1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2025-01-13 21:28:01 +02:00
FFmpeg/libavcodec/bsf/dts2pts.c
Andreas Rheinhardt 790f793844 avutil/common: Don't auto-include mem.h
There are lots of files that don't need it: The number of object
files that actually need it went down from 2011 to 884 here.

Keep it for external users in order to not cause breakages.

Also improve the other headers a bit while just at it.

Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
2024-03-31 00:08:43 +01:00

542 lines
17 KiB
C

/*
* Copyright (c) 2022 James Almer
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* Derive PTS by reordering DTS from supported streams
*/
#include "libavutil/avassert.h"
#include "libavutil/fifo.h"
#include "libavutil/mem.h"
#include "libavutil/tree.h"
#include "bsf.h"
#include "bsf_internal.h"
#include "cbs.h"
#include "cbs_h264.h"
#include "h264_parse.h"
#include "h264_ps.h"
typedef struct DTS2PTSNode {
int64_t dts;
int64_t duration;
int poc;
int gop;
} DTS2PTSNode;
typedef struct DTS2PTSFrame {
AVPacket *pkt;
int poc;
int poc_diff;
int gop;
} DTS2PTSFrame;
typedef struct DTS2PTSH264Context {
H264POCContext poc;
SPS sps;
int poc_diff;
int last_poc;
int highest_poc;
int picture_structure;
} DTS2PTSH264Context;
typedef struct DTS2PTSContext {
struct AVTreeNode *root;
AVFifo *fifo;
// Codec specific function pointers and constants
int (*init)(AVBSFContext *ctx);
int (*filter)(AVBSFContext *ctx);
void (*flush)(AVBSFContext *ctx);
size_t fifo_size;
CodedBitstreamContext *cbc;
CodedBitstreamFragment au;
union {
DTS2PTSH264Context h264;
} u;
int nb_frame;
int gop;
int eof;
} DTS2PTSContext;
// AVTreeNode callbacks
static int cmp_insert(const void *key, const void *node)
{
int ret = ((const DTS2PTSNode *)key)->poc - ((const DTS2PTSNode *)node)->poc;
if (!ret)
ret = ((const DTS2PTSNode *)key)->gop - ((const DTS2PTSNode *)node)->gop;
return ret;
}
static int cmp_find(const void *key, const void *node)
{
const DTS2PTSFrame * key1 = key;
const DTS2PTSNode *node1 = node;
int ret = FFDIFFSIGN(key1->poc, node1->poc);
if (!ret)
ret = key1->gop - node1->gop;
return ret;
}
static int dec_poc(void *opaque, void *elem)
{
DTS2PTSNode *node = elem;
int dec = *(int *)opaque;
node->poc -= dec;
return 0;
}
static int free_node(void *opaque, void *elem)
{
DTS2PTSNode *node = elem;
av_free(node);
return 0;
}
// Shared functions
static int alloc_and_insert_node(AVBSFContext *ctx, int64_t ts, int64_t duration,
int poc, int poc_diff, int gop)
{
DTS2PTSContext *s = ctx->priv_data;
for (int i = 0; i < poc_diff; i++) {
struct AVTreeNode *node = av_tree_node_alloc();
DTS2PTSNode *poc_node, *ret;
if (!node)
return AVERROR(ENOMEM);
poc_node = av_malloc(sizeof(*poc_node));
if (!poc_node) {
av_free(node);
return AVERROR(ENOMEM);
}
if (i && ts != AV_NOPTS_VALUE)
ts += duration / poc_diff;
*poc_node = (DTS2PTSNode) { ts, duration, poc++, gop };
ret = av_tree_insert(&s->root, poc_node, cmp_insert, &node);
if (ret && ret != poc_node) {
*ret = *poc_node;
av_free(poc_node);
av_free(node);
}
}
return 0;
}
// H.264
static const CodedBitstreamUnitType h264_decompose_unit_types[] = {
H264_NAL_SPS,
H264_NAL_PPS,
H264_NAL_IDR_SLICE,
H264_NAL_SLICE,
};
static int h264_init(AVBSFContext *ctx)
{
DTS2PTSContext *s = ctx->priv_data;
DTS2PTSH264Context *h264 = &s->u.h264;
s->cbc->decompose_unit_types = h264_decompose_unit_types;
