mirror of
https://github.com/FFmpeg/FFmpeg.git
synced 2025-01-24 13:56:33 +02:00
d29c35b4d8
Signed-off-by: Pedro Arthur <bygrandao@gmail.com>
251 lines
8.4 KiB
C
251 lines
8.4 KiB
C
/*
|
|
* Copyright (c) 2018 Sergey Lavrushkin
|
|
*
|
|
* This file is part of FFmpeg.
|
|
*
|
|
* FFmpeg is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*
|
|
* FFmpeg is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with FFmpeg; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
|
|
/**
|
|
* @file
|
|
* Filter implementing image super-resolution using deep convolutional networks.
|
|
* https://arxiv.org/abs/1501.00092
|
|
*/
|
|
|
|
#include "avfilter.h"
|
|
#include "formats.h"
|
|
#include "internal.h"
|
|
#include "libavutil/opt.h"
|
|
#include "libavformat/avio.h"
|
|
#include "dnn_interface.h"
|
|
|
|
typedef struct SRCNNContext {
|
|
const AVClass *class;
|
|
|
|
char* model_filename;
|
|
float* input_output_buf;
|
|
DNNBackendType backend_type;
|
|
DNNModule* dnn_module;
|
|
DNNModel* model;
|
|
DNNData input_output;
|
|
} SRCNNContext;
|
|
|
|
#define OFFSET(x) offsetof(SRCNNContext, x)
|
|
#define FLAGS AV_OPT_FLAG_FILTERING_PARAM | AV_OPT_FLAG_VIDEO_PARAM
|
|
static const AVOption srcnn_options[] = {
|
|
{ "dnn_backend", "DNN backend used for model execution", OFFSET(backend_type), AV_OPT_TYPE_FLAGS, { .i64 = 0 }, 0, 1, FLAGS, "backend" },
|
|
{ "native", "native backend flag", 0, AV_OPT_TYPE_CONST, { .i64 = 0 }, 0, 0, FLAGS, "backend" },
|
|
#if (CONFIG_LIBTENSORFLOW == 1)
|
|
{ "tensorflow", "tensorflow backend flag", 0, AV_OPT_TYPE_CONST, { .i64 = 1 }, 0, 0, FLAGS, "backend" },
|
|
#endif
|
|
{ "model_filename", "path to model file specifying network architecture and its parameters", OFFSET(model_filename), AV_OPT_TYPE_STRING, {.str=NULL}, 0, 0, FLAGS },
|
|
{ NULL }
|
|
};
|
|
|
|
AVFILTER_DEFINE_CLASS(srcnn);
|
|
|
|
static av_cold int init(AVFilterContext* context)
|
|
{
|
|
SRCNNContext* srcnn_context = context->priv;
|
|
|
|
srcnn_context->dnn_module = ff_get_dnn_module(srcnn_context->backend_type);
|
|
if (!srcnn_context->dnn_module){
|
|
av_log(context, AV_LOG_ERROR, "could not create DNN module for requested backend\n");
|
|
return AVERROR(ENOMEM);
|
|
}
|
|
if (!srcnn_context->model_filename){
|
|
av_log(context, AV_LOG_VERBOSE, "model file for network was not specified, using default network for x2 upsampling\n");
|
|
srcnn_context->model = (srcnn_context->dnn_module->load_default_model)(DNN_SRCNN);
|
|
}
|
|
else{
|
|
srcnn_context->model = (srcnn_context->dnn_module->load_model)(srcnn_context->model_filename);
|
|
}
|
|
if (!srcnn_context->model){
|
|
av_log(context, AV_LOG_ERROR, "could not load DNN model\n");
|
|
return AVERROR(EIO);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int query_formats(AVFilterContext* context)
|
|
{
|
|
const enum AVPixelFormat pixel_formats[] = {AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUV422P, AV_PIX_FMT_YUV444P,
|
|
AV_PIX_FMT_YUV410P, AV_PIX_FMT_YUV411P, AV_PIX_FMT_GRAY8,
|
|
AV_PIX_FMT_NONE};
|
|
AVFilterFormats* formats_list;
|
|
|
|
formats_list = ff_make_format_list(pixel_formats);
|
|
if (!formats_list){
|
|
av_log(context, AV_LOG_ERROR, "could not create formats list\n");
|
|
return AVERROR(ENOMEM);
|
|
}
|
|
return ff_set_common_formats(context, formats_list);
|
|
}
|
|
|
|
static int config_props(AVFilterLink* inlink)
|
|
{
|
|
AVFilterContext* context = inlink->dst;
|
|
SRCNNContext* srcnn_context = context->priv;
|
|
DNNReturnType result;
|
|
|
|
srcnn_context->input_output_buf = av_malloc(inlink->h * inlink->w * sizeof(float));
|
|
if (!srcnn_context->input_output_buf){
|
|
av_log(context, AV_LOG_ERROR, "could not allocate memory for input/output buffer\n");
|
|
return AVERROR(ENOMEM);
|
|
}
|
|
|
|
srcnn_context->input_output.data = srcnn_context->input_output_buf;
|
|
srcnn_context->input_output.width = inlink->w;
|
|
srcnn_context->input_output.height = inlink->h;
|
|
srcnn_context->input_output.channels = 1;
|
|
|
|
result = (srcnn_context->model->set_input_output)(srcnn_context->model->model, &srcnn_context->input_output, &srcnn_context->input_output);
|
|
if (result != DNN_SUCCESS){
