mirror of
https://github.com/FFmpeg/FFmpeg.git
synced 2024-11-26 19:01:44 +02:00
9c852bcf58
Originally committed as revision 13489 to svn://svn.ffmpeg.org/ffmpeg/trunk
8104 lines
312 KiB
C
8104 lines
312 KiB
C
/*
|
|
* H.26L/H.264/AVC/JVT/14496-10/... encoder/decoder
|
|
* Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
|
|
*
|
|
* This file is part of FFmpeg.
|
|
*
|
|
* FFmpeg is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*
|
|
* FFmpeg is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with FFmpeg; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
|
|
/**
|
|
* @file h264.c
|
|
* H.264 / AVC / MPEG4 part10 codec.
|
|
* @author Michael Niedermayer <michaelni@gmx.at>
|
|
*/
|
|
|
|
#include "dsputil.h"
|
|
#include "avcodec.h"
|
|
#include "mpegvideo.h"
|
|
#include "h264.h"
|
|
#include "h264data.h"
|
|
#include "h264_parser.h"
|
|
#include "golomb.h"
|
|
#include "rectangle.h"
|
|
|
|
#include "cabac.h"
|
|
#ifdef ARCH_X86
|
|
#include "i386/h264_i386.h"
|
|
#endif
|
|
|
|
//#undef NDEBUG
|
|
#include <assert.h>
|
|
|
|
/**
|
|
* Value of Picture.reference when Picture is not a reference picture, but
|
|
* is held for delayed output.
|
|
*/
|
|
#define DELAYED_PIC_REF 4
|
|
|
|
static VLC coeff_token_vlc[4];
|
|
static VLC chroma_dc_coeff_token_vlc;
|
|
|
|
static VLC total_zeros_vlc[15];
|
|
static VLC chroma_dc_total_zeros_vlc[3];
|
|
|
|
static VLC run_vlc[6];
|
|
static VLC run7_vlc;
|
|
|
|
static void svq3_luma_dc_dequant_idct_c(DCTELEM *block, int qp);
|
|
static void svq3_add_idct_c(uint8_t *dst, DCTELEM *block, int stride, int qp, int dc);
|
|
static void filter_mb( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize);
|
|
static void filter_mb_fast( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize);
|
|
|
|
static av_always_inline uint32_t pack16to32(int a, int b){
|
|
#ifdef WORDS_BIGENDIAN
|
|
return (b&0xFFFF) + (a<<16);
|
|
#else
|
|
return (a&0xFFFF) + (b<<16);
|
|
#endif
|
|
}
|
|
|
|
const uint8_t ff_rem6[52]={
|
|
0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3,
|
|
};
|
|
|
|
const uint8_t ff_div6[52]={
|
|
0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8,
|
|
};
|
|
|
|
|
|
static void fill_caches(H264Context *h, int mb_type, int for_deblock){
|
|
MpegEncContext * const s = &h->s;
|
|
const int mb_xy= h->mb_xy;
|
|
int topleft_xy, top_xy, topright_xy, left_xy[2];
|
|
int topleft_type, top_type, topright_type, left_type[2];
|
|
int left_block[8];
|
|
int topleft_partition= -1;
|
|
int i;
|
|
|
|
top_xy = mb_xy - (s->mb_stride << FIELD_PICTURE);
|
|
|
|
//FIXME deblocking could skip the intra and nnz parts.
|
|
if(for_deblock && (h->slice_num == 1 || h->slice_table[mb_xy] == h->slice_table[top_xy]) && !FRAME_MBAFF)
|
|
return;
|
|
|
|
/* Wow, what a mess, why didn't they simplify the interlacing & intra
|
|
* stuff, I can't imagine that these complex rules are worth it. */
|
|
|
|
topleft_xy = top_xy - 1;
|
|
topright_xy= top_xy + 1;
|
|
left_xy[1] = left_xy[0] = mb_xy-1;
|
|
left_block[0]= 0;
|
|
left_block[1]= 1;
|
|
left_block[2]= 2;
|
|
left_block[3]= 3;
|
|
left_block[4]= 7;
|
|
left_block[5]= 10;
|
|
left_block[6]= 8;
|
|
left_block[7]= 11;
|
|
if(FRAME_MBAFF){
|
|
const int pair_xy = s->mb_x + (s->mb_y & ~1)*s->mb_stride;
|
|
const int top_pair_xy = pair_xy - s->mb_stride;
|
|
const int topleft_pair_xy = top_pair_xy - 1;
|
|
const int topright_pair_xy = top_pair_xy + 1;
|
|
const int topleft_mb_frame_flag = !IS_INTERLACED(s->current_picture.mb_type[topleft_pair_xy]);
|
|
const int top_mb_frame_flag = !IS_INTERLACED(s->current_picture.mb_type[top_pair_xy]);
|
|
const int topright_mb_frame_flag = !IS_INTERLACED(s->current_picture.mb_type[topright_pair_xy]);
|
|
const int left_mb_frame_flag = !IS_INTERLACED(s->current_picture.mb_type[pair_xy-1]);
|
|
const int curr_mb_frame_flag = !IS_INTERLACED(mb_type);
|
|
const int bottom = (s->mb_y & 1);
|
|
tprintf(s->avctx, "fill_caches: curr_mb_frame_flag:%d, left_mb_frame_flag:%d, topleft_mb_frame_flag:%d, top_mb_frame_flag:%d, topright_mb_frame_flag:%d\n", curr_mb_frame_flag, left_mb_frame_flag, topleft_mb_frame_flag, top_mb_frame_flag, topright_mb_frame_flag);
|
|
if (bottom
|
|
? !curr_mb_frame_flag // bottom macroblock
|
|
: (!curr_mb_frame_flag && !top_mb_frame_flag) // top macroblock
|
|
) {
|
|
top_xy -= s->mb_stride;
|
|
}
|
|
if (bottom
|
|
? !curr_mb_frame_flag // bottom macroblock
|
|
: (!curr_mb_frame_flag && !topleft_mb_frame_flag) // top macroblock
|
|
) {
|
|
topleft_xy -= s->mb_stride;
|
|
} else if(bottom && curr_mb_frame_flag && !left_mb_frame_flag) {
|
|
topleft_xy += s->mb_stride;
|
|
// take topleft mv from the middle of the mb, as opposed to all other modes which use the bottom-right partition
|
|
topleft_partition = 0;
|
|
}
|
|
if (bottom
|
|
? !curr_mb_frame_flag // bottom macroblock
|
|
: (!curr_mb_frame_flag && !topright_mb_frame_flag) // top macroblock
|
|
) {
|
|
topright_xy -= s->mb_stride;
|
|
}
|
|
if (left_mb_frame_flag != curr_mb_frame_flag) {
|
|
left_xy[1] = left_xy[0] = pair_xy - 1;
|
|
if (curr_mb_frame_flag) {
|
|
if (bottom) {
|
|
left_block[0]= 2;
|
|
left_block[1]= 2;
|
|
left_block[2]= 3;
|
|
left_block[3]= 3;
|
|
left_block[4]= 8;
|
|
left_block[5]= 11;
|
|
left_block[6]= 8;
|
|
left_block[7]= 11;
|
|
} else {
|
|
left_block[0]= 0;
|
|
left_block[1]= 0;
|
|
left_block[2]= 1;
|
|
left_block[3]= 1;
|
|
left_block[4]= 7;
|
|
left_block[5]= 10;
|
|
left_block[6]= 7;
|
|
left_block[7]= 10;
|
|
}
|
|
} else {
|
|
left_xy[1] += s->mb_stride;
|
|
//left_block[0]= 0;
|
|
left_block[1]= 2;
|
|
left_block[2]= 0;
|
|
left_block[3]= 2;
|
|
//left_block[4]= 7;
|
|
left_block[5]= 10;
|
|
left_block[6]= 7;
|
|
left_block[7]= 10;
|
|
}
|
|
}
|
|
}
|
|
|
|
h->top_mb_xy = top_xy;
|
|
h->left_mb_xy[0] = left_xy[0];
|
|
h->left_mb_xy[1] = left_xy[1];
|
|
if(for_deblock){
|
|
topleft_type = 0;
|
|
topright_type = 0;
|
|
top_type = h->slice_table[top_xy ] < 255 ? s->current_picture.mb_type[top_xy] : 0;
|
|
left_type[0] = h->slice_table[left_xy[0] ] < 255 ? s->current_picture.mb_type[left_xy[0]] : 0;
|
|
left_type[1] = h->slice_table[left_xy[1] ] < 255 ? s->current_picture.mb_type[left_xy[1]] : 0;
|
|
|
|
if(FRAME_MBAFF && !IS_INTRA(mb_type)){
|
|
int list;
|
|
int v = *(uint16_t*)&h->non_zero_count[mb_xy][14];
|
|
for(i=0; i<16; i++)
|
|
h->non_zero_count_cache[scan8[i]] = (v>>i)&1;
|
|
for(list=0; list<h->list_count; list++){
|
|
if(USES_LIST(mb_type,list)){
|
|
uint32_t *src = (uint32_t*)s->current_picture.motion_val[list][h->mb2b_xy[mb_xy]];
|
|
uint32_t *dst = (uint32_t*)h->mv_cache[list][scan8[0]];
|
|
int8_t *ref = &s->current_picture.ref_index[list][h->mb2b8_xy[mb_xy]];
|
|
for(i=0; i<4; i++, dst+=8, src+=h->b_stride){
|
|
dst[0] = src[0];
|
|
dst[1] = src[1];
|
|
dst[2] = src[2];
|
|
dst[3] = src[3];
|
|
}
|
|
*(uint32_t*)&h->ref_cache[list][scan8[ 0]] =
|
|
*(uint32_t*)&h->ref_cache[list][scan8[ 2]] = pack16to32(ref[0],ref[1])*0x0101;
|
|
ref += h->b8_stride;
|
|
*(uint32_t*)&h->ref_cache[list][scan8[ 8]] =
|
|
*(uint32_t*)&h->ref_cache[list][scan8[10]] = pack16to32(ref[0],ref[1])*0x0101;
|
|
}else{
|
|
fill_rectangle(&h-> mv_cache[list][scan8[ 0]], 4, 4, 8, 0, 4);
|
|
fill_rectangle(&h->ref_cache[list][scan8[ 0]], 4, 4, 8, (uint8_t)LIST_NOT_USED, 1);
|
|
}
|
|
}
|
|
}
|
|
}else{
|
|
topleft_type = h->slice_table[topleft_xy ] == h->slice_num ? s->current_picture.mb_type[topleft_xy] : 0;
|
|
top_type = h->slice_table[top_xy ] == h->slice_num ? s->current_picture.mb_type[top_xy] : 0;
|
|
topright_type= h->slice_table[topright_xy] == h->slice_num ? s->current_picture.mb_type[topright_xy]: 0;
|
|
left_type[0] = h->slice_table[left_xy[0] ] == h->slice_num ? s->current_picture.mb_type[left_xy[0]] : 0;
|
|
left_type[1] = h->slice_table[left_xy[1] ] == h->slice_num ? s->current_picture.mb_type[left_xy[1]] : 0;
|
|
}
|
|
|
|
if(IS_INTRA(mb_type)){
|
|
h->topleft_samples_available=
|
|
h->top_samples_available=
|
|
h->left_samples_available= 0xFFFF;
|
|
h->topright_samples_available= 0xEEEA;
|
|
|
|
if(!IS_INTRA(top_type) && (top_type==0 || h->pps.constrained_intra_pred)){
|
|
h->topleft_samples_available= 0xB3FF;
|
|
h->top_samples_available= 0x33FF;
|
|
h->topright_samples_available= 0x26EA;
|
|
}
|
|
for(i=0; i<2; i++){
|
|
if(!IS_INTRA(left_type[i]) && (left_type[i]==0 || h->pps.constrained_intra_pred)){
|
|
h->topleft_samples_available&= 0xDF5F;
|
|
h->left_samples_available&= 0x5F5F;
|
|
}
|
|
}
|
|
|
|
if(!IS_INTRA(topleft_type) && (topleft_type==0 || h->pps.constrained_intra_pred))
|
|
h->topleft_samples_available&= 0x7FFF;
|
|
|
|
if(!IS_INTRA(topright_type) && (topright_type==0 || h->pps.constrained_intra_pred))
|
|
h->topright_samples_available&= 0xFBFF;
|
|
|
|
if(IS_INTRA4x4(mb_type)){
|
|
if(IS_INTRA4x4(top_type)){
|
|
h->intra4x4_pred_mode_cache[4+8*0]= h->intra4x4_pred_mode[top_xy][4];
|
|
h->intra4x4_pred_mode_cache[5+8*0]= h->intra4x4_pred_mode[top_xy][5];
|
|
h->intra4x4_pred_mode_cache[6+8*0]= h->intra4x4_pred_mode[top_xy][6];
|
|
h->intra4x4_pred_mode_cache[7+8*0]= h->intra4x4_pred_mode[top_xy][3];
|
|
}else{
|
|
int pred;
|
|
if(!top_type || (IS_INTER(top_type) && h->pps.constrained_intra_pred))
|
|
pred= -1;
|
|
else{
|
|
pred= 2;
|
|
}
|
|
h->intra4x4_pred_mode_cache[4+8*0]=
|
|
h->intra4x4_pred_mode_cache[5+8*0]=
|
|
h->intra4x4_pred_mode_cache[6+8*0]=
|
|
h->intra4x4_pred_mode_cache[7+8*0]= pred;
|
|
}
|
|
for(i=0; i<2; i++){
|
|
if(IS_INTRA4x4(left_type[i])){
|
|
h->intra4x4_pred_mode_cache[3+8*1 + 2*8*i]= h->intra4x4_pred_mode[left_xy[i]][left_block[0+2*i]];
|
|
h->intra4x4_pred_mode_cache[3+8*2 + 2*8*i]= h->intra4x4_pred_mode[left_xy[i]][left_block[1+2*i]];
|
|
}else{
|
|
int pred;
|
|
if(!left_type[i] || (IS_INTER(left_type[i]) && h->pps.constrained_intra_pred))
|
|
pred= -1;
|
|
else{
|
|
pred= 2;
|
|
}
|
|
h->intra4x4_pred_mode_cache[3+8*1 + 2*8*i]=
|
|
h->intra4x4_pred_mode_cache[3+8*2 + 2*8*i]= pred;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
0 . T T. T T T T
|
|
1 L . .L . . . .
|
|
2 L . .L . . . .
|
|
3 . T TL . . . .
|
|
4 L . .L . . . .
|
|
5 L . .. . . . .
|
|
*/
|
|
//FIXME constraint_intra_pred & partitioning & nnz (lets hope this is just a typo in the spec)
|
|
if(top_type){
|
|
h->non_zero_count_cache[4+8*0]= h->non_zero_count[top_xy][4];
|
|
h->non_zero_count_cache[5+8*0]= h->non_zero_count[top_xy][5];
|
|
h->non_zero_count_cache[6+8*0]= h->non_zero_count[top_xy][6];
|
|
h->non_zero_count_cache[7+8*0]= h->non_zero_count[top_xy][3];
|
|
|
|
h->non_zero_count_cache[1+8*0]= h->non_zero_count[top_xy][9];
|
|
h->non_zero_count_cache[2+8*0]= h->non_zero_count[top_xy][8];
|
|
|
|
h->non_zero_count_cache[1+8*3]= h->non_zero_count[top_xy][12];
|
|
h->non_zero_count_cache[2+8*3]= h->non_zero_count[top_xy][11];
|
|
|
|
}else{
|
|
h->non_zero_count_cache[4+8*0]=
|
|
h->non_zero_count_cache[5+8*0]=
|
|
h->non_zero_count_cache[6+8*0]=
|
|
h->non_zero_count_cache[7+8*0]=
|
|
|
|
h->non_zero_count_cache[1+8*0]=
|
|
h->non_zero_count_cache[2+8*0]=
|
|
|
|
h->non_zero_count_cache[1+8*3]=
|
|
h->non_zero_count_cache[2+8*3]= h->pps.cabac && !IS_INTRA(mb_type) ? 0 : 64;
|
|
|
|
}
|
|
|
|
for (i=0; i<2; i++) {
|
|
if(left_type[i]){
|
|
h->non_zero_count_cache[3+8*1 + 2*8*i]= h->non_zero_count[left_xy[i]][left_block[0+2*i]];
|
|
h->non_zero_count_cache[3+8*2 + 2*8*i]= h->non_zero_count[left_xy[i]][left_block[1+2*i]];
|
|
h->non_zero_count_cache[0+8*1 + 8*i]= h->non_zero_count[left_xy[i]][left_block[4+2*i]];
|
|
h->non_zero_count_cache[0+8*4 + 8*i]= h->non_zero_count[left_xy[i]][left_block[5+2*i]];
|
|
}else{
|
|
h->non_zero_count_cache[3+8*1 + 2*8*i]=
|
|
h->non_zero_count_cache[3+8*2 + 2*8*i]=
|
|
h->non_zero_count_cache[0+8*1 + 8*i]=
|
|
h->non_zero_count_cache[0+8*4 + 8*i]= h->pps.cabac && !IS_INTRA(mb_type) ? 0 : 64;
|
|
}
|
|
}
|
|
|
|
if( h->pps.cabac ) {
|
|
// top_cbp
|
|
if(top_type) {
|
|
h->top_cbp = h->cbp_table[top_xy];
|
|
} else if(IS_INTRA(mb_type)) {
|
|
h->top_cbp = 0x1C0;
|
|
} else {
|
|
h->top_cbp = 0;
|
|
}
|
|
// left_cbp
|
|
if (left_type[0]) {
|
|
h->left_cbp = h->cbp_table[left_xy[0]] & 0x1f0;
|
|
} else if(IS_INTRA(mb_type)) {
|
|
h->left_cbp = 0x1C0;
|
|
} else {
|
|
h->left_cbp = 0;
|
|
}
|
|
if (left_type[0]) {
|
|
h->left_cbp |= ((h->cbp_table[left_xy[0]]>>((left_block[0]&(~1))+1))&0x1) << 1;
|
|
}
|
|
if (left_type[1]) {
|
|
h->left_cbp |= ((h->cbp_table[left_xy[1]]>>((left_block[2]&(~1))+1))&0x1) << 3;
|
|
}
|
|
}
|
|
|
|
#if 1
|
|
if(IS_INTER(mb_type) || IS_DIRECT(mb_type)){
|
|
int list;
|
|
for(list=0; list<h->list_count; list++){
|
|
if(!USES_LIST(mb_type, list) && !IS_DIRECT(mb_type) && !h->deblocking_filter){
|
|
/*if(!h->mv_cache_clean[list]){
|
|
memset(h->mv_cache [list], 0, 8*5*2*sizeof(int16_t)); //FIXME clean only input? clean at all?
|
|
memset(h->ref_cache[list], PART_NOT_AVAILABLE, 8*5*sizeof(int8_t));
|
|
h->mv_cache_clean[list]= 1;
|
|
}*/
|
|
continue;
|
|
}
|
|
h->mv_cache_clean[list]= 0;
|
|
|
|
if(USES_LIST(top_type, list)){
|
|
const int b_xy= h->mb2b_xy[top_xy] + 3*h->b_stride;
|
|
const int b8_xy= h->mb2b8_xy[top_xy] + h->b8_stride;
|
|
*(uint32_t*)h->mv_cache[list][scan8[0] + 0 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 0];
|
|
*(uint32_t*)h->mv_cache[list][scan8[0] + 1 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 1];
|
|
*(uint32_t*)h->mv_cache[list][scan8[0] + 2 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 2];
|
|
*(uint32_t*)h->mv_cache[list][scan8[0] + 3 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 3];
|
|
h->ref_cache[list][scan8[0] + 0 - 1*8]=
|
|
h->ref_cache[list][scan8[0] + 1 - 1*8]= s->current_picture.ref_index[list][b8_xy + 0];
|
|
h->ref_cache[list][scan8[0] + 2 - 1*8]=
|
|
h->ref_cache[list][scan8[0] + 3 - 1*8]= s->current_picture.ref_index[list][b8_xy + 1];
|
|
}else{
|
|
*(uint32_t*)h->mv_cache [list][scan8[0] + 0 - 1*8]=
|
|
*(uint32_t*)h->mv_cache [list][scan8[0] + 1 - 1*8]=
|
|
*(uint32_t*)h->mv_cache [list][scan8[0] + 2 - 1*8]=
|
|
*(uint32_t*)h->mv_cache [list][scan8[0] + 3 - 1*8]= 0;
|
|
*(uint32_t*)&h->ref_cache[list][scan8[0] + 0 - 1*8]= ((top_type ? LIST_NOT_USED : PART_NOT_AVAILABLE)&0xFF)*0x01010101;
|
|
}
|
|
|
|
for(i=0; i<2; i++){
|
|
int cache_idx = scan8[0] - 1 + i*2*8;
|
|
if(USES_LIST(left_type[i], list)){
|
|
const int b_xy= h->mb2b_xy[left_xy[i]] + 3;
|
|
const int b8_xy= h->mb2b8_xy[left_xy[i]] + 1;
|
|
*(uint32_t*)h->mv_cache[list][cache_idx ]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[0+i*2]];
|
|
*(uint32_t*)h->mv_cache[list][cache_idx+8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[1+i*2]];
|
|
h->ref_cache[list][cache_idx ]= s->current_picture.ref_index[list][b8_xy + h->b8_stride*(left_block[0+i*2]>>1)];
|
|
h->ref_cache[list][cache_idx+8]= s->current_picture.ref_index[list][b8_xy + h->b8_stride*(left_block[1+i*2]>>1)];
|
|
}else{
|
|
*(uint32_t*)h->mv_cache [list][cache_idx ]=
|
|
*(uint32_t*)h->mv_cache [list][cache_idx+8]= 0;
|
|
h->ref_cache[list][cache_idx ]=
|
|
h->ref_cache[list][cache_idx+8]= left_type[i] ? LIST_NOT_USED : PART_NOT_AVAILABLE;
|
|
}
|
|
}
|
|
|
|
if((for_deblock || (IS_DIRECT(mb_type) && !h->direct_spatial_mv_pred)) && !FRAME_MBAFF)
|
|
continue;
|
|
|
|
if(USES_LIST(topleft_type, list)){
|
|
const int b_xy = h->mb2b_xy[topleft_xy] + 3 + h->b_stride + (topleft_partition & 2*h->b_stride);
|
|
const int b8_xy= h->mb2b8_xy[topleft_xy] + 1 + (topleft_partition & h->b8_stride);
|
|
*(uint32_t*)h->mv_cache[list][scan8[0] - 1 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy];
|
|
h->ref_cache[list][scan8[0] - 1 - 1*8]= s->current_picture.ref_index[list][b8_xy];
|
|
}else{
|
|
*(uint32_t*)h->mv_cache[list][scan8[0] - 1 - 1*8]= 0;
|
|
h->ref_cache[list][scan8[0] - 1 - 1*8]= topleft_type ? LIST_NOT_USED : PART_NOT_AVAILABLE;
|
|
}
|
|
|
|
if(USES_LIST(topright_type, list)){
|
|
const int b_xy= h->mb2b_xy[topright_xy] + 3*h->b_stride;
|
|
const int b8_xy= h->mb2b8_xy[topright_xy] + h->b8_stride;
|
|
*(uint32_t*)h->mv_cache[list][scan8[0] + 4 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy];
|
|
h->ref_cache[list][scan8[0] + 4 - 1*8]= s->current_picture.ref_index[list][b8_xy];
|
|
}else{
|
|
*(uint32_t*)h->mv_cache [list][scan8[0] + 4 - 1*8]= 0;
|
|
h->ref_cache[list][scan8[0] + 4 - 1*8]= topright_type ? LIST_NOT_USED : PART_NOT_AVAILABLE;
|
|
}
|
|
|
|
if((IS_SKIP(mb_type) || IS_DIRECT(mb_type)) && !FRAME_MBAFF)
|
|
continue;
|
|
|
|
h->ref_cache[list][scan8[5 ]+1] =
|
|
h->ref_cache[list][scan8[7 ]+1] =
|
|
h->ref_cache[list][scan8[13]+1] = //FIXME remove past 3 (init somewhere else)
|
|
h->ref_cache[list][scan8[4 ]] =
|
|
h->ref_cache[list][scan8[12]] = PART_NOT_AVAILABLE;
|
|
*(uint32_t*)h->mv_cache [list][scan8[5 ]+1]=
|
|
*(uint32_t*)h->mv_cache [list][scan8[7 ]+1]=
|
|
*(uint32_t*)h->mv_cache [list][scan8[13]+1]= //FIXME remove past 3 (init somewhere else)
|
|
*(uint32_t*)h->mv_cache [list][scan8[4 ]]=
|
|
*(uint32_t*)h->mv_cache [list][scan8[12]]= 0;
|
|
|
|
if( h->pps.cabac ) {
|
|
/* XXX beurk, Load mvd */
|
|
if(USES_LIST(top_type, list)){
|
|
const int b_xy= h->mb2b_xy[top_xy] + 3*h->b_stride;
|
|
*(uint32_t*)h->mvd_cache[list][scan8[0] + 0 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + 0];
|
|
*(uint32_t*)h->mvd_cache[list][scan8[0] + 1 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + 1];
|
|
*(uint32_t*)h->mvd_cache[list][scan8[0] + 2 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + 2];
|
|
*(uint32_t*)h->mvd_cache[list][scan8[0] + 3 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + 3];
|
|
}else{
|
|
*(uint32_t*)h->mvd_cache [list][scan8[0] + 0 - 1*8]=
|
|
*(uint32_t*)h->mvd_cache [list][scan8[0] + 1 - 1*8]=
|
|
*(uint32_t*)h->mvd_cache [list][scan8[0] + 2 - 1*8]=
|
|
*(uint32_t*)h->mvd_cache [list][scan8[0] + 3 - 1*8]= 0;
|
|
}
|
|
if(USES_LIST(left_type[0], list)){
|
|
const int b_xy= h->mb2b_xy[left_xy[0]] + 3;
|
|
*(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 0*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[0]];
|
|
*(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[1]];
|
|
}else{
|
|
*(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 0*8]=
|
|
*(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 1*8]= 0;
|
|
}
|
|
if(USES_LIST(left_type[1], list)){
|
|
const int b_xy= h->mb2b_xy[left_xy[1]] + 3;
|
|
*(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 2*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[2]];
|
|
*(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 3*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[3]];
|
|
}else{
|
|
*(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 2*8]=
|
|
*(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 3*8]= 0;
|
|
}
|
|
*(uint32_t*)h->mvd_cache [list][scan8[5 ]+1]=
|
|
*(uint32_t*)h->mvd_cache [list][scan8[7 ]+1]=
|
|
*(uint32_t*)h->mvd_cache [list][scan8[13]+1]= //FIXME remove past 3 (init somewhere else)
|
|
*(uint32_t*)h->mvd_cache [list][scan8[4 ]]=
|
|
*(uint32_t*)h->mvd_cache [list][scan8[12]]= 0;
|
|
|
|
if(h->slice_type == FF_B_TYPE){
|
|
fill_rectangle(&h->direct_cache[scan8[0]], 4, 4, 8, 0, 1);
|
|
|
|
if(IS_DIRECT(top_type)){
|
|
*(uint32_t*)&h->direct_cache[scan8[0] - 1*8]= 0x01010101;
|
|
}else if(IS_8X8(top_type)){
|
|
int b8_xy = h->mb2b8_xy[top_xy] + h->b8_stride;
|
|
h->direct_cache[scan8[0] + 0 - 1*8]= h->direct_table[b8_xy];
|
|
h->direct_cache[scan8[0] + 2 - 1*8]= h->direct_table[b8_xy + 1];
|
|
}else{
|
|
*(uint32_t*)&h->direct_cache[scan8[0] - 1*8]= 0;
|
|
}
|
|
|
|
if(IS_DIRECT(left_type[0]))
|
|
h->direct_cache[scan8[0] - 1 + 0*8]= 1;
|
|
else if(IS_8X8(left_type[0]))
|
|
h->direct_cache[scan8[0] - 1 + 0*8]= h->direct_table[h->mb2b8_xy[left_xy[0]] + 1 + h->b8_stride*(left_block[0]>>1)];
|
|
else
|
|
h->direct_cache[scan8[0] - 1 + 0*8]= 0;
|
|
|
|
if(IS_DIRECT(left_type[1]))
|
|
h->direct_cache[scan8[0] - 1 + 2*8]= 1;
|
|
else if(IS_8X8(left_type[1]))
|
|
h->direct_cache[scan8[0] - 1 + 2*8]= h->direct_table[h->mb2b8_xy[left_xy[1]] + 1 + h->b8_stride*(left_block[2]>>1)];
|
|
else
|
|
h->direct_cache[scan8[0] - 1 + 2*8]= 0;
|
|
}
|
|
}
|
|
|
|
if(FRAME_MBAFF){
|
|
#define MAP_MVS\
|
|
MAP_F2F(scan8[0] - 1 - 1*8, topleft_type)\
|
|
MAP_F2F(scan8[0] + 0 - 1*8, top_type)\
|
|
MAP_F2F(scan8[0] + 1 - 1*8, top_type)\
|
|
MAP_F2F(scan8[0] + 2 - 1*8, top_type)\
|
|
MAP_F2F(scan8[0] + 3 - 1*8, top_type)\
|
|
MAP_F2F(scan8[0] + 4 - 1*8, topright_type)\
|
|
MAP_F2F(scan8[0] - 1 + 0*8, left_type[0])\
|
|
MAP_F2F(scan8[0] - 1 + 1*8, left_type[0])\
|
|
MAP_F2F(scan8[0] - 1 + 2*8, left_type[1])\
|
|
MAP_F2F(scan8[0] - 1 + 3*8, left_type[1])
|
|
if(MB_FIELD){
|
|
#define MAP_F2F(idx, mb_type)\
|
|
if(!IS_INTERLACED(mb_type) && h->ref_cache[list][idx] >= 0){\
|
|
h->ref_cache[list][idx] <<= 1;\
|
|
h->mv_cache[list][idx][1] /= 2;\
|
|
h->mvd_cache[list][idx][1] /= 2;\
|
|
}
|
|
MAP_MVS
|
|
#undef MAP_F2F
|
|
}else{
|
|
#define MAP_F2F(idx, mb_type)\
|
|
if(IS_INTERLACED(mb_type) && h->ref_cache[list][idx] >= 0){\
|
|
h->ref_cache[list][idx] >>= 1;\
|
|
h->mv_cache[list][idx][1] <<= 1;\
|
|
h->mvd_cache[list][idx][1] <<= 1;\
|
|
}
|
|
MAP_MVS
|
|
#undef MAP_F2F
|
|
}
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
h->neighbor_transform_size= !!IS_8x8DCT(top_type) + !!IS_8x8DCT(left_type[0]);
|
|
}
|
|
|
|
static inline void write_back_intra_pred_mode(H264Context *h){
|
|
const int mb_xy= h->mb_xy;
|
|
|
|
h->intra4x4_pred_mode[mb_xy][0]= h->intra4x4_pred_mode_cache[7+8*1];
|
|
h->intra4x4_pred_mode[mb_xy][1]= h->intra4x4_pred_mode_cache[7+8*2];
|
|
h->intra4x4_pred_mode[mb_xy][2]= h->intra4x4_pred_mode_cache[7+8*3];
|
|
h->intra4x4_pred_mode[mb_xy][3]= h->intra4x4_pred_mode_cache[7+8*4];
|
|
h->intra4x4_pred_mode[mb_xy][4]= h->intra4x4_pred_mode_cache[4+8*4];
|
|
h->intra4x4_pred_mode[mb_xy][5]= h->intra4x4_pred_mode_cache[5+8*4];
|
|
h->intra4x4_pred_mode[mb_xy][6]= h->intra4x4_pred_mode_cache[6+8*4];
|
|
}
|
|
|
|
/**
|
|
* checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks.
|
|
*/
|
|
static inline int check_intra4x4_pred_mode(H264Context *h){
|
|
MpegEncContext * const s = &h->s;
|
|
static const int8_t top [12]= {-1, 0,LEFT_DC_PRED,-1,-1,-1,-1,-1, 0};
|
|
static const int8_t left[12]= { 0,-1, TOP_DC_PRED, 0,-1,-1,-1, 0,-1,DC_128_PRED};
|
|
int i;
|
|
|
|
if(!(h->top_samples_available&0x8000)){
|
|
for(i=0; i<4; i++){
|
|
int status= top[ h->intra4x4_pred_mode_cache[scan8[0] + i] ];
|
|
if(status<0){
|
|
av_log(h->s.avctx, AV_LOG_ERROR, "top block unavailable for requested intra4x4 mode %d at %d %d\n", status, s->mb_x, s->mb_y);
|
|
return -1;
|
|
} else if(status){
|
|
h->intra4x4_pred_mode_cache[scan8[0] + i]= status;
|
|
}
|
|
}
|
|
}
|
|
|
|
if(!(h->left_samples_available&0x8000)){
|
|
for(i=0; i<4; i++){
|
|
int status= left[ h->intra4x4_pred_mode_cache[scan8[0] + 8*i] ];
|
|
if(status<0){
|
|
av_log(h->s.avctx, AV_LOG_ERROR, "left block unavailable for requested intra4x4 mode %d at %d %d\n", status, s->mb_x, s->mb_y);
|
|
return -1;
|
|
} else if(status){
|
|
h->intra4x4_pred_mode_cache[scan8[0] + 8*i]= status;
|
|
}
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
} //FIXME cleanup like next
|
|
|
|
/**
|
|
* checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks.
|
|
*/
|
|
static inline int check_intra_pred_mode(H264Context *h, int mode){
|
|
MpegEncContext * const s = &h->s;
|
|
static const int8_t top [7]= {LEFT_DC_PRED8x8, 1,-1,-1};
|
|
static const int8_t left[7]= { TOP_DC_PRED8x8,-1, 2,-1,DC_128_PRED8x8};
|
|
|
|
if(mode > 6U) {
|
|
av_log(h->s.avctx, AV_LOG_ERROR, "out of range intra chroma pred mode at %d %d\n", s->mb_x, s->mb_y);
|
|
return -1;
|
|
}
|
|
|
|
if(!(h->top_samples_available&0x8000)){
|
|
mode= top[ mode ];
|
|
if(mode<0){
|
|
av_log(h->s.avctx, AV_LOG_ERROR, "top block unavailable for requested intra mode at %d %d\n", s->mb_x, s->mb_y);
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
if(!(h->left_samples_available&0x8000)){
|
|
mode= left[ mode ];
|
|
if(mode<0){
|
|
av_log(h->s.avctx, AV_LOG_ERROR, "left block unavailable for requested intra mode at %d %d\n", s->mb_x, s->mb_y);
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
return mode;
|
|
}
|
|
|
|
/**
|
|
* gets the predicted intra4x4 prediction mode.
|
|
*/
|
|
static inline int pred_intra_mode(H264Context *h, int n){
|
|
const int index8= scan8[n];
|
|
const int left= h->intra4x4_pred_mode_cache[index8 - 1];
|
|
const int top = h->intra4x4_pred_mode_cache[index8 - 8];
|
|
const int min= FFMIN(left, top);
|
|
|
|
tprintf(h->s.avctx, "mode:%d %d min:%d\n", left ,top, min);
|
|
|
|
if(min<0) return DC_PRED;
|
|
else return min;
|
|
}
|
|
|
|
static inline void write_back_non_zero_count(H264Context *h){
|
|
const int mb_xy= h->mb_xy;
|
|
|
|
h->non_zero_count[mb_xy][0]= h->non_zero_count_cache[7+8*1];
|
|
h->non_zero_count[mb_xy][1]= h->non_zero_count_cache[7+8*2];
|
|
h->non_zero_count[mb_xy][2]= h->non_zero_count_cache[7+8*3];
|
|
h->non_zero_count[mb_xy][3]= h->non_zero_count_cache[7+8*4];
|
|
h->non_zero_count[mb_xy][4]= h->non_zero_count_cache[4+8*4];
|
|
h->non_zero_count[mb_xy][5]= h->non_zero_count_cache[5+8*4];
|
|
h->non_zero_count[mb_xy][6]= h->non_zero_count_cache[6+8*4];
|
|
|
|
h->non_zero_count[mb_xy][9]= h->non_zero_count_cache[1+8*2];
|
|
h->non_zero_count[mb_xy][8]= h->non_zero_count_cache[2+8*2];
|
|
h->non_zero_count[mb_xy][7]= h->non_zero_count_cache[2+8*1];
|
|
|
|
h->non_zero_count[mb_xy][12]=h->non_zero_count_cache[1+8*5];
|
|
h->non_zero_count[mb_xy][11]=h->non_zero_count_cache[2+8*5];
|
|
h->non_zero_count[mb_xy][10]=h->non_zero_count_cache[2+8*4];
|
|
|
|
if(FRAME_MBAFF){
|
|
// store all luma nnzs, for deblocking
|
|
int v = 0, i;
|
|
for(i=0; i<16; i++)
|
|
v += (!!h->non_zero_count_cache[scan8[i]]) << i;
|
|
*(uint16_t*)&h->non_zero_count[mb_xy][14] = v;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* gets the predicted number of non zero coefficients.
|
|
* @param n block index
|
|
*/
|
|
static inline int pred_non_zero_count(H264Context *h, int n){
|
|
const int index8= scan8[n];
|
|
const int left= h->non_zero_count_cache[index8 - 1];
|
|
const int top = h->non_zero_count_cache[index8 - 8];
|
|
int i= left + top;
|
|
|
|
if(i<64) i= (i+1)>>1;
|
|
|
|
tprintf(h->s.avctx, "pred_nnz L%X T%X n%d s%d P%X\n", left, top, n, scan8[n], i&31);
|
|
|
|
return i&31;
|
|
}
|
|
|
|
static inline int fetch_diagonal_mv(H264Context *h, const int16_t **C, int i, int list, int part_width){
|
|
const int topright_ref= h->ref_cache[list][ i - 8 + part_width ];
|
|
MpegEncContext *s = &h->s;
|
|
|
|
/* there is no consistent mapping of mvs to neighboring locations that will
|
|
* make mbaff happy, so we can't move all this logic to fill_caches */
|
|
if(FRAME_MBAFF){
|
|
const uint32_t *mb_types = s->current_picture_ptr->mb_type;
|
|
const int16_t *mv;
|
|
*(uint32_t*)h->mv_cache[list][scan8[0]-2] = 0;
|
|
*C = h->mv_cache[list][scan8[0]-2];
|
|
|
|
if(!MB_FIELD
|
|
&& (s->mb_y&1) && i < scan8[0]+8 && topright_ref != PART_NOT_AVAILABLE){
|
|
int topright_xy = s->mb_x + (s->mb_y-1)*s->mb_stride + (i == scan8[0]+3);
|
|
if(IS_INTERLACED(mb_types[topright_xy])){
|
|
#define SET_DIAG_MV(MV_OP, REF_OP, X4, Y4)\
|
|
const int x4 = X4, y4 = Y4;\
|
|
const int mb_type = mb_types[(x4>>2)+(y4>>2)*s->mb_stride];\
|
|
if(!USES_LIST(mb_type,list))\
|
|
return LIST_NOT_USED;\
|
|
mv = s->current_picture_ptr->motion_val[list][x4 + y4*h->b_stride];\
|
|
h->mv_cache[list][scan8[0]-2][0] = mv[0];\
|
|
h->mv_cache[list][scan8[0]-2][1] = mv[1] MV_OP;\
|
|
return s->current_picture_ptr->ref_index[list][(x4>>1) + (y4>>1)*h->b8_stride] REF_OP;
|
|
|
|
SET_DIAG_MV(*2, >>1, s->mb_x*4+(i&7)-4+part_width, s->mb_y*4-1);
|
|
}
|
|
}
|
|
if(topright_ref == PART_NOT_AVAILABLE
|
|
&& ((s->mb_y&1) || i >= scan8[0]+8) && (i&7)==4
|
|
&& h->ref_cache[list][scan8[0]-1] != PART_NOT_AVAILABLE){
|
|
if(!MB_FIELD
|
|
&& IS_INTERLACED(mb_types[h->left_mb_xy[0]])){
|
|
SET_DIAG_MV(*2, >>1, s->mb_x*4-1, (s->mb_y|1)*4+(s->mb_y&1)*2+(i>>4)-1);
|
|
}
|
|
if(MB_FIELD
|
|
&& !IS_INTERLACED(mb_types[h->left_mb_xy[0]])
|
|
&& i >= scan8[0]+8){
|
|
// leftshift will turn LIST_NOT_USED into PART_NOT_AVAILABLE, but that's ok.