s->cbc->nb_decompose_unit_types = FF_ARRAY_ELEMS(h264_decompose_unit_types);
s->nb_frame = -(ctx->par_in->video_delay << 1);
h264->last_poc = h264->highest_poc = INT_MIN;
return 0;
}
static int get_mmco_reset(const H264RawSliceHeader *header)
{
if (header->nal_unit_header.nal_ref_idc == 0 ||
!header->adaptive_ref_pic_marking_mode_flag)
return 0;
for (int i = 0; i < H264_MAX_MMCO_COUNT; i++) {
if (header->mmco[i].memory_management_control_operation == 0)
return 0;
else if (header->mmco[i].memory_management_control_operation == 5)
return 1;
}
return 0;
}
static int h264_queue_frame(AVBSFContext *ctx, AVPacket *pkt, int poc, int *queued)
{
DTS2PTSContext *s = ctx->priv_data;
DTS2PTSH264Context *h264 = &s->u.h264;
DTS2PTSFrame frame;
int poc_diff, ret;
poc_diff = (h264->picture_structure == 3) + 1;
if (h264->sps.frame_mbs_only_flag && h264->poc_diff)
poc_diff = FFMIN(poc_diff, h264->poc_diff);
if (poc < 0) {
av_tree_enumerate(s->root, &poc_diff, NULL, dec_poc);
s->nb_frame -= poc_diff;
}
// Check if there was a POC reset (Like an IDR slice)
if (s->nb_frame > h264->highest_poc) {
s->nb_frame = 0;
s->gop = (s->gop + 1) % s->fifo_size;
h264->highest_poc = h264->last_poc;
}
ret = alloc_and_insert_node(ctx, pkt->dts, pkt->duration, s->nb_frame, poc_diff, s->gop);
if (ret < 0)
return ret;
av_log(ctx, AV_LOG_DEBUG, "Queueing frame with POC %d, GOP %d, dts %"PRId64"\n",
poc, s->gop, pkt->dts);
s->nb_frame += poc_diff;
// Add frame to output FIFO only once
if (*queued)
return 0;
frame = (DTS2PTSFrame) { pkt, poc, poc_diff, s->gop };
ret = av_fifo_write(s->fifo, &frame, 1);
av_assert2(ret >= 0);
*queued = 1;
return 0;
}
static int h264_filter(AVBSFContext *ctx)
{
DTS2PTSContext *s = ctx->priv_data;
DTS2PTSH264Context *h264 = &s->u.h264;
CodedBitstreamFragment *au = &s->au;
AVPacket *in;
int output_picture_number = INT_MIN;
int field_poc[2];
int queued = 0, ret;
ret = ff_bsf_get_packet(ctx, &in);
if (ret < 0)
return ret;
ret = ff_cbs_read_packet(s->cbc, au, in);
if (ret < 0) {
av_log(ctx, AV_LOG_WARNING, "Failed to parse access unit.\n");
goto fail;
}
for (int i = 0; i < au->nb_units; i++) {
CodedBitstreamUnit *unit = &au->units[i];
switch (unit->type) {
case H264_NAL_IDR_SLICE:
h264->poc.prev_frame_num = 0;
h264->poc.prev_frame_num_offset = 0;
h264->poc.prev_poc_msb =
h264->poc.prev_poc_lsb = 0;
// fall-through
case H264_NAL_SLICE: {
const H264RawSlice *slice = unit->content;
const H264RawSliceHeader *header = &slice->header;
const CodedBitstreamH264Context *cbs_h264 = s->cbc->priv_data;
const H264RawSPS *sps = cbs_h264->active_sps;
int got_reset;
if (!sps) {
av_log(ctx, AV_LOG_ERROR, "No active SPS for a slice\n");
goto fail;
}
// Initialize the SPS struct with the fields ff_h264_init_poc() cares about
h264->sps.frame_mbs_only_flag = sps->frame_mbs_only_flag;
h264->sps.log2_max_frame_num = sps->log2_max_frame_num_minus4 + 4;
h264->sps.poc_type = sps->pic_order_cnt_type;
h264->sps.log2_max_poc_lsb = sps->log2_max_pic_order_cnt_lsb_minus4 + 4;
h264->sps.offset_for_non_ref_pic = sps->offset_for_non_ref_pic;
h264->sps.offset_for_top_to_bottom_field = sps->offset_for_top_to_bottom_field;
h264->sps.poc_cycle_length = sps->num_ref_frames_in_pic_order_cnt_cycle;
for (int i = 0; i < h264->sps.poc_cycle_length; i++)
h264->sps.offset_for_ref_frame[i] = sps->offset_for_ref_frame[i];
h264->picture_structure = sps->frame_mbs_only_flag ? 3 :
(header->field_pic_flag ?
