You've already forked FFmpeg
							
							
				mirror of
				https://github.com/FFmpeg/FFmpeg.git
				synced 2025-10-30 23:18:11 +02:00 
			
		
		
		
	
		
			
				
	
	
		
			473 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			473 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (C) 2011-2012 Michael Niedermayer (michaelni@gmx.at)
 | |
|  *
 | |
|  * This file is part of libswresample
 | |
|  *
 | |
|  * libswresample is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU Lesser General Public
 | |
|  * License as published by the Free Software Foundation; either
 | |
|  * version 2.1 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * libswresample is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * Lesser General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU Lesser General Public
 | |
|  * License along with libswresample; if not, write to the Free Software
 | |
|  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 | |
|  */
 | |
| 
 | |
| #include "swresample_internal.h"
 | |
| #include "libavutil/avassert.h"
 | |
| #include "libavutil/channel_layout.h"
 | |
| 
 | |
| #define TEMPLATE_REMATRIX_FLT
 | |
| #include "rematrix_template.c"
 | |
| #undef TEMPLATE_REMATRIX_FLT
 | |
| 
 | |
| #define TEMPLATE_REMATRIX_DBL
 | |
| #include "rematrix_template.c"
 | |
| #undef TEMPLATE_REMATRIX_DBL
 | |
| 
 | |
| #define TEMPLATE_REMATRIX_S16
 | |
| #include "rematrix_template.c"
 | |
| #undef TEMPLATE_REMATRIX_S16
 | |
| 
 | |
| #define FRONT_LEFT             0
 | |
| #define FRONT_RIGHT            1
 | |
| #define FRONT_CENTER           2
 | |
| #define LOW_FREQUENCY          3
 | |
| #define BACK_LEFT              4
 | |
| #define BACK_RIGHT             5
 | |
| #define FRONT_LEFT_OF_CENTER   6
 | |
| #define FRONT_RIGHT_OF_CENTER  7
 | |
| #define BACK_CENTER            8
 | |
| #define SIDE_LEFT              9
 | |
| #define SIDE_RIGHT             10
 | |
| #define TOP_CENTER             11
 | |
| #define TOP_FRONT_LEFT         12
 | |
| #define TOP_FRONT_CENTER       13
 | |
| #define TOP_FRONT_RIGHT        14
 | |
| #define TOP_BACK_LEFT          15
 | |
| #define TOP_BACK_CENTER        16
 | |
| #define TOP_BACK_RIGHT         17
 | |
| 
 | |
| int swr_set_matrix(struct SwrContext *s, const double *matrix, int stride)
 | |
| {
 | |
|     int nb_in, nb_out, in, out;
 | |
| 
 | |
|     if (!s || s->in_convert) // s needs to be allocated but not initialized
 | |
|         return AVERROR(EINVAL);
 | |
|     memset(s->matrix, 0, sizeof(s->matrix));
 | |
|     nb_in  = av_get_channel_layout_nb_channels(s->in_ch_layout);
 | |
|     nb_out = av_get_channel_layout_nb_channels(s->out_ch_layout);
 | |
|     for (out = 0; out < nb_out; out++) {
 | |
|         for (in = 0; in < nb_in; in++)
 | |
|             s->matrix[out][in] = matrix[in];
 | |
|         matrix += stride;
 | |
|     }
 | |
|     s->rematrix_custom = 1;
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int even(int64_t layout){
 | |
|     if(!layout) return 1;
 | |
|     if(layout&(layout-1)) return 1;
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int clean_layout(SwrContext *s, int64_t layout){
