1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2024-12-28 20:53:54 +02:00
FFmpeg/libavfilter/af_volume.c
Andreas Rheinhardt ebe78e3ef0 avfilter/af_volume: Don't free options manually
Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
2024-05-09 13:18:32 +02:00

486 lines
17 KiB
C

/*
* Copyright (c) 2011 Stefano Sabatini
* Copyright (c) 2012 Justin Ruggles <justin.ruggles@gmail.com>
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* audio volume filter
*/
#include "libavutil/channel_layout.h"
#include "libavutil/common.h"
#include "libavutil/eval.h"
#include "libavutil/ffmath.h"
#include "libavutil/float_dsp.h"
#include "libavutil/mem.h"
#include "libavutil/opt.h"
#include "libavutil/replaygain.h"
#include "audio.h"
#include "avfilter.h"
#include "formats.h"
#include "internal.h"
#include "af_volume.h"
static const char * const precision_str[] = {
"fixed", "float", "double"
};
static const char *const var_names[] = {
"n", ///< frame number (starting at zero)
"nb_channels", ///< number of channels
"nb_consumed_samples", ///< number of samples consumed by the filter
"nb_samples", ///< number of samples in the current frame
#if FF_API_FRAME_PKT
"pos", ///< position in the file of the frame
#endif
"pts", ///< frame presentation timestamp
"sample_rate", ///< sample rate
"startpts", ///< PTS at start of stream
"startt", ///< time at start of stream
"t", ///< time in the file of the frame
"tb", ///< timebase
"volume", ///< last set value
NULL
};
#define OFFSET(x) offsetof(VolumeContext, x)
#define A AV_OPT_FLAG_AUDIO_PARAM
#define F AV_OPT_FLAG_FILTERING_PARAM
#define T AV_OPT_FLAG_RUNTIME_PARAM
static const AVOption volume_options[] = {
{ "volume", "set volume adjustment expression",
OFFSET(volume_expr), AV_OPT_TYPE_STRING, { .str = "1.0" }, .flags = A|F|T },
{ "precision", "select mathematical precision",
OFFSET(precision), AV_OPT_TYPE_INT, { .i64 = PRECISION_FLOAT }, PRECISION_FIXED, PRECISION_DOUBLE, A|F, .unit = "precision" },
{ "fixed", "select 8-bit fixed-point", 0, AV_OPT_TYPE_CONST, { .i64 = PRECISION_FIXED }, INT_MIN, INT_MAX, A|F, .unit = "precision" },
{ "float", "select 32-bit floating-point", 0, AV_OPT_TYPE_CONST, { .i64 = PRECISION_FLOAT }, INT_MIN, INT_MAX, A|F, .unit = "precision" },
{ "double", "select 64-bit floating-point", 0, AV_OPT_TYPE_CONST, { .i64 = PRECISION_DOUBLE }, INT_MIN, INT_MAX, A|F, .unit = "precision" },
{ "eval", "specify when to evaluate expressions", OFFSET(eval_mode), AV_OPT_TYPE_INT, {.i64 = EVAL_MODE_ONCE}, 0, EVAL_MODE_NB-1, .flags = A|F, .unit = "eval" },
{ "once", "eval volume expression once", 0, AV_OPT_TYPE_CONST, {.i64=EVAL_MODE_ONCE}, .flags = A|F, .unit = "eval" },
{ "frame", "eval volume expression per-frame", 0, AV_OPT_TYPE_CONST, {.i64=EVAL_MODE_FRAME}, .flags = A|F, .unit = "eval" },
{ "replaygain", "Apply replaygain side data when present",
OFFSET(replaygain), AV_OPT_TYPE_INT, { .i64 = REPLAYGAIN_DROP }, REPLAYGAIN_DROP, REPLAYGAIN_ALBUM, A|F, .unit = "replaygain" },
{ "drop", "replaygain side data is dropped", 0, AV_OPT_TYPE_CONST, { .i64 = REPLAYGAIN_DROP }, 0, 0, A|F, .unit = "replaygain" },
{ "ignore", "replaygain side data is ignored", 0, AV_OPT_TYPE_CONST, { .i64 = REPLAYGAIN_IGNORE }, 0, 0, A|F, .unit = "replaygain" },
{ "track", "track gain is preferred", 0, AV_OPT_TYPE_CONST, { .i64 = REPLAYGAIN_TRACK }, 0, 0, A|F, .unit = "replaygain" },