|
|
SET_DIAG_MV(/2, <<1, s->mb_x*4-1, (s->mb_y&~1)*4 - 1 + ((i-scan8[0])>>3)*2);
|
|
}
|
|
}
|
|
#undef SET_DIAG_MV
|
|
}
|
|
|
|
if(topright_ref != PART_NOT_AVAILABLE){
|
|
*C= h->mv_cache[list][ i - 8 + part_width ];
|
|
return topright_ref;
|
|
}else{
|
|
tprintf(s->avctx, "topright MV not available\n");
|
|
|
|
*C= h->mv_cache[list][ i - 8 - 1 ];
|
|
return h->ref_cache[list][ i - 8 - 1 ];
|
|
}
|
|
}
|
|
|
|
/**
|
|
* gets the predicted MV.
|
|
* @param n the block index
|
|
* @param part_width the width of the partition (4, 8,16) -> (1, 2, 4)
|
|
* @param mx the x component of the predicted motion vector
|
|
* @param my the y component of the predicted motion vector
|
|
*/
|
|
static inline void pred_motion(H264Context * const h, int n, int part_width, int list, int ref, int * const mx, int * const my){
|
|
const int index8= scan8[n];
|
|
const int top_ref= h->ref_cache[list][ index8 - 8 ];
|
|
const int left_ref= h->ref_cache[list][ index8 - 1 ];
|
|
const int16_t * const A= h->mv_cache[list][ index8 - 1 ];
|
|
const int16_t * const B= h->mv_cache[list][ index8 - 8 ];
|
|
const int16_t * C;
|
|
int diagonal_ref, match_count;
|
|
|
|
assert(part_width==1 || part_width==2 || part_width==4);
|
|
|
|
/* mv_cache
|
|
B . . A T T T T
|
|
U . . L . . , .
|
|
U . . L . . . .
|
|
U . . L . . , .
|
|
. . . L . . . .
|
|
*/
|
|
|
|
diagonal_ref= fetch_diagonal_mv(h, &C, index8, list, part_width);
|
|
match_count= (diagonal_ref==ref) + (top_ref==ref) + (left_ref==ref);
|
|
tprintf(h->s.avctx, "pred_motion match_count=%d\n", match_count);
|
|
if(match_count > 1){ //most common
|
|
*mx= mid_pred(A[0], B[0], C[0]);
|
|
*my= mid_pred(A[1], B[1], C[1]);
|
|
}else if(match_count==1){
|
|
if(left_ref==ref){
|
|
*mx= A[0];
|
|
*my= A[1];
|
|
}else if(top_ref==ref){
|
|
*mx= B[0];
|
|
*my= B[1];
|
|
}else{
|
|
*mx= C[0];
|
|
*my= C[1];
|
|
}
|
|
}else{
|
|
if(top_ref == PART_NOT_AVAILABLE && diagonal_ref == PART_NOT_AVAILABLE && left_ref != PART_NOT_AVAILABLE){
|
|
*mx= A[0];
|
|
*my= A[1];
|
|
}else{
|
|
*mx= mid_pred(A[0], B[0], C[0]);
|
|
*my= mid_pred(A[1], B[1], C[1]);
|
|
}
|
|
}
|
|
|
|
tprintf(h->s.avctx, "pred_motion (%2d %2d %2d) (%2d %2d %2d) (%2d %2d %2d) -> (%2d %2d %2d) at %2d %2d %d list %d\n", top_ref, B[0], B[1], diagonal_ref, C[0], C[1], left_ref, A[0], A[1], ref, *mx, *my, h->s.mb_x, h->s.mb_y, n, list);
|
|
}
|
|
|
|
/**
|
|
* gets the directionally predicted 16x8 MV.
|
|
* @param n the block index
|
|
* @param mx the x component of the predicted motion vector
|
|
* @param my the y component of the predicted motion vector
|
|
*/
|
|
static inline void pred_16x8_motion(H264Context * const h, int n, int list, int ref, int * const mx, int * const my){
|
|
if(n==0){
|
|
const int top_ref= h->ref_cache[list][ scan8[0] - 8 ];
|
|
const int16_t * const B= h->mv_cache[list][ scan8[0] - 8 ];
|
|
|
|
tprintf(h->s.avctx, "pred_16x8: (%2d %2d %2d) at %2d %2d %d list %d\n", top_ref, B[0], B[1], h->s.mb_x, h->s.mb_y, n, list);
|
|
|
|
if(top_ref == ref){
|
|
*mx= B[0];
|
|
*my= B[1];
|
|
return;
|
|
}
|
|
}else{
|
|
const int left_ref= h->ref_cache[list][ scan8[8] - 1 ];
|
|
const int16_t * const A= h->mv_cache[list][ scan8[8] - 1 ];
|
|
|
|
tprintf(h->s.avctx, "pred_16x8: (%2d %2d %2d) at %2d %2d %d list %d\n", left_ref, A[0], A[1], h->s.mb_x, h->s.mb_y, n, list);
|
|
|
|
if(left_ref == ref){
|
|
*mx= A[0];
|
|
*my= A[1];
|
|
return;
|
|
}
|
|
}
|
|
|
|
//RARE
|
|
pred_motion(h, n, 4, list, ref, mx, my);
|
|
}
|
|
|
|
/**
|
|
* gets the directionally predicted 8x16 MV.
|
|
* @param n the block index
|
|
* @param mx the x component of the predicted motion vector
|
|
* @param my the y component of the predicted motion vector
|
|
*/
|
|
static inline void pred_8x16_motion(H264Context * const h, int n, int list, int ref, int * const mx, int * const my){
|
|
if(n==0){
|
|
const int left_ref= h->ref_cache[list][ scan8[0] - 1 ];
|
|
const int16_t * const A= h->mv_cache[list][ scan8[0] - 1 ];
|
|
|
|
tprintf(h->s.avctx, "pred_8x16: (%2d %2d %2d) at %2d %2d %d list %d\n", left_ref, A[0], A[1], h->s.mb_x, h->s.mb_y, n, list);
|
|
|
|
if(left_ref == ref){
|
|
*mx= A[0];
|
|
*my= A[1];
|
|
return;
|
|
}
|
|
}else{
|
|
const int16_t * C;
|
|
int diagonal_ref;
|
|
|
|
diagonal_ref= fetch_diagonal_mv(h, &C, scan8[4], list, 2);
|
|
|
|
tprintf(h->s.avctx, "pred_8x16: (%2d %2d %2d) at %2d %2d %d list %d\n", diagonal_ref, C[0], C[1], h->s.mb_x, h->s.mb_y, n, list);
|
|
|
|
if(diagonal_ref == ref){
|
|
*mx= C[0];
|
|
*my= C[1];
|
|
return;
|
|
}
|
|
}
|
|
|
|
//RARE
|
|
pred_motion(h, n, 2, list, ref, mx, my);
|
|
}
|
|
|
|
static inline void pred_pskip_motion(H264Context * const h, int * const mx, int * const my){
|
|
const int top_ref = h->ref_cache[0][ scan8[0] - 8 ];
|
|
const int left_ref= h->ref_cache[0][ scan8[0] - 1 ];
|
|
|
|
tprintf(h->s.avctx, "pred_pskip: (%d) (%d) at %2d %2d\n", top_ref, left_ref, h->s.mb_x, h->s.mb_y);
|
|
|
|
if(top_ref == PART_NOT_AVAILABLE || left_ref == PART_NOT_AVAILABLE
|
|
|| (top_ref == 0 && *(uint32_t*)h->mv_cache[0][ scan8[0] - 8 ] == 0)
|
|
|| (left_ref == 0 && *(uint32_t*)h->mv_cache[0][ scan8[0] - 1 ] == 0)){
|
|
|
|
*mx = *my = 0;
|
|
return;
|
|
}
|
|
|
|
pred_motion(h, 0, 4, 0, 0, mx, my);
|
|
|
|
return;
|
|
}
|
|
|
|
static inline void direct_dist_scale_factor(H264Context * const h){
|
|
const int poc = h->s.current_picture_ptr->poc;
|
|
const int poc1 = h->ref_list[1][0].poc;
|
|
int i;
|
|
for(i=0; i<h->ref_count[0]; i++){
|
|
int poc0 = h->ref_list[0][i].poc;
|
|
int td = av_clip(poc1 - poc0, -128, 127);
|
|
if(td == 0 /* FIXME || pic0 is a long-term ref */){
|
|
h->dist_scale_factor[i] = 256;
|
|
}else{
|
|
int tb = av_clip(poc - poc0, -128, 127);
|
|
int tx = (16384 + (FFABS(td) >> 1)) / td;
|
|
h->dist_scale_factor[i] = av_clip((tb*tx + 32) >> 6, -1024, 1023);
|
|
}
|
|
}
|
|
if(FRAME_MBAFF){
|
|
for(i=0; i<h->ref_count[0]; i++){
|
|
h->dist_scale_factor_field[2*i] =
|
|
h->dist_scale_factor_field[2*i+1] = h->dist_scale_factor[i];
|
|
}
|
|
}
|
|
}
|
|
static inline void direct_ref_list_init(H264Context * const h){
|
|
MpegEncContext * const s = &h->s;
|
|
Picture * const ref1 = &h->ref_list[1][0];
|
|
Picture * const cur = s->current_picture_ptr;
|
|
int list, i, j;
|
|
if(cur->pict_type == FF_I_TYPE)
|
|
cur->ref_count[0] = 0;
|
|
if(cur->pict_type != FF_B_TYPE)
|
|
cur->ref_count[1] = 0;
|
|
for(list=0; list<2; list++){
|
|
cur->ref_count[list] = h->ref_count[list];
|
|
for(j=0; j<h->ref_count[list]; j++)
|
|
cur->ref_poc[list][j] = h->ref_list[list][j].poc;
|
|
}
|
|
if(cur->pict_type != FF_B_TYPE || h->direct_spatial_mv_pred)
|
|
return;
|
|
for(list=0; list<2; list++){
|
|
for(i=0; i<ref1->ref_count[list]; i++){
|
|
const int poc = ref1->ref_poc[list][i];
|
|
h->map_col_to_list0[list][i] = 0; /* bogus; fills in for missing frames */
|
|
for(j=0; j<h->ref_count[list]; j++)
|
|
if(h->ref_list[list][j].poc == poc){
|
|
h->map_col_to_list0[list][i] = j;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
if(FRAME_MBAFF){
|
|
for(list=0; list<2; list++){
|
|
for(i=0; i<ref1->ref_count[list]; i++){
|
|
j = h->map_col_to_list0[list][i];
|
|
h->map_col_to_list0_field[list][2*i] = 2*j;
|
|
h->map_col_to_list0_field[list][2*i+1] = 2*j+1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static inline void pred_direct_motion(H264Context * const h, int *mb_type){
|
|
MpegEncContext * const s = &h->s;
|
|
const int mb_xy = h->mb_xy;
|
|
const int b8_xy = 2*s->mb_x + 2*s->mb_y*h->b8_stride;
|
|
const int b4_xy = 4*s->mb_x + 4*s->mb_y*h->b_stride;
|
|
const int mb_type_col = h->ref_list[1][0].mb_type[mb_xy];
|
|
const int16_t (*l1mv0)[2] = (const int16_t (*)[2]) &h->ref_list[1][0].motion_val[0][b4_xy];
|
|
const int16_t (*l1mv1)[2] = (const int16_t (*)[2]) &h->ref_list[1][0].motion_val[1][b4_xy];
|
|
const int8_t *l1ref0 = &h->ref_list[1][0].ref_index[0][b8_xy];
|
|
const int8_t *l1ref1 = &h->ref_list[1][0].ref_index[1][b8_xy];
|
|
const int is_b8x8 = IS_8X8(*mb_type);
|
|
unsigned int sub_mb_type;
|
|
int i8, i4;
|
|
|
|
#define MB_TYPE_16x16_OR_INTRA (MB_TYPE_16x16|MB_TYPE_INTRA4x4|MB_TYPE_INTRA16x16|MB_TYPE_INTRA_PCM)
|
|
if(IS_8X8(mb_type_col) && !h->sps.direct_8x8_inference_flag){
|
|
/* FIXME save sub mb types from previous frames (or derive from MVs)
|
|
* so we know exactly what block size to use */
|
|
sub_mb_type = MB_TYPE_8x8|MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2; /* B_SUB_4x4 */
|
|
*mb_type = MB_TYPE_8x8|MB_TYPE_L0L1;
|
|
}else if(!is_b8x8 && (mb_type_col & MB_TYPE_16x16_OR_INTRA)){
|
|
sub_mb_type = MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2; /* B_SUB_8x8 */
|
|
*mb_type = MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2; /* B_16x16 */
|
|
}else{
|
|
sub_mb_type = MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2; /* B_SUB_8x8 */
|
|
*mb_type = MB_TYPE_8x8|MB_TYPE_L0L1;
|
|
}
|
|
if(!is_b8x8)
|
|
*mb_type |= MB_TYPE_DIRECT2;
|
|
if(MB_FIELD)
|
|
*mb_type |= MB_TYPE_INTERLACED;
|
|
|
|
tprintf(s->avctx, "mb_type = %08x, sub_mb_type = %08x, is_b8x8 = %d, mb_type_col = %08x\n", *mb_type, sub_mb_type, is_b8x8, mb_type_col);
|
|
|
|
if(h->direct_spatial_mv_pred){
|
|
int ref[2];
|
|
int mv[2][2];
|
|
int list;
|
|
|
|
/* FIXME interlacing + spatial direct uses wrong colocated block positions */
|
|
|
|
/* ref = min(neighbors) */
|
|
for(list=0; list<2; list++){
|
|
int refa = h->ref_cache[list][scan8[0] - 1];
|
|
int refb = h->ref_cache[list][scan8[0] - 8];
|
|
int refc = h->ref_cache[list][scan8[0] - 8 + 4];
|
|
if(refc == -2)
|
|
refc = h->ref_cache[list][scan8[0] - 8 - 1];
|
|
ref[list] = refa;
|
|
if(ref[list] < 0 || (refb < ref[list] && refb >= 0))
|
|
ref[list] = refb;
|
|
if(ref[list] < 0 || (refc < ref[list] && refc >= 0))
|
|
ref[list] = refc;
|
|
if(ref[list] < 0)
|
|
ref[list] = -1;
|
|
}
|
|
|
|
if(ref[0] < 0 && ref[1] < 0){
|
|
ref[0] = ref[1] = 0;
|
|
mv[0][0] = mv[0][1] =
|
|
mv[1][0] = mv[1][1] = 0;
|
|
}else{
|
|
for(list=0; list<2; list++){
|
|
if(ref[list] >= 0)
|
|
pred_motion(h, 0, 4, list, ref[list], &mv[list][0], &mv[list][1]);
|
|
else
|
|
mv[list][0] = mv[list][1] = 0;
|
|
}
|
|
}
|
|
|
|
if(ref[1] < 0){
|
|
if(!is_b8x8)
|
|
*mb_type &= ~MB_TYPE_L1;
|
|
sub_mb_type &= ~MB_TYPE_L1;
|
|
}else if(ref[0] < 0){
|
|
if(!is_b8x8)
|
|
*mb_type &= ~MB_TYPE_L0;
|
|
sub_mb_type &= ~MB_TYPE_L0;
|
|
}
|
|
|
|
if(IS_INTERLACED(*mb_type) != IS_INTERLACED(mb_type_col)){
|
|
int pair_xy = s->mb_x + (s->mb_y&~1)*s->mb_stride;
|
|
int mb_types_col[2];
|
|
int b8_stride = h->b8_stride;
|
|
int b4_stride = h->b_stride;
|
|
|
|
*mb_type = (*mb_type & ~MB_TYPE_16x16) | MB_TYPE_8x8;
|
|
|
|
if(IS_INTERLACED(*mb_type)){
|
|
mb_types_col[0] = h->ref_list[1][0].mb_type[pair_xy];
|
|
mb_types_col[1] = h->ref_list[1][0].mb_type[pair_xy+s->mb_stride];
|
|
if(s->mb_y&1){
|
|
l1ref0 -= 2*b8_stride;
|
|
l1ref1 -= 2*b8_stride;
|
|
l1mv0 -= 4*b4_stride;
|
|
l1mv1 -= 4*b4_stride;
|
|
}
|
|
b8_stride *= 3;
|
|
b4_stride *= 6;
|
|
}else{
|
|
int cur_poc = s->current_picture_ptr->poc;
|
|
int *col_poc = h->ref_list[1]->field_poc;
|
|
int col_parity = FFABS(col_poc[0] - cur_poc) >= FFABS(col_poc[1] - cur_poc);
|
|
int dy = 2*col_parity - (s->mb_y&1);
|
|
mb_types_col[0] =
|
|
mb_types_col[1] = h->ref_list[1][0].mb_type[pair_xy + col_parity*s->mb_stride];
|
|
l1ref0 += dy*b8_stride;
|
|
l1ref1 += dy*b8_stride;
|
|
l1mv0 += 2*dy*b4_stride;
|
|
l1mv1 += 2*dy*b4_stride;
|
|
b8_stride = 0;
|
|
}
|
|
|
|
for(i8=0; i8<4; i8++){
|
|
int x8 = i8&1;
|
|
int y8 = i8>>1;
|
|
int xy8 = x8+y8*b8_stride;
|
|
int xy4 = 3*x8+y8*b4_stride;
|
|
int a=0, b=0;
|
|
|
|
if(is_b8x8 && !IS_DIRECT(h->sub_mb_type[i8]))
|
|
continue;
|
|
h->sub_mb_type[i8] = sub_mb_type;
|
|
|
|
fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, (uint8_t)ref[0], 1);
|
|
fill_rectangle(&h->ref_cache[1][scan8[i8*4]], 2, 2, 8, (uint8_t)ref[1], 1);
|
|
if(!IS_INTRA(mb_types_col[y8])
|
|
&& ( (l1ref0[xy8] == 0 && FFABS(l1mv0[xy4][0]) <= 1 && FFABS(l1mv0[xy4][1]) <= 1)
|
|
|| (l1ref0[xy8] < 0 && l1ref1[xy8] == 0 && FFABS(l1mv1[xy4][0]) <= 1 && FFABS(l1mv1[xy4][1]) <= 1))){
|
|
if(ref[0] > 0)
|
|
a= pack16to32(mv[0][0],mv[0][1]);
|
|
if(ref[1] > 0)
|
|
b= pack16to32(mv[1][0],mv[1][1]);
|
|
}else{
|
|
a= pack16to32(mv[0][0],mv[0][1]);
|
|
b= pack16to32(mv[1][0],mv[1][1]);
|
|
}
|
|
fill_rectangle(&h->mv_cache[0][scan8[i8*4]], 2, 2, 8, a, 4);
|
|
fill_rectangle(&h->mv_cache[1][scan8[i8*4]], 2, 2, 8, b, 4);
|
|
}
|
|
}else if(IS_16X16(*mb_type)){
|
|
int a=0, b=0;
|
|
|
|
fill_rectangle(&h->ref_cache[0][scan8[0]], 4, 4, 8, (uint8_t)ref[0], 1);
|
|
fill_rectangle(&h->ref_cache[1][scan8[0]], 4, 4, 8, (uint8_t)ref[1], 1);
|
|
if(!IS_INTRA(mb_type_col)
|
|
&& ( (l1ref0[0] == 0 && FFABS(l1mv0[0][0]) <= 1 && FFABS(l1mv0[0][1]) <= 1)
|
|
|| (l1ref0[0] < 0 && l1ref1[0] == 0 && FFABS(l1mv1[0][0]) <= 1 && FFABS(l1mv1[0][1]) <= 1
|
|
&& (h->x264_build>33 || !h->x264_build)))){
|
|
if(ref[0] > 0)
|
|
a= pack16to32(mv[0][0],mv[0][1]);
|
|
if(ref[1] > 0)
|
|
b= pack16to32(mv[1][0],mv[1][1]);
|
|
}else{
|
|
a= pack16to32(mv[0][0],mv[0][1]);
|
|
b= pack16to32(mv[1][0],mv[1][1]);
|
|
}
|
|
fill_rectangle(&h->mv_cache[0][scan8[0]], 4, 4, 8, a, 4);
|
|
fill_rectangle(&h->mv_cache[1][scan8[0]], 4, 4, 8, b, 4);
|
|
}else{
|
|
for(i8=0; i8<4; i8++){
|
|
const int x8 = i8&1;
|
|
const int y8 = i8>>1;
|
|
|
|
if(is_b8x8 && !IS_DIRECT(h->sub_mb_type[i8]))
|
|
continue;
|
|
h->sub_mb_type[i8] = sub_mb_type;
|
|
|
|
fill_rectangle(&h->mv_cache[0][scan8[i8*4]], 2, 2, 8, pack16to32(mv[0][0],mv[0][1]), 4);
|
|
fill_rectangle(&h->mv_cache[1][scan8[i8*4]], 2, 2, 8, pack16to32(mv[1][0],mv[1][1]), 4);
|
|
fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, (uint8_t)ref[0], 1);
|
|
fill_rectangle(&h->ref_cache[1][scan8[i8*4]], 2, 2, 8, (uint8_t)ref[1], 1);
|
|
|
|
/* col_zero_flag */
|
|
if(!IS_INTRA(mb_type_col) && ( l1ref0[x8 + y8*h->b8_stride] == 0
|
|
|| (l1ref0[x8 + y8*h->b8_stride] < 0 && l1ref1[x8 + y8*h->b8_stride] == 0
|
|
&& (h->x264_build>33 || !h->x264_build)))){
|
|
const int16_t (*l1mv)[2]= l1ref0[x8 + y8*h->b8_stride] == 0 ? l1mv0 : l1mv1;
|
|
if(IS_SUB_8X8(sub_mb_type)){
|
|
const int16_t *mv_col = l1mv[x8*3 + y8*3*h->b_stride];
|
|
if(FFABS(mv_col[0]) <= 1 && FFABS(mv_col[1]) <= 1){
|
|
if(ref[0] == 0)
|
|
fill_rectangle(&h->mv_cache[0][scan8[i8*4]], 2, 2, 8, 0, 4);
|
|
if(ref[1] == 0)
|
|
fill_rectangle(&h->mv_cache[1][scan8[i8*4]], 2, 2, 8, 0, 4);
|
|
}
|
|
}else
|
|
for(i4=0; i4<4; i4++){
|
|
const int16_t *mv_col = l1mv[x8*2 + (i4&1) + (y8*2 + (i4>>1))*h->b_stride];
|
|
if(FFABS(mv_col[0]) <= 1 && FFABS(mv_col[1]) <= 1){
|
|
if(ref[0] == 0)
|
|
*(uint32_t*)h->mv_cache[0][scan8[i8*4+i4]] = 0;
|
|
if(ref[1] == 0)
|
|
*(uint32_t*)h->mv_cache[1][scan8[i8*4+i4]] = 0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}else{ /* direct temporal mv pred */
|
|
const int *map_col_to_list0[2] = {h->map_col_to_list0[0], h->map_col_to_list0[1]};
|
|
const int *dist_scale_factor = h->dist_scale_factor;
|
|
|
|
if(FRAME_MBAFF){
|
|
if(IS_INTERLACED(*mb_type)){
|
|
map_col_to_list0[0] = h->map_col_to_list0_field[0];
|
|
map_col_to_list0[1] = h->map_col_to_list0_field[1];
|
|
dist_scale_factor = h->dist_scale_factor_field;
|
|
}
|
|
if(IS_INTERLACED(*mb_type) != IS_INTERLACED(mb_type_col)){
|
|
/* FIXME assumes direct_8x8_inference == 1 */
|
|
const int pair_xy = s->mb_x + (s->mb_y&~1)*s->mb_stride;
|
|
int mb_types_col[2];
|
|
int y_shift;
|
|
|
|
*mb_type = MB_TYPE_8x8|MB_TYPE_L0L1
|
|
| (is_b8x8 ? 0 : MB_TYPE_DIRECT2)
|
|
| (*mb_type & MB_TYPE_INTERLACED);
|
|
sub_mb_type = MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2|MB_TYPE_16x16;
|
|
|
|
if(IS_INTERLACED(*mb_type)){
|
|
/* frame to field scaling */
|
|
mb_types_col[0] = h->ref_list[1][0].mb_type[pair_xy];
|
|
mb_types_col[1] = h->ref_list[1][0].mb_type[pair_xy+s->mb_stride];
|
|
if(s->mb_y&1){
|
|
l1ref0 -= 2*h->b8_stride;
|
|
l1ref1 -= 2*h->b8_stride;
|
|
l1mv0 -= 4*h->b_stride;
|
|
l1mv1 -= 4*h->b_stride;
|
|
}
|
|
y_shift = 0;
|
|
|
|
if( (mb_types_col[0] & MB_TYPE_16x16_OR_INTRA)
|
|
&& (mb_types_col[1] & MB_TYPE_16x16_OR_INTRA)
|
|
&& !is_b8x8)
|
|
*mb_type |= MB_TYPE_16x8;
|
|
else
|
|
*mb_type |= MB_TYPE_8x8;
|
|
}else{
|
|
/* field to frame scaling */
|
|
/* col_mb_y = (mb_y&~1) + (topAbsDiffPOC < bottomAbsDiffPOC ? 0 : 1)
|
|
* but in MBAFF, top and bottom POC are equal */
|
|
int dy = (s->mb_y&1) ? 1 : 2;
|
|
mb_types_col[0] =
|
|
mb_types_col[1] = h->ref_list[1][0].mb_type[pair_xy+s->mb_stride];
|
|
l1ref0 += dy*h->b8_stride;
|
|
l1ref1 += dy*h->b8_stride;
|
|
l1mv0 += 2*dy*h->b_stride;
|
|
l1mv1 += 2*dy*h->b_stride;
|
|
y_shift = 2;
|
|
|
|
if((mb_types_col[0] & (MB_TYPE_16x16_OR_INTRA|MB_TYPE_16x8))
|
|
&& !is_b8x8)
|
|
*mb_type |= MB_TYPE_16x16;
|
|
else
|
|
*mb_type |= MB_TYPE_8x8;
|
|
}
|
|
|
|
for(i8=0; i8<4; i8++){
|
|
const int x8 = i8&1;
|
|
const int y8 = i8>>1;
|
|
int ref0, scale;
|
|
const int16_t (*l1mv)[2]= l1mv0;
|
|
|
|
if(is_b8x8 && !IS_DIRECT(h->sub_mb_type[i8]))
|
|
continue;
|
|
h->sub_mb_type[i8] = sub_mb_type;
|
|
|
|
fill_rectangle(&h->ref_cache[1][scan8[i8*4]], 2, 2, 8, 0, 1);
|
|
if(IS_INTRA(mb_types_col[y8])){
|
|
fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, 0, 1);
|
|
fill_rectangle(&h-> mv_cache[0][scan8[i8*4]], 2, 2, 8, 0, 4);
|
|
fill_rectangle(&h-> mv_cache[1][scan8[i8*4]], 2, 2, 8, 0, 4);
|
|
continue;
|
|
}
|
|
|
|
ref0 = l1ref0[x8 + (y8*2>>y_shift)*h->b8_stride];
|
|
if(ref0 >= 0)
|
|
ref0 = map_col_to_list0[0][ref0*2>>y_shift];
|
|
else{
|
|
ref0 = map_col_to_list0[1][l1ref1[x8 + (y8*2>>y_shift)*h->b8_stride]*2>>y_shift];
|
|
l1mv= l1mv1;
|
|
}
|
|
scale = dist_scale_factor[ref0];
|
|
fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, ref0, 1);
|
|
|
|
{
|
|
const int16_t *mv_col = l1mv[x8*3 + (y8*6>>y_shift)*h->b_stride];
|
|
int my_col = (mv_col[1]<<y_shift)/2;
|
|
int mx = (scale * mv_col[0] + 128) >> 8;
|
|
int my = (scale * my_col + 128) >> 8;
|
|
fill_rectangle(&h->mv_cache[0][scan8[i8*4]], 2, 2, 8, pack16to32(mx,my), 4);
|
|
fill_rectangle(&h->mv_cache[1][scan8[i8*4]], 2, 2, 8, pack16to32(mx-mv_col[0],my-my_col), 4);
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
}
|
|
|
|
/* one-to-one mv scaling */
|
|
|
|
if(IS_16X16(*mb_type)){
|
|
int ref, mv0, mv1;
|
|
|
|
fill_rectangle(&h->ref_cache[1][scan8[0]], 4, 4, 8, 0, 1);
|
|
if(IS_INTRA(mb_type_col)){
|
|
ref=mv0=mv1=0;
|
|
}else{
|
|
const int ref0 = l1ref0[0] >= 0 ? map_col_to_list0[0][l1ref0[0]]
|
|
: map_col_to_list0[1][l1ref1[0]];
|
|
const int scale = dist_scale_factor[ref0];
|
|
const int16_t *mv_col = l1ref0[0] >= 0 ? l1mv0[0] : l1mv1[0];
|
|
int mv_l0[2];
|
|
mv_l0[0] = (scale * mv_col[0] + 128) >> 8;
|
|
mv_l0[1] = (scale * mv_col[1] + 128) >> 8;
|
|
ref= ref0;
|
|
mv0= pack16to32(mv_l0[0],mv_l0[1]);
|
|
mv1= pack16to32(mv_l0[0]-mv_col[0],mv_l0[1]-mv_col[1]);
|
|
}
|
|
fill_rectangle(&h->ref_cache[0][scan8[0]], 4, 4, 8, ref, 1);
|
|
fill_rectangle(&h-> mv_cache[0][scan8[0]], 4, 4, 8, mv0, 4);
|
|
fill_rectangle(&h-> mv_cache[1][scan8[0]], 4, 4, 8, mv1, 4);
|
|
}else{
|
|
for(i8=0; i8<4; i8++){
|
|
const int x8 = i8&1;
|
|
const int y8 = i8>>1;
|
|
int ref0, scale;
|
|
const int16_t (*l1mv)[2]= l1mv0;
|
|
|
|
if(is_b8x8 && !IS_DIRECT(h->sub_mb_type[i8]))
|
|
continue;
|
|
h->sub_mb_type[i8] = sub_mb_type;
|
|
fill_rectangle(&h->ref_cache[1][scan8[i8*4]], 2, 2, 8, 0, 1);
|
|
if(IS_INTRA(mb_type_col)){
|
|
fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, 0, 1);
|
|
fill_rectangle(&h-> mv_cache[0][scan8[i8*4]], 2, 2, 8, 0, 4);
|
|
fill_rectangle(&h-> mv_cache[1][scan8[i8*4]], 2, 2, 8, 0, 4);
|
|
continue;
|
|
}
|
|
|
|
ref0 = l1ref0[x8 + y8*h->b8_stride];
|
|
if(ref0 >= 0)
|
|
ref0 = map_col_to_list0[0][ref0];
|
|
else{
|
|
ref0 = map_col_to_list0[1][l1ref1[x8 + y8*h->b8_stride]];
|
|
l1mv= l1mv1;
|
|
}
|
|
scale = dist_scale_factor[ref0];
|
|
|
|
fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, ref0, 1);
|
|
if(IS_SUB_8X8(sub_mb_type)){
|
|
const int16_t *mv_col = l1mv[x8*3 + y8*3*h->b_stride];
|
|
int mx = (scale * mv_col[0] + 128) >> 8;
|
|
int my = (scale * mv_col[1] + 128) >> 8;
|
|
fill_rectangle(&h->mv_cache[0][scan8[i8*4]], 2, 2, 8, pack16to32(mx,my), 4);
|
|
fill_rectangle(&h->mv_cache[1][scan8[i8*4]], 2, 2, 8, pack16to32(mx-mv_col[0],my-mv_col[1]), 4);
|
|
}else
|
|
for(i4=0; i4<4; i4++){
|
|
const int16_t *mv_col = l1mv[x8*2 + (i4&1) + (y8*2 + (i4>>1))*h->b_stride];
|
|
int16_t *mv_l0 = h->mv_cache[0][scan8[i8*4+i4]];
|
|
mv_l0[0] = (scale * mv_col[0] + 128) >> 8;
|
|
mv_l0[1] = (scale * mv_col[1] + 128) >> 8;
|
|
*(uint32_t*)h->mv_cache[1][scan8[i8*4+i4]] =
|
|
pack16to32(mv_l0[0]-mv_col[0],mv_l0[1]-mv_col[1]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static inline void write_back_motion(H264Context *h, int mb_type){
|
|
MpegEncContext * const s = &h->s;
|
|
const int b_xy = 4*s->mb_x + 4*s->mb_y*h->b_stride;
|
|
const int b8_xy= 2*s->mb_x + 2*s->mb_y*h->b8_stride;
|
|
int list;
|
|
|
|
if(!USES_LIST(mb_type, 0))
|
|
fill_rectangle(&s->current_picture.ref_index[0][b8_xy], 2, 2, h->b8_stride, (uint8_t)LIST_NOT_USED, 1);
|
|
|
|
for(list=0; list<h->list_count; list++){
|
|
int y;
|
|
if(!USES_LIST(mb_type, list))
|
|
continue;
|
|
|
|
for(y=0; y<4; y++){
|
|
*(uint64_t*)s->current_picture.motion_val[list][b_xy + 0 + y*h->b_stride]= *(uint64_t*)h->mv_cache[list][scan8[0]+0 + 8*y];
|
|
*(uint64_t*)s->current_picture.motion_val[list][b_xy + 2 + y*h->b_stride]= *(uint64_t*)h->mv_cache[list][scan8[0]+2 + 8*y];
|
|
}
|
|
if( h->pps.cabac ) {
|
|
if(IS_SKIP(mb_type))
|
|
fill_rectangle(h->mvd_table[list][b_xy], 4, 4, h->b_stride, 0, 4);
|
|
else
|
|
for(y=0; y<4; y++){
|
|
*(uint64_t*)h->mvd_table[list][b_xy + 0 + y*h->b_stride]= *(uint64_t*)h->mvd_cache[list][scan8[0]+0 + 8*y];
|
|
*(uint64_t*)h->mvd_table[list][b_xy + 2 + y*h->b_stride]= *(uint64_t*)h->mvd_cache[list][scan8[0]+2 + 8*y];
|
|
}
|
|
}
|
|
|
|
{
|
|
int8_t *ref_index = &s->current_picture.ref_index[list][b8_xy];
|
|
ref_index[0+0*h->b8_stride]= h->ref_cache[list][scan8[0]];
|
|
ref_index[1+0*h->b8_stride]= h->ref_cache[list][scan8[4]];
|
|
ref_index[0+1*h->b8_stride]= h->ref_cache[list][scan8[8]];
|
|
ref_index[1+1*h->b8_stride]= h->ref_cache[list][scan8[12]];
|
|
}
|
|
}
|
|
|
|
if(h->slice_type == FF_B_TYPE && h->pps.cabac){
|
|
if(IS_8X8(mb_type)){
|
|
uint8_t *direct_table = &h->direct_table[b8_xy];
|
|
direct_table[1+0*h->b8_stride] = IS_DIRECT(h->sub_mb_type[1]) ? 1 : 0;
|
|
direct_table[0+1*h->b8_stride] = IS_DIRECT(h->sub_mb_type[2]) ? 1 : 0;
|
|
direct_table[1+1*h->b8_stride] = IS_DIRECT(h->sub_mb_type[3]) ? 1 : 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Decodes a network abstraction layer unit.
|
|
* @param consumed is the number of bytes used as input
|
|
* @param length is the length of the array
|
|
* @param dst_length is the number of decoded bytes FIXME here or a decode rbsp tailing?
|
|
* @returns decoded bytes, might be src+1 if no escapes
|
|
*/
|
|
static const uint8_t *decode_nal(H264Context *h, const uint8_t *src, int *dst_length, int *consumed, int length){
|
|
int i, si, di;
|
|
uint8_t *dst;
|
|
int bufidx;
|
|
|
|
// src[0]&0x80; //forbidden bit
|
|
h->nal_ref_idc= src[0]>>5;
|
|
h->nal_unit_type= src[0]&0x1F;
|
|
|
|
src++; length--;
|
|
#if 0
|
|
for(i=0; i<length; i++)
|
|
printf("%2X ", src[i]);
|
|
#endif
|
|
for(i=0; i+1<length; i+=2){
|
|
if(src[i]) continue;
|
|
if(i>0 && src[i-1]==0) i--;
|
|
if(i+2<length && src[i+1]==0 && src[i+2]<=3){
|
|
if(src[i+2]!=3){
|
|
/* startcode, so we must be past the end */
|
|
length=i;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
if(i>=length-1){ //no escaped 0
|
|
*dst_length= length;
|
|
*consumed= length+1; //+1 for the header
|
|
return src;
|
|
}
|
|
|
|
bufidx = h->nal_unit_type == NAL_DPC ? 1 : 0; // use second escape buffer for inter data
|
|
h->rbsp_buffer[bufidx]= av_fast_realloc(h->rbsp_buffer[bufidx], &h->rbsp_buffer_size[bufidx], length);
|
|
dst= h->rbsp_buffer[bufidx];
|
|
|
|
if (dst == NULL){
|
|
return NULL;
|
|
}
|
|
|
|
//printf("decoding esc\n");
|
|
si=di=0;
|
|
while(si<length){
|
|
//remove escapes (very rare 1:2^22)
|
|
if(si+2<length && src[si]==0 && src[si+1]==0 && src[si+2]<=3){
|
|
if(src[si+2]==3){ //escape
|
|
dst[di++]= 0;
|
|
dst[di++]= 0;
|
|
si+=3;
|
|
continue;
|
|
}else //next start code
|
|
break;
|
|
}
|
|
|
|
dst[di++]= src[si++];
|
|
}
|
|
|
|
*dst_length= di;
|
|
*consumed= si + 1;//+1 for the header
|
|
//FIXME store exact number of bits in the getbitcontext (it is needed for decoding)
|
|
return dst;
|
|
}
|
|
|
|
/**
|
|
* identifies the exact end of the bitstream
|
|
* @return the length of the trailing, or 0 if damaged
|
|
*/
|
|
static int decode_rbsp_trailing(H264Context *h, const uint8_t *src){
|
|
int v= *src;
|
|
int r;
|
|
|
|
tprintf(h->s.avctx, "rbsp trailing %X\n", v);
|
|
|
|
for(r=1; r<9; r++){
|
|
if(v&1) return r;
|
|
v>>=1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* idct tranforms the 16 dc values and dequantize them.