 | |
|     if((layout & AV_CH_LAYOUT_STEREO_DOWNMIX) == AV_CH_LAYOUT_STEREO_DOWNMIX)
 | |
|         return AV_CH_LAYOUT_STEREO;
 | |
| 
 | |
|     if(layout && layout != AV_CH_FRONT_CENTER && !(layout&(layout-1))) {
 | |
|         char buf[128];
 | |
|         av_get_channel_layout_string(buf, sizeof(buf), -1, layout);
 | |
|         av_log(s, AV_LOG_VERBOSE, "Treating %s as mono\n", buf);
 | |
|         return AV_CH_FRONT_CENTER;
 | |
|     }
 | |
| 
 | |
|     return layout;
 | |
| }
 | |
| 
 | |
| static int sane_layout(int64_t layout){
 | |
|     if(!(layout & AV_CH_LAYOUT_SURROUND)) // at least 1 front speaker
 | |
|         return 0;
 | |
|     if(!even(layout & (AV_CH_FRONT_LEFT | AV_CH_FRONT_RIGHT))) // no asymetric front
 | |
|         return 0;
 | |
|     if(!even(layout & (AV_CH_SIDE_LEFT | AV_CH_SIDE_RIGHT)))   // no asymetric side
 | |
|         return 0;
 | |
|     if(!even(layout & (AV_CH_BACK_LEFT | AV_CH_BACK_RIGHT)))
 | |
|         return 0;
 | |
|     if(!even(layout & (AV_CH_FRONT_LEFT_OF_CENTER | AV_CH_FRONT_RIGHT_OF_CENTER)))
 | |
|         return 0;
 | |
|     if(av_get_channel_layout_nb_channels(layout) >= SWR_CH_MAX)
 | |
|         return 0;
 | |
| 
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| av_cold static int auto_matrix(SwrContext *s)
 | |
| {
 | |
|     int i, j, out_i;
 | |
|     double matrix[64][64]={{0}};
 | |
|     int64_t unaccounted, in_ch_layout, out_ch_layout;
 | |
|     double maxcoef=0;
 | |
|     char buf[128];
 | |
|     const int matrix_encoding = s->matrix_encoding;
 | |
| 
 | |
|     in_ch_layout = clean_layout(s, s->in_ch_layout);
 | |
|     if(!sane_layout(in_ch_layout)){
 | |
|         av_get_channel_layout_string(buf, sizeof(buf), -1, s->in_ch_layout);
 | |
|         av_log(s, AV_LOG_ERROR, "Input channel layout '%s' is not supported\n", buf);
 | |
|         return AVERROR(EINVAL);
 | |
|     }
 | |
| 
 | |
|     out_ch_layout = clean_layout(s, s->out_ch_layout);
 | |
|     if(!sane_layout(out_ch_layout)){
 | |
|         av_get_channel_layout_string(buf, sizeof(buf), -1, s->out_ch_layout);
 | |
|         av_log(s, AV_LOG_ERROR, "Output channel layout '%s' is not supported\n", buf);
 | |
|         return AVERROR(EINVAL);
 | |
|     }
 | |
| 
 | |
|     memset(s->matrix, 0, sizeof(s->matrix));
 | |
|     for(i=0; i<64; i++){
 | |
|         if(in_ch_layout & out_ch_layout & (1ULL<<i))
 | |
|             matrix[i][i]= 1.0;
 | |
|     }
 | |
| 
 | |
|     unaccounted= in_ch_layout & ~out_ch_layout;
 | |
| 
 | |
| //FIXME implement dolby surround
 | |
| //FIXME implement full ac3
 | |
| 
 | |
| 
 | |
|     if(unaccounted & AV_CH_FRONT_CENTER){
 | |
|         if((out_ch_layout & AV_CH_LAYOUT_STEREO) == AV_CH_LAYOUT_STEREO){
 | |
|             if(in_ch_layout & AV_CH_LAYOUT_STEREO) {
 | |
|                 matrix[ FRONT_LEFT][FRONT_CENTER]+= s->clev;
 | |
|                 matrix[FRONT_RIGHT][FRONT_CENTER]+= s->clev;
 | |
|             } else {
 | |
|                 matrix[ FRONT_LEFT][FRONT_CENTER]+= M_SQRT1_2;
 | |
|                 matrix[FRONT_RIGHT][FRONT_CENTER]+= M_SQRT1_2;
 | |
|             }
 | |
|         }else
 | |