{ "album", "album gain is preferred", 0, AV_OPT_TYPE_CONST, { .i64 = REPLAYGAIN_ALBUM }, 0, 0, A|F, .unit = "replaygain" },
{ "replaygain_preamp", "Apply replaygain pre-amplification",
OFFSET(replaygain_preamp), AV_OPT_TYPE_DOUBLE, { .dbl = 0.0 }, -15.0, 15.0, A|F },
{ "replaygain_noclip", "Apply replaygain clipping prevention",
OFFSET(replaygain_noclip), AV_OPT_TYPE_BOOL, { .i64 = 1 }, 0, 1, A|F },
{ NULL }
};
AVFILTER_DEFINE_CLASS(volume);
static int set_expr(AVExpr **pexpr, const char *expr, void *log_ctx)
{
int ret;
AVExpr *old = NULL;
if (*pexpr)
old = *pexpr;
ret = av_expr_parse(pexpr, expr, var_names,
NULL, NULL, NULL, NULL, 0, log_ctx);
if (ret < 0) {
av_log(log_ctx, AV_LOG_ERROR,
"Error when evaluating the volume expression '%s'\n", expr);
*pexpr = old;
return ret;
}
av_expr_free(old);
return 0;
}
static av_cold int init(AVFilterContext *ctx)
{
VolumeContext *vol = ctx->priv;
vol->fdsp = avpriv_float_dsp_alloc(0);
if (!vol->fdsp)
return AVERROR(ENOMEM);
return set_expr(&vol->volume_pexpr, vol->volume_expr, ctx);
}
static av_cold void uninit(AVFilterContext *ctx)
{
VolumeContext *vol = ctx->priv;
av_expr_free(vol->volume_pexpr);
av_freep(&vol->fdsp);
}
static int query_formats(AVFilterContext *ctx)
{
VolumeContext *vol = ctx->priv;
static const enum AVSampleFormat sample_fmts[][7] = {
[PRECISION_FIXED] = {
AV_SAMPLE_FMT_U8,
AV_SAMPLE_FMT_U8P,
AV_SAMPLE_FMT_S16,
AV_SAMPLE_FMT_S16P,
AV_SAMPLE_FMT_S32,
AV_SAMPLE_FMT_S32P,
AV_SAMPLE_FMT_NONE
},
[PRECISION_FLOAT] = {
AV_SAMPLE_FMT_FLT,
AV_SAMPLE_FMT_FLTP,
AV_SAMPLE_FMT_NONE
},
[PRECISION_DOUBLE] = {
AV_SAMPLE_FMT_DBL,
AV_SAMPLE_FMT_DBLP,
AV_SAMPLE_FMT_NONE
}
};
int ret = ff_set_common_all_channel_counts(ctx);
if (ret < 0)
return ret;
ret = ff_set_common_formats_from_list(ctx, sample_fmts[vol->precision]);
if (ret < 0)
return ret;
return ff_set_common_all_samplerates(ctx);
}
static inline void scale_samples_u8(uint8_t *dst, const uint8_t *src,
int nb_samples, int volume)
{
int i;
for (i = 0; i < nb_samples; i++)
dst[i] = av_clip_uint8(((((int64_t)src[i] - 128) * volume + 128) >> 8) + 128);
}
static inline void scale_samples_u8_small(uint8_t *dst, const uint8_t *src,
int nb_samples, int volume)
{
int i;
for (i = 0; i < nb_samples; i++)
dst[i] = av_clip_uint8((((src[i] - 128) * volume + 128) >> 8) + 128);
}
static inline void scale_samples_s16(uint8_t *dst, const uint8_t *src,
int nb_samples, int volume)
{
int i;
int16_t *smp_dst = (int16_t *)dst;
const int16_t *smp_src = (const int16_t *)src;
for (i = 0; i < nb_samples; i++)
smp_dst[i] = av_clip_int16(((int64_t)smp_src[i] * volume + 128) >> 8);
}
static inline void scale_samples_s16_small(uint8_t *dst, const uint8_t *src,
int nb_samples, int volume)
{
int i;
int16_t *smp_dst = (int16_t *)dst;
const int16_t *smp_src = (const int16_t *)src;
for (i = 0; i < nb_samples; i++)
smp_dst[i] = av_clip_int16((smp_src[i] * volume + 128) >> 8);
}
static inline void scale_samples_s32(uint8_t *dst, const uint8_t *src,
int nb_samples, int volume)
{
int i;
int32_t *smp_dst = (int32_t *)dst;
const int32_t *smp_src = (const int32_t *)src;
for (i = 0; i < nb_samples; i++)
smp_dst[i] = av_clipl_int32((((int64_t)smp_src[i] * volume + 128) >> 8));
}
static av_cold void volume_init(VolumeContext *vol)
{
vol->samples_align = 1;
switch (av_get_packed_sample_fmt(vol->sample_fmt)) {
case AV_SAMPLE_FMT_U8:
if (vol->volume_i < 0x1000000)
vol->scale_samples = scale_samples_u8_small;
else
vol->scale_samples = scale_samples_u8;