|
|
* @param qp quantization parameter
|
|
*/
|
|
static void h264_luma_dc_dequant_idct_c(DCTELEM *block, int qp, int qmul){
|
|
#define stride 16
|
|
int i;
|
|
int temp[16]; //FIXME check if this is a good idea
|
|
static const int x_offset[4]={0, 1*stride, 4* stride, 5*stride};
|
|
static const int y_offset[4]={0, 2*stride, 8* stride, 10*stride};
|
|
|
|
//memset(block, 64, 2*256);
|
|
//return;
|
|
for(i=0; i<4; i++){
|
|
const int offset= y_offset[i];
|
|
const int z0= block[offset+stride*0] + block[offset+stride*4];
|
|
const int z1= block[offset+stride*0] - block[offset+stride*4];
|
|
const int z2= block[offset+stride*1] - block[offset+stride*5];
|
|
const int z3= block[offset+stride*1] + block[offset+stride*5];
|
|
|
|
temp[4*i+0]= z0+z3;
|
|
temp[4*i+1]= z1+z2;
|
|
temp[4*i+2]= z1-z2;
|
|
temp[4*i+3]= z0-z3;
|
|
}
|
|
|
|
for(i=0; i<4; i++){
|
|
const int offset= x_offset[i];
|
|
const int z0= temp[4*0+i] + temp[4*2+i];
|
|
const int z1= temp[4*0+i] - temp[4*2+i];
|
|
const int z2= temp[4*1+i] - temp[4*3+i];
|
|
const int z3= temp[4*1+i] + temp[4*3+i];
|
|
|
|
block[stride*0 +offset]= ((((z0 + z3)*qmul + 128 ) >> 8)); //FIXME think about merging this into decode_resdual
|
|
block[stride*2 +offset]= ((((z1 + z2)*qmul + 128 ) >> 8));
|
|
block[stride*8 +offset]= ((((z1 - z2)*qmul + 128 ) >> 8));
|
|
block[stride*10+offset]= ((((z0 - z3)*qmul + 128 ) >> 8));
|
|
}
|
|
}
|
|
|
|
#if 0
|
|
/**
|
|
* dct tranforms the 16 dc values.
|
|
* @param qp quantization parameter ??? FIXME
|
|
*/
|
|
static void h264_luma_dc_dct_c(DCTELEM *block/*, int qp*/){
|
|
// const int qmul= dequant_coeff[qp][0];
|
|
int i;
|
|
int temp[16]; //FIXME check if this is a good idea
|
|
static const int x_offset[4]={0, 1*stride, 4* stride, 5*stride};
|
|
static const int y_offset[4]={0, 2*stride, 8* stride, 10*stride};
|
|
|
|
for(i=0; i<4; i++){
|
|
const int offset= y_offset[i];
|
|
const int z0= block[offset+stride*0] + block[offset+stride*4];
|
|
const int z1= block[offset+stride*0] - block[offset+stride*4];
|
|
const int z2= block[offset+stride*1] - block[offset+stride*5];
|
|
const int z3= block[offset+stride*1] + block[offset+stride*5];
|
|
|
|
temp[4*i+0]= z0+z3;
|
|
temp[4*i+1]= z1+z2;
|
|
temp[4*i+2]= z1-z2;
|
|
temp[4*i+3]= z0-z3;
|
|
}
|
|
|
|
for(i=0; i<4; i++){
|
|
const int offset= x_offset[i];
|
|
const int z0= temp[4*0+i] + temp[4*2+i];
|
|
const int z1= temp[4*0+i] - temp[4*2+i];
|
|
const int z2= temp[4*1+i] - temp[4*3+i];
|
|
const int z3= temp[4*1+i] + temp[4*3+i];
|
|
|
|
block[stride*0 +offset]= (z0 + z3)>>1;
|
|
block[stride*2 +offset]= (z1 + z2)>>1;
|
|
block[stride*8 +offset]= (z1 - z2)>>1;
|
|
block[stride*10+offset]= (z0 - z3)>>1;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#undef xStride
|
|
#undef stride
|
|
|
|
static void chroma_dc_dequant_idct_c(DCTELEM *block, int qp, int qmul){
|
|
const int stride= 16*2;
|
|
const int xStride= 16;
|
|
int a,b,c,d,e;
|
|
|
|
a= block[stride*0 + xStride*0];
|
|
b= block[stride*0 + xStride*1];
|
|
c= block[stride*1 + xStride*0];
|
|
d= block[stride*1 + xStride*1];
|
|
|
|
e= a-b;
|
|
a= a+b;
|
|
b= c-d;
|
|
c= c+d;
|
|
|
|
block[stride*0 + xStride*0]= ((a+c)*qmul) >> 7;
|
|
block[stride*0 + xStride*1]= ((e+b)*qmul) >> 7;
|
|
block[stride*1 + xStride*0]= ((a-c)*qmul) >> 7;
|
|
block[stride*1 + xStride*1]= ((e-b)*qmul) >> 7;
|
|
}
|
|
|
|
#if 0
|
|
static void chroma_dc_dct_c(DCTELEM *block){
|
|
const int stride= 16*2;
|
|
const int xStride= 16;
|
|
int a,b,c,d,e;
|
|
|
|
a= block[stride*0 + xStride*0];
|
|
b= block[stride*0 + xStride*1];
|
|
c= block[stride*1 + xStride*0];
|
|
d= block[stride*1 + xStride*1];
|
|
|
|
e= a-b;
|
|
a= a+b;
|
|
b= c-d;
|
|
c= c+d;
|
|
|
|
block[stride*0 + xStride*0]= (a+c);
|
|
block[stride*0 + xStride*1]= (e+b);
|
|
block[stride*1 + xStride*0]= (a-c);
|
|
block[stride*1 + xStride*1]= (e-b);
|
|
}
|
|
#endif
|
|
|
|
/**
|
|
* gets the chroma qp.
|
|
*/
|
|
static inline int get_chroma_qp(H264Context *h, int t, int qscale){
|
|
return h->pps.chroma_qp_table[t][qscale & 0xff];
|
|
}
|
|
|
|
//FIXME need to check that this does not overflow signed 32 bit for low qp, I am not sure, it's very close
|
|
//FIXME check that gcc inlines this (and optimizes intra & separate_dc stuff away)
|
|
static inline int quantize_c(DCTELEM *block, uint8_t *scantable, int qscale, int intra, int separate_dc){
|
|
int i;
|
|
const int * const quant_table= quant_coeff[qscale];
|
|
const int bias= intra ? (1<<QUANT_SHIFT)/3 : (1<<QUANT_SHIFT)/6;
|
|
const unsigned int threshold1= (1<<QUANT_SHIFT) - bias - 1;
|
|
const unsigned int threshold2= (threshold1<<1);
|
|
int last_non_zero;
|
|
|
|
if(separate_dc){
|
|
if(qscale<=18){
|
|
//avoid overflows
|
|
const int dc_bias= intra ? (1<<(QUANT_SHIFT-2))/3 : (1<<(QUANT_SHIFT-2))/6;
|
|
const unsigned int dc_threshold1= (1<<(QUANT_SHIFT-2)) - dc_bias - 1;
|
|
const unsigned int dc_threshold2= (dc_threshold1<<1);
|
|
|
|
int level= block[0]*quant_coeff[qscale+18][0];
|
|
if(((unsigned)(level+dc_threshold1))>dc_threshold2){
|
|
if(level>0){
|
|
level= (dc_bias + level)>>(QUANT_SHIFT-2);
|
|
block[0]= level;
|
|
}else{
|
|
level= (dc_bias - level)>>(QUANT_SHIFT-2);
|
|
block[0]= -level;
|
|
}
|
|
// last_non_zero = i;
|
|
}else{
|
|
block[0]=0;
|
|
}
|
|
}else{
|
|
const int dc_bias= intra ? (1<<(QUANT_SHIFT+1))/3 : (1<<(QUANT_SHIFT+1))/6;
|
|
const unsigned int dc_threshold1= (1<<(QUANT_SHIFT+1)) - dc_bias - 1;
|
|
const unsigned int dc_threshold2= (dc_threshold1<<1);
|
|
|
|
int level= block[0]*quant_table[0];
|
|
if(((unsigned)(level+dc_threshold1))>dc_threshold2){
|
|
if(level>0){
|
|
level= (dc_bias + level)>>(QUANT_SHIFT+1);
|
|
block[0]= level;
|
|
}else{
|
|
level= (dc_bias - level)>>(QUANT_SHIFT+1);
|
|
block[0]= -level;
|
|
}
|
|
// last_non_zero = i;
|
|
}else{
|
|
block[0]=0;
|
|
}
|
|
}
|
|
last_non_zero= 0;
|
|
i=1;
|
|
}else{
|
|
last_non_zero= -1;
|
|
i=0;
|
|
}
|
|
|
|
for(; i<16; i++){
|
|
const int j= scantable[i];
|
|
int level= block[j]*quant_table[j];
|
|
|
|
// if( bias+level >= (1<<(QMAT_SHIFT - 3))
|
|
// || bias-level >= (1<<(QMAT_SHIFT - 3))){
|
|
if(((unsigned)(level+threshold1))>threshold2){
|
|
if(level>0){
|
|
level= (bias + level)>>QUANT_SHIFT;
|
|
block[j]= level;
|
|
}else{
|
|
level= (bias - level)>>QUANT_SHIFT;
|
|
block[j]= -level;
|
|
}
|
|
last_non_zero = i;
|
|
}else{
|
|
block[j]=0;
|
|
}
|
|
}
|
|
|
|
return last_non_zero;
|
|
}
|
|
|
|
static inline void mc_dir_part(H264Context *h, Picture *pic, int n, int square, int chroma_height, int delta, int list,
|
|
uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
|
|
int src_x_offset, int src_y_offset,
|
|
qpel_mc_func *qpix_op, h264_chroma_mc_func chroma_op){
|
|
MpegEncContext * const s = &h->s;
|
|
const int mx= h->mv_cache[list][ scan8[n] ][0] + src_x_offset*8;
|
|
int my= h->mv_cache[list][ scan8[n] ][1] + src_y_offset*8;
|
|
const int luma_xy= (mx&3) + ((my&3)<<2);
|
|
uint8_t * src_y = pic->data[0] + (mx>>2) + (my>>2)*h->mb_linesize;
|
|
uint8_t * src_cb, * src_cr;
|
|
int extra_width= h->emu_edge_width;
|
|
int extra_height= h->emu_edge_height;
|
|
int emu=0;
|
|
const int full_mx= mx>>2;
|
|
const int full_my= my>>2;
|
|
const int pic_width = 16*s->mb_width;
|
|
const int pic_height = 16*s->mb_height >> MB_FIELD;
|
|
|
|
if(!pic->data[0]) //FIXME this is unacceptable, some senseable error concealment must be done for missing reference frames
|
|
return;
|
|
|
|
if(mx&7) extra_width -= 3;
|
|
if(my&7) extra_height -= 3;
|
|
|
|
if( full_mx < 0-extra_width
|
|
|| full_my < 0-extra_height
|
|
|| full_mx + 16/*FIXME*/ > pic_width + extra_width
|
|
|| full_my + 16/*FIXME*/ > pic_height + extra_height){
|
|
ff_emulated_edge_mc(s->edge_emu_buffer, src_y - 2 - 2*h->mb_linesize, h->mb_linesize, 16+5, 16+5/*FIXME*/, full_mx-2, full_my-2, pic_width, pic_height);
|
|
src_y= s->edge_emu_buffer + 2 + 2*h->mb_linesize;
|
|
emu=1;
|
|
}
|
|
|
|
qpix_op[luma_xy](dest_y, src_y, h->mb_linesize); //FIXME try variable height perhaps?
|
|
if(!square){
|
|
qpix_op[luma_xy](dest_y + delta, src_y + delta, h->mb_linesize);
|
|
}
|
|
|
|
if(ENABLE_GRAY && s->flags&CODEC_FLAG_GRAY) return;
|
|
|
|
if(MB_FIELD){
|
|
// chroma offset when predicting from a field of opposite parity
|
|
my += 2 * ((s->mb_y & 1) - (pic->reference - 1));
|
|
emu |= (my>>3) < 0 || (my>>3) + 8 >= (pic_height>>1);
|
|
}
|
|
src_cb= pic->data[1] + (mx>>3) + (my>>3)*h->mb_uvlinesize;
|
|
src_cr= pic->data[2] + (mx>>3) + (my>>3)*h->mb_uvlinesize;
|
|
|
|
if(emu){
|
|
ff_emulated_edge_mc(s->edge_emu_buffer, src_cb, h->mb_uvlinesize, 9, 9/*FIXME*/, (mx>>3), (my>>3), pic_width>>1, pic_height>>1);
|
|
src_cb= s->edge_emu_buffer;
|
|
}
|
|
chroma_op(dest_cb, src_cb, h->mb_uvlinesize, chroma_height, mx&7, my&7);
|
|
|
|
if(emu){
|
|
ff_emulated_edge_mc(s->edge_emu_buffer, src_cr, h->mb_uvlinesize, 9, 9/*FIXME*/, (mx>>3), (my>>3), pic_width>>1, pic_height>>1);
|
|
src_cr= s->edge_emu_buffer;
|
|
}
|
|
chroma_op(dest_cr, src_cr, h->mb_uvlinesize, chroma_height, mx&7, my&7);
|
|
}
|
|
|
|
static inline void mc_part_std(H264Context *h, int n, int square, int chroma_height, int delta,
|
|
uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
|
|
int x_offset, int y_offset,
|
|
qpel_mc_func *qpix_put, h264_chroma_mc_func chroma_put,
|
|
qpel_mc_func *qpix_avg, h264_chroma_mc_func chroma_avg,
|
|
int list0, int list1){
|
|
MpegEncContext * const s = &h->s;
|
|
qpel_mc_func *qpix_op= qpix_put;
|
|
h264_chroma_mc_func chroma_op= chroma_put;
|
|
|
|
dest_y += 2*x_offset + 2*y_offset*h-> mb_linesize;
|
|
dest_cb += x_offset + y_offset*h->mb_uvlinesize;
|
|
dest_cr += x_offset + y_offset*h->mb_uvlinesize;
|
|
x_offset += 8*s->mb_x;
|
|
y_offset += 8*(s->mb_y >> MB_FIELD);
|
|
|
|
if(list0){
|
|
Picture *ref= &h->ref_list[0][ h->ref_cache[0][ scan8[n] ] ];
|
|
mc_dir_part(h, ref, n, square, chroma_height, delta, 0,
|
|
dest_y, dest_cb, dest_cr, x_offset, y_offset,
|
|
qpix_op, chroma_op);
|
|
|
|
qpix_op= qpix_avg;
|
|
chroma_op= chroma_avg;
|
|
}
|
|
|
|
if(list1){
|
|
Picture *ref= &h->ref_list[1][ h->ref_cache[1][ scan8[n] ] ];
|
|
mc_dir_part(h, ref, n, square, chroma_height, delta, 1,
|
|
dest_y, dest_cb, dest_cr, x_offset, y_offset,
|
|
qpix_op, chroma_op);
|
|
}
|
|
}
|
|
|
|
static inline void mc_part_weighted(H264Context *h, int n, int square, int chroma_height, int delta,
|
|
uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
|
|
int x_offset, int y_offset,
|
|
qpel_mc_func *qpix_put, h264_chroma_mc_func chroma_put,
|
|
h264_weight_func luma_weight_op, h264_weight_func chroma_weight_op,
|
|
h264_biweight_func luma_weight_avg, h264_biweight_func chroma_weight_avg,
|
|
int list0, int list1){
|
|
MpegEncContext * const s = &h->s;
|
|
|
|
dest_y += 2*x_offset + 2*y_offset*h-> mb_linesize;
|
|
dest_cb += x_offset + y_offset*h->mb_uvlinesize;
|
|
dest_cr += x_offset + y_offset*h->mb_uvlinesize;
|
|
x_offset += 8*s->mb_x;
|
|
y_offset += 8*(s->mb_y >> MB_FIELD);
|
|
|
|
if(list0 && list1){
|
|
/* don't optimize for luma-only case, since B-frames usually
|
|
* use implicit weights => chroma too. */
|
|
uint8_t *tmp_cb = s->obmc_scratchpad;
|
|
uint8_t *tmp_cr = s->obmc_scratchpad + 8;
|
|
uint8_t *tmp_y = s->obmc_scratchpad + 8*h->mb_uvlinesize;
|
|
int refn0 = h->ref_cache[0][ scan8[n] ];
|
|
int refn1 = h->ref_cache[1][ scan8[n] ];
|
|
|
|
mc_dir_part(h, &h->ref_list[0][refn0], n, square, chroma_height, delta, 0,
|
|
dest_y, dest_cb, dest_cr,
|
|
x_offset, y_offset, qpix_put, chroma_put);
|
|
mc_dir_part(h, &h->ref_list[1][refn1], n, square, chroma_height, delta, 1,
|
|
tmp_y, tmp_cb, tmp_cr,
|
|
x_offset, y_offset, qpix_put, chroma_put);
|
|
|
|
if(h->use_weight == 2){
|
|
int weight0 = h->implicit_weight[refn0][refn1];
|
|
int weight1 = 64 - weight0;
|
|
luma_weight_avg( dest_y, tmp_y, h-> mb_linesize, 5, weight0, weight1, 0);
|
|
chroma_weight_avg(dest_cb, tmp_cb, h->mb_uvlinesize, 5, weight0, weight1, 0);
|
|
chroma_weight_avg(dest_cr, tmp_cr, h->mb_uvlinesize, 5, weight0, weight1, 0);
|
|
}else{
|
|
luma_weight_avg(dest_y, tmp_y, h->mb_linesize, h->luma_log2_weight_denom,
|
|
h->luma_weight[0][refn0], h->luma_weight[1][refn1],
|
|
h->luma_offset[0][refn0] + h->luma_offset[1][refn1]);
|
|
chroma_weight_avg(dest_cb, tmp_cb, h->mb_uvlinesize, h->chroma_log2_weight_denom,
|
|
h->chroma_weight[0][refn0][0], h->chroma_weight[1][refn1][0],
|
|
h->chroma_offset[0][refn0][0] + h->chroma_offset[1][refn1][0]);
|
|
chroma_weight_avg(dest_cr, tmp_cr, h->mb_uvlinesize, h->chroma_log2_weight_denom,
|
|
h->chroma_weight[0][refn0][1], h->chroma_weight[1][refn1][1],
|
|
h->chroma_offset[0][refn0][1] + h->chroma_offset[1][refn1][1]);
|
|
}
|
|
}else{
|
|
int list = list1 ? 1 : 0;
|
|
int refn = h->ref_cache[list][ scan8[n] ];
|
|
Picture *ref= &h->ref_list[list][refn];
|
|
mc_dir_part(h, ref, n, square, chroma_height, delta, list,
|
|
dest_y, dest_cb, dest_cr, x_offset, y_offset,
|
|
qpix_put, chroma_put);
|
|
|
|
luma_weight_op(dest_y, h->mb_linesize, h->luma_log2_weight_denom,
|
|
h->luma_weight[list][refn], h->luma_offset[list][refn]);
|
|
if(h->use_weight_chroma){
|
|
chroma_weight_op(dest_cb, h->mb_uvlinesize, h->chroma_log2_weight_denom,
|
|
h->chroma_weight[list][refn][0], h->chroma_offset[list][refn][0]);
|
|
chroma_weight_op(dest_cr, h->mb_uvlinesize, h->chroma_log2_weight_denom,
|
|
h->chroma_weight[list][refn][1], h->chroma_offset[list][refn][1]);
|
|
}
|
|
}
|
|
}
|
|
|
|
static inline void mc_part(H264Context *h, int n, int square, int chroma_height, int delta,
|
|
uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
|
|
int x_offset, int y_offset,
|
|
qpel_mc_func *qpix_put, h264_chroma_mc_func chroma_put,
|
|
qpel_mc_func *qpix_avg, h264_chroma_mc_func chroma_avg,
|
|
h264_weight_func *weight_op, h264_biweight_func *weight_avg,
|
|
int list0, int list1){
|
|
if((h->use_weight==2 && list0 && list1
|
|
&& (h->implicit_weight[ h->ref_cache[0][scan8[n]] ][ h->ref_cache[1][scan8[n]] ] != 32))
|
|
|| h->use_weight==1)
|
|
mc_part_weighted(h, n, square, chroma_height, delta, dest_y, dest_cb, dest_cr,
|
|
x_offset, y_offset, qpix_put, chroma_put,
|
|
weight_op[0], weight_op[3], weight_avg[0], weight_avg[3], list0, list1);
|
|
else
|
|
mc_part_std(h, n, square, chroma_height, delta, dest_y, dest_cb, dest_cr,
|
|
x_offset, y_offset, qpix_put, chroma_put, qpix_avg, chroma_avg, list0, list1);
|
|
}
|
|
|
|
static inline void prefetch_motion(H264Context *h, int list){
|
|
/* fetch pixels for estimated mv 4 macroblocks ahead
|
|
* optimized for 64byte cache lines */
|
|
MpegEncContext * const s = &h->s;
|
|
const int refn = h->ref_cache[list][scan8[0]];
|
|
if(refn >= 0){
|
|
const int mx= (h->mv_cache[list][scan8[0]][0]>>2) + 16*s->mb_x + 8;
|
|
const int my= (h->mv_cache[list][scan8[0]][1]>>2) + 16*s->mb_y;
|
|
uint8_t **src= h->ref_list[list][refn].data;
|
|
int off= mx + (my + (s->mb_x&3)*4)*h->mb_linesize + 64;
|
|
s->dsp.prefetch(src[0]+off, s->linesize, 4);
|
|
off= (mx>>1) + ((my>>1) + (s->mb_x&7))*s->uvlinesize + 64;
|
|
s->dsp.prefetch(src[1]+off, src[2]-src[1], 2);
|
|
}
|
|
}
|
|
|
|
static void hl_motion(H264Context *h, uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
|
|
qpel_mc_func (*qpix_put)[16], h264_chroma_mc_func (*chroma_put),
|
|
qpel_mc_func (*qpix_avg)[16], h264_chroma_mc_func (*chroma_avg),
|
|
h264_weight_func *weight_op, h264_biweight_func *weight_avg){
|
|
MpegEncContext * const s = &h->s;
|
|
const int mb_xy= h->mb_xy;
|
|
const int mb_type= s->current_picture.mb_type[mb_xy];
|
|
|
|
assert(IS_INTER(mb_type));
|
|
|
|
prefetch_motion(h, 0);
|
|
|
|
if(IS_16X16(mb_type)){
|
|
mc_part(h, 0, 1, 8, 0, dest_y, dest_cb, dest_cr, 0, 0,
|
|
qpix_put[0], chroma_put[0], qpix_avg[0], chroma_avg[0],
|
|
&weight_op[0], &weight_avg[0],
|
|
IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1));
|
|
}else if(IS_16X8(mb_type)){
|
|
mc_part(h, 0, 0, 4, 8, dest_y, dest_cb, dest_cr, 0, 0,
|
|
qpix_put[1], chroma_put[0], qpix_avg[1], chroma_avg[0],
|
|
&weight_op[1], &weight_avg[1],
|
|
IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1));
|
|
mc_part(h, 8, 0, 4, 8, dest_y, dest_cb, dest_cr, 0, 4,
|
|
qpix_put[1], chroma_put[0], qpix_avg[1], chroma_avg[0],
|
|
&weight_op[1], &weight_avg[1],
|
|
IS_DIR(mb_type, 1, 0), IS_DIR(mb_type, 1, 1));
|
|
}else if(IS_8X16(mb_type)){
|
|
mc_part(h, 0, 0, 8, 8*h->mb_linesize, dest_y, dest_cb, dest_cr, 0, 0,
|
|
qpix_put[1], chroma_put[1], qpix_avg[1], chroma_avg[1],
|
|
&weight_op[2], &weight_avg[2],
|
|
IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1));
|
|
mc_part(h, 4, 0, 8, 8*h->mb_linesize, dest_y, dest_cb, dest_cr, 4, 0,
|
|
qpix_put[1], chroma_put[1], qpix_avg[1], chroma_avg[1],
|
|
&weight_op[2], &weight_avg[2],
|
|
IS_DIR(mb_type, 1, 0), IS_DIR(mb_type, 1, 1));
|
|
}else{
|
|
int i;
|
|
|
|
assert(IS_8X8(mb_type));
|
|
|
|
for(i=0; i<4; i++){
|
|
const int sub_mb_type= h->sub_mb_type[i];
|
|
const int n= 4*i;
|
|
int x_offset= (i&1)<<2;
|
|
int y_offset= (i&2)<<1;
|
|
|
|
if(IS_SUB_8X8(sub_mb_type)){
|
|
mc_part(h, n, 1, 4, 0, dest_y, dest_cb, dest_cr, x_offset, y_offset,
|
|
qpix_put[1], chroma_put[1], qpix_avg[1], chroma_avg[1],
|
|
&weight_op[3], &weight_avg[3],
|
|
IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
|
|
}else if(IS_SUB_8X4(sub_mb_type)){
|
|
mc_part(h, n , 0, 2, 4, dest_y, dest_cb, dest_cr, x_offset, y_offset,
|
|
qpix_put[2], chroma_put[1], qpix_avg[2], chroma_avg[1],
|
|
&weight_op[4], &weight_avg[4],
|
|
IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
|
|
mc_part(h, n+2, 0, 2, 4, dest_y, dest_cb, dest_cr, x_offset, y_offset+2,
|
|
qpix_put[2], chroma_put[1], qpix_avg[2], chroma_avg[1],
|
|
&weight_op[4], &weight_avg[4],
|
|
IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
|
|
}else if(IS_SUB_4X8(sub_mb_type)){
|
|
mc_part(h, n , 0, 4, 4*h->mb_linesize, dest_y, dest_cb, dest_cr, x_offset, y_offset,
|
|
qpix_put[2], chroma_put[2], qpix_avg[2], chroma_avg[2],
|
|
&weight_op[5], &weight_avg[5],
|
|
IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
|
|
mc_part(h, n+1, 0, 4, 4*h->mb_linesize, dest_y, dest_cb, dest_cr, x_offset+2, y_offset,
|
|
qpix_put[2], chroma_put[2], qpix_avg[2], chroma_avg[2],
|
|
&weight_op[5], &weight_avg[5],
|
|
IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
|
|
}else{
|
|
int j;
|
|
assert(IS_SUB_4X4(sub_mb_type));
|
|
for(j=0; j<4; j++){
|
|
int sub_x_offset= x_offset + 2*(j&1);
|
|
int sub_y_offset= y_offset + (j&2);
|
|
mc_part(h, n+j, 1, 2, 0, dest_y, dest_cb, dest_cr, sub_x_offset, sub_y_offset,
|
|
qpix_put[2], chroma_put[2], qpix_avg[2], chroma_avg[2],
|
|
&weight_op[6], &weight_avg[6],
|
|
IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
prefetch_motion(h, 1);
|
|
}
|
|
|
|
static av_cold void decode_init_vlc(void){
|
|
static int done = 0;
|
|
|
|
if (!done) {
|
|
int i;
|
|
done = 1;
|
|
|
|
init_vlc(&chroma_dc_coeff_token_vlc, CHROMA_DC_COEFF_TOKEN_VLC_BITS, 4*5,
|
|
&chroma_dc_coeff_token_len [0], 1, 1,
|
|
&chroma_dc_coeff_token_bits[0], 1, 1, 1);
|
|
|
|
for(i=0; i<4; i++){
|
|
init_vlc(&coeff_token_vlc[i], COEFF_TOKEN_VLC_BITS, 4*17,
|
|
&coeff_token_len [i][0], 1, 1,
|
|
&coeff_token_bits[i][0], 1, 1, 1);
|
|
}
|
|
|
|
for(i=0; i<3; i++){
|
|
init_vlc(&chroma_dc_total_zeros_vlc[i], CHROMA_DC_TOTAL_ZEROS_VLC_BITS, 4,
|
|
&chroma_dc_total_zeros_len [i][0], 1, 1,
|
|
&chroma_dc_total_zeros_bits[i][0], 1, 1, 1);
|
|
}
|
|
for(i=0; i<15; i++){
|
|
init_vlc(&total_zeros_vlc[i], TOTAL_ZEROS_VLC_BITS, 16,
|
|
&total_zeros_len [i][0], 1, 1,
|
|
&total_zeros_bits[i][0], 1, 1, 1);
|
|
}
|
|
|
|
for(i=0; i<6; i++){
|
|
init_vlc(&run_vlc[i], RUN_VLC_BITS, 7,
|
|
&run_len [i][0], 1, 1,
|
|
&run_bits[i][0], 1, 1, 1);
|
|
}
|
|
init_vlc(&run7_vlc, RUN7_VLC_BITS, 16,
|
|
&run_len [6][0], 1, 1,
|
|
&run_bits[6][0], 1, 1, 1);
|
|
}
|
|
}
|
|
|
|
static void free_tables(H264Context *h){
|
|
int i;
|
|
H264Context *hx;
|
|
av_freep(&h->intra4x4_pred_mode);
|
|
av_freep(&h->chroma_pred_mode_table);
|
|
av_freep(&h->cbp_table);
|
|
av_freep(&h->mvd_table[0]);
|
|
av_freep(&h->mvd_table[1]);
|
|
av_freep(&h->direct_table);
|
|
av_freep(&h->non_zero_count);
|
|
av_freep(&h->slice_table_base);
|
|
h->slice_table= NULL;
|
|
|
|
av_freep(&h->mb2b_xy);
|
|
av_freep(&h->mb2b8_xy);
|
|
|
|
for(i = 0; i < MAX_SPS_COUNT; i++)
|
|
av_freep(h->sps_buffers + i);
|
|
|
|
for(i = 0; i < MAX_PPS_COUNT; i++)
|
|
av_freep(h->pps_buffers + i);
|
|
|
|
for(i = 0; i < h->s.avctx->thread_count; i++) {
|
|
hx = h->thread_context[i];
|
|
if(!hx) continue;
|
|
av_freep(&hx->top_borders[1]);
|
|
av_freep(&hx->top_borders[0]);
|
|
av_freep(&hx->s.obmc_scratchpad);
|
|
}
|
|
}
|
|
|
|
static void init_dequant8_coeff_table(H264Context *h){
|
|
int i,q,x;
|
|
const int transpose = (h->s.dsp.h264_idct8_add != ff_h264_idct8_add_c); //FIXME ugly
|
|
h->dequant8_coeff[0] = h->dequant8_buffer[0];
|
|
h->dequant8_coeff[1] = h->dequant8_buffer[1];
|
|
|
|
for(i=0; i<2; i++ ){
|
|
if(i && !memcmp(h->pps.scaling_matrix8[0], h->pps.scaling_matrix8[1], 64*sizeof(uint8_t))){
|
|
h->dequant8_coeff[1] = h->dequant8_buffer[0];
|
|
break;
|
|
}
|
|
|
|
for(q=0; q<52; q++){
|
|
int shift = ff_div6[q];
|
|
int idx = ff_rem6[q];
|
|
for(x=0; x<64; x++)
|
|
h->dequant8_coeff[i][q][transpose ? (x>>3)|((x&7)<<3) : x] =
|
|
((uint32_t)dequant8_coeff_init[idx][ dequant8_coeff_init_scan[((x>>1)&12) | (x&3)] ] *
|
|
h->pps.scaling_matrix8[i][x]) << shift;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void init_dequant4_coeff_table(H264Context *h){
|
|
int i,j,q,x;
|
|
const int transpose = (h->s.dsp.h264_idct_add != ff_h264_idct_add_c); //FIXME ugly
|
|
for(i=0; i<6; i++ ){
|
|
h->dequant4_coeff[i] = h->dequant4_buffer[i];
|
|
for(j=0; j<i; j++){
|
|
if(!memcmp(h->pps.scaling_matrix4[j], h->pps.scaling_matrix4[i], 16*sizeof(uint8_t))){
|
|
h->dequant4_coeff[i] = h->dequant4_buffer[j];
|
|
break;
|
|
}
|
|
}
|
|
if(j<i)
|
|
continue;
|
|
|
|
for(q=0; q<52; q++){
|
|
int shift = ff_div6[q] + 2;
|
|
int idx = ff_rem6[q];
|
|
for(x=0; x<16; x++)
|
|
h->dequant4_coeff[i][q][transpose ? (x>>2)|((x<<2)&0xF) : x] =
|
|
((uint32_t)dequant4_coeff_init[idx][(x&1) + ((x>>2)&1)] *
|
|
h->pps.scaling_matrix4[i][x]) << shift;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void init_dequant_tables(H264Context *h){
|
|
int i,x;
|
|
init_dequant4_coeff_table(h);
|
|
if(h->pps.transform_8x8_mode)
|
|
init_dequant8_coeff_table(h);
|
|
if(h->sps.transform_bypass){
|
|
for(i=0; i<6; i++)
|
|
for(x=0; x<16; x++)
|
|
h->dequant4_coeff[i][0][x] = 1<<6;
|
|
if(h->pps.transform_8x8_mode)
|
|
for(i=0; i<2; i++)
|
|
for(x=0; x<64; x++)
|
|
h->dequant8_coeff[i][0][x] = 1<<6;
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* allocates tables.
|
|
* needs width/height
|
|
*/
|
|
static int alloc_tables(H264Context *h){
|
|
MpegEncContext * const s = &h->s;
|
|
const int big_mb_num= s->mb_stride * (s->mb_height+1);
|
|
int x,y;
|
|
|
|
CHECKED_ALLOCZ(h->intra4x4_pred_mode, big_mb_num * 8 * sizeof(uint8_t))
|
|
|
|
CHECKED_ALLOCZ(h->non_zero_count , big_mb_num * 16 * sizeof(uint8_t))
|
|
CHECKED_ALLOCZ(h->slice_table_base , (big_mb_num+s->mb_stride) * sizeof(uint8_t))
|
|
CHECKED_ALLOCZ(h->cbp_table, big_mb_num * sizeof(uint16_t))
|
|
|
|
CHECKED_ALLOCZ(h->chroma_pred_mode_table, big_mb_num * sizeof(uint8_t))
|
|
CHECKED_ALLOCZ(h->mvd_table[0], 32*big_mb_num * sizeof(uint16_t));
|
|
CHECKED_ALLOCZ(h->mvd_table[1], 32*big_mb_num * sizeof(uint16_t));
|
|
CHECKED_ALLOCZ(h->direct_table, 32*big_mb_num * sizeof(uint8_t));
|
|
|
|
memset(h->slice_table_base, -1, (big_mb_num+s->mb_stride) * sizeof(uint8_t));
|
|
h->slice_table= h->slice_table_base + s->mb_stride*2 + 1;
|
|
|
|
CHECKED_ALLOCZ(h->mb2b_xy , big_mb_num * sizeof(uint32_t));
|
|
CHECKED_ALLOCZ(h->mb2b8_xy , big_mb_num * sizeof(uint32_t));
|
|
for(y=0; y<s->mb_height; y++){
|
|
for(x=0; x<s->mb_width; x++){
|
|
const int mb_xy= x + y*s->mb_stride;
|
|
const int b_xy = 4*x + 4*y*h->b_stride;
|
|
const int b8_xy= 2*x + 2*y*h->b8_stride;
|
|
|
|
h->mb2b_xy [mb_xy]= b_xy;
|
|
h->mb2b8_xy[mb_xy]= b8_xy;
|
|
}
|
|
}
|
|
|
|
s->obmc_scratchpad = NULL;
|
|
|
|
if(!h->dequant4_coeff[0])
|
|
init_dequant_tables(h);
|
|
|
|
return 0;
|
|
fail:
|
|
free_tables(h);
|
|
return -1;
|
|
}
|
|
|
|
/**
|
|
* Mimic alloc_tables(), but for every context thread.
|
|
*/
|
|
static void clone_tables(H264Context *dst, H264Context *src){
|
|
dst->intra4x4_pred_mode = src->intra4x4_pred_mode;
|
|
dst->non_zero_count = src->non_zero_count;
|
|
dst->slice_table = src->slice_table;
|
|
dst->cbp_table = src->cbp_table;
|
|
dst->mb2b_xy = src->mb2b_xy;
|
|
dst->mb2b8_xy = src->mb2b8_xy;
|
|
dst->chroma_pred_mode_table = src->chroma_pred_mode_table;
|
|
dst->mvd_table[0] = src->mvd_table[0];
|
|
dst->mvd_table[1] = src->mvd_table[1];
|
|
dst->direct_table = src->direct_table;
|
|
|
|
dst->s.obmc_scratchpad = NULL;
|
|
ff_h264_pred_init(&dst->hpc, src->s.codec_id);
|
|
}
|
|
|
|
/**
|
|
* Init context
|
|
* Allocate buffers which are not shared amongst multiple threads.
|
|
*/
|
|
static int context_init(H264Context *h){
|
|
CHECKED_ALLOCZ(h->top_borders[0], h->s.mb_width * (16+8+8) * sizeof(uint8_t))
|
|
CHECKED_ALLOCZ(h->top_borders[1], h->s.mb_width * (16+8+8) * sizeof(uint8_t))
|
|
|
|
return 0;
|
|
fail:
|
|
return -1; // free_tables will clean up for us
|
|
}
|
|
|
|
static av_cold void common_init(H264Context *h){
|
|
MpegEncContext * const s = &h->s;
|
|
|
|
s->width = s->avctx->width;
|
|
s->height = s->avctx->height;
|
|
s->codec_id= s->avctx->codec->id;
|
|
|
|
ff_h264_pred_init(&h->hpc, s->codec_id);
|
|
|
|
h->dequant_coeff_pps= -1;
|
|
s->unrestricted_mv=1;
|
|
s->decode=1; //FIXME
|
|
|
|
memset(h->pps.scaling_matrix4, 16, 6*16*sizeof(uint8_t));
|
|
memset(h->pps.scaling_matrix8, 16, 2*64*sizeof(uint8_t));
|
|
}
|
|
|
|
static av_cold int decode_init(AVCodecContext *avctx){
|
|
H264Context *h= avctx->priv_data;
|
|
MpegEncContext * const s = &h->s;
|
|
|
|
MPV_decode_defaults(s);
|
|
|
|
s->avctx = avctx;
|
|
common_init(h);
|
|
|
|
s->out_format = FMT_H264;
|
|
s->workaround_bugs= avctx->workaround_bugs;
|
|
|
|
// set defaults
|
|
// s->decode_mb= ff_h263_decode_mb;
|
|
s->quarter_sample = 1;
|
|
s->low_delay= 1;
|
|
avctx->pix_fmt= PIX_FMT_YUV420P;
|
|
|
|
decode_init_vlc();
|
|
|
|
if(avctx->extradata_size > 0 && avctx->extradata &&
|
|
*(char *)avctx->extradata == 1){
|
|
h->is_avc = 1;
|
|
h->got_avcC = 0;
|
|
} else {
|
|
h->is_avc = 0;
|
|
}
|
|
|
|
h->thread_context[0] = h;
|
|
return 0;
|
|
}
|
|
|
|
static int frame_start(H264Context *h){
|
|
MpegEncContext * const s = &h->s;
|
|
int i;
|
|
|
|
if(MPV_frame_start(s, s->avctx) < 0)
|
|
return -1;
|
|
ff_er_frame_start(s);
|
|
/*
|
|
* MPV_frame_start uses pict_type to derive key_frame.