|             av_assert0(0);
 | |
|     }
 | |
|     if(unaccounted & AV_CH_LAYOUT_STEREO){
 | |
|         if(out_ch_layout & AV_CH_FRONT_CENTER){
 | |
|             matrix[FRONT_CENTER][ FRONT_LEFT]+= M_SQRT1_2;
 | |
|             matrix[FRONT_CENTER][FRONT_RIGHT]+= M_SQRT1_2;
 | |
|             if(in_ch_layout & AV_CH_FRONT_CENTER)
 | |
|                 matrix[FRONT_CENTER][ FRONT_CENTER] = s->clev*sqrt(2);
 | |
|         }else
 | |
|             av_assert0(0);
 | |
|     }
 | |
| 
 | |
|     if(unaccounted & AV_CH_BACK_CENTER){
 | |
|         if(out_ch_layout & AV_CH_BACK_LEFT){
 | |
|             matrix[ BACK_LEFT][BACK_CENTER]+= M_SQRT1_2;
 | |
|             matrix[BACK_RIGHT][BACK_CENTER]+= M_SQRT1_2;
 | |
|         }else if(out_ch_layout & AV_CH_SIDE_LEFT){
 | |
|             matrix[ SIDE_LEFT][BACK_CENTER]+= M_SQRT1_2;
 | |
|             matrix[SIDE_RIGHT][BACK_CENTER]+= M_SQRT1_2;
 | |
|         }else if(out_ch_layout & AV_CH_FRONT_LEFT){
 | |
|             if (matrix_encoding == AV_MATRIX_ENCODING_DOLBY ||
 | |
|                 matrix_encoding == AV_MATRIX_ENCODING_DPLII) {
 | |
|                 if (unaccounted & (AV_CH_BACK_LEFT | AV_CH_SIDE_LEFT)) {
 | |
|                     matrix[FRONT_LEFT ][BACK_CENTER] -= s->slev * M_SQRT1_2;
 | |
|                     matrix[FRONT_RIGHT][BACK_CENTER] += s->slev * M_SQRT1_2;
 | |
|                 } else {
 | |
|                     matrix[FRONT_LEFT ][BACK_CENTER] -= s->slev;
 | |
|                     matrix[FRONT_RIGHT][BACK_CENTER] += s->slev;
 | |
|                 }
 | |
|             } else {
 | |
|                 matrix[ FRONT_LEFT][BACK_CENTER]+= s->slev*M_SQRT1_2;
 | |
|                 matrix[FRONT_RIGHT][BACK_CENTER]+= s->slev*M_SQRT1_2;
 | |
|             }
 | |
|         }else if(out_ch_layout & AV_CH_FRONT_CENTER){
 | |
|             matrix[ FRONT_CENTER][BACK_CENTER]+= s->slev*M_SQRT1_2;
 | |
|         }else
 | |
|             av_assert0(0);
 | |
|     }
 | |
|     if(unaccounted & AV_CH_BACK_LEFT){
 | |
|         if(out_ch_layout & AV_CH_BACK_CENTER){
 | |
|             matrix[BACK_CENTER][ BACK_LEFT]+= M_SQRT1_2;
 | |
|             matrix[BACK_CENTER][BACK_RIGHT]+= M_SQRT1_2;
 | |
|         }else if(out_ch_layout & AV_CH_SIDE_LEFT){
 | |
|             if(in_ch_layout & AV_CH_SIDE_LEFT){
 | |
|                 matrix[ SIDE_LEFT][ BACK_LEFT]+= M_SQRT1_2;
 | |
|                 matrix[SIDE_RIGHT][BACK_RIGHT]+= M_SQRT1_2;
 | |
|             }else{
 | |
|             matrix[ SIDE_LEFT][ BACK_LEFT]+= 1.0;
 | |
|             matrix[SIDE_RIGHT][BACK_RIGHT]+= 1.0;
 | |
|             }
 | |
|         }else if(out_ch_layout & AV_CH_FRONT_LEFT){
 | |
|             if (matrix_encoding == AV_MATRIX_ENCODING_DOLBY) {
 | |
|                 matrix[FRONT_LEFT ][BACK_LEFT ] -= s->slev * M_SQRT1_2;
 | |
|                 matrix[FRONT_LEFT ][BACK_RIGHT] -= s->slev * M_SQRT1_2;
 | |
|                 matrix[FRONT_RIGHT][BACK_LEFT ] += s->slev * M_SQRT1_2;
 | |
|                 matrix[FRONT_RIGHT][BACK_RIGHT] += s->slev * M_SQRT1_2;
 | |
|             } else if (matrix_encoding == AV_MATRIX_ENCODING_DPLII) {
 | |