header->field_pic_flag + header->bottom_field_flag : 3);
h264->poc.frame_num = header->frame_num;
h264->poc.poc_lsb = header->pic_order_cnt_lsb;
h264->poc.delta_poc_bottom = header->delta_pic_order_cnt_bottom;
h264->poc.delta_poc[0] = header->delta_pic_order_cnt[0];
h264->poc.delta_poc[1] = header->delta_pic_order_cnt[1];
field_poc[0] = field_poc[1] = INT_MAX;
ret = ff_h264_init_poc(field_poc, &output_picture_number, &h264->sps,
&h264->poc, h264->picture_structure,
header->nal_unit_header.nal_ref_idc);
if (ret < 0) {
av_log(ctx, AV_LOG_ERROR, "ff_h264_init_poc() failure\n");
goto fail;
}
got_reset = get_mmco_reset(header);
h264->poc.prev_frame_num = got_reset ? 0 : h264->poc.frame_num;
h264->poc.prev_frame_num_offset = got_reset ? 0 : h264->poc.frame_num_offset;
if (header->nal_unit_header.nal_ref_idc != 0) {
h264->poc.prev_poc_msb = got_reset ? 0 : h264->poc.poc_msb;
if (got_reset)
h264->poc.prev_poc_lsb = h264->picture_structure == 2 ? 0 : field_poc[0];
else
h264->poc.prev_poc_lsb = h264->poc.poc_lsb;
}
if (output_picture_number != h264->last_poc) {
if (h264->last_poc != INT_MIN) {
int64_t diff = FFABS(h264->last_poc - (int64_t)output_picture_number);
if ((output_picture_number < 0) && !h264->last_poc)
h264->poc_diff = 0;
else if (FFABS((int64_t)output_picture_number) < h264->poc_diff) {
diff = FFABS(output_picture_number);
h264->poc_diff = 0;
}
if ((!h264->poc_diff || (h264->poc_diff > diff)) && diff <= INT_MAX) {
h264->poc_diff = diff;
if (h264->poc_diff == 1 && h264->sps.frame_mbs_only_flag) {
av_tree_enumerate(s->root, &h264->poc_diff, NULL, dec_poc);
s->nb_frame -= 2;
}
}
}
h264->last_poc = output_picture_number;
h264->highest_poc = FFMAX(h264->highest_poc, output_picture_number);
ret = h264_queue_frame(ctx, in, output_picture_number, &queued);
if (ret < 0)
goto fail;
}
break;
}
default:
break;
}
}
if (output_picture_number == INT_MIN) {
av_log(ctx, AV_LOG_ERROR, "No slices in access unit\n");
ret = AVERROR_INVALIDDATA;
goto fail;
}
ret = 0;
fail:
ff_cbs_fragment_reset(au);
if (!queued)
av_packet_free(&in);
return ret;
}
static void h264_flush(AVBSFContext *ctx)
{
DTS2PTSContext *s = ctx->priv_data;
DTS2PTSH264Context *h264 = &s->u.h264;
memset(&h264->sps, 0, sizeof(h264->sps));
memset(&h264->poc, 0, sizeof(h264->poc));
s->nb_frame = -(ctx->par_in->video_delay << 1);
h264->last_poc = h264->highest_poc = INT_MIN;
}
// Core functions
static const struct {
enum AVCodecID id;
int (*init)(AVBSFContext *ctx);
int (*filter)(AVBSFContext *ctx);
void (*flush)(AVBSFContext *ctx);
size_t fifo_size;
} func_tab[] = {
{ AV_CODEC_ID_H264, h264_init, h264_filter, h264_flush, H264_MAX_DPB_FRAMES * 2 * 2 },
};
static int dts2pts_init(AVBSFContext *ctx)
{
DTS2PTSContext *s = ctx->priv_data;
CodedBitstreamFragment *au = &s->au;
int i, ret;
for (i = 0; i < FF_ARRAY_ELEMS(func_tab); i++) {
if (func_tab[i].id == ctx->par_in->codec_id) {
s->init = func_tab[i].init;
s->filter = func_tab[i].filter;
s->flush = func_tab[i].flush;
s->fifo_size = func_tab[i].fifo_size;
break;
}
}
if (i == FF_ARRAY_ELEMS(func_tab))
return AVERROR_BUG;
av_assert0(s->filter && s->fifo_size);
s->fifo = av_fifo_alloc2(s->fifo_size, sizeof(DTS2PTSFrame), 0);
if (!s->fifo)
return AVERROR(ENOMEM);
ret = ff_cbs_init(&s->cbc, ctx->par_in->codec_id, ctx);
if (ret < 0)
return ret;
if (s->init) {
ret = s->init(ctx);
if (ret < 0)
return ret;
}
if (!ctx->par_in->extradata_size)
return 0;