break;
case AV_SAMPLE_FMT_S16:
if (vol->volume_i < 0x10000)
vol->scale_samples = scale_samples_s16_small;
else
vol->scale_samples = scale_samples_s16;
break;
case AV_SAMPLE_FMT_S32:
vol->scale_samples = scale_samples_s32;
break;
case AV_SAMPLE_FMT_FLT:
vol->samples_align = 4;
break;
case AV_SAMPLE_FMT_DBL:
vol->samples_align = 8;
break;
}
#if ARCH_X86
ff_volume_init_x86(vol);
#endif
}
static int set_volume(AVFilterContext *ctx)
{
VolumeContext *vol = ctx->priv;
vol->volume = av_expr_eval(vol->volume_pexpr, vol->var_values, NULL);
if (isnan(vol->volume)) {
if (vol->eval_mode == EVAL_MODE_ONCE) {
av_log(ctx, AV_LOG_ERROR, "Invalid value NaN for volume\n");
return AVERROR(EINVAL);
} else {
av_log(ctx, AV_LOG_WARNING, "Invalid value NaN for volume, setting to 0\n");
vol->volume = 0;
}
}
vol->var_values[VAR_VOLUME] = vol->volume;
av_log(ctx, AV_LOG_VERBOSE, "n:%f t:%f pts:%f precision:%s ",
vol->var_values[VAR_N], vol->var_values[VAR_T], vol->var_values[VAR_PTS],
precision_str[vol->precision]);
if (vol->precision == PRECISION_FIXED) {
vol->volume_i = (int)(vol->volume * 256 + 0.5);
vol->volume = vol->volume_i / 256.0;
av_log(ctx, AV_LOG_VERBOSE, "volume_i:%d/255 ", vol->volume_i);
}
av_log(ctx, AV_LOG_VERBOSE, "volume:%f volume_dB:%f\n",
vol->volume, 20.0*log10(vol->volume));
volume_init(vol);
return 0;
}
static int config_output(AVFilterLink *outlink)
{
AVFilterContext *ctx = outlink->src;
VolumeContext *vol = ctx->priv;
AVFilterLink *inlink = ctx->inputs[0];
vol->sample_fmt = inlink->format;
vol->channels = inlink->ch_layout.nb_channels;
vol->planes = av_sample_fmt_is_planar(inlink->format) ? vol->channels : 1;
vol->var_values[VAR_N] =
vol->var_values[VAR_NB_CONSUMED_SAMPLES] =
vol->var_values[VAR_NB_SAMPLES] =
#if FF_API_FRAME_PKT
vol->var_values[VAR_POS] =
#endif
vol->var_values[VAR_PTS] =
vol->var_values[VAR_STARTPTS] =
vol->var_values[VAR_STARTT] =
vol->var_values[VAR_T] =
vol->var_values[VAR_VOLUME] = NAN;
vol->var_values[VAR_NB_CHANNELS] = inlink->ch_layout.nb_channels;
vol->var_values[VAR_TB] = av_q2d(inlink->time_base);
vol->var_values[VAR_SAMPLE_RATE] = inlink->sample_rate;
av_log(inlink->src, AV_LOG_VERBOSE, "tb:%f sample_rate:%f nb_channels:%f\n",
vol->var_values[VAR_TB],
vol->var_values[VAR_SAMPLE_RATE],
vol->var_values[VAR_NB_CHANNELS]);
return set_volume(ctx);
}
static int process_command(AVFilterContext *ctx, const char *cmd, const char *args,
char *res, int res_len, int flags)
{
VolumeContext *vol = ctx->priv;
int ret = AVERROR(ENOSYS);
if (!strcmp(cmd, "volume")) {
if ((ret = set_expr(&vol->volume_pexpr, args, ctx)) < 0)
return ret;
if (vol->eval_mode == EVAL_MODE_ONCE)
set_volume(ctx);
}
return ret;
}
static int filter_frame(AVFilterLink *inlink, AVFrame *buf)
{
AVFilterContext *ctx = inlink->dst;
VolumeContext *vol = inlink->dst->priv;
AVFilterLink *outlink = inlink->dst->outputs[0];
int nb_samples = buf->nb_samples;
AVFrame *out_buf;
AVFrameSideData *sd = av_frame_get_side_data(buf, AV_FRAME_DATA_REPLAYGAIN);
int ret;
if (sd && vol->replaygain != REPLAYGAIN_IGNORE) {
if (vol->replaygain != REPLAYGAIN_DROP) {
AVReplayGain *replaygain = (AVReplayGain*)sd->data;
int32_t gain = 100000;
uint32_t peak = 100000;
float g, p;
if (vol->replaygain == REPLAYGAIN_TRACK &&
replaygain->track_gain != INT32_MIN) {
gain = replaygain->track_gain;
if (replaygain->track_peak != 0)
peak = replaygain->track_peak;
