligned
vec_st(shorts1, 0, (vector signed short*)block);
s1 += stride;
s2 += stride;
block += 8;
}
}
int has_altivec(void)
{
#if CONFIG_DARWIN
int sels[2] = {CTL_HW, HW_VECTORUNIT};
int has_vu = 0;
size_t len = sizeof(has_vu);
int err;
err = sysctl(sels, 2, &has_vu, &len, NULL, 0);
if (err == 0) return (has_vu != 0);
#endif
return 0;
}