|                 matrix[FRONT_LEFT ][BACK_LEFT ] -= s->slev * SQRT3_2;
 | |
|                 matrix[FRONT_LEFT ][BACK_RIGHT] -= s->slev * M_SQRT1_2;
 | |
|                 matrix[FRONT_RIGHT][BACK_LEFT ] += s->slev * M_SQRT1_2;
 | |
|                 matrix[FRONT_RIGHT][BACK_RIGHT] += s->slev * SQRT3_2;
 | |
|             } else {
 | |
|                 matrix[ FRONT_LEFT][ BACK_LEFT] += s->slev;
 | |
|                 matrix[FRONT_RIGHT][BACK_RIGHT] += s->slev;
 | |
|             }
 | |
|         }else if(out_ch_layout & AV_CH_FRONT_CENTER){
 | |
|             matrix[ FRONT_CENTER][BACK_LEFT ]+= s->slev*M_SQRT1_2;
 | |
|             matrix[ FRONT_CENTER][BACK_RIGHT]+= s->slev*M_SQRT1_2;
 | |
|         }else
 | |
|             av_assert0(0);
 | |
|     }
 | |
| 
 | |
|     if(unaccounted & AV_CH_SIDE_LEFT){
 | |
|         if(out_ch_layout & AV_CH_BACK_LEFT){
 | |
|             /* if back channels do not exist in the input, just copy side
 | |
|                channels to back channels, otherwise mix side into back */
 | |
|             if (in_ch_layout & AV_CH_BACK_LEFT) {
 | |
|                 matrix[BACK_LEFT ][SIDE_LEFT ] += M_SQRT1_2;
 | |
|                 matrix[BACK_RIGHT][SIDE_RIGHT] += M_SQRT1_2;
 | |
|             } else {
 | |
|                 matrix[BACK_LEFT ][SIDE_LEFT ] += 1.0;
 | |
|                 matrix[BACK_RIGHT][SIDE_RIGHT] += 1.0;
 | |
|             }
 | |
|         }else if(out_ch_layout & AV_CH_BACK_CENTER){
 | |
|             matrix[BACK_CENTER][ SIDE_LEFT]+= M_SQRT1_2;
 | |
|             matrix[BACK_CENTER][SIDE_RIGHT]+= M_SQRT1_2;
 | |
|         }else if(out_ch_layout & AV_CH_FRONT_LEFT){
 | |
|             if (matrix_encoding == AV_MATRIX_ENCODING_DOLBY) {
 | |
|                 matrix[FRONT_LEFT ][SIDE_LEFT ] -= s->slev * M_SQRT1_2;
 | |
|                 matrix[FRONT_LEFT ][SIDE_RIGHT] -= s->slev * M_SQRT1_2;
 | |
|                 matrix[FRONT_RIGHT][SIDE_LEFT ] += s->slev * M_SQRT1_2;
 | |
|                 matrix[FRONT_RIGHT][SIDE_RIGHT] += s->slev * M_SQRT1_2;
 | |
|             } else if (matrix_encoding == AV_MATRIX_ENCODING_DPLII) {
 | |
|                 matrix[FRONT_LEFT ][SIDE_LEFT ] -= s->slev * SQRT3_2;
 | |
|                 matrix[FRONT_LEFT ][SIDE_RIGHT] -= s->slev * M_SQRT1_2;
 | |
|                 matrix[FRONT_RIGHT][SIDE_LEFT ] += s->slev * M_SQRT1_2;
 | |
|                 matrix[FRONT_RIGHT][SIDE_RIGHT] += s->slev * SQRT3_2;
 | |
|             } else {
 | |
|                 matrix[ FRONT_LEFT][ SIDE_LEFT] += s->slev;
 | |
|                 matrix[FRONT_RIGHT][SIDE_RIGHT] += s->slev;
 | |
|             }
 | |
|         }else if(out_ch_layout & AV_CH_FRONT_CENTER){
 | |
|             matrix[ FRONT_CENTER][SIDE_LEFT ]+= s->slev*M_SQRT1_2;
 | |
|             matrix[ FRONT_CENTER][SIDE_RIGHT]+= s->slev*M_SQRT1_2;
 | |
|         }else
 | |
|             av_assert0(0);
 | |
|     }
 | |
| 
 | |
|     if(unaccounted & AV_CH_FRONT_LEFT_OF_CENTER){
 | |
|         if(out_ch_layout & AV_CH_FRONT_LEFT){
 | |
|             matrix[ FRONT_LEFT][ FRONT_LEFT_OF_CENTER]+= 1.0;
 | |
|             matrix[FRONT_RIGHT][FRONT_RIGHT_OF_CENTER]+= 1.0;
 | |