|
|
* This is incorrect for H.264; IDR markings must be used.
|
|
* Zero here; IDR markings per slice in frame or fields are OR'd in later.
|
|
* See decode_nal_units().
|
|
*/
|
|
s->current_picture_ptr->key_frame= 0;
|
|
|
|
assert(s->linesize && s->uvlinesize);
|
|
|
|
for(i=0; i<16; i++){
|
|
h->block_offset[i]= 4*((scan8[i] - scan8[0])&7) + 4*s->linesize*((scan8[i] - scan8[0])>>3);
|
|
h->block_offset[24+i]= 4*((scan8[i] - scan8[0])&7) + 8*s->linesize*((scan8[i] - scan8[0])>>3);
|
|
}
|
|
for(i=0; i<4; i++){
|
|
h->block_offset[16+i]=
|
|
h->block_offset[20+i]= 4*((scan8[i] - scan8[0])&7) + 4*s->uvlinesize*((scan8[i] - scan8[0])>>3);
|
|
h->block_offset[24+16+i]=
|
|
h->block_offset[24+20+i]= 4*((scan8[i] - scan8[0])&7) + 8*s->uvlinesize*((scan8[i] - scan8[0])>>3);
|
|
}
|
|
|
|
/* can't be in alloc_tables because linesize isn't known there.
|
|
* FIXME: redo bipred weight to not require extra buffer? */
|
|
for(i = 0; i < s->avctx->thread_count; i++)
|
|
if(!h->thread_context[i]->s.obmc_scratchpad)
|
|
h->thread_context[i]->s.obmc_scratchpad = av_malloc(16*2*s->linesize + 8*2*s->uvlinesize);
|
|
|
|
/* some macroblocks will be accessed before they're available */
|
|
if(FRAME_MBAFF || s->avctx->thread_count > 1)
|
|
memset(h->slice_table, -1, (s->mb_height*s->mb_stride-1) * sizeof(uint8_t));
|
|
|
|
// s->decode= (s->flags&CODEC_FLAG_PSNR) || !s->encoding || s->current_picture.reference /*|| h->contains_intra*/ || 1;
|
|
return 0;
|
|
}
|
|
|
|
static inline void backup_mb_border(H264Context *h, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr, int linesize, int uvlinesize, int simple){
|
|
MpegEncContext * const s = &h->s;
|
|
int i;
|
|
|
|
src_y -= linesize;
|
|
src_cb -= uvlinesize;
|
|
src_cr -= uvlinesize;
|
|
|
|
// There are two lines saved, the line above the the top macroblock of a pair,
|
|
// and the line above the bottom macroblock
|
|
h->left_border[0]= h->top_borders[0][s->mb_x][15];
|
|
for(i=1; i<17; i++){
|
|
h->left_border[i]= src_y[15+i* linesize];
|
|
}
|
|
|
|
*(uint64_t*)(h->top_borders[0][s->mb_x]+0)= *(uint64_t*)(src_y + 16*linesize);
|
|
*(uint64_t*)(h->top_borders[0][s->mb_x]+8)= *(uint64_t*)(src_y +8+16*linesize);
|
|
|
|
if(simple || !ENABLE_GRAY || !(s->flags&CODEC_FLAG_GRAY)){
|
|
h->left_border[17 ]= h->top_borders[0][s->mb_x][16+7];
|
|
h->left_border[17+9]= h->top_borders[0][s->mb_x][24+7];
|
|
for(i=1; i<9; i++){
|
|
h->left_border[i+17 ]= src_cb[7+i*uvlinesize];
|
|
h->left_border[i+17+9]= src_cr[7+i*uvlinesize];
|
|
}
|
|
*(uint64_t*)(h->top_borders[0][s->mb_x]+16)= *(uint64_t*)(src_cb+8*uvlinesize);
|
|
*(uint64_t*)(h->top_borders[0][s->mb_x]+24)= *(uint64_t*)(src_cr+8*uvlinesize);
|
|
}
|
|
}
|
|
|
|
static inline void xchg_mb_border(H264Context *h, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr, int linesize, int uvlinesize, int xchg, int simple){
|
|
MpegEncContext * const s = &h->s;
|
|
int temp8, i;
|
|
uint64_t temp64;
|
|
int deblock_left;
|
|
int deblock_top;
|
|
int mb_xy;
|
|
|
|
if(h->deblocking_filter == 2) {
|
|
mb_xy = h->mb_xy;
|
|
deblock_left = h->slice_table[mb_xy] == h->slice_table[mb_xy - 1];
|
|
deblock_top = h->slice_table[mb_xy] == h->slice_table[h->top_mb_xy];
|
|
} else {
|
|
deblock_left = (s->mb_x > 0);
|
|
deblock_top = (s->mb_y > 0);
|
|
}
|
|
|
|
src_y -= linesize + 1;
|
|
src_cb -= uvlinesize + 1;
|
|
src_cr -= uvlinesize + 1;
|
|
|
|
#define XCHG(a,b,t,xchg)\
|
|
t= a;\
|
|
if(xchg)\
|
|
a= b;\
|
|
b= t;
|
|
|
|
if(deblock_left){
|
|
for(i = !deblock_top; i<17; i++){
|
|
XCHG(h->left_border[i ], src_y [i* linesize], temp8, xchg);
|
|
}
|
|
}
|
|
|
|
if(deblock_top){
|
|
XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+0), *(uint64_t*)(src_y +1), temp64, xchg);
|
|
XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+8), *(uint64_t*)(src_y +9), temp64, 1);
|
|
if(s->mb_x+1 < s->mb_width){
|
|
XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x+1]), *(uint64_t*)(src_y +17), temp64, 1);
|
|
}
|
|
}
|
|
|
|
if(simple || !ENABLE_GRAY || !(s->flags&CODEC_FLAG_GRAY)){
|
|
if(deblock_left){
|
|
for(i = !deblock_top; i<9; i++){
|
|
XCHG(h->left_border[i+17 ], src_cb[i*uvlinesize], temp8, xchg);
|
|
XCHG(h->left_border[i+17+9], src_cr[i*uvlinesize], temp8, xchg);
|
|
}
|
|
}
|
|
if(deblock_top){
|
|
XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+16), *(uint64_t*)(src_cb+1), temp64, 1);
|
|
XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+24), *(uint64_t*)(src_cr+1), temp64, 1);
|
|
}
|
|
}
|
|
}
|
|
|
|
static inline void backup_pair_border(H264Context *h, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr, int linesize, int uvlinesize){
|
|
MpegEncContext * const s = &h->s;
|
|
int i;
|
|
|
|
src_y -= 2 * linesize;
|
|
src_cb -= 2 * uvlinesize;
|
|
src_cr -= 2 * uvlinesize;
|
|
|
|
// There are two lines saved, the line above the the top macroblock of a pair,
|
|
// and the line above the bottom macroblock
|
|
h->left_border[0]= h->top_borders[0][s->mb_x][15];
|
|
h->left_border[1]= h->top_borders[1][s->mb_x][15];
|
|
for(i=2; i<34; i++){
|
|
h->left_border[i]= src_y[15+i* linesize];
|
|
}
|
|
|
|
*(uint64_t*)(h->top_borders[0][s->mb_x]+0)= *(uint64_t*)(src_y + 32*linesize);
|
|
*(uint64_t*)(h->top_borders[0][s->mb_x]+8)= *(uint64_t*)(src_y +8+32*linesize);
|
|
*(uint64_t*)(h->top_borders[1][s->mb_x]+0)= *(uint64_t*)(src_y + 33*linesize);
|
|
*(uint64_t*)(h->top_borders[1][s->mb_x]+8)= *(uint64_t*)(src_y +8+33*linesize);
|
|
|
|
if(!ENABLE_GRAY || !(s->flags&CODEC_FLAG_GRAY)){
|
|
h->left_border[34 ]= h->top_borders[0][s->mb_x][16+7];
|
|
h->left_border[34+ 1]= h->top_borders[1][s->mb_x][16+7];
|
|
h->left_border[34+18 ]= h->top_borders[0][s->mb_x][24+7];
|
|
h->left_border[34+18+1]= h->top_borders[1][s->mb_x][24+7];
|
|
for(i=2; i<18; i++){
|
|
h->left_border[i+34 ]= src_cb[7+i*uvlinesize];
|
|
h->left_border[i+34+18]= src_cr[7+i*uvlinesize];
|
|
}
|
|
*(uint64_t*)(h->top_borders[0][s->mb_x]+16)= *(uint64_t*)(src_cb+16*uvlinesize);
|
|
*(uint64_t*)(h->top_borders[0][s->mb_x]+24)= *(uint64_t*)(src_cr+16*uvlinesize);
|
|
*(uint64_t*)(h->top_borders[1][s->mb_x]+16)= *(uint64_t*)(src_cb+17*uvlinesize);
|
|
*(uint64_t*)(h->top_borders[1][s->mb_x]+24)= *(uint64_t*)(src_cr+17*uvlinesize);
|
|
}
|
|
}
|
|
|
|
static inline void xchg_pair_border(H264Context *h, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr, int linesize, int uvlinesize, int xchg){
|
|
MpegEncContext * const s = &h->s;
|
|
int temp8, i;
|
|
uint64_t temp64;
|
|
int deblock_left = (s->mb_x > 0);
|
|
int deblock_top = (s->mb_y > 1);
|
|
|
|
tprintf(s->avctx, "xchg_pair_border: src_y:%p src_cb:%p src_cr:%p ls:%d uvls:%d\n", src_y, src_cb, src_cr, linesize, uvlinesize);
|
|
|
|
src_y -= 2 * linesize + 1;
|
|
src_cb -= 2 * uvlinesize + 1;
|
|
src_cr -= 2 * uvlinesize + 1;
|
|
|
|
#define XCHG(a,b,t,xchg)\
|
|
t= a;\
|
|
if(xchg)\
|
|
a= b;\
|
|
b= t;
|
|
|
|
if(deblock_left){
|
|
for(i = (!deblock_top)<<1; i<34; i++){
|
|
XCHG(h->left_border[i ], src_y [i* linesize], temp8, xchg);
|
|
}
|
|
}
|
|
|
|
if(deblock_top){
|
|
XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+0), *(uint64_t*)(src_y +1), temp64, xchg);
|
|
XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+8), *(uint64_t*)(src_y +9), temp64, 1);
|
|
XCHG(*(uint64_t*)(h->top_borders[1][s->mb_x]+0), *(uint64_t*)(src_y +1 +linesize), temp64, xchg);
|
|
XCHG(*(uint64_t*)(h->top_borders[1][s->mb_x]+8), *(uint64_t*)(src_y +9 +linesize), temp64, 1);
|
|
if(s->mb_x+1 < s->mb_width){
|
|
XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x+1]), *(uint64_t*)(src_y +17), temp64, 1);
|
|
XCHG(*(uint64_t*)(h->top_borders[1][s->mb_x+1]), *(uint64_t*)(src_y +17 +linesize), temp64, 1);
|
|
}
|
|
}
|
|
|
|
if(!ENABLE_GRAY || !(s->flags&CODEC_FLAG_GRAY)){
|
|
if(deblock_left){
|
|
for(i = (!deblock_top) << 1; i<18; i++){
|
|
XCHG(h->left_border[i+34 ], src_cb[i*uvlinesize], temp8, xchg);
|
|
XCHG(h->left_border[i+34+18], src_cr[i*uvlinesize], temp8, xchg);
|
|
}
|
|
}
|
|
if(deblock_top){
|
|
XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+16), *(uint64_t*)(src_cb+1), temp64, 1);
|
|
XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+24), *(uint64_t*)(src_cr+1), temp64, 1);
|
|
XCHG(*(uint64_t*)(h->top_borders[1][s->mb_x]+16), *(uint64_t*)(src_cb+1 +uvlinesize), temp64, 1);
|
|
XCHG(*(uint64_t*)(h->top_borders[1][s->mb_x]+24), *(uint64_t*)(src_cr+1 +uvlinesize), temp64, 1);
|
|
}
|
|
}
|
|
}
|
|
|
|
static av_always_inline void hl_decode_mb_internal(H264Context *h, int simple){
|
|
MpegEncContext * const s = &h->s;
|
|
const int mb_x= s->mb_x;
|
|
const int mb_y= s->mb_y;
|
|
const int mb_xy= h->mb_xy;
|
|
const int mb_type= s->current_picture.mb_type[mb_xy];
|
|
uint8_t *dest_y, *dest_cb, *dest_cr;
|
|
int linesize, uvlinesize /*dct_offset*/;
|
|
int i;
|
|
int *block_offset = &h->block_offset[0];
|
|
const unsigned int bottom = mb_y & 1;
|
|
const int transform_bypass = (s->qscale == 0 && h->sps.transform_bypass), is_h264 = (simple || s->codec_id == CODEC_ID_H264);
|
|
void (*idct_add)(uint8_t *dst, DCTELEM *block, int stride);
|
|
void (*idct_dc_add)(uint8_t *dst, DCTELEM *block, int stride);
|
|
|
|
dest_y = s->current_picture.data[0] + (mb_y * 16* s->linesize ) + mb_x * 16;
|
|
dest_cb = s->current_picture.data[1] + (mb_y * 8 * s->uvlinesize) + mb_x * 8;
|
|
dest_cr = s->current_picture.data[2] + (mb_y * 8 * s->uvlinesize) + mb_x * 8;
|
|
|
|
s->dsp.prefetch(dest_y + (s->mb_x&3)*4*s->linesize + 64, s->linesize, 4);
|
|
s->dsp.prefetch(dest_cb + (s->mb_x&7)*s->uvlinesize + 64, dest_cr - dest_cb, 2);
|
|
|
|
if (!simple && MB_FIELD) {
|
|
linesize = h->mb_linesize = s->linesize * 2;
|
|
uvlinesize = h->mb_uvlinesize = s->uvlinesize * 2;
|
|
block_offset = &h->block_offset[24];
|
|
if(mb_y&1){ //FIXME move out of this func?
|
|
dest_y -= s->linesize*15;
|
|
dest_cb-= s->uvlinesize*7;
|
|
dest_cr-= s->uvlinesize*7;
|
|
}
|
|
if(FRAME_MBAFF) {
|
|
int list;
|
|
for(list=0; list<h->list_count; list++){
|
|
if(!USES_LIST(mb_type, list))
|
|
continue;
|
|
if(IS_16X16(mb_type)){
|
|
int8_t *ref = &h->ref_cache[list][scan8[0]];
|
|
fill_rectangle(ref, 4, 4, 8, (16+*ref)^(s->mb_y&1), 1);
|
|
}else{
|
|
for(i=0; i<16; i+=4){
|
|
//FIXME can refs be smaller than 8x8 when !direct_8x8_inference ?
|
|
int ref = h->ref_cache[list][scan8[i]];
|
|
if(ref >= 0)
|
|
fill_rectangle(&h->ref_cache[list][scan8[i]], 2, 2, 8, (16+ref)^(s->mb_y&1), 1);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
linesize = h->mb_linesize = s->linesize;
|
|
uvlinesize = h->mb_uvlinesize = s->uvlinesize;
|
|
// dct_offset = s->linesize * 16;
|
|
}
|
|
|
|
if(transform_bypass){
|
|
idct_dc_add =
|
|
idct_add = IS_8x8DCT(mb_type) ? s->dsp.add_pixels8 : s->dsp.add_pixels4;
|
|
}else if(IS_8x8DCT(mb_type)){
|
|
idct_dc_add = s->dsp.h264_idct8_dc_add;
|
|
idct_add = s->dsp.h264_idct8_add;
|
|
}else{
|
|
idct_dc_add = s->dsp.h264_idct_dc_add;
|
|
idct_add = s->dsp.h264_idct_add;
|
|
}
|
|
|
|
if(!simple && FRAME_MBAFF && h->deblocking_filter && IS_INTRA(mb_type)
|
|
&& (!bottom || !IS_INTRA(s->current_picture.mb_type[mb_xy-s->mb_stride]))){
|
|
int mbt_y = mb_y&~1;
|
|
uint8_t *top_y = s->current_picture.data[0] + (mbt_y * 16* s->linesize ) + mb_x * 16;
|
|
uint8_t *top_cb = s->current_picture.data[1] + (mbt_y * 8 * s->uvlinesize) + mb_x * 8;
|
|
uint8_t *top_cr = s->current_picture.data[2] + (mbt_y * 8 * s->uvlinesize) + mb_x * 8;
|
|
xchg_pair_border(h, top_y, top_cb, top_cr, s->linesize, s->uvlinesize, 1);
|
|
}
|
|
|
|
if (!simple && IS_INTRA_PCM(mb_type)) {
|
|
unsigned int x, y;
|
|
|
|
// The pixels are stored in h->mb array in the same order as levels,
|
|
// copy them in output in the correct order.
|
|
for(i=0; i<16; i++) {
|
|
for (y=0; y<4; y++) {
|
|
for (x=0; x<4; x++) {
|
|
*(dest_y + block_offset[i] + y*linesize + x) = h->mb[i*16+y*4+x];
|
|
}
|
|
}
|
|
}
|
|
for(i=16; i<16+4; i++) {
|
|
for (y=0; y<4; y++) {
|
|
for (x=0; x<4; x++) {
|
|
*(dest_cb + block_offset[i] + y*uvlinesize + x) = h->mb[i*16+y*4+x];
|
|
}
|
|
}
|
|
}
|
|
for(i=20; i<20+4; i++) {
|
|
for (y=0; y<4; y++) {
|
|
for (x=0; x<4; x++) {
|
|
*(dest_cr + block_offset[i] + y*uvlinesize + x) = h->mb[i*16+y*4+x];
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
if(IS_INTRA(mb_type)){
|
|
if(h->deblocking_filter && (simple || !FRAME_MBAFF))
|
|
xchg_mb_border(h, dest_y, dest_cb, dest_cr, linesize, uvlinesize, 1, simple);
|
|
|
|
if(simple || !ENABLE_GRAY || !(s->flags&CODEC_FLAG_GRAY)){
|
|
h->hpc.pred8x8[ h->chroma_pred_mode ](dest_cb, uvlinesize);
|
|
h->hpc.pred8x8[ h->chroma_pred_mode ](dest_cr, uvlinesize);
|
|
}
|
|
|
|
if(IS_INTRA4x4(mb_type)){
|
|
if(simple || !s->encoding){
|
|
if(IS_8x8DCT(mb_type)){
|
|
for(i=0; i<16; i+=4){
|
|
uint8_t * const ptr= dest_y + block_offset[i];
|
|
const int dir= h->intra4x4_pred_mode_cache[ scan8[i] ];
|
|
const int nnz = h->non_zero_count_cache[ scan8[i] ];
|
|
h->hpc.pred8x8l[ dir ](ptr, (h->topleft_samples_available<<i)&0x8000,
|
|
(h->topright_samples_available<<i)&0x4000, linesize);
|
|
if(nnz){
|
|
if(nnz == 1 && h->mb[i*16])
|
|
idct_dc_add(ptr, h->mb + i*16, linesize);
|
|
else
|
|
idct_add(ptr, h->mb + i*16, linesize);
|
|
}
|
|
}
|
|
}else
|
|
for(i=0; i<16; i++){
|
|
uint8_t * const ptr= dest_y + block_offset[i];
|
|
uint8_t *topright;
|
|
const int dir= h->intra4x4_pred_mode_cache[ scan8[i] ];
|
|
int nnz, tr;
|
|
|
|
if(dir == DIAG_DOWN_LEFT_PRED || dir == VERT_LEFT_PRED){
|
|
const int topright_avail= (h->topright_samples_available<<i)&0x8000;
|
|
assert(mb_y || linesize <= block_offset[i]);
|
|
if(!topright_avail){
|
|
tr= ptr[3 - linesize]*0x01010101;
|
|
topright= (uint8_t*) &tr;
|
|
}else
|
|
topright= ptr + 4 - linesize;
|
|
}else
|
|
topright= NULL;
|
|
|
|
h->hpc.pred4x4[ dir ](ptr, topright, linesize);
|
|
nnz = h->non_zero_count_cache[ scan8[i] ];
|
|
if(nnz){
|
|
if(is_h264){
|
|
if(nnz == 1 && h->mb[i*16])
|
|
idct_dc_add(ptr, h->mb + i*16, linesize);
|
|
else
|
|
idct_add(ptr, h->mb + i*16, linesize);
|
|
}else
|
|
svq3_add_idct_c(ptr, h->mb + i*16, linesize, s->qscale, 0);
|
|
}
|
|
}
|
|
}
|
|
}else{
|
|
h->hpc.pred16x16[ h->intra16x16_pred_mode ](dest_y , linesize);
|
|
if(is_h264){
|
|
if(!transform_bypass)
|
|
h264_luma_dc_dequant_idct_c(h->mb, s->qscale, h->dequant4_coeff[0][s->qscale][0]);
|
|
}else
|
|
svq3_luma_dc_dequant_idct_c(h->mb, s->qscale);
|
|
}
|
|
if(h->deblocking_filter && (simple || !FRAME_MBAFF))
|
|
xchg_mb_border(h, dest_y, dest_cb, dest_cr, linesize, uvlinesize, 0, simple);
|
|
}else if(is_h264){
|
|
hl_motion(h, dest_y, dest_cb, dest_cr,
|
|
s->me.qpel_put, s->dsp.put_h264_chroma_pixels_tab,
|
|
s->me.qpel_avg, s->dsp.avg_h264_chroma_pixels_tab,
|
|
s->dsp.weight_h264_pixels_tab, s->dsp.biweight_h264_pixels_tab);
|
|
}
|
|
|
|
|
|
if(!IS_INTRA4x4(mb_type)){
|
|
if(is_h264){
|
|
if(IS_INTRA16x16(mb_type)){
|
|
for(i=0; i<16; i++){
|
|
if(h->non_zero_count_cache[ scan8[i] ])
|
|
idct_add(dest_y + block_offset[i], h->mb + i*16, linesize);
|
|
else if(h->mb[i*16])
|
|
idct_dc_add(dest_y + block_offset[i], h->mb + i*16, linesize);
|
|
}
|
|
}else{
|
|
const int di = IS_8x8DCT(mb_type) ? 4 : 1;
|
|
for(i=0; i<16; i+=di){
|
|
int nnz = h->non_zero_count_cache[ scan8[i] ];
|
|
if(nnz){
|
|
if(nnz==1 && h->mb[i*16])
|
|
idct_dc_add(dest_y + block_offset[i], h->mb + i*16, linesize);
|
|
else
|
|
idct_add(dest_y + block_offset[i], h->mb + i*16, linesize);
|
|
}
|
|
}
|
|
}
|
|
}else{
|
|
for(i=0; i<16; i++){
|
|
if(h->non_zero_count_cache[ scan8[i] ] || h->mb[i*16]){ //FIXME benchmark weird rule, & below
|
|
uint8_t * const ptr= dest_y + block_offset[i];
|
|
svq3_add_idct_c(ptr, h->mb + i*16, linesize, s->qscale, IS_INTRA(mb_type) ? 1 : 0);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if(simple || !ENABLE_GRAY || !(s->flags&CODEC_FLAG_GRAY)){
|
|
uint8_t *dest[2] = {dest_cb, dest_cr};
|
|
if(transform_bypass){
|
|
idct_add = idct_dc_add = s->dsp.add_pixels4;
|
|
}else{
|
|
idct_add = s->dsp.h264_idct_add;
|
|
idct_dc_add = s->dsp.h264_idct_dc_add;
|
|
chroma_dc_dequant_idct_c(h->mb + 16*16, h->chroma_qp[0], h->dequant4_coeff[IS_INTRA(mb_type) ? 1:4][h->chroma_qp[0]][0]);
|
|
chroma_dc_dequant_idct_c(h->mb + 16*16+4*16, h->chroma_qp[1], h->dequant4_coeff[IS_INTRA(mb_type) ? 2:5][h->chroma_qp[1]][0]);
|
|
}
|
|
if(is_h264){
|
|
for(i=16; i<16+8; i++){
|
|
if(h->non_zero_count_cache[ scan8[i] ])
|
|
idct_add(dest[(i&4)>>2] + block_offset[i], h->mb + i*16, uvlinesize);
|
|
else if(h->mb[i*16])
|
|
idct_dc_add(dest[(i&4)>>2] + block_offset[i], h->mb + i*16, uvlinesize);
|
|
}
|
|
}else{
|
|
for(i=16; i<16+8; i++){
|
|
if(h->non_zero_count_cache[ scan8[i] ] || h->mb[i*16]){
|
|
uint8_t * const ptr= dest[(i&4)>>2] + block_offset[i];
|
|
svq3_add_idct_c(ptr, h->mb + i*16, uvlinesize, chroma_qp[s->qscale + 12] - 12, 2);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if(h->deblocking_filter) {
|
|
if (!simple && FRAME_MBAFF) {
|
|
//FIXME try deblocking one mb at a time?
|
|
// the reduction in load/storing mvs and such might outweigh the extra backup/xchg_border
|
|
const int mb_y = s->mb_y - 1;
|
|
uint8_t *pair_dest_y, *pair_dest_cb, *pair_dest_cr;
|
|
const int mb_xy= mb_x + mb_y*s->mb_stride;
|
|
const int mb_type_top = s->current_picture.mb_type[mb_xy];
|
|
const int mb_type_bottom= s->current_picture.mb_type[mb_xy+s->mb_stride];
|
|
if (!bottom) return;
|
|
pair_dest_y = s->current_picture.data[0] + (mb_y * 16* s->linesize ) + mb_x * 16;
|
|
pair_dest_cb = s->current_picture.data[1] + (mb_y * 8 * s->uvlinesize) + mb_x * 8;
|
|
pair_dest_cr = s->current_picture.data[2] + (mb_y * 8 * s->uvlinesize) + mb_x * 8;
|
|
|
|
if(IS_INTRA(mb_type_top | mb_type_bottom))
|
|
xchg_pair_border(h, pair_dest_y, pair_dest_cb, pair_dest_cr, s->linesize, s->uvlinesize, 0);
|
|
|
|
backup_pair_border(h, pair_dest_y, pair_dest_cb, pair_dest_cr, s->linesize, s->uvlinesize);
|
|
// deblock a pair
|
|
// top
|
|
s->mb_y--; h->mb_xy -= s->mb_stride;
|
|
tprintf(h->s.avctx, "call mbaff filter_mb mb_x:%d mb_y:%d pair_dest_y = %p, dest_y = %p\n", mb_x, mb_y, pair_dest_y, dest_y);
|
|
fill_caches(h, mb_type_top, 1); //FIXME don't fill stuff which isn't used by filter_mb
|
|
h->chroma_qp[0] = get_chroma_qp(h, 0, s->current_picture.qscale_table[mb_xy]);
|
|
h->chroma_qp[1] = get_chroma_qp(h, 1, s->current_picture.qscale_table[mb_xy]);
|
|
filter_mb(h, mb_x, mb_y, pair_dest_y, pair_dest_cb, pair_dest_cr, linesize, uvlinesize);
|
|
// bottom
|
|
s->mb_y++; h->mb_xy += s->mb_stride;
|
|
tprintf(h->s.avctx, "call mbaff filter_mb\n");
|
|
fill_caches(h, mb_type_bottom, 1); //FIXME don't fill stuff which isn't used by filter_mb
|
|
h->chroma_qp[0] = get_chroma_qp(h, 0, s->current_picture.qscale_table[mb_xy+s->mb_stride]);
|
|
h->chroma_qp[1] = get_chroma_qp(h, 1, s->current_picture.qscale_table[mb_xy+s->mb_stride]);
|
|
filter_mb(h, mb_x, mb_y+1, dest_y, dest_cb, dest_cr, linesize, uvlinesize);
|
|
} else {
|
|
tprintf(h->s.avctx, "call filter_mb\n");
|
|
backup_mb_border(h, dest_y, dest_cb, dest_cr, linesize, uvlinesize, simple);
|
|
fill_caches(h, mb_type, 1); //FIXME don't fill stuff which isn't used by filter_mb
|
|
filter_mb_fast(h, mb_x, mb_y, dest_y, dest_cb, dest_cr, linesize, uvlinesize);
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Process a macroblock; this case avoids checks for expensive uncommon cases.
|
|
*/
|
|
static void hl_decode_mb_simple(H264Context *h){
|
|
hl_decode_mb_internal(h, 1);
|
|
}
|
|
|
|
/**
|
|
* Process a macroblock; this handles edge cases, such as interlacing.
|
|
*/
|
|
static void av_noinline hl_decode_mb_complex(H264Context *h){
|
|
hl_decode_mb_internal(h, 0);
|
|
}
|
|
|
|
static void hl_decode_mb(H264Context *h){
|
|
MpegEncContext * const s = &h->s;
|
|
const int mb_xy= h->mb_xy;
|
|
const int mb_type= s->current_picture.mb_type[mb_xy];
|
|
int is_complex = FRAME_MBAFF || MB_FIELD || IS_INTRA_PCM(mb_type) || s->codec_id != CODEC_ID_H264 || (ENABLE_GRAY && (s->flags&CODEC_FLAG_GRAY)) || s->encoding;
|
|
|
|
if(!s->decode)
|
|
return;
|
|
|
|
if (is_complex)
|
|
hl_decode_mb_complex(h);
|
|
else hl_decode_mb_simple(h);
|
|
}
|
|
|
|
static void pic_as_field(Picture *pic, const int parity){
|
|
int i;
|
|
for (i = 0; i < 4; ++i) {
|
|
if (parity == PICT_BOTTOM_FIELD)
|
|
pic->data[i] += pic->linesize[i];
|
|
pic->reference = parity;
|
|
pic->linesize[i] *= 2;
|
|
}
|
|
}
|
|
|
|
static int split_field_copy(Picture *dest, Picture *src,
|
|
int parity, int id_add){
|
|
int match = !!(src->reference & parity);
|
|
|
|
if (match) {
|
|
*dest = *src;
|
|
pic_as_field(dest, parity);
|
|
dest->pic_id *= 2;
|
|
dest->pic_id += id_add;
|
|
}
|
|
|
|
return match;
|
|
}
|
|
|
|
/**
|
|
* Split one reference list into field parts, interleaving by parity
|
|
* as per H.264 spec section 8.2.4.2.5. Output fields have their data pointers
|
|
* set to look at the actual start of data for that field.
|
|
*
|
|
* @param dest output list
|
|
* @param dest_len maximum number of fields to put in dest
|
|
* @param src the source reference list containing fields and/or field pairs
|
|
* (aka short_ref/long_ref, or
|
|
* refFrameListXShortTerm/refFrameListLongTerm in spec-speak)
|
|
* @param src_len number of Picture's in source (pairs and unmatched fields)
|
|
* @param parity the parity of the picture being decoded/needing
|
|
* these ref pics (PICT_{TOP,BOTTOM}_FIELD)
|
|
* @return number of fields placed in dest
|
|
*/
|
|
static int split_field_half_ref_list(Picture *dest, int dest_len,
|
|
Picture *src, int src_len, int parity){
|
|
int same_parity = 1;
|
|
int same_i = 0;
|
|
int opp_i = 0;
|
|
int out_i;
|
|
int field_output;
|
|
|
|
for (out_i = 0; out_i < dest_len; out_i += field_output) {
|
|
if (same_parity && same_i < src_len) {
|
|
field_output = split_field_copy(dest + out_i, src + same_i,
|
|
parity, 1);
|
|
same_parity = !field_output;
|
|
same_i++;
|
|
|
|
} else if (opp_i < src_len) {
|
|
field_output = split_field_copy(dest + out_i, src + opp_i,
|
|
PICT_FRAME - parity, 0);
|
|
same_parity = field_output;
|
|
opp_i++;
|
|
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
|
|
return out_i;
|
|
}
|
|
|
|
/**
|
|
* Split the reference frame list into a reference field list.
|
|
* This implements H.264 spec 8.2.4.2.5 for a combined input list.
|
|
* The input list contains both reference field pairs and
|
|
* unmatched reference fields; it is ordered as spec describes
|
|
* RefPicListX for frames in 8.2.4.2.1 and 8.2.4.2.3, except that
|
|
* unmatched field pairs are also present. Conceptually this is equivalent
|
|
* to concatenation of refFrameListXShortTerm with refFrameListLongTerm.
|
|
*
|
|
* @param dest output reference list where ordered fields are to be placed
|
|
* @param dest_len max number of fields to place at dest
|
|
* @param src source reference list, as described above
|
|
* @param src_len number of pictures (pairs and unmatched fields) in src
|
|
* @param parity parity of field being currently decoded
|
|
* (one of PICT_{TOP,BOTTOM}_FIELD)
|
|
* @param long_i index into src array that holds first long reference picture,
|
|
* or src_len if no long refs present.
|
|
*/
|
|
static int split_field_ref_list(Picture *dest, int dest_len,
|
|
Picture *src, int src_len,
|
|
int parity, int long_i){
|
|
|
|
int i = split_field_half_ref_list(dest, dest_len, src, long_i, parity);
|
|
dest += i;
|
|
dest_len -= i;
|
|
|
|
i += split_field_half_ref_list(dest, dest_len, src + long_i,
|
|
src_len - long_i, parity);
|
|
return i;
|
|
}
|
|
|
|
/**
|
|
* fills the default_ref_list.
|
|
*/
|
|
static int fill_default_ref_list(H264Context *h){
|
|
MpegEncContext * const s = &h->s;
|
|
int i;
|
|
int smallest_poc_greater_than_current = -1;
|
|
int structure_sel;
|
|
Picture sorted_short_ref[32];
|
|
Picture field_entry_list[2][32];
|
|
Picture *frame_list[2];
|
|
|
|
if (FIELD_PICTURE) {
|
|
structure_sel = PICT_FRAME;
|
|
frame_list[0] = field_entry_list[0];
|
|
frame_list[1] = field_entry_list[1];
|
|
} else {
|
|
structure_sel = 0;
|
|
frame_list[0] = h->default_ref_list[0];
|
|
frame_list[1] = h->default_ref_list[1];
|
|
}
|
|
|
|
if(h->slice_type==FF_B_TYPE){
|
|
int list;
|
|
int len[2];
|
|
int short_len[2];
|
|
int out_i;
|
|
int limit= INT_MIN;
|
|
|
|
/* sort frame according to poc in B slice */
|
|
for(out_i=0; out_i<h->short_ref_count; out_i++){
|
|
int best_i=INT_MIN;
|
|
int best_poc=INT_MAX;
|
|
|
|
for(i=0; i<h->short_ref_count; i++){
|
|
const int poc= h->short_ref[i]->poc;
|
|
if(poc > limit && poc < best_poc){
|
|
best_poc= poc;
|
|
best_i= i;
|
|
}
|
|
}
|
|
|
|
assert(best_i != INT_MIN);
|
|
|
|
limit= best_poc;
|
|
sorted_short_ref[out_i]= *h->short_ref[best_i];
|
|
tprintf(h->s.avctx, "sorted poc: %d->%d poc:%d fn:%d\n", best_i, out_i, sorted_short_ref[out_i].poc, sorted_short_ref[out_i].frame_num);
|
|
if (-1 == smallest_poc_greater_than_current) {
|
|
if (h->short_ref[best_i]->poc >= s->current_picture_ptr->poc) {
|
|
smallest_poc_greater_than_current = out_i;
|
|
}
|
|
}
|
|
}
|
|
|
|
tprintf(h->s.avctx, "current poc: %d, smallest_poc_greater_than_current: %d\n", s->current_picture_ptr->poc, smallest_poc_greater_than_current);
|
|
|
|
// find the largest poc
|
|
for(list=0; list<2; list++){
|
|
int index = 0;
|
|
int j= -99;
|
|
int step= list ? -1 : 1;
|
|
|
|
for(i=0; i<h->short_ref_count && index < h->ref_count[list]; i++, j+=step) {
|
|
int sel;
|
|
while(j<0 || j>= h->short_ref_count){
|
|
if(j != -99 && step == (list ? -1 : 1))
|
|
return -1;
|
|
step = -step;
|
|
j= smallest_poc_greater_than_current + (step>>1);
|
|
}
|
|
sel = sorted_short_ref[j].reference | structure_sel;
|
|
if(sel != PICT_FRAME) continue;
|
|
frame_list[list][index ]= sorted_short_ref[j];
|
|
frame_list[list][index++].pic_id= sorted_short_ref[j].frame_num;
|
|
}
|
|
short_len[list] = index;
|
|
|
|
for(i = 0; i < 16 && index < h->ref_count[ list ]; i++){
|
|
int sel;
|
|
if(h->long_ref[i] == NULL) continue;
|
|
sel = h->long_ref[i]->reference | structure_sel;
|
|
if(sel != PICT_FRAME) continue;
|
|
|
|
frame_list[ list ][index ]= *h->long_ref[i];
|
|
frame_list[ list ][index++].pic_id= i;
|
|
}
|
|
len[list] = index;
|
|
}
|
|
|
|
for(list=0; list<2; list++){
|
|
if (FIELD_PICTURE)
|
|
len[list] = split_field_ref_list(h->default_ref_list[list],
|
|
h->ref_count[list],
|
|
frame_list[list],
|
|
len[list],
|
|
s->picture_structure,
|
|
short_len[list]);
|
|
|
|
// swap the two first elements of L1 when L0 and L1 are identical
|
|
if(list && len[0] > 1 && len[0] == len[1])
|
|
for(i=0; h->default_ref_list[0][i].data[0] == h->default_ref_list[1][i].data[0]; i++)
|
|
if(i == len[0]){
|
|
FFSWAP(Picture, h->default_ref_list[1][0], h->default_ref_list[1][1]);
|
|
break;
|
|
}
|
|
|
|
if(len[list] < h->ref_count[ list ])
|
|
memset(&h->default_ref_list[list][len[list]], 0, sizeof(Picture)*(h->ref_count[ list ] - len[list]));
|
|
}
|
|
|
|
|
|
}else{
|
|
int index=0;
|
|
int short_len;
|
|
for(i=0; i<h->short_ref_count; i++){
|
|
int sel;
|
|
sel = h->short_ref[i]->reference | structure_sel;
|
|
if(sel != PICT_FRAME) continue;
|
|
frame_list[0][index ]= *h->short_ref[i];
|
|
frame_list[0][index++].pic_id= h->short_ref[i]->frame_num;
|
|
}
|
|
short_len = index;
|
|
for(i = 0; i < 16; i++){
|
|
int sel;
|
|
if(h->long_ref[i] == NULL) continue;
|
|
sel = h->long_ref[i]->reference | structure_sel;
|
|
if(sel != PICT_FRAME) continue;
|
|
frame_list[0][index ]= *h->long_ref[i];
|
|
frame_list[0][index++].pic_id= i;
|
|
}
|
|
|
|
if (FIELD_PICTURE)
|
|
index = split_field_ref_list(h->default_ref_list[0],
|
|
h->ref_count[0], frame_list[0],
|
|
index, s->picture_structure,
|
|
short_len);
|
|
|
|
if(index < h->ref_count[0])
|
|
memset(&h->default_ref_list[0][index], 0, sizeof(Picture)*(h->ref_count[0] - index));
|
|
}
|
|
#ifdef TRACE
|
|
for (i=0; i<h->ref_count[0]; i++) {
|
|
tprintf(h->s.avctx, "List0: %s fn:%d 0x%p\n", (h->default_ref_list[0][i].long_ref ? "LT" : "ST"), h->default_ref_list[0][i].pic_id, h->default_ref_list[0][i].data[0]);
|
|
}
|
|
if(h->slice_type==FF_B_TYPE){
|
|
for (i=0; i<h->ref_count[1]; i++) {
|
|
tprintf(h->s.avctx, "List1: %s fn:%d 0x%p\n", (h->default_ref_list[1][i].long_ref ? "LT" : "ST"), h->default_ref_list[1][i].pic_id, h->default_ref_list[1][i].data[0]);
|
|
}
|
|
}
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
static void print_short_term(H264Context *h);
|
|
static void print_long_term(H264Context *h);
|
|
|
|
/**
|
|
* Extract structure information about the picture described by pic_num in
|
|
* the current decoding context (frame or field). Note that pic_num is
|
|
* picture number without wrapping (so, 0<=pic_num<max_pic_num).