ret = ff_cbs_read_extradata(s->cbc, au, ctx->par_in);
if (ret < 0)
av_log(ctx, AV_LOG_WARNING, "Failed to parse extradata.\n");
ff_cbs_fragment_reset(au);
return 0;
}
static int dts2pts_filter(AVBSFContext *ctx, AVPacket *out)
{
DTS2PTSContext *s = ctx->priv_data;
DTS2PTSNode *poc_node = NULL, *next[2] = { NULL, NULL };
DTS2PTSFrame frame;
int ret;
// Fill up the FIFO and POC tree
while (!s->eof && av_fifo_can_write(s->fifo)) {
ret = s->filter(ctx);
if (ret < 0) {
if (ret != AVERROR_EOF)
return ret;
s->eof = 1;
}
}
if (!av_fifo_can_read(s->fifo))
return AVERROR_EOF;
// Fetch a packet from the FIFO
ret = av_fifo_read(s->fifo, &frame, 1);
av_assert2(ret >= 0);
av_packet_move_ref(out, frame.pkt);
av_packet_free(&frame.pkt);
// Search the timestamp for the requested POC and set PTS
poc_node = av_tree_find(s->root, &frame, cmp_find, (void **)next);
if (!poc_node) {
poc_node = next[1];
if (!poc_node || poc_node->poc != frame.poc)
poc_node = next[0];
}
if (poc_node && poc_node->poc == frame.poc) {
out->pts = poc_node->dts;
if (!s->eof) {
// Remove the found entry from the tree
DTS2PTSFrame dup = (DTS2PTSFrame) { NULL, frame.poc + 1, frame.poc_diff, frame.gop };
for (; dup.poc_diff > 0; dup.poc++, dup.poc_diff--) {
struct AVTreeNode *node = NULL;
if (!poc_node || poc_node->dts != out->pts)
continue;
av_tree_insert(&s->root, poc_node, cmp_insert, &node);
av_free(poc_node);
av_free(node);
poc_node = av_tree_find(s->root, &dup, cmp_find, NULL);
}
}
} else if (s->eof && frame.poc > INT_MIN) {
DTS2PTSFrame dup = (DTS2PTSFrame) { NULL, frame.poc - 1, frame.poc_diff, frame.gop };
poc_node = av_tree_find(s->root, &dup, cmp_find, NULL);
if (poc_node && poc_node->poc == dup.poc) {
out->pts = poc_node->dts;
if (out->pts != AV_NOPTS_VALUE)
out->pts += poc_node->duration;
ret = alloc_and_insert_node(ctx, out->pts, out->duration,
frame.poc, frame.poc_diff, frame.gop);
if (ret < 0) {
av_packet_unref(out);
return ret;
}
if (!ret)
av_log(ctx, AV_LOG_DEBUG, "Queueing frame for POC %d, GOP %d, dts %"PRId64", "
"generated from POC %d, GOP %d, dts %"PRId64", duration %"PRId64"\n",
frame.poc, frame.gop, out->pts,
poc_node->poc, poc_node->gop, poc_node->dts, poc_node->duration);
} else
av_log(ctx, AV_LOG_WARNING, "No timestamp for POC %d in tree\n", frame.poc);
} else
av_log(ctx, AV_LOG_WARNING, "No timestamp for POC %d in tree\n", frame.poc);
av_log(ctx, AV_LOG_DEBUG, "Returning frame for POC %d, GOP %d, dts %"PRId64", pts %"PRId64"\n",
frame.poc, frame.gop, out->dts, out->pts);
return 0;
}
static void dts2pts_flush(AVBSFContext *ctx)
{
DTS2PTSContext *s = ctx->priv_data;
DTS2PTSFrame frame;
if (s->flush)
s->flush(ctx);
s->eof = 0;
s->gop = 0;
while (s->fifo && av_fifo_read(s->fifo, &frame, 1) >= 0)
av_packet_free(&frame.pkt);
av_tree_enumerate(s->root, NULL, NULL, free_node);
av_tree_destroy(s->root);
s->root = NULL;
ff_cbs_fragment_reset(&s->au);
if (s->cbc)
ff_cbs_flush(s->cbc);
}
static void dts2pts_close(AVBSFContext *ctx)
{
DTS2PTSContext *s = ctx->priv_data;
dts2pts_flush(ctx);
av_fifo_freep2(&s->fifo);
ff_cbs_fragment_free(&s->au);
ff_cbs_close(&s->cbc);
}
static const enum AVCodecID dts2pts_codec_ids[] = {
AV_CODEC_ID_H264,
AV_CODEC_ID_NONE,
};
const FFBitStreamFilter ff_dts2pts_bsf = {
.p.name = "dts2pts",
.p.codec_ids = dts2pts_codec_ids,
.priv_data_size = sizeof(DTS2PTSContext),
.init = dts2pts_init,
.flush = dts2pts_flush,
.close = dts2pts_close,
.filter = dts2pts_filter,
};