|
|
av_log(context, AV_LOG_ERROR, "could not set input and output for the model\n");
|
|
return AVERROR(EIO);
|
|
}
|
|
else{
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
typedef struct ThreadData{
|
|
uint8_t* out;
|
|
int out_linesize, height, width;
|
|
} ThreadData;
|
|
|
|
static int uint8_to_float(AVFilterContext* context, void* arg, int jobnr, int nb_jobs)
|
|
{
|
|
SRCNNContext* srcnn_context = context->priv;
|
|
const ThreadData* td = arg;
|
|
const int slice_start = (td->height * jobnr ) / nb_jobs;
|
|
const int slice_end = (td->height * (jobnr + 1)) / nb_jobs;
|
|
const uint8_t* src = td->out + slice_start * td->out_linesize;
|
|
float* dst = srcnn_context->input_output_buf + slice_start * td->width;
|
|
int y, x;
|
|
|
|
for (y = slice_start; y < slice_end; ++y){
|
|
for (x = 0; x < td->width; ++x){
|
|
dst[x] = (float)src[x] / 255.0f;
|
|
}
|
|
src += td->out_linesize;
|
|
dst += td->width;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int float_to_uint8(AVFilterContext* context, void* arg, int jobnr, int nb_jobs)
|
|
{
|
|
SRCNNContext* srcnn_context = context->priv;
|
|
const ThreadData* td = arg;
|
|
const int slice_start = (td->height * jobnr ) / nb_jobs;
|
|
const int slice_end = (td->height * (jobnr + 1)) / nb_jobs;
|
|
const float* src = srcnn_context->input_output_buf + slice_start * td->width;
|
|
uint8_t* dst = td->out + slice_start * td->out_linesize;
|
|
int y, x;
|
|
|
|
for (y = slice_start; y < slice_end; ++y){
|
|
for (x = 0; x < td->width; ++x){
|
|
dst[x] = (uint8_t)(255.0f * FFMIN(src[x], 1.0f));
|
|
}
|
|
src += td->width;
|
|
dst += td->out_linesize;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int filter_frame(AVFilterLink* inlink, AVFrame* in)
|
|
{
|
|
AVFilterContext* context = inlink->dst;
|
|
SRCNNContext* srcnn_context = context->priv;
|
|
AVFilterLink* outlink = context->outputs[0];
|
|
AVFrame* out = ff_get_video_buffer(outlink, outlink->w, outlink->h);
|
|
ThreadData td;
|
|
int nb_threads;
|
|
DNNReturnType dnn_result;
|
|
|
|
if (!out){
|
|
av_log(context, AV_LOG_ERROR, "could not allocate memory for output frame\n");
|
|
av_frame_free(&in);
|
|
return AVERROR(ENOMEM);
|
|
}
|
|
av_frame_copy_props(out, in);
|
|
av_frame_copy(out, in);
|
|
av_frame_free(&in);
|
|
td.out = out->data[0];
|
|
td.out_linesize = out->linesize[0];
|
|
td.height = out->height;
|
|
td.width = out->width;
|
|
|
|
nb_threads = ff_filter_get_nb_threads(context);
|
|
context->internal->execute(context, uint8_to_float, &td, NULL, FFMIN(td.height, nb_threads));
|
|
|
|
dnn_result = (srcnn_context->dnn_module->execute_model)(srcnn_context->model);
|
|
if (dnn_result != DNN_SUCCESS){
|
|
av_log(context, AV_LOG_ERROR, "failed to execute loaded model\n");
|
|
return AVERROR(EIO);
|
|
}
|
|
|
|
context->internal->execute(context, float_to_uint8, &td, NULL, FFMIN(td.height, nb_threads));
|
|
|
|
return ff_filter_frame(outlink, out);
|
|
}
|
|
|
|
static av_cold void uninit(AVFilterContext* context)
|
|
{
|
|
SRCNNContext* srcnn_context = context->priv;
|
|
|
|
if (srcnn_context->dnn_module){
|
|
(srcnn_context->dnn_module->free_model)(&srcnn_context->model);
|
|
av_freep(&srcnn_context->dnn_module);
|
|
}
|
|
av_freep(&srcnn_context->input_output_buf);
|
|
}
|
|
|
|
static const AVFilterPad srcnn_inputs[] = {
|
|
{
|
|
.name = "default",
|
|
.type = AVMEDIA_TYPE_VIDEO,
|
|
.config_props = config_props,
|
|
.filter_frame = filter_frame,
|
|
},
|
|
{ NULL }
|
|
};
|
|
|
|
static const AVFilterPad srcnn_outputs[] = {
|
|
{
|
|
.name = "default",
|
|
.type = AVMEDIA_TYPE_VIDEO,
|
|
},
|
|
{ NULL }
|
|
};
|
|
|
|
AVFilter ff_vf_srcnn = {
|
|
.name = "srcnn",
|
|
.description = NULL_IF_CONFIG_SMALL("Apply super resolution convolutional neural network to the input. Use bicubic upsamping with corresponding scaling factor before."),
|
|
.priv_size = sizeof(SRCNNContext),
|
|
.init = init,
|
|
.uninit = uninit,
|
|
.query_formats = query_formats,
|
|
.inputs = srcnn_inputs,
|
|
.outputs = srcnn_outputs,
|
|
.priv_class = &srcnn_class,
|
|
.flags = AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC | AVFILTER_FLAG_SLICE_THREADS,
|
|
};
|
|
|