|
|
* @param pic_num picture number for which to extract structure information
|
|
* @param structure one of PICT_XXX describing structure of picture
|
|
* with pic_num
|
|
* @return frame number (short term) or long term index of picture
|
|
* described by pic_num
|
|
*/
|
|
static int pic_num_extract(H264Context *h, int pic_num, int *structure){
|
|
MpegEncContext * const s = &h->s;
|
|
|
|
*structure = s->picture_structure;
|
|
if(FIELD_PICTURE){
|
|
if (!(pic_num & 1))
|
|
/* opposite field */
|
|
*structure ^= PICT_FRAME;
|
|
pic_num >>= 1;
|
|
}
|
|
|
|
return pic_num;
|
|
}
|
|
|
|
static int decode_ref_pic_list_reordering(H264Context *h){
|
|
MpegEncContext * const s = &h->s;
|
|
int list, index, pic_structure;
|
|
|
|
print_short_term(h);
|
|
print_long_term(h);
|
|
if(h->slice_type==FF_I_TYPE || h->slice_type==FF_SI_TYPE) return 0; //FIXME move before func
|
|
|
|
for(list=0; list<h->list_count; list++){
|
|
memcpy(h->ref_list[list], h->default_ref_list[list], sizeof(Picture)*h->ref_count[list]);
|
|
|
|
if(get_bits1(&s->gb)){
|
|
int pred= h->curr_pic_num;
|
|
|
|
for(index=0; ; index++){
|
|
unsigned int reordering_of_pic_nums_idc= get_ue_golomb(&s->gb);
|
|
unsigned int pic_id;
|
|
int i;
|
|
Picture *ref = NULL;
|
|
|
|
if(reordering_of_pic_nums_idc==3)
|
|
break;
|
|
|
|
if(index >= h->ref_count[list]){
|
|
av_log(h->s.avctx, AV_LOG_ERROR, "reference count overflow\n");
|
|
return -1;
|
|
}
|
|
|
|
if(reordering_of_pic_nums_idc<3){
|
|
if(reordering_of_pic_nums_idc<2){
|
|
const unsigned int abs_diff_pic_num= get_ue_golomb(&s->gb) + 1;
|
|
int frame_num;
|
|
|
|
if(abs_diff_pic_num > h->max_pic_num){
|
|
av_log(h->s.avctx, AV_LOG_ERROR, "abs_diff_pic_num overflow\n");
|
|
return -1;
|
|
}
|
|
|
|
if(reordering_of_pic_nums_idc == 0) pred-= abs_diff_pic_num;
|
|
else pred+= abs_diff_pic_num;
|
|
pred &= h->max_pic_num - 1;
|
|
|
|
frame_num = pic_num_extract(h, pred, &pic_structure);
|
|
|
|
for(i= h->short_ref_count-1; i>=0; i--){
|
|
ref = h->short_ref[i];
|
|
assert(ref->reference);
|
|
assert(!ref->long_ref);
|
|
if(ref->data[0] != NULL &&
|
|
ref->frame_num == frame_num &&
|
|
(ref->reference & pic_structure) &&
|
|
ref->long_ref == 0) // ignore non existing pictures by testing data[0] pointer
|
|
break;
|
|
}
|
|
if(i>=0)
|
|
ref->pic_id= pred;
|
|
}else{
|
|
int long_idx;
|
|
pic_id= get_ue_golomb(&s->gb); //long_term_pic_idx
|
|
|
|
long_idx= pic_num_extract(h, pic_id, &pic_structure);
|
|
|
|
if(long_idx>31){
|
|
av_log(h->s.avctx, AV_LOG_ERROR, "long_term_pic_idx overflow\n");
|
|
return -1;
|
|
}
|
|
ref = h->long_ref[long_idx];
|
|
assert(!(ref && !ref->reference));
|
|
if(ref && (ref->reference & pic_structure)){
|
|
ref->pic_id= pic_id;
|
|
assert(ref->long_ref);
|
|
i=0;
|
|
}else{
|
|
i=-1;
|
|
}
|
|
}
|
|
|
|
if (i < 0) {
|
|
av_log(h->s.avctx, AV_LOG_ERROR, "reference picture missing during reorder\n");
|
|
memset(&h->ref_list[list][index], 0, sizeof(Picture)); //FIXME
|
|
} else {
|
|
for(i=index; i+1<h->ref_count[list]; i++){
|
|
if(ref->long_ref == h->ref_list[list][i].long_ref && ref->pic_id == h->ref_list[list][i].pic_id)
|
|
break;
|
|
}
|
|
for(; i > index; i--){
|
|
h->ref_list[list][i]= h->ref_list[list][i-1];
|
|
}
|
|
h->ref_list[list][index]= *ref;
|
|
if (FIELD_PICTURE){
|
|
pic_as_field(&h->ref_list[list][index], pic_structure);
|
|
}
|
|
}
|
|
}else{
|
|
av_log(h->s.avctx, AV_LOG_ERROR, "illegal reordering_of_pic_nums_idc\n");
|
|
return -1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
for(list=0; list<h->list_count; list++){
|
|
for(index= 0; index < h->ref_count[list]; index++){
|
|
if(!h->ref_list[list][index].data[0])
|
|
h->ref_list[list][index]= s->current_picture;
|
|
}
|
|
}
|
|
|
|
if(h->slice_type==FF_B_TYPE && !h->direct_spatial_mv_pred)
|
|
direct_dist_scale_factor(h);
|
|
direct_ref_list_init(h);
|
|
return 0;
|
|
}
|
|
|
|
static void fill_mbaff_ref_list(H264Context *h){
|
|
int list, i, j;
|
|
for(list=0; list<2; list++){ //FIXME try list_count
|
|
for(i=0; i<h->ref_count[list]; i++){
|
|
Picture *frame = &h->ref_list[list][i];
|
|
Picture *field = &h->ref_list[list][16+2*i];
|
|
field[0] = *frame;
|
|
for(j=0; j<3; j++)
|
|
field[0].linesize[j] <<= 1;
|
|
field[0].reference = PICT_TOP_FIELD;
|
|
field[1] = field[0];
|
|
for(j=0; j<3; j++)
|
|
field[1].data[j] += frame->linesize[j];
|
|
field[1].reference = PICT_BOTTOM_FIELD;
|
|
|
|
h->luma_weight[list][16+2*i] = h->luma_weight[list][16+2*i+1] = h->luma_weight[list][i];
|
|
h->luma_offset[list][16+2*i] = h->luma_offset[list][16+2*i+1] = h->luma_offset[list][i];
|
|
for(j=0; j<2; j++){
|
|
h->chroma_weight[list][16+2*i][j] = h->chroma_weight[list][16+2*i+1][j] = h->chroma_weight[list][i][j];
|
|
h->chroma_offset[list][16+2*i][j] = h->chroma_offset[list][16+2*i+1][j] = h->chroma_offset[list][i][j];
|
|
}
|
|
}
|
|
}
|
|
for(j=0; j<h->ref_count[1]; j++){
|
|
for(i=0; i<h->ref_count[0]; i++)
|
|
h->implicit_weight[j][16+2*i] = h->implicit_weight[j][16+2*i+1] = h->implicit_weight[j][i];
|
|
memcpy(h->implicit_weight[16+2*j], h->implicit_weight[j], sizeof(*h->implicit_weight));
|
|
memcpy(h->implicit_weight[16+2*j+1], h->implicit_weight[j], sizeof(*h->implicit_weight));
|
|
}
|
|
}
|
|
|
|
static int pred_weight_table(H264Context *h){
|
|
MpegEncContext * const s = &h->s;
|
|
int list, i;
|
|
int luma_def, chroma_def;
|
|
|
|
h->use_weight= 0;
|
|
h->use_weight_chroma= 0;
|
|
h->luma_log2_weight_denom= get_ue_golomb(&s->gb);
|
|
h->chroma_log2_weight_denom= get_ue_golomb(&s->gb);
|
|
luma_def = 1<<h->luma_log2_weight_denom;
|
|
chroma_def = 1<<h->chroma_log2_weight_denom;
|
|
|
|
for(list=0; list<2; list++){
|
|
for(i=0; i<h->ref_count[list]; i++){
|
|
int luma_weight_flag, chroma_weight_flag;
|
|
|
|
luma_weight_flag= get_bits1(&s->gb);
|
|
if(luma_weight_flag){
|
|
h->luma_weight[list][i]= get_se_golomb(&s->gb);
|
|
h->luma_offset[list][i]= get_se_golomb(&s->gb);
|
|
if( h->luma_weight[list][i] != luma_def
|
|
|| h->luma_offset[list][i] != 0)
|
|
h->use_weight= 1;
|
|
}else{
|
|
h->luma_weight[list][i]= luma_def;
|
|
h->luma_offset[list][i]= 0;
|
|
}
|
|
|
|
chroma_weight_flag= get_bits1(&s->gb);
|
|
if(chroma_weight_flag){
|
|
int j;
|
|
for(j=0; j<2; j++){
|
|
h->chroma_weight[list][i][j]= get_se_golomb(&s->gb);
|
|
h->chroma_offset[list][i][j]= get_se_golomb(&s->gb);
|
|
if( h->chroma_weight[list][i][j] != chroma_def
|
|
|| h->chroma_offset[list][i][j] != 0)
|
|
h->use_weight_chroma= 1;
|
|
}
|
|
}else{
|
|
int j;
|
|
for(j=0; j<2; j++){
|
|
h->chroma_weight[list][i][j]= chroma_def;
|
|
h->chroma_offset[list][i][j]= 0;
|
|
}
|
|
}
|
|
}
|
|
if(h->slice_type != FF_B_TYPE) break;
|
|
}
|
|
h->use_weight= h->use_weight || h->use_weight_chroma;
|
|
return 0;
|
|
}
|
|
|
|
static void implicit_weight_table(H264Context *h){
|
|
MpegEncContext * const s = &h->s;
|
|
int ref0, ref1;
|
|
int cur_poc = s->current_picture_ptr->poc;
|
|
|
|
if( h->ref_count[0] == 1 && h->ref_count[1] == 1
|
|
&& h->ref_list[0][0].poc + h->ref_list[1][0].poc == 2*cur_poc){
|
|
h->use_weight= 0;
|
|
h->use_weight_chroma= 0;
|
|
return;
|
|
}
|
|
|
|
h->use_weight= 2;
|
|
h->use_weight_chroma= 2;
|
|
h->luma_log2_weight_denom= 5;
|
|
h->chroma_log2_weight_denom= 5;
|
|
|
|
for(ref0=0; ref0 < h->ref_count[0]; ref0++){
|
|
int poc0 = h->ref_list[0][ref0].poc;
|
|
for(ref1=0; ref1 < h->ref_count[1]; ref1++){
|
|
int poc1 = h->ref_list[1][ref1].poc;
|
|
int td = av_clip(poc1 - poc0, -128, 127);
|
|
if(td){
|
|
int tb = av_clip(cur_poc - poc0, -128, 127);
|
|
int tx = (16384 + (FFABS(td) >> 1)) / td;
|
|
int dist_scale_factor = av_clip((tb*tx + 32) >> 6, -1024, 1023) >> 2;
|
|
if(dist_scale_factor < -64 || dist_scale_factor > 128)
|
|
h->implicit_weight[ref0][ref1] = 32;
|
|
else
|
|
h->implicit_weight[ref0][ref1] = 64 - dist_scale_factor;
|
|
}else
|
|
h->implicit_weight[ref0][ref1] = 32;
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Mark a picture as no longer needed for reference. The refmask
|
|
* argument allows unreferencing of individual fields or the whole frame.
|
|
* If the picture becomes entirely unreferenced, but is being held for
|
|
* display purposes, it is marked as such.
|
|
* @param refmask mask of fields to unreference; the mask is bitwise
|
|
* anded with the reference marking of pic
|
|
* @return non-zero if pic becomes entirely unreferenced (except possibly
|
|
* for display purposes) zero if one of the fields remains in
|
|
* reference
|
|
*/
|
|
static inline int unreference_pic(H264Context *h, Picture *pic, int refmask){
|
|
int i;
|
|
if (pic->reference &= refmask) {
|
|
return 0;
|
|
} else {
|
|
if(pic == h->delayed_output_pic)
|
|
pic->reference=DELAYED_PIC_REF;
|
|
else{
|
|
for(i = 0; h->delayed_pic[i]; i++)
|
|
if(pic == h->delayed_pic[i]){
|
|
pic->reference=DELAYED_PIC_REF;
|
|
break;
|
|
}
|
|
}
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* instantaneous decoder refresh.
|
|
*/
|
|
static void idr(H264Context *h){
|
|
int i;
|
|
|
|
for(i=0; i<16; i++){
|
|
if (h->long_ref[i] != NULL) {
|
|
unreference_pic(h, h->long_ref[i], 0);
|
|
h->long_ref[i]= NULL;
|
|
}
|
|
}
|
|
h->long_ref_count=0;
|
|
|
|
for(i=0; i<h->short_ref_count; i++){
|
|
unreference_pic(h, h->short_ref[i], 0);
|
|
h->short_ref[i]= NULL;
|
|
}
|
|
h->short_ref_count=0;
|
|
}
|
|
|
|
/* forget old pics after a seek */
|
|
static void flush_dpb(AVCodecContext *avctx){
|
|
H264Context *h= avctx->priv_data;
|
|
int i;
|
|
for(i=0; i<16; i++) {
|
|
if(h->delayed_pic[i])
|
|
h->delayed_pic[i]->reference= 0;
|
|
h->delayed_pic[i]= NULL;
|
|
}
|
|
if(h->delayed_output_pic)
|
|
h->delayed_output_pic->reference= 0;
|
|
h->delayed_output_pic= NULL;
|
|
idr(h);
|
|
if(h->s.current_picture_ptr)
|
|
h->s.current_picture_ptr->reference= 0;
|
|
h->s.first_field= 0;
|
|
ff_mpeg_flush(avctx);
|
|
}
|
|
|
|
/**
|
|
* Find a Picture in the short term reference list by frame number.
|
|
* @param frame_num frame number to search for
|
|
* @param idx the index into h->short_ref where returned picture is found
|
|
* undefined if no picture found.
|
|
* @return pointer to the found picture, or NULL if no pic with the provided
|
|
* frame number is found
|
|
*/
|
|
static Picture * find_short(H264Context *h, int frame_num, int *idx){
|
|
MpegEncContext * const s = &h->s;
|
|
int i;
|
|
|
|
for(i=0; i<h->short_ref_count; i++){
|
|
Picture *pic= h->short_ref[i];
|
|
if(s->avctx->debug&FF_DEBUG_MMCO)
|
|
av_log(h->s.avctx, AV_LOG_DEBUG, "%d %d %p\n", i, pic->frame_num, pic);
|
|
if(pic->frame_num == frame_num) {
|
|
*idx = i;
|
|
return pic;
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* Remove a picture from the short term reference list by its index in
|
|
* that list. This does no checking on the provided index; it is assumed
|
|
* to be valid. Other list entries are shifted down.
|
|
* @param i index into h->short_ref of picture to remove.
|
|
*/
|
|
static void remove_short_at_index(H264Context *h, int i){
|
|
assert(i > 0 && i < h->short_ref_count);
|
|
h->short_ref[i]= NULL;
|
|
if (--h->short_ref_count)
|
|
memmove(&h->short_ref[i], &h->short_ref[i+1], (h->short_ref_count - i)*sizeof(Picture*));
|
|
}
|
|
|
|
/**
|
|
*
|
|
* @return the removed picture or NULL if an error occurs
|
|
*/
|
|
static Picture * remove_short(H264Context *h, int frame_num){
|
|
MpegEncContext * const s = &h->s;
|
|
Picture *pic;
|
|
int i;
|
|
|
|
if(s->avctx->debug&FF_DEBUG_MMCO)
|
|
av_log(h->s.avctx, AV_LOG_DEBUG, "remove short %d count %d\n", frame_num, h->short_ref_count);
|
|
|
|
pic = find_short(h, frame_num, &i);
|
|
if (pic)
|
|
remove_short_at_index(h, i);
|
|
|
|
return pic;
|
|
}
|
|
|
|
/**
|
|
* Remove a picture from the long term reference list by its index in
|
|
* that list. This does no checking on the provided index; it is assumed
|
|
* to be valid. The removed entry is set to NULL. Other entries are unaffected.
|
|
* @param i index into h->long_ref of picture to remove.
|
|
*/
|
|
static void remove_long_at_index(H264Context *h, int i){
|
|
h->long_ref[i]= NULL;
|
|
h->long_ref_count--;
|
|
}
|
|
|
|
/**
|
|
*
|
|
* @return the removed picture or NULL if an error occurs
|
|
*/
|
|
static Picture * remove_long(H264Context *h, int i){
|
|
Picture *pic;
|
|
|
|
pic= h->long_ref[i];
|
|
if (pic)
|
|
remove_long_at_index(h, i);
|
|
|
|
return pic;
|
|
}
|
|
|
|
/**
|
|
* print short term list
|
|
*/
|
|
static void print_short_term(H264Context *h) {
|
|
uint32_t i;
|
|
if(h->s.avctx->debug&FF_DEBUG_MMCO) {
|
|
av_log(h->s.avctx, AV_LOG_DEBUG, "short term list:\n");
|
|
for(i=0; i<h->short_ref_count; i++){
|
|
Picture *pic= h->short_ref[i];
|
|
av_log(h->s.avctx, AV_LOG_DEBUG, "%d fn:%d poc:%d %p\n", i, pic->frame_num, pic->poc, pic->data[0]);
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* print long term list
|
|
*/
|
|
static void print_long_term(H264Context *h) {
|
|
uint32_t i;
|
|
if(h->s.avctx->debug&FF_DEBUG_MMCO) {
|
|
av_log(h->s.avctx, AV_LOG_DEBUG, "long term list:\n");
|
|
for(i = 0; i < 16; i++){
|
|
Picture *pic= h->long_ref[i];
|
|
if (pic) {
|
|
av_log(h->s.avctx, AV_LOG_DEBUG, "%d fn:%d poc:%d %p\n", i, pic->frame_num, pic->poc, pic->data[0]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Executes the reference picture marking (memory management control operations).
|
|
*/
|
|
static int execute_ref_pic_marking(H264Context *h, MMCO *mmco, int mmco_count){
|
|
MpegEncContext * const s = &h->s;
|
|
int i, j;
|
|
int current_ref_assigned=0;
|
|
Picture *pic;
|
|
|
|
if((s->avctx->debug&FF_DEBUG_MMCO) && mmco_count==0)
|
|
av_log(h->s.avctx, AV_LOG_DEBUG, "no mmco here\n");
|
|
|
|
for(i=0; i<mmco_count; i++){
|
|
int structure, frame_num, unref_pic;
|
|
if(s->avctx->debug&FF_DEBUG_MMCO)
|
|
av_log(h->s.avctx, AV_LOG_DEBUG, "mmco:%d %d %d\n", h->mmco[i].opcode, h->mmco[i].short_pic_num, h->mmco[i].long_arg);
|
|
|
|
switch(mmco[i].opcode){
|
|
case MMCO_SHORT2UNUSED:
|
|
if(s->avctx->debug&FF_DEBUG_MMCO)
|
|
av_log(h->s.avctx, AV_LOG_DEBUG, "mmco: unref short %d count %d\n", h->mmco[i].short_pic_num, h->short_ref_count);
|
|
frame_num = pic_num_extract(h, mmco[i].short_pic_num, &structure);
|
|
pic = find_short(h, frame_num, &j);
|
|
if (pic) {
|
|
if (unreference_pic(h, pic, structure ^ PICT_FRAME))
|
|
remove_short_at_index(h, j);
|
|
} else if(s->avctx->debug&FF_DEBUG_MMCO)
|
|
av_log(h->s.avctx, AV_LOG_DEBUG, "mmco: unref short failure\n");
|
|
break;
|
|
case MMCO_SHORT2LONG:
|
|
if (FIELD_PICTURE && mmco[i].long_arg < h->long_ref_count &&
|
|
h->long_ref[mmco[i].long_arg]->frame_num ==
|
|
mmco[i].short_pic_num / 2) {
|
|
/* do nothing, we've already moved this field pair. */
|
|
} else {
|
|
int frame_num = mmco[i].short_pic_num >> FIELD_PICTURE;
|
|
|
|
pic= remove_long(h, mmco[i].long_arg);
|
|
if(pic) unreference_pic(h, pic, 0);
|
|
|
|
h->long_ref[ mmco[i].long_arg ]= remove_short(h, frame_num);
|
|
if (h->long_ref[ mmco[i].long_arg ]){
|
|
h->long_ref[ mmco[i].long_arg ]->long_ref=1;
|
|
h->long_ref_count++;
|
|
}
|
|
}
|
|
break;
|
|
case MMCO_LONG2UNUSED:
|
|
j = pic_num_extract(h, mmco[i].long_arg, &structure);
|
|
pic = h->long_ref[j];
|
|
if (pic) {
|
|
if (unreference_pic(h, pic, structure ^ PICT_FRAME))
|
|
remove_long_at_index(h, j);
|
|
} else if(s->avctx->debug&FF_DEBUG_MMCO)
|
|
av_log(h->s.avctx, AV_LOG_DEBUG, "mmco: unref long failure\n");
|
|
break;
|
|
case MMCO_LONG:
|
|
unref_pic = 1;
|
|
if (FIELD_PICTURE && !s->first_field) {
|
|
if (h->long_ref[mmco[i].long_arg] == s->current_picture_ptr) {
|
|
/* Just mark second field as referenced */
|
|
unref_pic = 0;
|
|
} else if (s->current_picture_ptr->reference) {
|
|
/* First field in pair is in short term list or
|
|
* at a different long term index.
|
|
* This is not allowed; see 7.4.3, notes 2 and 3.
|
|
* Report the problem and keep the pair where it is,
|
|
* and mark this field valid.
|
|
*/
|
|
av_log(h->s.avctx, AV_LOG_ERROR,
|
|
"illegal long term reference assignment for second "
|
|
"field in complementary field pair (first field is "
|
|
"short term or has non-matching long index)\n");
|
|
unref_pic = 0;
|
|
}
|
|
}
|
|
|
|
if (unref_pic) {
|
|
pic= remove_long(h, mmco[i].long_arg);
|
|
if(pic) unreference_pic(h, pic, 0);
|
|
|
|
h->long_ref[ mmco[i].long_arg ]= s->current_picture_ptr;
|
|
h->long_ref[ mmco[i].long_arg ]->long_ref=1;
|
|
h->long_ref_count++;
|
|
}
|
|
|
|
s->current_picture_ptr->reference |= s->picture_structure;
|
|
current_ref_assigned=1;
|
|
break;
|
|
case MMCO_SET_MAX_LONG:
|
|
assert(mmco[i].long_arg <= 16);
|
|
// just remove the long term which index is greater than new max
|
|
for(j = mmco[i].long_arg; j<16; j++){
|
|
pic = remove_long(h, j);
|
|
if (pic) unreference_pic(h, pic, 0);
|
|
}
|
|
break;
|
|
case MMCO_RESET:
|
|
while(h->short_ref_count){
|
|
pic= remove_short(h, h->short_ref[0]->frame_num);
|
|
if(pic) unreference_pic(h, pic, 0);
|
|
}
|
|
for(j = 0; j < 16; j++) {
|
|
pic= remove_long(h, j);
|
|
if(pic) unreference_pic(h, pic, 0);
|
|
}
|
|
break;
|
|
default: assert(0);
|
|
}
|
|
}
|
|
|
|
if (!current_ref_assigned && FIELD_PICTURE &&
|
|
!s->first_field && s->current_picture_ptr->reference) {
|
|
|
|
/* Second field of complementary field pair; the first field of
|
|
* which is already referenced. If short referenced, it
|
|
* should be first entry in short_ref. If not, it must exist
|
|
* in long_ref; trying to put it on the short list here is an
|
|
* error in the encoded bit stream (ref: 7.4.3, NOTE 2 and 3).
|
|
*/
|
|
if (h->short_ref_count && h->short_ref[0] == s->current_picture_ptr) {
|
|
/* Just mark the second field valid */
|
|
s->current_picture_ptr->reference = PICT_FRAME;
|
|
} else if (s->current_picture_ptr->long_ref) {
|
|
av_log(h->s.avctx, AV_LOG_ERROR, "illegal short term reference "
|
|
"assignment for second field "
|
|
"in complementary field pair "
|
|
"(first field is long term)\n");
|
|
} else {
|
|
/*
|
|
* First field in reference, but not in any sensible place on our
|
|
* reference lists. This shouldn't happen unless reference
|
|
* handling somewhere else is wrong.
|
|
*/
|
|
assert(0);
|
|
}
|
|
current_ref_assigned = 1;
|
|
}
|
|
|
|
if(!current_ref_assigned){
|
|
pic= remove_short(h, s->current_picture_ptr->frame_num);
|
|
if(pic){
|
|
unreference_pic(h, pic, 0);
|
|
av_log(h->s.avctx, AV_LOG_ERROR, "illegal short term buffer state detected\n");
|
|
}
|
|
|
|
if(h->short_ref_count)
|
|
memmove(&h->short_ref[1], &h->short_ref[0], h->short_ref_count*sizeof(Picture*));
|
|
|
|
h->short_ref[0]= s->current_picture_ptr;
|
|
h->short_ref[0]->long_ref=0;
|
|
h->short_ref_count++;
|
|
s->current_picture_ptr->reference |= s->picture_structure;
|
|
}
|
|
|
|
if (h->long_ref_count + h->short_ref_count > h->sps.ref_frame_count){
|
|
|
|
/* We have too many reference frames, probably due to corrupted
|
|
* stream. Need to discard one frame. Prevents overrun of the
|
|
* short_ref and long_ref buffers.
|
|
*/
|
|
av_log(h->s.avctx, AV_LOG_ERROR,
|
|
"number of reference frames exceeds max (probably "
|
|
"corrupt input), discarding one\n");
|
|
|
|
if (h->long_ref_count) {
|
|
for (i = 0; i < 16; ++i)
|
|
if (h->long_ref[i])
|
|
break;
|
|
|
|
assert(i < 16);
|
|
pic = h->long_ref[i];
|
|
remove_long_at_index(h, i);
|
|
} else {
|
|
pic = h->short_ref[h->short_ref_count - 1];
|
|
remove_short_at_index(h, h->short_ref_count - 1);
|
|
}
|
|
unreference_pic(h, pic, 0);
|
|
}
|
|
|
|
print_short_term(h);
|
|
print_long_term(h);
|
|
return 0;
|
|
}
|
|
|
|
static int decode_ref_pic_marking(H264Context *h, GetBitContext *gb){
|
|
MpegEncContext * const s = &h->s;
|
|
int i;
|
|
|
|
if(h->nal_unit_type == NAL_IDR_SLICE){ //FIXME fields
|
|
s->broken_link= get_bits1(gb) -1;
|
|
h->mmco[0].long_arg= get_bits1(gb) - 1; // current_long_term_idx
|
|
if(h->mmco[0].long_arg == -1)
|
|
h->mmco_index= 0;
|
|
else{
|
|
h->mmco[0].opcode= MMCO_LONG;
|
|
h->mmco_index= 1;
|
|
}
|
|
}else{
|
|
if(get_bits1(gb)){ // adaptive_ref_pic_marking_mode_flag
|
|
for(i= 0; i<MAX_MMCO_COUNT; i++) {
|
|
MMCOOpcode opcode= get_ue_golomb(gb);
|
|
|
|
h->mmco[i].opcode= opcode;
|
|
if(opcode==MMCO_SHORT2UNUSED || opcode==MMCO_SHORT2LONG){
|
|
h->mmco[i].short_pic_num= (h->curr_pic_num - get_ue_golomb(gb) - 1) & (h->max_pic_num - 1);
|
|
/* if(h->mmco[i].short_pic_num >= h->short_ref_count || h->short_ref[ h->mmco[i].short_pic_num ] == NULL){
|
|
av_log(s->avctx, AV_LOG_ERROR, "illegal short ref in memory management control operation %d\n", mmco);
|
|
return -1;
|
|
}*/
|
|
}
|
|
if(opcode==MMCO_SHORT2LONG || opcode==MMCO_LONG2UNUSED || opcode==MMCO_LONG || opcode==MMCO_SET_MAX_LONG){
|
|
unsigned int long_arg= get_ue_golomb(gb);
|
|
if(long_arg >= 32 || (long_arg >= 16 && !(opcode == MMCO_LONG2UNUSED && FIELD_PICTURE))){
|
|
av_log(h->s.avctx, AV_LOG_ERROR, "illegal long ref in memory management control operation %d\n", opcode);
|
|
return -1;
|
|
}
|
|
h->mmco[i].long_arg= long_arg;
|
|
}
|
|
|
|
if(opcode > (unsigned)MMCO_LONG){
|
|
av_log(h->s.avctx, AV_LOG_ERROR, "illegal memory management control operation %d\n", opcode);
|
|
return -1;
|
|
}
|
|
if(opcode == MMCO_END)
|
|
break;
|
|
}
|
|
h->mmco_index= i;
|
|
}else{
|
|
assert(h->long_ref_count + h->short_ref_count <= h->sps.ref_frame_count);
|
|
|
|
if(h->short_ref_count && h->long_ref_count + h->short_ref_count == h->sps.ref_frame_count &&
|
|
!(FIELD_PICTURE && !s->first_field && s->current_picture_ptr->reference)) {
|
|
h->mmco[0].opcode= MMCO_SHORT2UNUSED;
|
|
h->mmco[0].short_pic_num= h->short_ref[ h->short_ref_count - 1 ]->frame_num;
|
|
h->mmco_index= 1;
|
|
if (FIELD_PICTURE) {
|
|
h->mmco[0].short_pic_num *= 2;
|
|
h->mmco[1].opcode= MMCO_SHORT2UNUSED;
|
|
h->mmco[1].short_pic_num= h->mmco[0].short_pic_num + 1;
|
|
h->mmco_index= 2;
|
|
}
|
|
}else
|
|
h->mmco_index= 0;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int init_poc(H264Context *h){
|
|
MpegEncContext * const s = &h->s;
|
|
const int max_frame_num= 1<<h->sps.log2_max_frame_num;
|
|
int field_poc[2];
|
|
|
|
if(h->nal_unit_type == NAL_IDR_SLICE){
|
|
h->frame_num_offset= 0;
|
|
}else{
|
|
if(h->frame_num < h->prev_frame_num)
|
|
h->frame_num_offset= h->prev_frame_num_offset + max_frame_num;
|
|
else
|
|
h->frame_num_offset= h->prev_frame_num_offset;
|
|
}
|
|
|
|
if(h->sps.poc_type==0){
|
|
const int max_poc_lsb= 1<<h->sps.log2_max_poc_lsb;
|
|
|
|
if(h->nal_unit_type == NAL_IDR_SLICE){
|
|
h->prev_poc_msb=
|
|
h->prev_poc_lsb= 0;
|
|
}
|
|
|
|
if (h->poc_lsb < h->prev_poc_lsb && h->prev_poc_lsb - h->poc_lsb >= max_poc_lsb/2)
|
|
h->poc_msb = h->prev_poc_msb + max_poc_lsb;
|
|
else if(h->poc_lsb > h->prev_poc_lsb && h->prev_poc_lsb - h->poc_lsb < -max_poc_lsb/2)
|
|
h->poc_msb = h->prev_poc_msb - max_poc_lsb;
|
|
else
|
|
h->poc_msb = h->prev_poc_msb;
|
|
//printf("poc: %d %d\n", h->poc_msb, h->poc_lsb);
|
|
field_poc[0] =
|
|
field_poc[1] = h->poc_msb + h->poc_lsb;
|
|
if(s->picture_structure == PICT_FRAME)
|
|
field_poc[1] += h->delta_poc_bottom;
|
|
}else if(h->sps.poc_type==1){
|
|
int abs_frame_num, expected_delta_per_poc_cycle, expectedpoc;
|
|
int i;
|
|
|
|
if(h->sps.poc_cycle_length != 0)
|
|
abs_frame_num = h->frame_num_offset + h->frame_num;
|
|
else
|
|
abs_frame_num = 0;
|
|
|
|
if(h->nal_ref_idc==0 && abs_frame_num > 0)
|
|
abs_frame_num--;
|
|
|
|
expected_delta_per_poc_cycle = 0;
|
|
for(i=0; i < h->sps.poc_cycle_length; i++)
|
|
expected_delta_per_poc_cycle += h->sps.offset_for_ref_frame[ i ]; //FIXME integrate during sps parse
|
|
|
|
if(abs_frame_num > 0){
|
|
int poc_cycle_cnt = (abs_frame_num - 1) / h->sps.poc_cycle_length;
|
|
int frame_num_in_poc_cycle = (abs_frame_num - 1) % h->sps.poc_cycle_length;
|
|
|
|
expectedpoc = poc_cycle_cnt * expected_delta_per_poc_cycle;
|
|
for(i = 0; i <= frame_num_in_poc_cycle; i++)
|
|
expectedpoc = expectedpoc + h->sps.offset_for_ref_frame[ i ];
|
|
} else
|
|
expectedpoc = 0;
|
|
|
|
if(h->nal_ref_idc == 0)
|
|
expectedpoc = expectedpoc + h->sps.offset_for_non_ref_pic;
|
|
|
|
field_poc[0] = expectedpoc + h->delta_poc[0];
|
|
field_poc[1] = field_poc[0] + h->sps.offset_for_top_to_bottom_field;
|
|
|
|
if(s->picture_structure == PICT_FRAME)
|
|
field_poc[1] += h->delta_poc[1];
|
|
}else{
|
|
int poc;
|
|
if(h->nal_unit_type == NAL_IDR_SLICE){
|
|
poc= 0;
|
|
}else{
|
|
if(h->nal_ref_idc) poc= 2*(h->frame_num_offset + h->frame_num);
|
|
else poc= 2*(h->frame_num_offset + h->frame_num) - 1;
|
|
}
|
|
field_poc[0]= poc;
|
|
field_poc[1]= poc;
|
|
}
|
|
|
|
if(s->picture_structure != PICT_BOTTOM_FIELD) {
|
|
s->current_picture_ptr->field_poc[0]= field_poc[0];
|
|
s->current_picture_ptr->poc = field_poc[0];
|
|
}
|
|
if(s->picture_structure != PICT_TOP_FIELD) {
|
|
s->current_picture_ptr->field_poc[1]= field_poc[1];
|
|
s->current_picture_ptr->poc = field_poc[1];
|
|
}
|
|
if(!FIELD_PICTURE || !s->first_field) {
|
|
Picture *cur = s->current_picture_ptr;
|
|
cur->poc= FFMIN(cur->field_poc[0], cur->field_poc[1]);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/**
|
|
* initialize scan tables
|
|
*/
|
|
static void init_scan_tables(H264Context *h){
|
|
MpegEncContext * const s = &h->s;
|
|
int i;
|
|
if(s->dsp.h264_idct_add == ff_h264_idct_add_c){ //FIXME little ugly
|
|
memcpy(h->zigzag_scan, zigzag_scan, 16*sizeof(uint8_t));
|
|
memcpy(h-> field_scan, field_scan, 16*sizeof(uint8_t));
|
|
}else{
|
|
for(i=0; i<16; i++){
|
|
#define T(x) (x>>2) | ((x<<2) & 0xF)
|
|
h->zigzag_scan[i] = T(zigzag_scan[i]);
|
|
h-> field_scan[i] = T( field_scan[i]);
|
|
#undef T
|
|
}
|
|
}
|
|
if(s->dsp.h264_idct8_add == ff_h264_idct8_add_c){
|
|
memcpy(h->zigzag_scan8x8, zigzag_scan8x8, 64*sizeof(uint8_t));
|
|
memcpy(h->zigzag_scan8x8_cavlc, zigzag_scan8x8_cavlc, 64*sizeof(uint8_t));
|
|
memcpy(h->field_scan8x8, field_scan8x8, 64*sizeof(uint8_t));
|
|
memcpy(h->field_scan8x8_cavlc, field_scan8x8_cavlc, 64*sizeof(uint8_t));
|
|
}else{
|
|
for(i=0; i<64; i++){
|
|
#define T(x) (x>>3) | ((x&7)<<3)
|
|
h->zigzag_scan8x8[i] = T(zigzag_scan8x8[i]);
|
|
h->zigzag_scan8x8_cavlc[i] = T(zigzag_scan8x8_cavlc[i]);
|
|
h->field_scan8x8[i] = T(field_scan8x8[i]);
|
|
h->field_scan8x8_cavlc[i] = T(field_scan8x8_cavlc[i]);
|
|
#undef T
|
|
}
|
|
}
|
|
if(h->sps.transform_bypass){ //FIXME same ugly
|
|
h->zigzag_scan_q0 = zigzag_scan;
|
|
h->zigzag_scan8x8_q0 = zigzag_scan8x8;
|
|
h->zigzag_scan8x8_cavlc_q0 = zigzag_scan8x8_cavlc;
|
|
h->field_scan_q0 = field_scan;
|
|
h->field_scan8x8_q0 = field_scan8x8;
|
|
h->field_scan8x8_cavlc_q0 = field_scan8x8_cavlc;
|
|
}else{
|
|
h->zigzag_scan_q0 = h->zigzag_scan;
|
|
h->zigzag_scan8x8_q0 = h->zigzag_scan8x8;
|
|
h->zigzag_scan8x8_cavlc_q0 = h->zigzag_scan8x8_cavlc;
|
|
h->field_scan_q0 = h->field_scan;
|
|
h->field_scan8x8_q0 = h->field_scan8x8;
|
|
h->field_scan8x8_cavlc_q0 = h->field_scan8x8_cavlc;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Replicates H264 "master" context to thread contexts.