} else if (replaygain->album_gain != INT32_MIN) {
gain = replaygain->album_gain;
if (replaygain->album_peak != 0)
peak = replaygain->album_peak;
} else {
av_log(inlink->dst, AV_LOG_WARNING, "Both ReplayGain gain "
"values are unknown.\n");
}
g = gain / 100000.0f;
p = peak / 100000.0f;
av_log(inlink->dst, AV_LOG_VERBOSE,
"Using gain %f dB from replaygain side data.\n", g);
vol->volume = ff_exp10((g + vol->replaygain_preamp) / 20);
if (vol->replaygain_noclip)
vol->volume = FFMIN(vol->volume, 1.0 / p);
vol->volume_i = (int)(vol->volume * 256 + 0.5);
volume_init(vol);
}
av_frame_remove_side_data(buf, AV_FRAME_DATA_REPLAYGAIN);
}
if (isnan(vol->var_values[VAR_STARTPTS])) {
vol->var_values[VAR_STARTPTS] = TS2D(buf->pts);
vol->var_values[VAR_STARTT ] = TS2T(buf->pts, inlink->time_base);
}
vol->var_values[VAR_PTS] = TS2D(buf->pts);
vol->var_values[VAR_T ] = TS2T(buf->pts, inlink->time_base);
vol->var_values[VAR_N ] = inlink->frame_count_out;
#if FF_API_FRAME_PKT
FF_DISABLE_DEPRECATION_WARNINGS
{
int64_t pos;
pos = buf->pkt_pos;
vol->var_values[VAR_POS] = pos == -1 ? NAN : pos;
}
FF_ENABLE_DEPRECATION_WARNINGS
#endif
if (vol->eval_mode == EVAL_MODE_FRAME)
set_volume(ctx);
if (vol->volume == 1.0 || vol->volume_i == 256) {
out_buf = buf;
goto end;
}
/* do volume scaling in-place if input buffer is writable */
if (av_frame_is_writable(buf)
&& (vol->precision != PRECISION_FIXED || vol->volume_i > 0)) {
out_buf = buf;
} else {
out_buf = ff_get_audio_buffer(outlink, nb_samples);
if (!out_buf) {
av_frame_free(&buf);
return AVERROR(ENOMEM);
}
ret = av_frame_copy_props(out_buf, buf);
if (ret < 0) {
av_frame_free(&out_buf);
av_frame_free(&buf);
return ret;
}
}
if (vol->precision != PRECISION_FIXED || vol->volume_i > 0) {
int p, plane_samples;
if (av_sample_fmt_is_planar(buf->format))
plane_samples = FFALIGN(nb_samples, vol->samples_align);
else
plane_samples = FFALIGN(nb_samples * vol->channels, vol->samples_align);
if (vol->precision == PRECISION_FIXED) {
for (p = 0; p < vol->planes; p++) {
vol->scale_samples(out_buf->extended_data[p],
buf->extended_data[p], plane_samples,
vol->volume_i);
}
} else if (av_get_packed_sample_fmt(vol->sample_fmt) == AV_SAMPLE_FMT_FLT) {
for (p = 0; p < vol->planes; p++) {
vol->fdsp->vector_fmul_scalar((float *)out_buf->extended_data[p],
(const float *)buf->extended_data[p],
vol->volume, plane_samples);
}
} else {
for (p = 0; p < vol->planes; p++) {
vol->fdsp->vector_dmul_scalar((double *)out_buf->extended_data[p],
(const double *)buf->extended_data[p],
vol->volume, plane_samples);
}
}
}
if (buf != out_buf)
av_frame_free(&buf);
end:
vol->var_values[VAR_NB_CONSUMED_SAMPLES] += out_buf->nb_samples;
return ff_filter_frame(outlink, out_buf);
}
static const AVFilterPad avfilter_af_volume_inputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_AUDIO,
.filter_frame = filter_frame,
},
};
static const AVFilterPad avfilter_af_volume_outputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_AUDIO,
.config_props = config_output,
},
};
const AVFilter ff_af_volume = {
.name = "volume",
.description = NULL_IF_CONFIG_SMALL("Change input volume."),
.priv_size = sizeof(VolumeContext),
.priv_class = &volume_class,
.init = init,
.uninit = uninit,
FILTER_INPUTS(avfilter_af_volume_inputs),
FILTER_OUTPUTS(avfilter_af_volume_outputs),
FILTER_QUERY_FUNC(query_formats),
.flags = AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC,
.process_command = process_command,
};