|         }else if(out_ch_layout & AV_CH_FRONT_CENTER){
 | |
|             matrix[ FRONT_CENTER][ FRONT_LEFT_OF_CENTER]+= M_SQRT1_2;
 | |
|             matrix[ FRONT_CENTER][FRONT_RIGHT_OF_CENTER]+= M_SQRT1_2;
 | |
|         }else
 | |
|             av_assert0(0);
 | |
|     }
 | |
|     /* mix LFE into front left/right or center */
 | |
|     if (unaccounted & AV_CH_LOW_FREQUENCY) {
 | |
|         if (out_ch_layout & AV_CH_FRONT_CENTER) {
 | |
|             matrix[FRONT_CENTER][LOW_FREQUENCY] += s->lfe_mix_level;
 | |
|         } else if (out_ch_layout & AV_CH_FRONT_LEFT) {
 | |
|             matrix[FRONT_LEFT ][LOW_FREQUENCY] += s->lfe_mix_level * M_SQRT1_2;
 | |
|             matrix[FRONT_RIGHT][LOW_FREQUENCY] += s->lfe_mix_level * M_SQRT1_2;
 | |
|         } else
 | |
|             av_assert0(0);
 | |
|     }
 | |
| 
 | |
|     for(out_i=i=0; i<64; i++){
 | |
|         double sum=0;
 | |
|         int in_i=0;
 | |
|         for(j=0; j<64; j++){
 | |
|             s->matrix[out_i][in_i]= matrix[i][j];
 | |
|             if(matrix[i][j]){
 | |
|                 sum += fabs(matrix[i][j]);
 | |
|             }
 | |
|             if(in_ch_layout & (1ULL<<j))
 | |
|                 in_i++;
 | |
|         }
 | |
|         maxcoef= FFMAX(maxcoef, sum);
 | |
|         if(out_ch_layout & (1ULL<<i))
 | |
|             out_i++;
 | |
|     }
 | |
|     if(s->rematrix_volume  < 0)
 | |
|         maxcoef = -s->rematrix_volume;
 | |
| 
 | |
|     if((   av_get_packed_sample_fmt(s->out_sample_fmt) < AV_SAMPLE_FMT_FLT
 | |
|         || av_get_packed_sample_fmt(s->int_sample_fmt) < AV_SAMPLE_FMT_FLT) && maxcoef > 1.0){
 | |
|         for(i=0; i<SWR_CH_MAX; i++)
 | |
|             for(j=0; j<SWR_CH_MAX; j++){
 | |
|                 s->matrix[i][j] /= maxcoef;
 | |
|             }
 | |
|     }
 | |
| 
 | |
|     if(s->rematrix_volume > 0){
 | |
|         for(i=0; i<SWR_CH_MAX; i++)
 | |
|             for(j=0; j<SWR_CH_MAX; j++){
 | |
|                 s->matrix[i][j] *= s->rematrix_volume;
 | |
|             }
 | |
|     }
 | |
| 
 | |
|     for(i=0; i<av_get_channel_layout_nb_channels(out_ch_layout); i++){
 | |
|         for(j=0; j<av_get_channel_layout_nb_channels(in_ch_layout); j++){
 | |
|             av_log(NULL, AV_LOG_DEBUG, "%f ", s->matrix[i][j]);
 | |
|         }
 | |
|         av_log(NULL, AV_LOG_DEBUG, "\n");
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| av_cold int swri_rematrix_init(SwrContext *s){
 | |
|     int i, j;
 | |
|     int nb_in  = av_get_channel_layout_nb_channels(s->in_ch_layout);
 | |
|     int nb_out = av_get_channel_layout_nb_channels(s->out_ch_layout);
 | |
| 
 | |
|     s->mix_any_f = NULL;
 | |
| 
 | |
|     if (!s->rematrix_custom) {
 | |
|         int r = auto_matrix(s);
 | |
|         if (r)
 | |
|             return r;
 | |
|     }
 | |
|     if (s->midbuf.fmt == AV_SAMPLE_FMT_S16P){
 | |
|         s->native_matrix = av_mallocz(nb_in * nb_out * sizeof(int));
 | |
|         s->native_one    = av_mallocz(sizeof(int));
 | |
|         for (i = 0; i < nb_out; i++)
 | |
|             for (j = 0; j < nb_in; j++)
 | |
|                 ((int*)s->native_matrix)[i * nb_in + j] = lrintf(s->matrix[i][j] * 32768);