|
|
*/
|
|
static void clone_slice(H264Context *dst, H264Context *src)
|
|
{
|
|
memcpy(dst->block_offset, src->block_offset, sizeof(dst->block_offset));
|
|
dst->s.current_picture_ptr = src->s.current_picture_ptr;
|
|
dst->s.current_picture = src->s.current_picture;
|
|
dst->s.linesize = src->s.linesize;
|
|
dst->s.uvlinesize = src->s.uvlinesize;
|
|
dst->s.first_field = src->s.first_field;
|
|
|
|
dst->prev_poc_msb = src->prev_poc_msb;
|
|
dst->prev_poc_lsb = src->prev_poc_lsb;
|
|
dst->prev_frame_num_offset = src->prev_frame_num_offset;
|
|
dst->prev_frame_num = src->prev_frame_num;
|
|
dst->short_ref_count = src->short_ref_count;
|
|
|
|
memcpy(dst->short_ref, src->short_ref, sizeof(dst->short_ref));
|
|
memcpy(dst->long_ref, src->long_ref, sizeof(dst->long_ref));
|
|
memcpy(dst->default_ref_list, src->default_ref_list, sizeof(dst->default_ref_list));
|
|
memcpy(dst->ref_list, src->ref_list, sizeof(dst->ref_list));
|
|
|
|
memcpy(dst->dequant4_coeff, src->dequant4_coeff, sizeof(src->dequant4_coeff));
|
|
memcpy(dst->dequant8_coeff, src->dequant8_coeff, sizeof(src->dequant8_coeff));
|
|
}
|
|
|
|
/**
|
|
* decodes a slice header.
|
|
* This will also call MPV_common_init() and frame_start() as needed.
|
|
*
|
|
* @param h h264context
|
|
* @param h0 h264 master context (differs from 'h' when doing sliced based parallel decoding)
|
|
*
|
|
* @return 0 if okay, <0 if an error occurred, 1 if decoding must not be multithreaded
|
|
*/
|
|
static int decode_slice_header(H264Context *h, H264Context *h0){
|
|
MpegEncContext * const s = &h->s;
|
|
MpegEncContext * const s0 = &h0->s;
|
|
unsigned int first_mb_in_slice;
|
|
unsigned int pps_id;
|
|
int num_ref_idx_active_override_flag;
|
|
static const uint8_t slice_type_map[5]= {FF_P_TYPE, FF_B_TYPE, FF_I_TYPE, FF_SP_TYPE, FF_SI_TYPE};
|
|
unsigned int slice_type, tmp, i;
|
|
int default_ref_list_done = 0;
|
|
int last_pic_structure;
|
|
|
|
s->dropable= h->nal_ref_idc == 0;
|
|
|
|
if((s->avctx->flags2 & CODEC_FLAG2_FAST) && !h->nal_ref_idc){
|
|
s->me.qpel_put= s->dsp.put_2tap_qpel_pixels_tab;
|
|
s->me.qpel_avg= s->dsp.avg_2tap_qpel_pixels_tab;
|
|
}else{
|
|
s->me.qpel_put= s->dsp.put_h264_qpel_pixels_tab;
|
|
s->me.qpel_avg= s->dsp.avg_h264_qpel_pixels_tab;
|
|
}
|
|
|
|
first_mb_in_slice= get_ue_golomb(&s->gb);
|
|
|
|
if((s->flags2 & CODEC_FLAG2_CHUNKS) && first_mb_in_slice == 0){
|
|
h0->current_slice = 0;
|
|
if (!s0->first_field)
|
|
s->current_picture_ptr= NULL;
|
|
}
|
|
|
|
slice_type= get_ue_golomb(&s->gb);
|
|
if(slice_type > 9){
|
|
av_log(h->s.avctx, AV_LOG_ERROR, "slice type too large (%d) at %d %d\n", h->slice_type, s->mb_x, s->mb_y);
|
|
return -1;
|
|
}
|
|
if(slice_type > 4){
|
|
slice_type -= 5;
|
|
h->slice_type_fixed=1;
|
|
}else
|
|
h->slice_type_fixed=0;
|
|
|
|
slice_type= slice_type_map[ slice_type ];
|
|
if (slice_type == FF_I_TYPE
|
|
|| (h0->current_slice != 0 && slice_type == h0->last_slice_type) ) {
|
|
default_ref_list_done = 1;
|
|
}
|
|
h->slice_type= slice_type;
|
|
|
|
s->pict_type= h->slice_type; // to make a few old func happy, it's wrong though
|
|
if (s->pict_type == FF_B_TYPE && s0->last_picture_ptr == NULL) {
|
|
av_log(h->s.avctx, AV_LOG_ERROR,
|
|
"B picture before any references, skipping\n");
|
|
return -1;
|
|
}
|
|
|
|
pps_id= get_ue_golomb(&s->gb);
|
|
if(pps_id>=MAX_PPS_COUNT){
|
|
av_log(h->s.avctx, AV_LOG_ERROR, "pps_id out of range\n");
|
|
return -1;
|
|
}
|
|
if(!h0->pps_buffers[pps_id]) {
|
|
av_log(h->s.avctx, AV_LOG_ERROR, "non existing PPS referenced\n");
|
|
return -1;
|
|
}
|
|
h->pps= *h0->pps_buffers[pps_id];
|
|
|
|
if(!h0->sps_buffers[h->pps.sps_id]) {
|
|
av_log(h->s.avctx, AV_LOG_ERROR, "non existing SPS referenced\n");
|
|
return -1;
|
|
}
|
|
h->sps = *h0->sps_buffers[h->pps.sps_id];
|
|
|
|
if(h == h0 && h->dequant_coeff_pps != pps_id){
|
|
h->dequant_coeff_pps = pps_id;
|
|
init_dequant_tables(h);
|
|
}
|
|
|
|
s->mb_width= h->sps.mb_width;
|
|
s->mb_height= h->sps.mb_height * (2 - h->sps.frame_mbs_only_flag);
|
|
|
|
h->b_stride= s->mb_width*4;
|
|
h->b8_stride= s->mb_width*2;
|
|
|
|
s->width = 16*s->mb_width - 2*FFMIN(h->sps.crop_right, 7);
|
|
if(h->sps.frame_mbs_only_flag)
|
|
s->height= 16*s->mb_height - 2*FFMIN(h->sps.crop_bottom, 7);
|
|
else
|
|
s->height= 16*s->mb_height - 4*FFMIN(h->sps.crop_bottom, 3);
|
|
|
|
if (s->context_initialized
|
|
&& ( s->width != s->avctx->width || s->height != s->avctx->height)) {
|
|
if(h != h0)
|
|
return -1; // width / height changed during parallelized decoding
|
|
free_tables(h);
|
|
MPV_common_end(s);
|
|
}
|
|
if (!s->context_initialized) {
|
|
if(h != h0)
|
|
return -1; // we cant (re-)initialize context during parallel decoding
|
|
if (MPV_common_init(s) < 0)
|
|
return -1;
|
|
s->first_field = 0;
|
|
|
|
init_scan_tables(h);
|
|
alloc_tables(h);
|
|
|
|
for(i = 1; i < s->avctx->thread_count; i++) {
|
|
H264Context *c;
|
|
c = h->thread_context[i] = av_malloc(sizeof(H264Context));
|
|
memcpy(c, h->s.thread_context[i], sizeof(MpegEncContext));
|
|
memset(&c->s + 1, 0, sizeof(H264Context) - sizeof(MpegEncContext));
|
|
c->sps = h->sps;
|
|
c->pps = h->pps;
|
|
init_scan_tables(c);
|
|
clone_tables(c, h);
|
|
}
|
|
|
|
for(i = 0; i < s->avctx->thread_count; i++)
|
|
if(context_init(h->thread_context[i]) < 0)
|
|
return -1;
|
|
|
|
s->avctx->width = s->width;
|
|
s->avctx->height = s->height;
|
|
s->avctx->sample_aspect_ratio= h->sps.sar;
|
|
if(!s->avctx->sample_aspect_ratio.den)
|
|
s->avctx->sample_aspect_ratio.den = 1;
|
|
|
|
if(h->sps.timing_info_present_flag){
|
|
s->avctx->time_base= (AVRational){h->sps.num_units_in_tick * 2, h->sps.time_scale};
|
|
if(h->x264_build > 0 && h->x264_build < 44)
|
|
s->avctx->time_base.den *= 2;
|
|
av_reduce(&s->avctx->time_base.num, &s->avctx->time_base.den,
|
|
s->avctx->time_base.num, s->avctx->time_base.den, 1<<30);
|
|
}
|
|
}
|
|
|
|
h->frame_num= get_bits(&s->gb, h->sps.log2_max_frame_num);
|
|
|
|
h->mb_mbaff = 0;
|
|
h->mb_aff_frame = 0;
|
|
last_pic_structure = s0->picture_structure;
|
|
if(h->sps.frame_mbs_only_flag){
|
|
s->picture_structure= PICT_FRAME;
|
|
}else{
|
|
if(get_bits1(&s->gb)) { //field_pic_flag
|
|
s->picture_structure= PICT_TOP_FIELD + get_bits1(&s->gb); //bottom_field_flag
|
|
} else {
|
|
s->picture_structure= PICT_FRAME;
|
|
h->mb_aff_frame = h->sps.mb_aff;
|
|
}
|
|
}
|
|
|
|
if(h0->current_slice == 0){
|
|
/* See if we have a decoded first field looking for a pair... */
|
|
if (s0->first_field) {
|
|
assert(s0->current_picture_ptr);
|
|
assert(s0->current_picture_ptr->data[0]);
|
|
assert(s0->current_picture_ptr->reference != DELAYED_PIC_REF);
|
|
|
|
/* figure out if we have a complementary field pair */
|
|
if (!FIELD_PICTURE || s->picture_structure == last_pic_structure) {
|
|
/*
|
|
* Previous field is unmatched. Don't display it, but let it
|
|
* remain for reference if marked as such.
|
|
*/
|
|
s0->current_picture_ptr = NULL;
|
|
s0->first_field = FIELD_PICTURE;
|
|
|
|
} else {
|
|
if (h->nal_ref_idc &&
|
|
s0->current_picture_ptr->reference &&
|
|
s0->current_picture_ptr->frame_num != h->frame_num) {
|
|
/*
|
|
* This and previous field were reference, but had
|
|
* different frame_nums. Consider this field first in
|
|
* pair. Throw away previous field except for reference
|
|
* purposes.
|
|
*/
|
|
s0->first_field = 1;
|
|
s0->current_picture_ptr = NULL;
|
|
|
|
} else {
|
|
/* Second field in complementary pair */
|
|
s0->first_field = 0;
|
|
}
|
|
}
|
|
|
|
} else {
|
|
/* Frame or first field in a potentially complementary pair */
|
|
assert(!s0->current_picture_ptr);
|
|
s0->first_field = FIELD_PICTURE;
|
|
}
|
|
|
|
if((!FIELD_PICTURE || s0->first_field) && frame_start(h) < 0) {
|
|
s0->first_field = 0;
|
|
return -1;
|
|
}
|
|
}
|
|
if(h != h0)
|
|
clone_slice(h, h0);
|
|
|
|
s->current_picture_ptr->frame_num= h->frame_num; //FIXME frame_num cleanup
|
|
|
|
assert(s->mb_num == s->mb_width * s->mb_height);
|
|
if(first_mb_in_slice << FIELD_OR_MBAFF_PICTURE >= s->mb_num ||
|
|
first_mb_in_slice >= s->mb_num){
|
|
av_log(h->s.avctx, AV_LOG_ERROR, "first_mb_in_slice overflow\n");
|
|
return -1;
|
|
}
|
|
s->resync_mb_x = s->mb_x = first_mb_in_slice % s->mb_width;
|
|
s->resync_mb_y = s->mb_y = (first_mb_in_slice / s->mb_width) << FIELD_OR_MBAFF_PICTURE;
|
|
if (s->picture_structure == PICT_BOTTOM_FIELD)
|
|
s->resync_mb_y = s->mb_y = s->mb_y + 1;
|
|
assert(s->mb_y < s->mb_height);
|
|
|
|
if(s->picture_structure==PICT_FRAME){
|
|
h->curr_pic_num= h->frame_num;
|
|
h->max_pic_num= 1<< h->sps.log2_max_frame_num;
|
|
}else{
|
|
h->curr_pic_num= 2*h->frame_num + 1;
|
|
h->max_pic_num= 1<<(h->sps.log2_max_frame_num + 1);
|
|
}
|
|
|
|
if(h->nal_unit_type == NAL_IDR_SLICE){
|
|
get_ue_golomb(&s->gb); /* idr_pic_id */
|
|
}
|
|
|
|
if(h->sps.poc_type==0){
|
|
h->poc_lsb= get_bits(&s->gb, h->sps.log2_max_poc_lsb);
|
|
|
|
if(h->pps.pic_order_present==1 && s->picture_structure==PICT_FRAME){
|
|
h->delta_poc_bottom= get_se_golomb(&s->gb);
|
|
}
|
|
}
|
|
|
|
if(h->sps.poc_type==1 && !h->sps.delta_pic_order_always_zero_flag){
|
|
h->delta_poc[0]= get_se_golomb(&s->gb);
|
|
|
|
if(h->pps.pic_order_present==1 && s->picture_structure==PICT_FRAME)
|
|
h->delta_poc[1]= get_se_golomb(&s->gb);
|
|
}
|
|
|
|
init_poc(h);
|
|
|
|
if(h->pps.redundant_pic_cnt_present){
|
|
h->redundant_pic_count= get_ue_golomb(&s->gb);
|
|
}
|
|
|
|
//set defaults, might be overriden a few line later
|
|
h->ref_count[0]= h->pps.ref_count[0];
|
|
h->ref_count[1]= h->pps.ref_count[1];
|
|
|
|
if(h->slice_type == FF_P_TYPE || h->slice_type == FF_SP_TYPE || h->slice_type == FF_B_TYPE){
|
|
if(h->slice_type == FF_B_TYPE){
|
|
h->direct_spatial_mv_pred= get_bits1(&s->gb);
|
|
}
|
|
num_ref_idx_active_override_flag= get_bits1(&s->gb);
|
|
|
|
if(num_ref_idx_active_override_flag){
|
|
h->ref_count[0]= get_ue_golomb(&s->gb) + 1;
|
|
if(h->slice_type==FF_B_TYPE)
|
|
h->ref_count[1]= get_ue_golomb(&s->gb) + 1;
|
|
|
|
if(h->ref_count[0]-1 > 32-1 || h->ref_count[1]-1 > 32-1){
|
|
av_log(h->s.avctx, AV_LOG_ERROR, "reference overflow\n");
|
|
h->ref_count[0]= h->ref_count[1]= 1;
|
|
return -1;
|
|
}
|
|
}
|
|
if(h->slice_type == FF_B_TYPE)
|
|
h->list_count= 2;
|
|
else
|
|
h->list_count= 1;
|
|
}else
|
|
h->list_count= 0;
|
|
|
|
if(!default_ref_list_done){
|
|
fill_default_ref_list(h);
|
|
}
|
|
|
|
if(decode_ref_pic_list_reordering(h) < 0)
|
|
return -1;
|
|
|
|
if( (h->pps.weighted_pred && (h->slice_type == FF_P_TYPE || h->slice_type == FF_SP_TYPE ))
|
|
|| (h->pps.weighted_bipred_idc==1 && h->slice_type==FF_B_TYPE ) )
|
|
pred_weight_table(h);
|
|
else if(h->pps.weighted_bipred_idc==2 && h->slice_type==FF_B_TYPE)
|
|
implicit_weight_table(h);
|
|
else
|
|
h->use_weight = 0;
|
|
|
|
if(h->nal_ref_idc)
|
|
decode_ref_pic_marking(h0, &s->gb);
|
|
|
|
if(FRAME_MBAFF)
|
|
fill_mbaff_ref_list(h);
|
|
|
|
if( h->slice_type != FF_I_TYPE && h->slice_type != FF_SI_TYPE && h->pps.cabac ){
|
|
tmp = get_ue_golomb(&s->gb);
|
|
if(tmp > 2){
|
|
av_log(s->avctx, AV_LOG_ERROR, "cabac_init_idc overflow\n");
|
|
return -1;
|
|
}
|
|
h->cabac_init_idc= tmp;
|
|
}
|
|
|
|
h->last_qscale_diff = 0;
|
|
tmp = h->pps.init_qp + get_se_golomb(&s->gb);
|
|
if(tmp>51){
|
|
av_log(s->avctx, AV_LOG_ERROR, "QP %u out of range\n", tmp);
|
|
return -1;
|
|
}
|
|
s->qscale= tmp;
|
|
h->chroma_qp[0] = get_chroma_qp(h, 0, s->qscale);
|
|
h->chroma_qp[1] = get_chroma_qp(h, 1, s->qscale);
|
|
//FIXME qscale / qp ... stuff
|
|
if(h->slice_type == FF_SP_TYPE){
|
|
get_bits1(&s->gb); /* sp_for_switch_flag */
|
|
}
|
|
if(h->slice_type==FF_SP_TYPE || h->slice_type == FF_SI_TYPE){
|
|
get_se_golomb(&s->gb); /* slice_qs_delta */
|
|
}
|
|
|
|
h->deblocking_filter = 1;
|
|
h->slice_alpha_c0_offset = 0;
|
|
h->slice_beta_offset = 0;
|
|
if( h->pps.deblocking_filter_parameters_present ) {
|
|
tmp= get_ue_golomb(&s->gb);
|
|
if(tmp > 2){
|
|
av_log(s->avctx, AV_LOG_ERROR, "deblocking_filter_idc %u out of range\n", tmp);
|
|
return -1;
|
|
}
|
|
h->deblocking_filter= tmp;
|
|
if(h->deblocking_filter < 2)
|
|
h->deblocking_filter^= 1; // 1<->0
|
|
|
|
if( h->deblocking_filter ) {
|
|
h->slice_alpha_c0_offset = get_se_golomb(&s->gb) << 1;
|
|
h->slice_beta_offset = get_se_golomb(&s->gb) << 1;
|
|
}
|
|
}
|
|
|
|
if( s->avctx->skip_loop_filter >= AVDISCARD_ALL
|
|
||(s->avctx->skip_loop_filter >= AVDISCARD_NONKEY && h->slice_type != FF_I_TYPE)
|
|
||(s->avctx->skip_loop_filter >= AVDISCARD_BIDIR && h->slice_type == FF_B_TYPE)
|
|
||(s->avctx->skip_loop_filter >= AVDISCARD_NONREF && h->nal_ref_idc == 0))
|
|
h->deblocking_filter= 0;
|
|
|
|
if(h->deblocking_filter == 1 && h0->max_contexts > 1) {
|
|
if(s->avctx->flags2 & CODEC_FLAG2_FAST) {
|
|
/* Cheat slightly for speed:
|
|
Do not bother to deblock across slices. */
|
|
h->deblocking_filter = 2;
|
|
} else {
|
|
h0->max_contexts = 1;
|
|
if(!h0->single_decode_warning) {
|
|
av_log(s->avctx, AV_LOG_INFO, "Cannot parallelize deblocking type 1, decoding such frames in sequential order\n");
|
|
h0->single_decode_warning = 1;
|
|
}
|
|
if(h != h0)
|
|
return 1; // deblocking switched inside frame
|
|
}
|
|
}
|
|
|
|
#if 0 //FMO
|
|
if( h->pps.num_slice_groups > 1 && h->pps.mb_slice_group_map_type >= 3 && h->pps.mb_slice_group_map_type <= 5)
|
|
slice_group_change_cycle= get_bits(&s->gb, ?);
|
|
#endif
|
|
|
|
h0->last_slice_type = slice_type;
|
|
h->slice_num = ++h0->current_slice;
|
|
|
|
h->emu_edge_width= (s->flags&CODEC_FLAG_EMU_EDGE) ? 0 : 16;
|
|
h->emu_edge_height= (FRAME_MBAFF || FIELD_PICTURE) ? 0 : h->emu_edge_width;
|
|
|
|
if(s->avctx->debug&FF_DEBUG_PICT_INFO){
|
|
av_log(h->s.avctx, AV_LOG_DEBUG, "slice:%d %s mb:%d %c pps:%u frame:%d poc:%d/%d ref:%d/%d qp:%d loop:%d:%d:%d weight:%d%s %s\n",
|
|
h->slice_num,
|
|
(s->picture_structure==PICT_FRAME ? "F" : s->picture_structure==PICT_TOP_FIELD ? "T" : "B"),
|
|
first_mb_in_slice,
|
|
av_get_pict_type_char(h->slice_type),
|
|
pps_id, h->frame_num,
|
|
s->current_picture_ptr->field_poc[0], s->current_picture_ptr->field_poc[1],
|
|
h->ref_count[0], h->ref_count[1],
|
|
s->qscale,
|
|
h->deblocking_filter, h->slice_alpha_c0_offset/2, h->slice_beta_offset/2,
|
|
h->use_weight,
|
|
h->use_weight==1 && h->use_weight_chroma ? "c" : "",
|
|
h->slice_type == FF_B_TYPE ? (h->direct_spatial_mv_pred ? "SPAT" : "TEMP") : ""
|
|
);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
*
|
|
*/
|
|
static inline int get_level_prefix(GetBitContext *gb){
|
|
unsigned int buf;
|
|
int log;
|
|
|
|
OPEN_READER(re, gb);
|
|
UPDATE_CACHE(re, gb);
|
|
buf=GET_CACHE(re, gb);
|
|
|
|
log= 32 - av_log2(buf);
|
|
#ifdef TRACE
|
|
print_bin(buf>>(32-log), log);
|
|
av_log(NULL, AV_LOG_DEBUG, "%5d %2d %3d lpr @%5d in %s get_level_prefix\n", buf>>(32-log), log, log-1, get_bits_count(gb), __FILE__);
|
|
#endif
|
|
|
|
LAST_SKIP_BITS(re, gb, log);
|
|
CLOSE_READER(re, gb);
|
|
|
|
return log-1;
|
|
}
|
|
|
|
static inline int get_dct8x8_allowed(H264Context *h){
|
|
int i;
|
|
for(i=0; i<4; i++){
|
|
if(!IS_SUB_8X8(h->sub_mb_type[i])
|
|
|| (!h->sps.direct_8x8_inference_flag && IS_DIRECT(h->sub_mb_type[i])))
|
|
return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/**
|
|
* decodes a residual block.
|
|
* @param n block index
|
|
* @param scantable scantable
|
|
* @param max_coeff number of coefficients in the block
|
|
* @return <0 if an error occurred
|
|
*/
|
|
static int decode_residual(H264Context *h, GetBitContext *gb, DCTELEM *block, int n, const uint8_t *scantable, const uint32_t *qmul, int max_coeff){
|
|
MpegEncContext * const s = &h->s;
|
|
static const int coeff_token_table_index[17]= {0, 0, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3};
|
|
int level[16];
|
|
int zeros_left, coeff_num, coeff_token, total_coeff, i, j, trailing_ones, run_before;
|
|
|
|
//FIXME put trailing_onex into the context
|
|
|
|
if(n == CHROMA_DC_BLOCK_INDEX){
|
|
coeff_token= get_vlc2(gb, chroma_dc_coeff_token_vlc.table, CHROMA_DC_COEFF_TOKEN_VLC_BITS, 1);
|
|
total_coeff= coeff_token>>2;
|
|
}else{
|
|
if(n == LUMA_DC_BLOCK_INDEX){
|
|
total_coeff= pred_non_zero_count(h, 0);
|
|
coeff_token= get_vlc2(gb, coeff_token_vlc[ coeff_token_table_index[total_coeff] ].table, COEFF_TOKEN_VLC_BITS, 2);
|
|
total_coeff= coeff_token>>2;
|
|
}else{
|
|
total_coeff= pred_non_zero_count(h, n);
|
|
coeff_token= get_vlc2(gb, coeff_token_vlc[ coeff_token_table_index[total_coeff] ].table, COEFF_TOKEN_VLC_BITS, 2);
|
|
total_coeff= coeff_token>>2;
|
|
h->non_zero_count_cache[ scan8[n] ]= total_coeff;
|
|
}
|
|
}
|
|
|
|
//FIXME set last_non_zero?
|
|
|
|
if(total_coeff==0)
|
|
return 0;
|
|
if(total_coeff > (unsigned)max_coeff) {
|
|
av_log(h->s.avctx, AV_LOG_ERROR, "corrupted macroblock %d %d (total_coeff=%d)\n", s->mb_x, s->mb_y, total_coeff);
|
|
return -1;
|
|
}
|
|
|
|
trailing_ones= coeff_token&3;
|
|
tprintf(h->s.avctx, "trailing:%d, total:%d\n", trailing_ones, total_coeff);
|
|
assert(total_coeff<=16);
|
|
|
|
for(i=0; i<trailing_ones; i++){
|
|
level[i]= 1 - 2*get_bits1(gb);
|
|
}
|
|
|
|
if(i<total_coeff) {
|
|
int level_code, mask;
|
|
int suffix_length = total_coeff > 10 && trailing_ones < 3;
|
|
int prefix= get_level_prefix(gb);
|
|
|
|
//first coefficient has suffix_length equal to 0 or 1
|
|
if(prefix<14){ //FIXME try to build a large unified VLC table for all this
|
|
if(suffix_length)
|
|
level_code= (prefix<<suffix_length) + get_bits(gb, suffix_length); //part
|
|
else
|
|
level_code= (prefix<<suffix_length); //part
|
|
}else if(prefix==14){
|
|
if(suffix_length)
|
|
level_code= (prefix<<suffix_length) + get_bits(gb, suffix_length); //part
|
|
else
|
|
level_code= prefix + get_bits(gb, 4); //part
|
|
}else if(prefix==15){
|
|
level_code= (prefix<<suffix_length) + get_bits(gb, 12); //part
|
|
if(suffix_length==0) level_code+=15; //FIXME doesn't make (much)sense
|
|
}else{
|
|
av_log(h->s.avctx, AV_LOG_ERROR, "prefix too large at %d %d\n", s->mb_x, s->mb_y);
|
|
return -1;
|
|
}
|
|
|
|
if(trailing_ones < 3) level_code += 2;
|
|
|
|
suffix_length = 1;
|
|
if(level_code > 5)
|
|
suffix_length++;
|
|
mask= -(level_code&1);
|
|
level[i]= (((2+level_code)>>1) ^ mask) - mask;
|
|
i++;
|
|
|
|
//remaining coefficients have suffix_length > 0
|
|
for(;i<total_coeff;i++) {
|
|
static const int suffix_limit[7] = {0,5,11,23,47,95,INT_MAX };
|
|
prefix = get_level_prefix(gb);
|
|
if(prefix<15){
|
|
level_code = (prefix<<suffix_length) + get_bits(gb, suffix_length);
|
|
}else if(prefix==15){
|
|
level_code = (prefix<<suffix_length) + get_bits(gb, 12);
|
|
}else{
|
|
av_log(h->s.avctx, AV_LOG_ERROR, "prefix too large at %d %d\n", s->mb_x, s->mb_y);
|
|
return -1;
|
|
}
|
|
mask= -(level_code&1);
|
|
level[i]= (((2+level_code)>>1) ^ mask) - mask;
|
|
if(level_code > suffix_limit[suffix_length])
|
|
suffix_length++;
|
|
}
|
|
}
|
|
|
|
if(total_coeff == max_coeff)
|
|
zeros_left=0;
|
|
else{
|
|
if(n == CHROMA_DC_BLOCK_INDEX)
|
|
zeros_left= get_vlc2(gb, chroma_dc_total_zeros_vlc[ total_coeff-1 ].table, CHROMA_DC_TOTAL_ZEROS_VLC_BITS, 1);
|
|
else
|
|
zeros_left= get_vlc2(gb, total_zeros_vlc[ total_coeff-1 ].table, TOTAL_ZEROS_VLC_BITS, 1);
|
|
}
|
|
|
|
coeff_num = zeros_left + total_coeff - 1;
|
|
j = scantable[coeff_num];
|
|
if(n > 24){
|
|
block[j] = level[0];
|
|
for(i=1;i<total_coeff;i++) {
|
|
if(zeros_left <= 0)
|
|
run_before = 0;
|
|
else if(zeros_left < 7){
|
|
run_before= get_vlc2(gb, run_vlc[zeros_left-1].table, RUN_VLC_BITS, 1);
|
|
}else{
|
|
run_before= get_vlc2(gb, run7_vlc.table, RUN7_VLC_BITS, 2);
|
|
}
|
|
zeros_left -= run_before;
|
|
coeff_num -= 1 + run_before;
|
|
j= scantable[ coeff_num ];
|
|
|
|
block[j]= level[i];
|
|
}
|
|
}else{
|
|
block[j] = (level[0] * qmul[j] + 32)>>6;
|
|
for(i=1;i<total_coeff;i++) {
|
|
if(zeros_left <= 0)
|
|
run_before = 0;
|
|
else if(zeros_left < 7){
|
|
run_before= get_vlc2(gb, run_vlc[zeros_left-1].table, RUN_VLC_BITS, 1);
|
|
}else{
|
|
run_before= get_vlc2(gb, run7_vlc.table, RUN7_VLC_BITS, 2);
|
|
}
|
|
zeros_left -= run_before;
|
|
coeff_num -= 1 + run_before;
|
|
j= scantable[ coeff_num ];
|
|
|
|
block[j]= (level[i] * qmul[j] + 32)>>6;
|
|
}
|
|
}
|
|
|
|
if(zeros_left<0){
|
|
av_log(h->s.avctx, AV_LOG_ERROR, "negative number of zero coeffs at %d %d\n", s->mb_x, s->mb_y);
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void predict_field_decoding_flag(H264Context *h){
|
|
MpegEncContext * const s = &h->s;
|
|
const int mb_xy= h->mb_xy;
|
|
int mb_type = (h->slice_table[mb_xy-1] == h->slice_num)
|
|
? s->current_picture.mb_type[mb_xy-1]
|
|
: (h->slice_table[mb_xy-s->mb_stride] == h->slice_num)
|
|
? s->current_picture.mb_type[mb_xy-s->mb_stride]
|
|
: 0;
|
|
h->mb_mbaff = h->mb_field_decoding_flag = IS_INTERLACED(mb_type) ? 1 : 0;
|
|
}
|
|
|
|
/**
|
|
* decodes a P_SKIP or B_SKIP macroblock
|
|
*/
|
|
static void decode_mb_skip(H264Context *h){
|
|
MpegEncContext * const s = &h->s;
|
|
const int mb_xy= h->mb_xy;
|
|
int mb_type=0;
|
|
|
|
memset(h->non_zero_count[mb_xy], 0, 16);
|
|
memset(h->non_zero_count_cache + 8, 0, 8*5); //FIXME ugly, remove pfui
|
|
|
|
if(MB_FIELD)
|
|
mb_type|= MB_TYPE_INTERLACED;
|
|
|
|
if( h->slice_type == FF_B_TYPE )
|
|
{
|
|
// just for fill_caches. pred_direct_motion will set the real mb_type
|
|
mb_type|= MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2|MB_TYPE_SKIP;
|
|
|
|
fill_caches(h, mb_type, 0); //FIXME check what is needed and what not ...
|
|
pred_direct_motion(h, &mb_type);
|
|
mb_type|= MB_TYPE_SKIP;
|
|
}
|
|
else
|
|
{
|
|
int mx, my;
|
|
mb_type|= MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P1L0|MB_TYPE_SKIP;
|
|
|
|
fill_caches(h, mb_type, 0); //FIXME check what is needed and what not ...
|
|
pred_pskip_motion(h, &mx, &my);
|
|
fill_rectangle(&h->ref_cache[0][scan8[0]], 4, 4, 8, 0, 1);
|
|
fill_rectangle( h->mv_cache[0][scan8[0]], 4, 4, 8, pack16to32(mx,my), 4);
|
|
}
|
|
|
|
write_back_motion(h, mb_type);
|
|
s->current_picture.mb_type[mb_xy]= mb_type;
|
|
s->current_picture.qscale_table[mb_xy]= s->qscale;
|
|
h->slice_table[ mb_xy ]= h->slice_num;
|
|
h->prev_mb_skipped= 1;
|
|
}
|
|
|
|
/**
|
|
* decodes a macroblock
|
|
* @returns 0 if ok, AC_ERROR / DC_ERROR / MV_ERROR if an error is noticed
|
|
*/
|
|
static int decode_mb_cavlc(H264Context *h){
|
|
MpegEncContext * const s = &h->s;
|
|
int mb_xy;
|
|
int partition_count;
|
|
unsigned int mb_type, cbp;
|
|
int dct8x8_allowed= h->pps.transform_8x8_mode;
|
|
|
|
mb_xy = h->mb_xy = s->mb_x + s->mb_y*s->mb_stride;
|
|
|
|
s->dsp.clear_blocks(h->mb); //FIXME avoid if already clear (move after skip handlong?
|
|
|
|
tprintf(s->avctx, "pic:%d mb:%d/%d\n", h->frame_num, s->mb_x, s->mb_y);
|
|
cbp = 0; /* avoid warning. FIXME: find a solution without slowing
|
|
down the code */
|
|
if(h->slice_type != FF_I_TYPE && h->slice_type != FF_SI_TYPE){
|
|
if(s->mb_skip_run==-1)
|
|
s->mb_skip_run= get_ue_golomb(&s->gb);
|
|
|
|
if (s->mb_skip_run--) {
|
|
if(FRAME_MBAFF && (s->mb_y&1) == 0){
|
|
if(s->mb_skip_run==0)
|
|
h->mb_mbaff = h->mb_field_decoding_flag = get_bits1(&s->gb);
|
|
else
|
|
predict_field_decoding_flag(h);
|
|
}
|
|
decode_mb_skip(h);
|
|
return 0;
|
|
}
|
|
}
|
|
if(FRAME_MBAFF){
|
|
if( (s->mb_y&1) == 0 )
|
|
h->mb_mbaff = h->mb_field_decoding_flag = get_bits1(&s->gb);
|
|
}else
|
|
h->mb_field_decoding_flag= (s->picture_structure!=PICT_FRAME);
|
|
|
|
h->prev_mb_skipped= 0;
|
|
|
|
mb_type= get_ue_golomb(&s->gb);
|
|
if(h->slice_type == FF_B_TYPE){
|
|
if(mb_type < 23){
|
|
partition_count= b_mb_type_info[mb_type].partition_count;
|
|
mb_type= b_mb_type_info[mb_type].type;
|
|
}else{
|
|
mb_type -= 23;
|
|
goto decode_intra_mb;
|
|
}
|
|
}else if(h->slice_type == FF_P_TYPE /*|| h->slice_type == FF_SP_TYPE */){
|
|
if(mb_type < 5){
|
|
partition_count= p_mb_type_info[mb_type].partition_count;
|
|
mb_type= p_mb_type_info[mb_type].type;
|
|
}else{
|
|
mb_type -= 5;
|
|
goto decode_intra_mb;
|
|
}
|
|
}else{
|
|
assert(h->slice_type == FF_I_TYPE);
|
|
decode_intra_mb:
|
|
if(mb_type > 25){
|
|
av_log(h->s.avctx, AV_LOG_ERROR, "mb_type %d in %c slice too large at %d %d\n", mb_type, av_get_pict_type_char(h->slice_type), s->mb_x, s->mb_y);
|
|
return -1;
|
|
}
|
|
partition_count=0;
|
|
cbp= i_mb_type_info[mb_type].cbp;
|
|
h->intra16x16_pred_mode= i_mb_type_info[mb_type].pred_mode;
|
|
mb_type= i_mb_type_info[mb_type].type;
|
|
}
|
|
|
|
if(MB_FIELD)
|
|
mb_type |= MB_TYPE_INTERLACED;
|
|
|
|
h->slice_table[ mb_xy ]= h->slice_num;
|
|
|
|
if(IS_INTRA_PCM(mb_type)){
|
|
unsigned int x, y;
|
|
|
|
// We assume these blocks are very rare so we do not optimize it.
|
|
align_get_bits(&s->gb);
|
|
|
|
// The pixels are stored in the same order as levels in h->mb array.
|
|
for(y=0; y<16; y++){
|
|
const int index= 4*(y&3) + 32*((y>>2)&1) + 128*(y>>3);
|
|
for(x=0; x<16; x++){
|
|
tprintf(s->avctx, "LUMA ICPM LEVEL (%3d)\n", show_bits(&s->gb, 8));
|
|
h->mb[index + (x&3) + 16*((x>>2)&1) + 64*(x>>3)]= get_bits(&s->gb, 8);
|
|
}
|
|
}
|
|
for(y=0; y<8; y++){
|
|
const int index= 256 + 4*(y&3) + 32*(y>>2);
|
|
for(x=0; x<8; x++){
|
|
tprintf(s->avctx, "CHROMA U ICPM LEVEL (%3d)\n", show_bits(&s->gb, 8));
|
|
h->mb[index + (x&3) + 16*(x>>2)]= get_bits(&s->gb, 8);
|
|
}
|
|
}
|
|
for(y=0; y<8; y++){
|
|
const int index= 256 + 64 + 4*(y&3) + 32*(y>>2);
|
|
for(x=0; x<8; x++){
|
|
tprintf(s->avctx, "CHROMA V ICPM LEVEL (%3d)\n", show_bits(&s->gb, 8));
|
|
h->mb[index + (x&3) + 16*(x>>2)]= get_bits(&s->gb, 8);
|
|
}
|
|
}
|
|
|
|
// In deblocking, the quantizer is 0
|
|
s->current_picture.qscale_table[mb_xy]= 0;
|
|
h->chroma_qp[0] = get_chroma_qp(h, 0, 0);
|
|
h->chroma_qp[1] = get_chroma_qp(h, 1, 0);
|
|
// All coeffs are present
|
|
memset(h->non_zero_count[mb_xy], 16, 16);
|
|
|
|
s->current_picture.mb_type[mb_xy]= mb_type;
|
|
return 0;
|
|
}
|
|
|
|
if(MB_MBAFF){
|
|
h->ref_count[0] <<= 1;
|
|
h->ref_count[1] <<= 1;
|
|
}
|
|
|
|
fill_caches(h, mb_type, 0);
|
|
|
|
//mb_pred
|
|
if(IS_INTRA(mb_type)){
|
|
int pred_mode;
|
|
// init_top_left_availability(h);
|
|
if(IS_INTRA4x4(mb_type)){
|
|
int i;
|
|
int di = 1;
|
|
if(dct8x8_allowed && get_bits1(&s->gb)){
|
|
mb_type |= MB_TYPE_8x8DCT;
|
|
di = 4;
|
|
}
|
|
|
|
// fill_intra4x4_pred_table(h);
|
|
for(i=0; i<16; i+=di){
|
|
int mode= pred_intra_mode(h, i);
|
|
|
|
if(!get_bits1(&s->gb)){
|
|
const int rem_mode= get_bits(&s->gb, 3);
|
|
mode = rem_mode + (rem_mode >= mode);
|
|
}
|
|
|
|
if(di==4)
|
|
fill_rectangle( &h->intra4x4_pred_mode_cache[ scan8[i] ], 2, 2, 8, mode, 1 );
|
|
else
|
|
h->intra4x4_pred_mode_cache[ scan8[i] ] = mode;
|
|
}
|
|
write_back_intra_pred_mode(h);
|
|
if( check_intra4x4_pred_mode(h) < 0)
|
|
return -1;
|
|
}else{
|
|
h->intra16x16_pred_mode= check_intra_pred_mode(h, h->intra16x16_pred_mode);
|
|
if(h->intra16x16_pred_mode < 0)
|
|
return -1;
|
|
}
|
|
|
|
pred_mode= check_intra_pred_mode(h, get_ue_golomb(&s->gb));
|
|
if(pred_mode < 0)
|
|
return -1;
|
|
h->chroma_pred_mode= pred_mode;
|
|
}else if(partition_count==4){
|
|
int i, j, sub_partition_count[4], list, ref[2][4];
|
|
|
|
if(h->slice_type == FF_B_TYPE){
|
|
for(i=0; i<4; i++){
|
|
h->sub_mb_type[i]= get_ue_golomb(&s->gb);
|
|
if(h->sub_mb_type[i] >=13){
|
|
av_log(h->s.avctx, AV_LOG_ERROR, "B sub_mb_type %u out of range at %d %d\n", h->sub_mb_type[i], s->mb_x, s->mb_y);
|
|
return -1;
|
|
}
|
|
sub_partition_count[i]= b_sub_mb_type_info[ h->sub_mb_type[i] ].partition_count;
|
|
h->sub_mb_type[i]= b_sub_mb_type_info[ h->sub_mb_type[i] ].type;
|
|
}
|
|
if( IS_DIRECT(h->sub_mb_type[0]) || IS_DIRECT(h->sub_mb_type[1])
|
|
|| IS_DIRECT(h->sub_mb_type[2]) || IS_DIRECT(h->sub_mb_type[3])) {
|
|
pred_direct_motion(h, &mb_type);
|
|
h->ref_cache[0][scan8[4]] =
|
|
h->ref_cache[1][scan8[4]] =
|
|
h->ref_cache[0][scan8[12]] =
|
|
h->ref_cache[1][scan8[12]] = PART_NOT_AVAILABLE;
|
|
}
|
|
}else{
|
|
assert(h->slice_type == FF_P_TYPE || h->slice_type == FF_SP_TYPE); //FIXME SP correct ?