 | |
|         *((int*)s->native_one) = 32768;
 | |
|         s->mix_1_1_f = (mix_1_1_func_type*)copy_s16;
 | |
|         s->mix_2_1_f = (mix_2_1_func_type*)sum2_s16;
 | |
|         s->mix_any_f = (mix_any_func_type*)get_mix_any_func_s16(s);
 | |
|     }else if(s->midbuf.fmt == AV_SAMPLE_FMT_FLTP){
 | |
|         s->native_matrix = av_mallocz(nb_in * nb_out * sizeof(float));
 | |
|         s->native_one    = av_mallocz(sizeof(float));
 | |
|         for (i = 0; i < nb_out; i++)
 | |
|             for (j = 0; j < nb_in; j++)
 | |
|                 ((float*)s->native_matrix)[i * nb_in + j] = s->matrix[i][j];
 | |
|         *((float*)s->native_one) = 1.0;
 | |
|         s->mix_1_1_f = (mix_1_1_func_type*)copy_float;
 | |
|         s->mix_2_1_f = (mix_2_1_func_type*)sum2_float;
 | |
|         s->mix_any_f = (mix_any_func_type*)get_mix_any_func_float(s);
 | |
|     }else if(s->midbuf.fmt == AV_SAMPLE_FMT_DBLP){
 | |
|         s->native_matrix = av_mallocz(nb_in * nb_out * sizeof(double));
 | |
|         s->native_one    = av_mallocz(sizeof(double));
 | |
|         for (i = 0; i < nb_out; i++)
 | |
|             for (j = 0; j < nb_in; j++)
 | |
|                 ((double*)s->native_matrix)[i * nb_in + j] = s->matrix[i][j];
 | |
|         *((double*)s->native_one) = 1.0;
 | |
|         s->mix_1_1_f = (mix_1_1_func_type*)copy_double;
 | |
|         s->mix_2_1_f = (mix_2_1_func_type*)sum2_double;
 | |
|         s->mix_any_f = (mix_any_func_type*)get_mix_any_func_double(s);
 | |
|     }else
 | |
|         av_assert0(0);
 | |
|     //FIXME quantize for integeres
 | |
|     for (i = 0; i < SWR_CH_MAX; i++) {
 | |
|         int ch_in=0;
 | |
|         for (j = 0; j < SWR_CH_MAX; j++) {
 | |
|             s->matrix32[i][j]= lrintf(s->matrix[i][j] * 32768);
 | |
|             if(s->matrix[i][j])
 | |
|                 s->matrix_ch[i][++ch_in]= j;
 | |
|         }
 | |
|         s->matrix_ch[i][0]= ch_in;
 | |
|     }
 | |
| 
 | |
|     if(HAVE_YASM && HAVE_MMX) swri_rematrix_init_x86(s);
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| av_cold void swri_rematrix_free(SwrContext *s){
 | |
|     av_freep(&s->native_matrix);
 | |
|     av_freep(&s->native_one);
 | |
|     av_freep(&s->native_simd_matrix);
 | |
| }
 | |
| 
 | |
| int swri_rematrix(SwrContext *s, AudioData *out, AudioData *in, int len, int mustcopy){
 | |
|     int out_i, in_i, i, j;
 | |
|     int len1 = 0;
 | |
|     int off = 0;
 | |
| 
 | |
|     if(s->mix_any_f) {
 | |
|         s->mix_any_f(out->ch, (const uint8_t **)in->ch, s->native_matrix, len);
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     if(s->mix_2_1_simd || s->mix_1_1_simd){
 | |
|         len1= len&~15;
 | |
|         off = len1 * out->bps;
 | |
|     }
 | |
| 
 | |
|     av_assert0(out->ch_count == av_get_channel_layout_nb_channels(s->out_ch_layout));
 | |
|     av_assert0(in ->ch_count == av_get_channel_layout_nb_channels(s-> in_ch_layout));
 | |
| 
 | |
|     for(out_i=0; out_i<out->ch_count; out_i++){
 | |
|         switch(s->matrix_ch[out_i][0]){
 | |
|         case 0:
 | |
|             if(mustcopy)
 | |