|
|
for(i=0; i<4; i++){
|
|
h->sub_mb_type[i]= get_ue_golomb(&s->gb);
|
|
if(h->sub_mb_type[i] >=4){
|
|
av_log(h->s.avctx, AV_LOG_ERROR, "P sub_mb_type %u out of range at %d %d\n", h->sub_mb_type[i], s->mb_x, s->mb_y);
|
|
return -1;
|
|
}
|
|
sub_partition_count[i]= p_sub_mb_type_info[ h->sub_mb_type[i] ].partition_count;
|
|
h->sub_mb_type[i]= p_sub_mb_type_info[ h->sub_mb_type[i] ].type;
|
|
}
|
|
}
|
|
|
|
for(list=0; list<h->list_count; list++){
|
|
int ref_count= IS_REF0(mb_type) ? 1 : h->ref_count[list];
|
|
for(i=0; i<4; i++){
|
|
if(IS_DIRECT(h->sub_mb_type[i])) continue;
|
|
if(IS_DIR(h->sub_mb_type[i], 0, list)){
|
|
unsigned int tmp = get_te0_golomb(&s->gb, ref_count); //FIXME init to 0 before and skip?
|
|
if(tmp>=ref_count){
|
|
av_log(h->s.avctx, AV_LOG_ERROR, "ref %u overflow\n", tmp);
|
|
return -1;
|
|
}
|
|
ref[list][i]= tmp;
|
|
}else{
|
|
//FIXME
|
|
ref[list][i] = -1;
|
|
}
|
|
}
|
|
}
|
|
|
|
if(dct8x8_allowed)
|
|
dct8x8_allowed = get_dct8x8_allowed(h);
|
|
|
|
for(list=0; list<h->list_count; list++){
|
|
for(i=0; i<4; i++){
|
|
if(IS_DIRECT(h->sub_mb_type[i])) {
|
|
h->ref_cache[list][ scan8[4*i] ] = h->ref_cache[list][ scan8[4*i]+1 ];
|
|
continue;
|
|
}
|
|
h->ref_cache[list][ scan8[4*i] ]=h->ref_cache[list][ scan8[4*i]+1 ]=
|
|
h->ref_cache[list][ scan8[4*i]+8 ]=h->ref_cache[list][ scan8[4*i]+9 ]= ref[list][i];
|
|
|
|
if(IS_DIR(h->sub_mb_type[i], 0, list)){
|
|
const int sub_mb_type= h->sub_mb_type[i];
|
|
const int block_width= (sub_mb_type & (MB_TYPE_16x16|MB_TYPE_16x8)) ? 2 : 1;
|
|
for(j=0; j<sub_partition_count[i]; j++){
|
|
int mx, my;
|
|
const int index= 4*i + block_width*j;
|
|
int16_t (* mv_cache)[2]= &h->mv_cache[list][ scan8[index] ];
|
|
pred_motion(h, index, block_width, list, h->ref_cache[list][ scan8[index] ], &mx, &my);
|
|
mx += get_se_golomb(&s->gb);
|
|
my += get_se_golomb(&s->gb);
|
|
tprintf(s->avctx, "final mv:%d %d\n", mx, my);
|
|
|
|
if(IS_SUB_8X8(sub_mb_type)){
|
|
mv_cache[ 1 ][0]=
|
|
mv_cache[ 8 ][0]= mv_cache[ 9 ][0]= mx;
|
|
mv_cache[ 1 ][1]=
|
|
mv_cache[ 8 ][1]= mv_cache[ 9 ][1]= my;
|
|
}else if(IS_SUB_8X4(sub_mb_type)){
|
|
mv_cache[ 1 ][0]= mx;
|
|
mv_cache[ 1 ][1]= my;
|
|
}else if(IS_SUB_4X8(sub_mb_type)){
|
|
mv_cache[ 8 ][0]= mx;
|
|
mv_cache[ 8 ][1]= my;
|
|
}
|
|
mv_cache[ 0 ][0]= mx;
|
|
mv_cache[ 0 ][1]= my;
|
|
}
|
|
}else{
|
|
uint32_t *p= (uint32_t *)&h->mv_cache[list][ scan8[4*i] ][0];
|
|
p[0] = p[1]=
|
|
p[8] = p[9]= 0;
|
|
}
|
|
}
|
|
}
|
|
}else if(IS_DIRECT(mb_type)){
|
|
pred_direct_motion(h, &mb_type);
|
|
dct8x8_allowed &= h->sps.direct_8x8_inference_flag;
|
|
}else{
|
|
int list, mx, my, i;
|
|
//FIXME we should set ref_idx_l? to 0 if we use that later ...
|
|
if(IS_16X16(mb_type)){
|
|
for(list=0; list<h->list_count; list++){
|
|
unsigned int val;
|
|
if(IS_DIR(mb_type, 0, list)){
|
|
val= get_te0_golomb(&s->gb, h->ref_count[list]);
|
|
if(val >= h->ref_count[list]){
|
|
av_log(h->s.avctx, AV_LOG_ERROR, "ref %u overflow\n", val);
|
|
return -1;
|
|
}
|
|
}else
|
|
val= LIST_NOT_USED&0xFF;
|
|
fill_rectangle(&h->ref_cache[list][ scan8[0] ], 4, 4, 8, val, 1);
|
|
}
|
|
for(list=0; list<h->list_count; list++){
|
|
unsigned int val;
|
|
if(IS_DIR(mb_type, 0, list)){
|
|
pred_motion(h, 0, 4, list, h->ref_cache[list][ scan8[0] ], &mx, &my);
|
|
mx += get_se_golomb(&s->gb);
|
|
my += get_se_golomb(&s->gb);
|
|
tprintf(s->avctx, "final mv:%d %d\n", mx, my);
|
|
|
|
val= pack16to32(mx,my);
|
|
}else
|
|
val=0;
|
|
fill_rectangle(h->mv_cache[list][ scan8[0] ], 4, 4, 8, val, 4);
|
|
}
|
|
}
|
|
else if(IS_16X8(mb_type)){
|
|
for(list=0; list<h->list_count; list++){
|
|
for(i=0; i<2; i++){
|
|
unsigned int val;
|
|
if(IS_DIR(mb_type, i, list)){
|
|
val= get_te0_golomb(&s->gb, h->ref_count[list]);
|
|
if(val >= h->ref_count[list]){
|
|
av_log(h->s.avctx, AV_LOG_ERROR, "ref %u overflow\n", val);
|
|
return -1;
|
|
}
|
|
}else
|
|
val= LIST_NOT_USED&0xFF;
|
|
fill_rectangle(&h->ref_cache[list][ scan8[0] + 16*i ], 4, 2, 8, val, 1);
|
|
}
|
|
}
|
|
for(list=0; list<h->list_count; list++){
|
|
for(i=0; i<2; i++){
|
|
unsigned int val;
|
|
if(IS_DIR(mb_type, i, list)){
|
|
pred_16x8_motion(h, 8*i, list, h->ref_cache[list][scan8[0] + 16*i], &mx, &my);
|
|
mx += get_se_golomb(&s->gb);
|
|
my += get_se_golomb(&s->gb);
|
|
tprintf(s->avctx, "final mv:%d %d\n", mx, my);
|
|
|
|
val= pack16to32(mx,my);
|
|
}else
|
|
val=0;
|
|
fill_rectangle(h->mv_cache[list][ scan8[0] + 16*i ], 4, 2, 8, val, 4);
|
|
}
|
|
}
|
|
}else{
|
|
assert(IS_8X16(mb_type));
|
|
for(list=0; list<h->list_count; list++){
|
|
for(i=0; i<2; i++){
|
|
unsigned int val;
|
|
if(IS_DIR(mb_type, i, list)){ //FIXME optimize
|
|
val= get_te0_golomb(&s->gb, h->ref_count[list]);
|
|
if(val >= h->ref_count[list]){
|
|
av_log(h->s.avctx, AV_LOG_ERROR, "ref %u overflow\n", val);
|
|
return -1;
|
|
}
|
|
}else
|
|
val= LIST_NOT_USED&0xFF;
|
|
fill_rectangle(&h->ref_cache[list][ scan8[0] + 2*i ], 2, 4, 8, val, 1);
|
|
}
|
|
}
|
|
for(list=0; list<h->list_count; list++){
|
|
for(i=0; i<2; i++){
|
|
unsigned int val;
|
|
if(IS_DIR(mb_type, i, list)){
|
|
pred_8x16_motion(h, i*4, list, h->ref_cache[list][ scan8[0] + 2*i ], &mx, &my);
|
|
mx += get_se_golomb(&s->gb);
|
|
my += get_se_golomb(&s->gb);
|
|
tprintf(s->avctx, "final mv:%d %d\n", mx, my);
|
|
|
|
val= pack16to32(mx,my);
|
|
}else
|
|
val=0;
|
|
fill_rectangle(h->mv_cache[list][ scan8[0] + 2*i ], 2, 4, 8, val, 4);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if(IS_INTER(mb_type))
|
|
write_back_motion(h, mb_type);
|
|
|
|
if(!IS_INTRA16x16(mb_type)){
|
|
cbp= get_ue_golomb(&s->gb);
|
|
if(cbp > 47){
|
|
av_log(h->s.avctx, AV_LOG_ERROR, "cbp too large (%u) at %d %d\n", cbp, s->mb_x, s->mb_y);
|
|
return -1;
|
|
}
|
|
|
|
if(IS_INTRA4x4(mb_type))
|
|
cbp= golomb_to_intra4x4_cbp[cbp];
|
|
else
|
|
cbp= golomb_to_inter_cbp[cbp];
|
|
}
|
|
h->cbp = cbp;
|
|
|
|
if(dct8x8_allowed && (cbp&15) && !IS_INTRA(mb_type)){
|
|
if(get_bits1(&s->gb))
|
|
mb_type |= MB_TYPE_8x8DCT;
|
|
}
|
|
s->current_picture.mb_type[mb_xy]= mb_type;
|
|
|
|
if(cbp || IS_INTRA16x16(mb_type)){
|
|
int i8x8, i4x4, chroma_idx;
|
|
int dquant;
|
|
GetBitContext *gb= IS_INTRA(mb_type) ? h->intra_gb_ptr : h->inter_gb_ptr;
|
|
const uint8_t *scan, *scan8x8, *dc_scan;
|
|
|
|
// fill_non_zero_count_cache(h);
|
|
|
|
if(IS_INTERLACED(mb_type)){
|
|
scan8x8= s->qscale ? h->field_scan8x8_cavlc : h->field_scan8x8_cavlc_q0;
|
|
scan= s->qscale ? h->field_scan : h->field_scan_q0;
|
|
dc_scan= luma_dc_field_scan;
|
|
}else{
|
|
scan8x8= s->qscale ? h->zigzag_scan8x8_cavlc : h->zigzag_scan8x8_cavlc_q0;
|
|
scan= s->qscale ? h->zigzag_scan : h->zigzag_scan_q0;
|
|
dc_scan= luma_dc_zigzag_scan;
|
|
}
|
|
|
|
dquant= get_se_golomb(&s->gb);
|
|
|
|
if( dquant > 25 || dquant < -26 ){
|
|
av_log(h->s.avctx, AV_LOG_ERROR, "dquant out of range (%d) at %d %d\n", dquant, s->mb_x, s->mb_y);
|
|
return -1;
|
|
}
|
|
|
|
s->qscale += dquant;
|
|
if(((unsigned)s->qscale) > 51){
|
|
if(s->qscale<0) s->qscale+= 52;
|
|
else s->qscale-= 52;
|
|
}
|
|
|
|
h->chroma_qp[0]= get_chroma_qp(h, 0, s->qscale);
|
|
h->chroma_qp[1]= get_chroma_qp(h, 1, s->qscale);
|
|
if(IS_INTRA16x16(mb_type)){
|
|
if( decode_residual(h, h->intra_gb_ptr, h->mb, LUMA_DC_BLOCK_INDEX, dc_scan, h->dequant4_coeff[0][s->qscale], 16) < 0){
|
|
return -1; //FIXME continue if partitioned and other return -1 too
|
|
}
|
|
|
|
assert((cbp&15) == 0 || (cbp&15) == 15);
|
|
|
|
if(cbp&15){
|
|
for(i8x8=0; i8x8<4; i8x8++){
|
|
for(i4x4=0; i4x4<4; i4x4++){
|
|
const int index= i4x4 + 4*i8x8;
|
|
if( decode_residual(h, h->intra_gb_ptr, h->mb + 16*index, index, scan + 1, h->dequant4_coeff[0][s->qscale], 15) < 0 ){
|
|
return -1;
|
|
}
|
|
}
|
|
}
|
|
}else{
|
|
fill_rectangle(&h->non_zero_count_cache[scan8[0]], 4, 4, 8, 0, 1);
|
|
}
|
|
}else{
|
|
for(i8x8=0; i8x8<4; i8x8++){
|
|
if(cbp & (1<<i8x8)){
|
|
if(IS_8x8DCT(mb_type)){
|
|
DCTELEM *buf = &h->mb[64*i8x8];
|
|
uint8_t *nnz;
|
|
for(i4x4=0; i4x4<4; i4x4++){
|
|
if( decode_residual(h, gb, buf, i4x4+4*i8x8, scan8x8+16*i4x4,
|
|
h->dequant8_coeff[IS_INTRA( mb_type ) ? 0:1][s->qscale], 16) <0 )
|
|
return -1;
|
|
}
|
|
nnz= &h->non_zero_count_cache[ scan8[4*i8x8] ];
|
|
nnz[0] += nnz[1] + nnz[8] + nnz[9];
|
|
}else{
|
|
for(i4x4=0; i4x4<4; i4x4++){
|
|
const int index= i4x4 + 4*i8x8;
|
|
|
|
if( decode_residual(h, gb, h->mb + 16*index, index, scan, h->dequant4_coeff[IS_INTRA( mb_type ) ? 0:3][s->qscale], 16) <0 ){
|
|
return -1;
|
|
}
|
|
}
|
|
}
|
|
}else{
|
|
uint8_t * const nnz= &h->non_zero_count_cache[ scan8[4*i8x8] ];
|
|
nnz[0] = nnz[1] = nnz[8] = nnz[9] = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
if(cbp&0x30){
|
|
for(chroma_idx=0; chroma_idx<2; chroma_idx++)
|
|
if( decode_residual(h, gb, h->mb + 256 + 16*4*chroma_idx, CHROMA_DC_BLOCK_INDEX, chroma_dc_scan, NULL, 4) < 0){
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
if(cbp&0x20){
|
|
for(chroma_idx=0; chroma_idx<2; chroma_idx++){
|
|
const uint32_t *qmul = h->dequant4_coeff[chroma_idx+1+(IS_INTRA( mb_type ) ? 0:3)][h->chroma_qp[chroma_idx]];
|
|
for(i4x4=0; i4x4<4; i4x4++){
|
|
const int index= 16 + 4*chroma_idx + i4x4;
|
|
if( decode_residual(h, gb, h->mb + 16*index, index, scan + 1, qmul, 15) < 0){
|
|
return -1;
|
|
}
|
|
}
|
|
}
|
|
}else{
|
|
uint8_t * const nnz= &h->non_zero_count_cache[0];
|
|
nnz[ scan8[16]+0 ] = nnz[ scan8[16]+1 ] =nnz[ scan8[16]+8 ] =nnz[ scan8[16]+9 ] =
|
|
nnz[ scan8[20]+0 ] = nnz[ scan8[20]+1 ] =nnz[ scan8[20]+8 ] =nnz[ scan8[20]+9 ] = 0;
|
|
}
|
|
}else{
|
|
uint8_t * const nnz= &h->non_zero_count_cache[0];
|
|
fill_rectangle(&nnz[scan8[0]], 4, 4, 8, 0, 1);
|
|
nnz[ scan8[16]+0 ] = nnz[ scan8[16]+1 ] =nnz[ scan8[16]+8 ] =nnz[ scan8[16]+9 ] =
|
|
nnz[ scan8[20]+0 ] = nnz[ scan8[20]+1 ] =nnz[ scan8[20]+8 ] =nnz[ scan8[20]+9 ] = 0;
|
|
}
|
|
s->current_picture.qscale_table[mb_xy]= s->qscale;
|
|
write_back_non_zero_count(h);
|
|
|
|
if(MB_MBAFF){
|
|
h->ref_count[0] >>= 1;
|
|
h->ref_count[1] >>= 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int decode_cabac_field_decoding_flag(H264Context *h) {
|
|
MpegEncContext * const s = &h->s;
|
|
const int mb_x = s->mb_x;
|
|
const int mb_y = s->mb_y & ~1;
|
|
const int mba_xy = mb_x - 1 + mb_y *s->mb_stride;
|
|
const int mbb_xy = mb_x + (mb_y-2)*s->mb_stride;
|
|
|
|
unsigned int ctx = 0;
|
|
|
|
if( h->slice_table[mba_xy] == h->slice_num && IS_INTERLACED( s->current_picture.mb_type[mba_xy] ) ) {
|
|
ctx += 1;
|
|
}
|
|
if( h->slice_table[mbb_xy] == h->slice_num && IS_INTERLACED( s->current_picture.mb_type[mbb_xy] ) ) {
|
|
ctx += 1;
|
|
}
|
|
|
|
return get_cabac_noinline( &h->cabac, &h->cabac_state[70 + ctx] );
|
|
}
|
|
|
|
static int decode_cabac_intra_mb_type(H264Context *h, int ctx_base, int intra_slice) {
|
|
uint8_t *state= &h->cabac_state[ctx_base];
|
|
int mb_type;
|
|
|
|
if(intra_slice){
|
|
MpegEncContext * const s = &h->s;
|
|
const int mba_xy = h->left_mb_xy[0];
|
|
const int mbb_xy = h->top_mb_xy;
|
|
int ctx=0;
|
|
if( h->slice_table[mba_xy] == h->slice_num && !IS_INTRA4x4( s->current_picture.mb_type[mba_xy] ) )
|
|
ctx++;
|
|
if( h->slice_table[mbb_xy] == h->slice_num && !IS_INTRA4x4( s->current_picture.mb_type[mbb_xy] ) )
|
|
ctx++;
|
|
if( get_cabac_noinline( &h->cabac, &state[ctx] ) == 0 )
|
|
return 0; /* I4x4 */
|
|
state += 2;
|
|
}else{
|
|
if( get_cabac_noinline( &h->cabac, &state[0] ) == 0 )
|
|
return 0; /* I4x4 */
|
|
}
|
|
|
|
if( get_cabac_terminate( &h->cabac ) )
|
|
return 25; /* PCM */
|
|
|
|
mb_type = 1; /* I16x16 */
|
|
mb_type += 12 * get_cabac_noinline( &h->cabac, &state[1] ); /* cbp_luma != 0 */
|
|
if( get_cabac_noinline( &h->cabac, &state[2] ) ) /* cbp_chroma */
|
|
mb_type += 4 + 4 * get_cabac_noinline( &h->cabac, &state[2+intra_slice] );
|
|
mb_type += 2 * get_cabac_noinline( &h->cabac, &state[3+intra_slice] );
|
|
mb_type += 1 * get_cabac_noinline( &h->cabac, &state[3+2*intra_slice] );
|
|
return mb_type;
|
|
}
|
|
|
|
static int decode_cabac_mb_type( H264Context *h ) {
|
|
MpegEncContext * const s = &h->s;
|
|
|
|
if( h->slice_type == FF_I_TYPE ) {
|
|
return decode_cabac_intra_mb_type(h, 3, 1);
|
|
} else if( h->slice_type == FF_P_TYPE ) {
|
|
if( get_cabac_noinline( &h->cabac, &h->cabac_state[14] ) == 0 ) {
|
|
/* P-type */
|
|
if( get_cabac_noinline( &h->cabac, &h->cabac_state[15] ) == 0 ) {
|
|
/* P_L0_D16x16, P_8x8 */
|
|
return 3 * get_cabac_noinline( &h->cabac, &h->cabac_state[16] );
|
|
} else {
|
|
/* P_L0_D8x16, P_L0_D16x8 */
|
|
return 2 - get_cabac_noinline( &h->cabac, &h->cabac_state[17] );
|
|
}
|
|
} else {
|
|
return decode_cabac_intra_mb_type(h, 17, 0) + 5;
|
|
}
|
|
} else if( h->slice_type == FF_B_TYPE ) {
|
|
const int mba_xy = h->left_mb_xy[0];
|
|
const int mbb_xy = h->top_mb_xy;
|
|
int ctx = 0;
|
|
int bits;
|
|
|
|
if( h->slice_table[mba_xy] == h->slice_num && !IS_DIRECT( s->current_picture.mb_type[mba_xy] ) )
|
|
ctx++;
|
|
if( h->slice_table[mbb_xy] == h->slice_num && !IS_DIRECT( s->current_picture.mb_type[mbb_xy] ) )
|
|
ctx++;
|
|
|
|
if( !get_cabac_noinline( &h->cabac, &h->cabac_state[27+ctx] ) )
|
|
return 0; /* B_Direct_16x16 */
|
|
|
|
if( !get_cabac_noinline( &h->cabac, &h->cabac_state[27+3] ) ) {
|
|
return 1 + get_cabac_noinline( &h->cabac, &h->cabac_state[27+5] ); /* B_L[01]_16x16 */
|
|
}
|
|
|
|
bits = get_cabac_noinline( &h->cabac, &h->cabac_state[27+4] ) << 3;
|
|
bits|= get_cabac_noinline( &h->cabac, &h->cabac_state[27+5] ) << 2;
|
|
bits|= get_cabac_noinline( &h->cabac, &h->cabac_state[27+5] ) << 1;
|
|
bits|= get_cabac_noinline( &h->cabac, &h->cabac_state[27+5] );
|
|
if( bits < 8 )
|
|
return bits + 3; /* B_Bi_16x16 through B_L1_L0_16x8 */
|
|
else if( bits == 13 ) {
|
|
return decode_cabac_intra_mb_type(h, 32, 0) + 23;
|
|
} else if( bits == 14 )
|
|
return 11; /* B_L1_L0_8x16 */
|
|
else if( bits == 15 )
|
|
return 22; /* B_8x8 */
|
|
|
|
bits= ( bits<<1 ) | get_cabac_noinline( &h->cabac, &h->cabac_state[27+5] );
|
|
return bits - 4; /* B_L0_Bi_* through B_Bi_Bi_* */
|
|
} else {
|
|
/* TODO SI/SP frames? */
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
static int decode_cabac_mb_skip( H264Context *h, int mb_x, int mb_y ) {
|
|
MpegEncContext * const s = &h->s;
|
|
int mba_xy, mbb_xy;
|
|
int ctx = 0;
|
|
|
|
if(FRAME_MBAFF){ //FIXME merge with the stuff in fill_caches?
|
|
int mb_xy = mb_x + (mb_y&~1)*s->mb_stride;
|
|
mba_xy = mb_xy - 1;
|
|
if( (mb_y&1)
|
|
&& h->slice_table[mba_xy] == h->slice_num
|
|
&& MB_FIELD == !!IS_INTERLACED( s->current_picture.mb_type[mba_xy] ) )
|
|
mba_xy += s->mb_stride;
|
|
if( MB_FIELD ){
|
|
mbb_xy = mb_xy - s->mb_stride;
|
|
if( !(mb_y&1)
|
|
&& h->slice_table[mbb_xy] == h->slice_num
|
|
&& IS_INTERLACED( s->current_picture.mb_type[mbb_xy] ) )
|
|
mbb_xy -= s->mb_stride;
|
|
}else
|
|
mbb_xy = mb_x + (mb_y-1)*s->mb_stride;
|
|
}else{
|
|
int mb_xy = h->mb_xy;
|
|
mba_xy = mb_xy - 1;
|
|
mbb_xy = mb_xy - (s->mb_stride << FIELD_PICTURE);
|
|
}
|
|
|
|
if( h->slice_table[mba_xy] == h->slice_num && !IS_SKIP( s->current_picture.mb_type[mba_xy] ))
|
|
ctx++;
|
|
if( h->slice_table[mbb_xy] == h->slice_num && !IS_SKIP( s->current_picture.mb_type[mbb_xy] ))
|
|
ctx++;
|
|
|
|
if( h->slice_type == FF_B_TYPE )
|
|
ctx += 13;
|
|
return get_cabac_noinline( &h->cabac, &h->cabac_state[11+ctx] );
|
|
}
|
|
|
|
static int decode_cabac_mb_intra4x4_pred_mode( H264Context *h, int pred_mode ) {
|
|
int mode = 0;
|
|
|
|
if( get_cabac( &h->cabac, &h->cabac_state[68] ) )
|
|
return pred_mode;
|
|
|
|
mode += 1 * get_cabac( &h->cabac, &h->cabac_state[69] );
|
|
mode += 2 * get_cabac( &h->cabac, &h->cabac_state[69] );
|
|
mode += 4 * get_cabac( &h->cabac, &h->cabac_state[69] );
|
|
|
|
if( mode >= pred_mode )
|
|
return mode + 1;
|
|
else
|
|
return mode;
|
|
}
|
|
|
|
static int decode_cabac_mb_chroma_pre_mode( H264Context *h) {
|
|
const int mba_xy = h->left_mb_xy[0];
|
|
const int mbb_xy = h->top_mb_xy;
|
|
|
|
int ctx = 0;
|
|
|
|
/* No need to test for IS_INTRA4x4 and IS_INTRA16x16, as we set chroma_pred_mode_table to 0 */
|
|
if( h->slice_table[mba_xy] == h->slice_num && h->chroma_pred_mode_table[mba_xy] != 0 )
|
|
ctx++;
|
|
|
|
if( h->slice_table[mbb_xy] == h->slice_num && h->chroma_pred_mode_table[mbb_xy] != 0 )
|
|
ctx++;
|
|
|
|
if( get_cabac_noinline( &h->cabac, &h->cabac_state[64+ctx] ) == 0 )
|
|
return 0;
|
|
|
|
if( get_cabac_noinline( &h->cabac, &h->cabac_state[64+3] ) == 0 )
|
|
return 1;
|
|
if( get_cabac_noinline( &h->cabac, &h->cabac_state[64+3] ) == 0 )
|
|
return 2;
|
|
else
|
|
return 3;
|
|
}
|
|
|
|
static int decode_cabac_mb_cbp_luma( H264Context *h) {
|
|
int cbp_b, cbp_a, ctx, cbp = 0;
|
|
|
|
cbp_a = h->slice_table[h->left_mb_xy[0]] == h->slice_num ? h->left_cbp : -1;
|
|
cbp_b = h->slice_table[h->top_mb_xy] == h->slice_num ? h->top_cbp : -1;
|
|
|
|
ctx = !(cbp_a & 0x02) + 2 * !(cbp_b & 0x04);
|
|
cbp |= get_cabac_noinline(&h->cabac, &h->cabac_state[73 + ctx]);
|
|
ctx = !(cbp & 0x01) + 2 * !(cbp_b & 0x08);
|
|
cbp |= get_cabac_noinline(&h->cabac, &h->cabac_state[73 + ctx]) << 1;
|
|
ctx = !(cbp_a & 0x08) + 2 * !(cbp & 0x01);
|
|
cbp |= get_cabac_noinline(&h->cabac, &h->cabac_state[73 + ctx]) << 2;
|
|
ctx = !(cbp & 0x04) + 2 * !(cbp & 0x02);
|
|
cbp |= get_cabac_noinline(&h->cabac, &h->cabac_state[73 + ctx]) << 3;
|
|
return cbp;
|
|
}
|
|
static int decode_cabac_mb_cbp_chroma( H264Context *h) {
|
|
int ctx;
|
|
int cbp_a, cbp_b;
|
|
|
|
cbp_a = (h->left_cbp>>4)&0x03;
|
|
cbp_b = (h-> top_cbp>>4)&0x03;
|
|
|
|
ctx = 0;
|
|
if( cbp_a > 0 ) ctx++;
|
|
if( cbp_b > 0 ) ctx += 2;
|
|
if( get_cabac_noinline( &h->cabac, &h->cabac_state[77 + ctx] ) == 0 )
|
|
return 0;
|
|
|
|
ctx = 4;
|
|
if( cbp_a == 2 ) ctx++;
|
|
if( cbp_b == 2 ) ctx += 2;
|
|
return 1 + get_cabac_noinline( &h->cabac, &h->cabac_state[77 + ctx] );
|
|
}
|
|
static int decode_cabac_mb_dqp( H264Context *h) {
|
|
int ctx = 0;
|
|
int val = 0;
|
|
|
|
if( h->last_qscale_diff != 0 )
|
|
ctx++;
|
|
|
|
while( get_cabac_noinline( &h->cabac, &h->cabac_state[60 + ctx] ) ) {
|
|
if( ctx < 2 )
|
|
ctx = 2;
|
|
else
|
|
ctx = 3;
|
|
val++;
|
|
if(val > 102) //prevent infinite loop
|
|
return INT_MIN;
|
|
}
|
|
|
|
if( val&0x01 )
|
|
return (val + 1)/2;
|
|
else
|
|
return -(val + 1)/2;
|
|
}
|
|
static int decode_cabac_p_mb_sub_type( H264Context *h ) {
|
|
if( get_cabac( &h->cabac, &h->cabac_state[21] ) )
|
|
return 0; /* 8x8 */
|
|
if( !get_cabac( &h->cabac, &h->cabac_state[22] ) )
|
|
return 1; /* 8x4 */
|
|
if( get_cabac( &h->cabac, &h->cabac_state[23] ) )
|
|
return 2; /* 4x8 */
|
|
return 3; /* 4x4 */
|
|
}
|
|
static int decode_cabac_b_mb_sub_type( H264Context *h ) {
|
|
int type;
|
|
if( !get_cabac( &h->cabac, &h->cabac_state[36] ) )
|
|
return 0; /* B_Direct_8x8 */
|
|
if( !get_cabac( &h->cabac, &h->cabac_state[37] ) )
|
|
return 1 + get_cabac( &h->cabac, &h->cabac_state[39] ); /* B_L0_8x8, B_L1_8x8 */
|
|
type = 3;
|
|
if( get_cabac( &h->cabac, &h->cabac_state[38] ) ) {
|
|
if( get_cabac( &h->cabac, &h->cabac_state[39] ) )
|
|
return 11 + get_cabac( &h->cabac, &h->cabac_state[39] ); /* B_L1_4x4, B_Bi_4x4 */
|
|
type += 4;
|
|
}
|
|
type += 2*get_cabac( &h->cabac, &h->cabac_state[39] );
|
|
type += get_cabac( &h->cabac, &h->cabac_state[39] );
|
|
return type;
|
|
}
|
|
|
|
static inline int decode_cabac_mb_transform_size( H264Context *h ) {
|
|
return get_cabac_noinline( &h->cabac, &h->cabac_state[399 + h->neighbor_transform_size] );
|
|
}
|
|
|
|
static int decode_cabac_mb_ref( H264Context *h, int list, int n ) {
|
|
int refa = h->ref_cache[list][scan8[n] - 1];
|
|
int refb = h->ref_cache[list][scan8[n] - 8];
|
|
int ref = 0;
|
|
int ctx = 0;
|
|
|
|
if( h->slice_type == FF_B_TYPE) {
|
|
if( refa > 0 && !h->direct_cache[scan8[n] - 1] )
|
|
ctx++;
|
|
if( refb > 0 && !h->direct_cache[scan8[n] - 8] )
|
|
ctx += 2;
|
|
} else {
|
|
if( refa > 0 )
|
|
ctx++;
|
|
if( refb > 0 )
|
|
ctx += 2;
|
|
}
|
|
|
|
while( get_cabac( &h->cabac, &h->cabac_state[54+ctx] ) ) {
|
|
ref++;
|
|
if( ctx < 4 )
|
|
ctx = 4;
|
|
else
|
|
ctx = 5;
|
|
if(ref >= 32 /*h->ref_list[list]*/){
|
|
av_log(h->s.avctx, AV_LOG_ERROR, "overflow in decode_cabac_mb_ref\n");
|
|
return 0; //FIXME we should return -1 and check the return everywhere
|
|
}
|
|
}
|
|
return ref;
|
|
}
|
|
|
|
static int decode_cabac_mb_mvd( H264Context *h, int list, int n, int l ) {
|
|
int amvd = abs( h->mvd_cache[list][scan8[n] - 1][l] ) +
|
|
abs( h->mvd_cache[list][scan8[n] - 8][l] );
|
|
int ctxbase = (l == 0) ? 40 : 47;
|
|
int ctx, mvd;
|
|
|
|
if( amvd < 3 )
|
|
ctx = 0;
|
|
else if( amvd > 32 )
|
|
ctx = 2;
|
|
else
|
|
ctx = 1;
|
|
|
|
if(!get_cabac(&h->cabac, &h->cabac_state[ctxbase+ctx]))
|
|
return 0;
|
|
|
|
mvd= 1;
|
|
ctx= 3;
|
|
while( mvd < 9 && get_cabac( &h->cabac, &h->cabac_state[ctxbase+ctx] ) ) {
|
|
mvd++;
|
|
if( ctx < 6 )
|
|
ctx++;
|
|
}
|
|
|
|
if( mvd >= 9 ) {
|
|
int k = 3;
|
|
while( get_cabac_bypass( &h->cabac ) ) {
|
|
mvd += 1 << k;
|
|
k++;
|
|
if(k>24){
|
|
av_log(h->s.avctx, AV_LOG_ERROR, "overflow in decode_cabac_mb_mvd\n");
|
|
return INT_MIN;
|
|
}
|
|
}
|
|
while( k-- ) {
|
|
if( get_cabac_bypass( &h->cabac ) )
|
|
mvd += 1 << k;
|
|
}
|
|
}
|
|
return get_cabac_bypass_sign( &h->cabac, -mvd );
|
|
}
|
|
|
|
static inline int get_cabac_cbf_ctx( H264Context *h, int cat, int idx ) {
|
|
int nza, nzb;
|
|
int ctx = 0;
|
|
|
|
if( cat == 0 ) {
|
|
nza = h->left_cbp&0x100;
|
|
nzb = h-> top_cbp&0x100;
|
|
} else if( cat == 1 || cat == 2 ) {
|
|
nza = h->non_zero_count_cache[scan8[idx] - 1];
|
|
nzb = h->non_zero_count_cache[scan8[idx] - 8];
|
|
} else if( cat == 3 ) {
|
|
nza = (h->left_cbp>>(6+idx))&0x01;
|
|
nzb = (h-> top_cbp>>(6+idx))&0x01;
|
|
} else {
|
|
assert(cat == 4);
|
|
nza = h->non_zero_count_cache[scan8[16+idx] - 1];
|
|
nzb = h->non_zero_count_cache[scan8[16+idx] - 8];
|
|
}
|
|
|
|
if( nza > 0 )
|
|
ctx++;
|
|
|
|
if( nzb > 0 )
|
|
ctx += 2;
|
|
|
|
return ctx + 4 * cat;
|
|
}
|
|
|
|
DECLARE_ASM_CONST(1, uint8_t, last_coeff_flag_offset_8x8[63]) = {
|
|
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
|
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
|
|
3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4,
|
|
5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8
|
|
};
|
|
|
|
static void decode_cabac_residual( H264Context *h, DCTELEM *block, int cat, int n, const uint8_t *scantable, const uint32_t *qmul, int max_coeff) {
|
|
static const int significant_coeff_flag_offset[2][6] = {
|
|
{ 105+0, 105+15, 105+29, 105+44, 105+47, 402 },
|
|
{ 277+0, 277+15, 277+29, 277+44, 277+47, 436 }
|
|
};
|
|
static const int last_coeff_flag_offset[2][6] = {
|
|
{ 166+0, 166+15, 166+29, 166+44, 166+47, 417 },
|
|
{ 338+0, 338+15, 338+29, 338+44, 338+47, 451 }
|
|
};
|
|
static const int coeff_abs_level_m1_offset[6] = {
|
|
227+0, 227+10, 227+20, 227+30, 227+39, 426
|
|
};
|
|
static const uint8_t significant_coeff_flag_offset_8x8[2][63] = {
|
|
{ 0, 1, 2, 3, 4, 5, 5, 4, 4, 3, 3, 4, 4, 4, 5, 5,
|
|
4, 4, 4, 4, 3, 3, 6, 7, 7, 7, 8, 9,10, 9, 8, 7,
|
|
7, 6,11,12,13,11, 6, 7, 8, 9,14,10, 9, 8, 6,11,
|
|
12,13,11, 6, 9,14,10, 9,11,12,13,11,14,10,12 },
|
|
{ 0, 1, 1, 2, 2, 3, 3, 4, 5, 6, 7, 7, 7, 8, 4, 5,
|
|
6, 9,10,10, 8,11,12,11, 9, 9,10,10, 8,11,12,11,
|
|
9, 9,10,10, 8,11,12,11, 9, 9,10,10, 8,13,13, 9,
|
|
9,10,10, 8,13,13, 9, 9,10,10,14,14,14,14,14 }
|
|
};
|
|
/* node ctx: 0..3: abslevel1 (with abslevelgt1 == 0).