|                 memset(out->ch[out_i], 0, len * av_get_bytes_per_sample(s->int_sample_fmt));
 | |
|             break;
 | |
|         case 1:
 | |
|             in_i= s->matrix_ch[out_i][1];
 | |
|             if(s->matrix[out_i][in_i]!=1.0){
 | |
|                 if(s->mix_1_1_simd && len1)
 | |
|                     s->mix_1_1_simd(out->ch[out_i]    , in->ch[in_i]    , s->native_simd_matrix, in->ch_count*out_i + in_i, len1);
 | |
|                 if(len != len1)
 | |
|                     s->mix_1_1_f   (out->ch[out_i]+off, in->ch[in_i]+off, s->native_matrix, in->ch_count*out_i + in_i, len-len1);
 | |
|             }else if(mustcopy){
 | |
|                 memcpy(out->ch[out_i], in->ch[in_i], len*out->bps);
 | |
|             }else{
 | |
|                 out->ch[out_i]= in->ch[in_i];
 | |
|             }
 | |
|             break;
 | |
|         case 2: {
 | |
|             int in_i1 = s->matrix_ch[out_i][1];
 | |
|             int in_i2 = s->matrix_ch[out_i][2];
 | |
|             if(s->mix_2_1_simd && len1)
 | |
|                 s->mix_2_1_simd(out->ch[out_i]    , in->ch[in_i1]    , in->ch[in_i2]    , s->native_simd_matrix, in->ch_count*out_i + in_i1, in->ch_count*out_i + in_i2, len1);
 | |
|             else
 | |
|                 s->mix_2_1_f   (out->ch[out_i]    , in->ch[in_i1]    , in->ch[in_i2]    , s->native_matrix, in->ch_count*out_i + in_i1, in->ch_count*out_i + in_i2, len1);
 | |
|             if(len != len1)
 | |
|                 s->mix_2_1_f   (out->ch[out_i]+off, in->ch[in_i1]+off, in->ch[in_i2]+off, s->native_matrix, in->ch_count*out_i + in_i1, in->ch_count*out_i + in_i2, len-len1);
 | |
|             break;}
 | |
|         default:
 | |
|             if(s->int_sample_fmt == AV_SAMPLE_FMT_FLTP){
 | |
|                 for(i=0; i<len; i++){
 | |
|                     float v=0;
 | |
|                     for(j=0; j<s->matrix_ch[out_i][0]; j++){
 | |
|                         in_i= s->matrix_ch[out_i][1+j];
 | |
|                         v+= ((float*)in->ch[in_i])[i] * s->matrix[out_i][in_i];
 | |
|                     }
 | |
|                     ((float*)out->ch[out_i])[i]= v;
 | |
|                 }
 | |
|             }else if(s->int_sample_fmt == AV_SAMPLE_FMT_DBLP){
 | |
|                 for(i=0; i<len; i++){
 | |
|                     double v=0;
 | |
|                     for(j=0; j<s->matrix_ch[out_i][0]; j++){
 | |
|                         in_i= s->matrix_ch[out_i][1+j];
 | |
|                         v+= ((double*)in->ch[in_i])[i] * s->matrix[out_i][in_i];
 | |
|                     }
 | |
|                     ((double*)out->ch[out_i])[i]= v;
 | |
|                 }
 | |
|             }else{
 | |
|                 for(i=0; i<len; i++){
 | |
|                     int v=0;
 | |
|                     for(j=0; j<s->matrix_ch[out_i][0]; j++){
 | |
|                         in_i= s->matrix_ch[out_i][1+j];
 | |
|                         v+= ((int16_t*)in->ch[in_i])[i] * s->matrix32[out_i][in_i];
 | |
|                     }
 | |
|                     ((int16_t*)out->ch[out_i])[i]= (v + 16384)>>15;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     return 0;
 | |
| }
 |