|
|
* 4..7: abslevelgt1 + 3 (and abslevel1 doesn't matter).
|
|
* map node ctx => cabac ctx for level=1 */
|
|
static const uint8_t coeff_abs_level1_ctx[8] = { 1, 2, 3, 4, 0, 0, 0, 0 };
|
|
/* map node ctx => cabac ctx for level>1 */
|
|
static const uint8_t coeff_abs_levelgt1_ctx[8] = { 5, 5, 5, 5, 6, 7, 8, 9 };
|
|
static const uint8_t coeff_abs_level_transition[2][8] = {
|
|
/* update node ctx after decoding a level=1 */
|
|
{ 1, 2, 3, 3, 4, 5, 6, 7 },
|
|
/* update node ctx after decoding a level>1 */
|
|
{ 4, 4, 4, 4, 5, 6, 7, 7 }
|
|
};
|
|
|
|
int index[64];
|
|
|
|
int av_unused last;
|
|
int coeff_count = 0;
|
|
int node_ctx = 0;
|
|
|
|
uint8_t *significant_coeff_ctx_base;
|
|
uint8_t *last_coeff_ctx_base;
|
|
uint8_t *abs_level_m1_ctx_base;
|
|
|
|
#ifndef ARCH_X86
|
|
#define CABAC_ON_STACK
|
|
#endif
|
|
#ifdef CABAC_ON_STACK
|
|
#define CC &cc
|
|
CABACContext cc;
|
|
cc.range = h->cabac.range;
|
|
cc.low = h->cabac.low;
|
|
cc.bytestream= h->cabac.bytestream;
|
|
#else
|
|
#define CC &h->cabac
|
|
#endif
|
|
|
|
|
|
/* cat: 0-> DC 16x16 n = 0
|
|
* 1-> AC 16x16 n = luma4x4idx
|
|
* 2-> Luma4x4 n = luma4x4idx
|
|
* 3-> DC Chroma n = iCbCr
|
|
* 4-> AC Chroma n = 4 * iCbCr + chroma4x4idx
|
|
* 5-> Luma8x8 n = 4 * luma8x8idx
|
|
*/
|
|
|
|
/* read coded block flag */
|
|
if( cat != 5 ) {
|
|
if( get_cabac( CC, &h->cabac_state[85 + get_cabac_cbf_ctx( h, cat, n ) ] ) == 0 ) {
|
|
if( cat == 1 || cat == 2 )
|
|
h->non_zero_count_cache[scan8[n]] = 0;
|
|
else if( cat == 4 )
|
|
h->non_zero_count_cache[scan8[16+n]] = 0;
|
|
#ifdef CABAC_ON_STACK
|
|
h->cabac.range = cc.range ;
|
|
h->cabac.low = cc.low ;
|
|
h->cabac.bytestream= cc.bytestream;
|
|
#endif
|
|
return;
|
|
}
|
|
}
|
|
|
|
significant_coeff_ctx_base = h->cabac_state
|
|
+ significant_coeff_flag_offset[MB_FIELD][cat];
|
|
last_coeff_ctx_base = h->cabac_state
|
|
+ last_coeff_flag_offset[MB_FIELD][cat];
|
|
abs_level_m1_ctx_base = h->cabac_state
|
|
+ coeff_abs_level_m1_offset[cat];
|
|
|
|
if( cat == 5 ) {
|
|
#define DECODE_SIGNIFICANCE( coefs, sig_off, last_off ) \
|
|
for(last= 0; last < coefs; last++) { \
|
|
uint8_t *sig_ctx = significant_coeff_ctx_base + sig_off; \
|
|
if( get_cabac( CC, sig_ctx )) { \
|
|
uint8_t *last_ctx = last_coeff_ctx_base + last_off; \
|
|
index[coeff_count++] = last; \
|
|
if( get_cabac( CC, last_ctx ) ) { \
|
|
last= max_coeff; \
|
|
break; \
|
|
} \
|
|
} \
|
|
}\
|
|
if( last == max_coeff -1 ) {\
|
|
index[coeff_count++] = last;\
|
|
}
|
|
const uint8_t *sig_off = significant_coeff_flag_offset_8x8[MB_FIELD];
|
|
#if defined(ARCH_X86) && defined(HAVE_7REGS) && defined(HAVE_EBX_AVAILABLE) && !defined(BROKEN_RELOCATIONS)
|
|
coeff_count= decode_significance_8x8_x86(CC, significant_coeff_ctx_base, index, sig_off);
|
|
} else {
|
|
coeff_count= decode_significance_x86(CC, max_coeff, significant_coeff_ctx_base, index);
|
|
#else
|
|
DECODE_SIGNIFICANCE( 63, sig_off[last], last_coeff_flag_offset_8x8[last] );
|
|
} else {
|
|
DECODE_SIGNIFICANCE( max_coeff - 1, last, last );
|
|
#endif
|
|
}
|
|
assert(coeff_count > 0);
|
|
|
|
if( cat == 0 )
|
|
h->cbp_table[h->mb_xy] |= 0x100;
|
|
else if( cat == 1 || cat == 2 )
|
|
h->non_zero_count_cache[scan8[n]] = coeff_count;
|
|
else if( cat == 3 )
|
|
h->cbp_table[h->mb_xy] |= 0x40 << n;
|
|
else if( cat == 4 )
|
|
h->non_zero_count_cache[scan8[16+n]] = coeff_count;
|
|
else {
|
|
assert( cat == 5 );
|
|
fill_rectangle(&h->non_zero_count_cache[scan8[n]], 2, 2, 8, coeff_count, 1);
|
|
}
|
|
|
|
for( coeff_count--; coeff_count >= 0; coeff_count-- ) {
|
|
uint8_t *ctx = coeff_abs_level1_ctx[node_ctx] + abs_level_m1_ctx_base;
|
|
|
|
int j= scantable[index[coeff_count]];
|
|
|
|
if( get_cabac( CC, ctx ) == 0 ) {
|
|
node_ctx = coeff_abs_level_transition[0][node_ctx];
|
|
if( !qmul ) {
|
|
block[j] = get_cabac_bypass_sign( CC, -1);
|
|
}else{
|
|
block[j] = (get_cabac_bypass_sign( CC, -qmul[j]) + 32) >> 6;
|
|
}
|
|
} else {
|
|
int coeff_abs = 2;
|
|
ctx = coeff_abs_levelgt1_ctx[node_ctx] + abs_level_m1_ctx_base;
|
|
node_ctx = coeff_abs_level_transition[1][node_ctx];
|
|
|
|
while( coeff_abs < 15 && get_cabac( CC, ctx ) ) {
|
|
coeff_abs++;
|
|
}
|
|
|
|
if( coeff_abs >= 15 ) {
|
|
int j = 0;
|
|
while( get_cabac_bypass( CC ) ) {
|
|
j++;
|
|
}
|
|
|
|
coeff_abs=1;
|
|
while( j-- ) {
|
|
coeff_abs += coeff_abs + get_cabac_bypass( CC );
|
|
}
|
|
coeff_abs+= 14;
|
|
}
|
|
|
|
if( !qmul ) {
|
|
if( get_cabac_bypass( CC ) ) block[j] = -coeff_abs;
|
|
else block[j] = coeff_abs;
|
|
}else{
|
|
if( get_cabac_bypass( CC ) ) block[j] = (-coeff_abs * qmul[j] + 32) >> 6;
|
|
else block[j] = ( coeff_abs * qmul[j] + 32) >> 6;
|
|
}
|
|
}
|
|
}
|
|
#ifdef CABAC_ON_STACK
|
|
h->cabac.range = cc.range ;
|
|
h->cabac.low = cc.low ;
|
|
h->cabac.bytestream= cc.bytestream;
|
|
#endif
|
|
|
|
}
|
|
|
|
static inline void compute_mb_neighbors(H264Context *h)
|
|
{
|
|
MpegEncContext * const s = &h->s;
|
|
const int mb_xy = h->mb_xy;
|
|
h->top_mb_xy = mb_xy - s->mb_stride;
|
|
h->left_mb_xy[0] = mb_xy - 1;
|
|
if(FRAME_MBAFF){
|
|
const int pair_xy = s->mb_x + (s->mb_y & ~1)*s->mb_stride;
|
|
const int top_pair_xy = pair_xy - s->mb_stride;
|
|
const int top_mb_frame_flag = !IS_INTERLACED(s->current_picture.mb_type[top_pair_xy]);
|
|
const int left_mb_frame_flag = !IS_INTERLACED(s->current_picture.mb_type[pair_xy-1]);
|
|
const int curr_mb_frame_flag = !MB_FIELD;
|
|
const int bottom = (s->mb_y & 1);
|
|
if (bottom
|
|
? !curr_mb_frame_flag // bottom macroblock
|
|
: (!curr_mb_frame_flag && !top_mb_frame_flag) // top macroblock
|
|
) {
|
|
h->top_mb_xy -= s->mb_stride;
|
|
}
|
|
if (left_mb_frame_flag != curr_mb_frame_flag) {
|
|
h->left_mb_xy[0] = pair_xy - 1;
|
|
}
|
|
} else if (FIELD_PICTURE) {
|
|
h->top_mb_xy -= s->mb_stride;
|
|
}
|
|
return;
|
|
}
|
|
|
|
/**
|
|
* decodes a macroblock
|
|
* @returns 0 if ok, AC_ERROR / DC_ERROR / MV_ERROR if an error is noticed
|
|
*/
|
|
static int decode_mb_cabac(H264Context *h) {
|
|
MpegEncContext * const s = &h->s;
|
|
int mb_xy;
|
|
int mb_type, partition_count, cbp = 0;
|
|
int dct8x8_allowed= h->pps.transform_8x8_mode;
|
|
|
|
mb_xy = h->mb_xy = s->mb_x + s->mb_y*s->mb_stride;
|
|
|
|
s->dsp.clear_blocks(h->mb); //FIXME avoid if already clear (move after skip handlong?)
|
|
|
|
tprintf(s->avctx, "pic:%d mb:%d/%d\n", h->frame_num, s->mb_x, s->mb_y);
|
|
if( h->slice_type != FF_I_TYPE && h->slice_type != FF_SI_TYPE ) {
|
|
int skip;
|
|
/* a skipped mb needs the aff flag from the following mb */
|
|
if( FRAME_MBAFF && s->mb_x==0 && (s->mb_y&1)==0 )
|
|
predict_field_decoding_flag(h);
|
|
if( FRAME_MBAFF && (s->mb_y&1)==1 && h->prev_mb_skipped )
|
|
skip = h->next_mb_skipped;
|
|
else
|
|
skip = decode_cabac_mb_skip( h, s->mb_x, s->mb_y );
|
|
/* read skip flags */
|
|
if( skip ) {
|
|
if( FRAME_MBAFF && (s->mb_y&1)==0 ){
|
|
s->current_picture.mb_type[mb_xy] = MB_TYPE_SKIP;
|
|
h->next_mb_skipped = decode_cabac_mb_skip( h, s->mb_x, s->mb_y+1 );
|
|
if(h->next_mb_skipped)
|
|
predict_field_decoding_flag(h);
|
|
else
|
|
h->mb_mbaff = h->mb_field_decoding_flag = decode_cabac_field_decoding_flag(h);
|
|
}
|
|
|
|
decode_mb_skip(h);
|
|
|
|
h->cbp_table[mb_xy] = 0;
|
|
h->chroma_pred_mode_table[mb_xy] = 0;
|
|
h->last_qscale_diff = 0;
|
|
|
|
return 0;
|
|
|
|
}
|
|
}
|
|
if(FRAME_MBAFF){
|
|
if( (s->mb_y&1) == 0 )
|
|
h->mb_mbaff =
|
|
h->mb_field_decoding_flag = decode_cabac_field_decoding_flag(h);
|
|
}else
|
|
h->mb_field_decoding_flag= (s->picture_structure!=PICT_FRAME);
|
|
|
|
h->prev_mb_skipped = 0;
|
|
|
|
compute_mb_neighbors(h);
|
|
if( ( mb_type = decode_cabac_mb_type( h ) ) < 0 ) {
|
|
av_log( h->s.avctx, AV_LOG_ERROR, "decode_cabac_mb_type failed\n" );
|
|
return -1;
|
|
}
|
|
|
|
if( h->slice_type == FF_B_TYPE ) {
|
|
if( mb_type < 23 ){
|
|
partition_count= b_mb_type_info[mb_type].partition_count;
|
|
mb_type= b_mb_type_info[mb_type].type;
|
|
}else{
|
|
mb_type -= 23;
|
|
goto decode_intra_mb;
|
|
}
|
|
} else if( h->slice_type == FF_P_TYPE ) {
|
|
if( mb_type < 5) {
|
|
partition_count= p_mb_type_info[mb_type].partition_count;
|
|
mb_type= p_mb_type_info[mb_type].type;
|
|
} else {
|
|
mb_type -= 5;
|
|
goto decode_intra_mb;
|
|
}
|
|
} else {
|
|
assert(h->slice_type == FF_I_TYPE);
|
|
decode_intra_mb:
|
|
partition_count = 0;
|
|
cbp= i_mb_type_info[mb_type].cbp;
|
|
h->intra16x16_pred_mode= i_mb_type_info[mb_type].pred_mode;
|
|
mb_type= i_mb_type_info[mb_type].type;
|
|
}
|
|
if(MB_FIELD)
|
|
mb_type |= MB_TYPE_INTERLACED;
|
|
|
|
h->slice_table[ mb_xy ]= h->slice_num;
|
|
|
|
if(IS_INTRA_PCM(mb_type)) {
|
|
const uint8_t *ptr;
|
|
unsigned int x, y;
|
|
|
|
// We assume these blocks are very rare so we do not optimize it.
|
|
// FIXME The two following lines get the bitstream position in the cabac
|
|
// decode, I think it should be done by a function in cabac.h (or cabac.c).
|
|
ptr= h->cabac.bytestream;
|
|
if(h->cabac.low&0x1) ptr--;
|
|
if(CABAC_BITS==16){
|
|
if(h->cabac.low&0x1FF) ptr--;
|
|
}
|
|
|
|
// The pixels are stored in the same order as levels in h->mb array.
|
|
for(y=0; y<16; y++){
|
|
const int index= 4*(y&3) + 32*((y>>2)&1) + 128*(y>>3);
|
|
for(x=0; x<16; x++){
|
|
tprintf(s->avctx, "LUMA ICPM LEVEL (%3d)\n", *ptr);
|
|
h->mb[index + (x&3) + 16*((x>>2)&1) + 64*(x>>3)]= *ptr++;
|
|
}
|
|
}
|
|
for(y=0; y<8; y++){
|
|
const int index= 256 + 4*(y&3) + 32*(y>>2);
|
|
for(x=0; x<8; x++){
|
|
tprintf(s->avctx, "CHROMA U ICPM LEVEL (%3d)\n", *ptr);
|
|
h->mb[index + (x&3) + 16*(x>>2)]= *ptr++;
|
|
}
|
|
}
|
|
for(y=0; y<8; y++){
|
|
const int index= 256 + 64 + 4*(y&3) + 32*(y>>2);
|
|
for(x=0; x<8; x++){
|
|
tprintf(s->avctx, "CHROMA V ICPM LEVEL (%3d)\n", *ptr);
|
|
h->mb[index + (x&3) + 16*(x>>2)]= *ptr++;
|
|
}
|
|
}
|
|
|
|
ff_init_cabac_decoder(&h->cabac, ptr, h->cabac.bytestream_end - ptr);
|
|
|
|
// All blocks are present
|
|
h->cbp_table[mb_xy] = 0x1ef;
|
|
h->chroma_pred_mode_table[mb_xy] = 0;
|
|
// In deblocking, the quantizer is 0
|
|
s->current_picture.qscale_table[mb_xy]= 0;
|
|
h->chroma_qp[0] = get_chroma_qp(h, 0, 0);
|
|
h->chroma_qp[1] = get_chroma_qp(h, 1, 0);
|
|
// All coeffs are present
|
|
memset(h->non_zero_count[mb_xy], 16, 16);
|
|
s->current_picture.mb_type[mb_xy]= mb_type;
|
|
return 0;
|
|
}
|
|
|
|
if(MB_MBAFF){
|
|
h->ref_count[0] <<= 1;
|
|
h->ref_count[1] <<= 1;
|
|
}
|
|
|
|
fill_caches(h, mb_type, 0);
|
|
|
|
if( IS_INTRA( mb_type ) ) {
|
|
int i, pred_mode;
|
|
if( IS_INTRA4x4( mb_type ) ) {
|
|
if( dct8x8_allowed && decode_cabac_mb_transform_size( h ) ) {
|
|
mb_type |= MB_TYPE_8x8DCT;
|
|
for( i = 0; i < 16; i+=4 ) {
|
|
int pred = pred_intra_mode( h, i );
|
|
int mode = decode_cabac_mb_intra4x4_pred_mode( h, pred );
|
|
fill_rectangle( &h->intra4x4_pred_mode_cache[ scan8[i] ], 2, 2, 8, mode, 1 );
|
|
}
|
|
} else {
|
|
for( i = 0; i < 16; i++ ) {
|
|
int pred = pred_intra_mode( h, i );
|
|
h->intra4x4_pred_mode_cache[ scan8[i] ] = decode_cabac_mb_intra4x4_pred_mode( h, pred );
|
|
|
|
//av_log( s->avctx, AV_LOG_ERROR, "i4x4 pred=%d mode=%d\n", pred, h->intra4x4_pred_mode_cache[ scan8[i] ] );
|
|
}
|
|
}
|
|
write_back_intra_pred_mode(h);
|
|
if( check_intra4x4_pred_mode(h) < 0 ) return -1;
|
|
} else {
|
|
h->intra16x16_pred_mode= check_intra_pred_mode( h, h->intra16x16_pred_mode );
|
|
if( h->intra16x16_pred_mode < 0 ) return -1;
|
|
}
|
|
h->chroma_pred_mode_table[mb_xy] =
|
|
pred_mode = decode_cabac_mb_chroma_pre_mode( h );
|
|
|
|
pred_mode= check_intra_pred_mode( h, pred_mode );
|
|
if( pred_mode < 0 ) return -1;
|
|
h->chroma_pred_mode= pred_mode;
|
|
} else if( partition_count == 4 ) {
|
|
int i, j, sub_partition_count[4], list, ref[2][4];
|
|
|
|
if( h->slice_type == FF_B_TYPE ) {
|
|
for( i = 0; i < 4; i++ ) {
|
|
h->sub_mb_type[i] = decode_cabac_b_mb_sub_type( h );
|
|
sub_partition_count[i]= b_sub_mb_type_info[ h->sub_mb_type[i] ].partition_count;
|
|
h->sub_mb_type[i]= b_sub_mb_type_info[ h->sub_mb_type[i] ].type;
|
|
}
|
|
if( IS_DIRECT(h->sub_mb_type[0] | h->sub_mb_type[1] |
|
|
h->sub_mb_type[2] | h->sub_mb_type[3]) ) {
|
|
pred_direct_motion(h, &mb_type);
|
|
h->ref_cache[0][scan8[4]] =
|
|
h->ref_cache[1][scan8[4]] =
|
|
h->ref_cache[0][scan8[12]] =
|
|
h->ref_cache[1][scan8[12]] = PART_NOT_AVAILABLE;
|
|
if( h->ref_count[0] > 1 || h->ref_count[1] > 1 ) {
|
|
for( i = 0; i < 4; i++ )
|
|
if( IS_DIRECT(h->sub_mb_type[i]) )
|
|
fill_rectangle( &h->direct_cache[scan8[4*i]], 2, 2, 8, 1, 1 );
|
|
}
|
|
}
|
|
} else {
|
|
for( i = 0; i < 4; i++ ) {
|
|
h->sub_mb_type[i] = decode_cabac_p_mb_sub_type( h );
|
|
sub_partition_count[i]= p_sub_mb_type_info[ h->sub_mb_type[i] ].partition_count;
|
|
h->sub_mb_type[i]= p_sub_mb_type_info[ h->sub_mb_type[i] ].type;
|
|
}
|
|
}
|
|
|
|
for( list = 0; list < h->list_count; list++ ) {
|
|
for( i = 0; i < 4; i++ ) {
|
|
if(IS_DIRECT(h->sub_mb_type[i])) continue;
|
|
if(IS_DIR(h->sub_mb_type[i], 0, list)){
|
|
if( h->ref_count[list] > 1 )
|
|
ref[list][i] = decode_cabac_mb_ref( h, list, 4*i );
|
|
else
|
|
ref[list][i] = 0;
|
|
} else {
|
|
ref[list][i] = -1;
|
|
}
|
|
h->ref_cache[list][ scan8[4*i]+1 ]=
|
|
h->ref_cache[list][ scan8[4*i]+8 ]=h->ref_cache[list][ scan8[4*i]+9 ]= ref[list][i];
|
|
}
|
|
}
|
|
|
|
if(dct8x8_allowed)
|
|
dct8x8_allowed = get_dct8x8_allowed(h);
|
|
|
|
for(list=0; list<h->list_count; list++){
|
|
for(i=0; i<4; i++){
|
|
h->ref_cache[list][ scan8[4*i] ]=h->ref_cache[list][ scan8[4*i]+1 ];
|
|
if(IS_DIRECT(h->sub_mb_type[i])){
|
|
fill_rectangle(h->mvd_cache[list][scan8[4*i]], 2, 2, 8, 0, 4);
|
|
continue;
|
|
}
|
|
|
|
if(IS_DIR(h->sub_mb_type[i], 0, list) && !IS_DIRECT(h->sub_mb_type[i])){
|
|
const int sub_mb_type= h->sub_mb_type[i];
|
|
const int block_width= (sub_mb_type & (MB_TYPE_16x16|MB_TYPE_16x8)) ? 2 : 1;
|
|
for(j=0; j<sub_partition_count[i]; j++){
|
|
int mpx, mpy;
|
|
int mx, my;
|
|
const int index= 4*i + block_width*j;
|
|
int16_t (* mv_cache)[2]= &h->mv_cache[list][ scan8[index] ];
|
|
int16_t (* mvd_cache)[2]= &h->mvd_cache[list][ scan8[index] ];
|
|
pred_motion(h, index, block_width, list, h->ref_cache[list][ scan8[index] ], &mpx, &mpy);
|
|
|
|
mx = mpx + decode_cabac_mb_mvd( h, list, index, 0 );
|
|
my = mpy + decode_cabac_mb_mvd( h, list, index, 1 );
|
|
tprintf(s->avctx, "final mv:%d %d\n", mx, my);
|
|
|
|
if(IS_SUB_8X8(sub_mb_type)){
|
|
mv_cache[ 1 ][0]=
|
|
mv_cache[ 8 ][0]= mv_cache[ 9 ][0]= mx;
|
|
mv_cache[ 1 ][1]=
|
|
mv_cache[ 8 ][1]= mv_cache[ 9 ][1]= my;
|
|
|
|
mvd_cache[ 1 ][0]=
|
|
mvd_cache[ 8 ][0]= mvd_cache[ 9 ][0]= mx - mpx;
|
|
mvd_cache[ 1 ][1]=
|
|
mvd_cache[ 8 ][1]= mvd_cache[ 9 ][1]= my - mpy;
|
|
}else if(IS_SUB_8X4(sub_mb_type)){
|
|
mv_cache[ 1 ][0]= mx;
|
|
mv_cache[ 1 ][1]= my;
|
|
|
|
mvd_cache[ 1 ][0]= mx - mpx;
|
|
mvd_cache[ 1 ][1]= my - mpy;
|
|
}else if(IS_SUB_4X8(sub_mb_type)){
|
|
mv_cache[ 8 ][0]= mx;
|
|
mv_cache[ 8 ][1]= my;
|
|
|
|
mvd_cache[ 8 ][0]= mx - mpx;
|
|
mvd_cache[ 8 ][1]= my - mpy;
|
|
}
|
|
mv_cache[ 0 ][0]= mx;
|
|
mv_cache[ 0 ][1]= my;
|
|
|
|
mvd_cache[ 0 ][0]= mx - mpx;
|
|
mvd_cache[ 0 ][1]= my - mpy;
|
|
}
|
|
}else{
|
|
uint32_t *p= (uint32_t *)&h->mv_cache[list][ scan8[4*i] ][0];
|
|
uint32_t *pd= (uint32_t *)&h->mvd_cache[list][ scan8[4*i] ][0];
|
|
p[0] = p[1] = p[8] = p[9] = 0;
|
|
pd[0]= pd[1]= pd[8]= pd[9]= 0;
|
|
}
|
|
}
|
|
}
|
|
} else if( IS_DIRECT(mb_type) ) {
|
|
pred_direct_motion(h, &mb_type);
|
|
fill_rectangle(h->mvd_cache[0][scan8[0]], 4, 4, 8, 0, 4);
|
|
fill_rectangle(h->mvd_cache[1][scan8[0]], 4, 4, 8, 0, 4);
|
|
dct8x8_allowed &= h->sps.direct_8x8_inference_flag;
|
|
} else {
|
|
int list, mx, my, i, mpx, mpy;
|
|
if(IS_16X16(mb_type)){
|
|
for(list=0; list<h->list_count; list++){
|
|
if(IS_DIR(mb_type, 0, list)){
|
|
const int ref = h->ref_count[list] > 1 ? decode_cabac_mb_ref( h, list, 0 ) : 0;
|
|
fill_rectangle(&h->ref_cache[list][ scan8[0] ], 4, 4, 8, ref, 1);
|
|
}else
|
|
fill_rectangle(&h->ref_cache[list][ scan8[0] ], 4, 4, 8, (uint8_t)LIST_NOT_USED, 1); //FIXME factorize and the other fill_rect below too
|
|
}
|
|
for(list=0; list<h->list_count; list++){
|
|
if(IS_DIR(mb_type, 0, list)){
|
|
pred_motion(h, 0, 4, list, h->ref_cache[list][ scan8[0] ], &mpx, &mpy);
|
|
|
|
mx = mpx + decode_cabac_mb_mvd( h, list, 0, 0 );
|
|
my = mpy + decode_cabac_mb_mvd( h, list, 0, 1 );
|
|
tprintf(s->avctx, "final mv:%d %d\n", mx, my);
|
|
|
|
fill_rectangle(h->mvd_cache[list][ scan8[0] ], 4, 4, 8, pack16to32(mx-mpx,my-mpy), 4);
|
|
fill_rectangle(h->mv_cache[list][ scan8[0] ], 4, 4, 8, pack16to32(mx,my), 4);
|
|
}else
|
|
fill_rectangle(h->mv_cache[list][ scan8[0] ], 4, 4, 8, 0, 4);
|
|
}
|
|
}
|
|
else if(IS_16X8(mb_type)){
|
|
for(list=0; list<h->list_count; list++){
|
|
for(i=0; i<2; i++){
|
|
if(IS_DIR(mb_type, i, list)){
|
|
const int ref= h->ref_count[list] > 1 ? decode_cabac_mb_ref( h, list, 8*i ) : 0;
|
|
fill_rectangle(&h->ref_cache[list][ scan8[0] + 16*i ], 4, 2, 8, ref, 1);
|
|
}else
|
|
fill_rectangle(&h->ref_cache[list][ scan8[0] + 16*i ], 4, 2, 8, (LIST_NOT_USED&0xFF), 1);
|
|
}
|
|
}
|
|
for(list=0; list<h->list_count; list++){
|
|
for(i=0; i<2; i++){
|
|
if(IS_DIR(mb_type, i, list)){
|
|
pred_16x8_motion(h, 8*i, list, h->ref_cache[list][scan8[0] + 16*i], &mpx, &mpy);
|
|
mx = mpx + decode_cabac_mb_mvd( h, list, 8*i, 0 );
|
|
my = mpy + decode_cabac_mb_mvd( h, list, 8*i, 1 );
|
|
tprintf(s->avctx, "final mv:%d %d\n", mx, my);
|
|
|
|
fill_rectangle(h->mvd_cache[list][ scan8[0] + 16*i ], 4, 2, 8, pack16to32(mx-mpx,my-mpy), 4);
|
|
fill_rectangle(h->mv_cache[list][ scan8[0] + 16*i ], 4, 2, 8, pack16to32(mx,my), 4);
|
|
}else{
|
|
fill_rectangle(h->mvd_cache[list][ scan8[0] + 16*i ], 4, 2, 8, 0, 4);
|
|
fill_rectangle(h-> mv_cache[list][ scan8[0] + 16*i ], 4, 2, 8, 0, 4);
|
|
}
|
|
}
|
|
}
|
|
}else{
|
|
assert(IS_8X16(mb_type));
|
|
for(list=0; list<h->list_count; list++){
|
|
for(i=0; i<2; i++){
|
|
if(IS_DIR(mb_type, i, list)){ //FIXME optimize
|
|
const int ref= h->ref_count[list] > 1 ? decode_cabac_mb_ref( h, list, 4*i ) : 0;
|
|
fill_rectangle(&h->ref_cache[list][ scan8[0] + 2*i ], 2, 4, 8, ref, 1);
|
|
}else
|
|
fill_rectangle(&h->ref_cache[list][ scan8[0] + 2*i ], 2, 4, 8, (LIST_NOT_USED&0xFF), 1);
|
|
}
|
|
}
|
|
for(list=0; list<h->list_count; list++){
|
|
for(i=0; i<2; i++){
|
|
if(IS_DIR(mb_type, i, list)){
|
|
pred_8x16_motion(h, i*4, list, h->ref_cache[list][ scan8[0] + 2*i ], &mpx, &mpy);
|
|
mx = mpx + decode_cabac_mb_mvd( h, list, 4*i, 0 );
|
|
my = mpy + decode_cabac_mb_mvd( h, list, 4*i, 1 );
|
|
|
|
tprintf(s->avctx, "final mv:%d %d\n", mx, my);
|
|
fill_rectangle(h->mvd_cache[list][ scan8[0] + 2*i ], 2, 4, 8, pack16to32(mx-mpx,my-mpy), 4);
|
|
fill_rectangle(h->mv_cache[list][ scan8[0] + 2*i ], 2, 4, 8, pack16to32(mx,my), 4);
|
|
}else{
|
|
fill_rectangle(h->mvd_cache[list][ scan8[0] + 2*i ], 2, 4, 8, 0, 4);
|
|
fill_rectangle(h-> mv_cache[list][ scan8[0] + 2*i ], 2, 4, 8, 0, 4);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if( IS_INTER( mb_type ) ) {
|
|
h->chroma_pred_mode_table[mb_xy] = 0;
|
|
write_back_motion( h, mb_type );
|
|
}
|
|
|
|
if( !IS_INTRA16x16( mb_type ) ) {
|
|
cbp = decode_cabac_mb_cbp_luma( h );
|
|
cbp |= decode_cabac_mb_cbp_chroma( h ) << 4;
|
|
}
|
|
|
|
h->cbp_table[mb_xy] = h->cbp = cbp;
|
|
|
|
if( dct8x8_allowed && (cbp&15) && !IS_INTRA( mb_type ) ) {
|
|
if( decode_cabac_mb_transform_size( h ) )
|
|
mb_type |= MB_TYPE_8x8DCT;
|
|
}
|
|
s->current_picture.mb_type[mb_xy]= mb_type;
|
|
|
|
if( cbp || IS_INTRA16x16( mb_type ) ) {
|
|
const uint8_t *scan, *scan8x8, *dc_scan;
|
|
const uint32_t *qmul;
|
|
int dqp;
|
|
|
|
if(IS_INTERLACED(mb_type)){
|
|
scan8x8= s->qscale ? h->field_scan8x8 : h->field_scan8x8_q0;
|
|
scan= s->qscale ? h->field_scan : h->field_scan_q0;
|
|
dc_scan= luma_dc_field_scan;
|
|
}else{
|
|
scan8x8= s->qscale ? h->zigzag_scan8x8 : h->zigzag_scan8x8_q0;
|
|
scan= s->qscale ? h->zigzag_scan : h->zigzag_scan_q0;
|
|
dc_scan= luma_dc_zigzag_scan;
|
|
}
|
|
|
|
h->last_qscale_diff = dqp = decode_cabac_mb_dqp( h );
|
|
if( dqp == INT_MIN ){
|
|
av_log(h->s.avctx, AV_LOG_ERROR, "cabac decode of qscale diff failed at %d %d\n", s->mb_x, s->mb_y);
|
|
return -1;
|
|
}
|
|
s->qscale += dqp;
|
|
if(((unsigned)s->qscale) > 51){
|
|
if(s->qscale<0) s->qscale+= 52;
|
|
else s->qscale-= 52;
|
|
}
|
|
h->chroma_qp[0] = get_chroma_qp(h, 0, s->qscale);
|
|
h->chroma_qp[1] = get_chroma_qp(h, 1, s->qscale);
|
|
|
|
if( IS_INTRA16x16( mb_type ) ) {
|
|
int i;
|
|
//av_log( s->avctx, AV_LOG_ERROR, "INTRA16x16 DC\n" );
|
|
decode_cabac_residual( h, h->mb, 0, 0, dc_scan, NULL, 16);
|
|
|
|
if( cbp&15 ) {
|
|
qmul = h->dequant4_coeff[0][s->qscale];
|
|
for( i = 0; i < 16; i++ ) {
|
|
//av_log( s->avctx, AV_LOG_ERROR, "INTRA16x16 AC:%d\n", i );
|
|
decode_cabac_residual(h, h->mb + 16*i, 1, i, scan + 1, qmul, 15);
|
|
}
|
|
} else {
|
|
fill_rectangle(&h->non_zero_count_cache[scan8[0]], 4, 4, 8, 0, 1);
|
|
}
|
|
} else {
|
|
int i8x8, i4x4;
|
|
for( i8x8 = 0; i8x8 < 4; i8x8++ ) {
|
|
if( cbp & (1<<i8x8) ) {
|
|
if( IS_8x8DCT(mb_type) ) {
|
|
decode_cabac_residual(h, h->mb + 64*i8x8, 5, 4*i8x8,
|
|
scan8x8, h->dequant8_coeff[IS_INTRA( mb_type ) ? 0:1][s->qscale], 64);
|
|
} else {
|
|
qmul = h->dequant4_coeff[IS_INTRA( mb_type ) ? 0:3][s->qscale];
|
|
for( i4x4 = 0; i4x4 < 4; i4x4++ ) {
|
|
const int index = 4*i8x8 + i4x4;
|
|
//av_log( s->avctx, AV_LOG_ERROR, "Luma4x4: %d\n", index );
|
|
//START_TIMER
|
|
decode_cabac_residual(h, h->mb + 16*index, 2, index, scan, qmul, 16);
|
|
//STOP_TIMER("decode_residual")
|
|
}
|
|
}
|
|
} else {
|
|
uint8_t * const nnz= &h->non_zero_count_cache[ scan8[4*i8x8] ];
|
|
nnz[0] = nnz[1] = nnz[8] = nnz[9] = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
if( cbp&0x30 ){
|
|
int c;
|
|
for( c = 0; c < 2; c++ ) {
|
|
//av_log( s->avctx, AV_LOG_ERROR, "INTRA C%d-DC\n",c );
|
|
decode_cabac_residual(h, h->mb + 256 + 16*4*c, 3, c, chroma_dc_scan, NULL, 4);
|
|
}
|
|
}
|
|
|
|
if( cbp&0x20 ) {
|
|
int c, i;
|
|
for( c = 0; c < 2; c++ ) {
|
|
qmul = h->dequant4_coeff[c+1+(IS_INTRA( mb_type ) ? 0:3)][h->chroma_qp[c]];
|
|
for( i = 0; i < 4; i++ ) {
|
|
const int index = 16 + 4 * c + i;
|
|
//av_log( s->avctx, AV_LOG_ERROR, "INTRA C%d-AC %d\n",c, index - 16 );
|
|
decode_cabac_residual(h, h->mb + 16*index, 4, index - 16, scan + 1, qmul, 15);
|
|
}
|
|
}
|
|
} else {
|
|
uint8_t * const nnz= &h->non_zero_count_cache[0];
|
|
nnz[ scan8[16]+0 ] = nnz[ scan8[16]+1 ] =nnz[ scan8[16]+8 ] =nnz[ scan8[16]+9 ] =
|
|
nnz[ scan8[20]+0 ] = nnz[ scan8[20]+1 ] =nnz[ scan8[20]+8 ] =nnz[ scan8[20]+9 ] = 0;
|
|
}
|
|
} else {
|
|
uint8_t * const nnz= &h->non_zero_count_cache[0];
|
|
fill_rectangle(&nnz[scan8[0]], 4, 4, 8, 0, 1);
|
|
nnz[ scan8[16]+0 ] = nnz[ scan8[16]+1 ] =nnz[ scan8[16]+8 ] =nnz[ scan8[16]+9 ] =
|
|
nnz[ scan8[20]+0 ] = nnz[ scan8[20]+1 ] =nnz[ scan8[20]+8 ] =nnz[ scan8[20]+9 ] = 0;
|
|
h->last_qscale_diff = 0;
|
|
}
|
|
|
|
s->current_picture.qscale_table[mb_xy]= s->qscale;
|
|
write_back_non_zero_count(h);
|
|
|
|
if(MB_MBAFF){
|
|
h->ref_count[0] >>= 1;
|
|
h->ref_count[1] >>= 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
static void filter_mb_edgev( H264Context *h, uint8_t *pix, int stride, int16_t bS[4], int qp ) {
|
|
int i, d;
|
|
const int index_a = qp + h->slice_alpha_c0_offset;
|
|
const int alpha = (alpha_table+52)[index_a];
|
|
const int beta = (beta_table+52)[qp + h->slice_beta_offset];
|
|
|
|
if( bS[0] < 4 ) {
|
|
int8_t tc[4];
|
|
for(i=0; i<4; i++)
|
|
tc[i] = bS[i] ? (tc0_table+52)[index_a][bS[i] - 1] : -1;
|
|
h->s.dsp.h264_h_loop_filter_luma(pix, stride, alpha, beta, tc);
|
|
} else {
|
|
/* 16px edge length, because bS=4 is triggered by being at
|
|
* the edge of an intra MB, so all 4 bS are the same */
|
|
for( d = 0; d < 16; d++ ) {
|
|
const int p0 = pix[-1];
|
|
const int p1 = pix[-2];
|
|
const int p2 = pix[-3];
|
|
|
|
const int q0 = pix[0];
|
|
const int q1 = pix[1];
|
|
const int q2 = pix[2];
|
|
|
|
if( FFABS( p0 - q0 ) < alpha &&
|
|
FFABS( p1 - p0 ) < beta &&
|
|
FFABS( q1 - q0 ) < beta ) {
|
|
|
|
if(FFABS( p0 - q0 ) < (( alpha >> 2 ) + 2 )){
|
|
if( FFABS( p2 - p0 ) < beta)
|
|
{
|
|
const int p3 = pix[-4];
|
|
/* p0', p1', p2' */
|
|
pix[-1] = ( p2 + 2*p1 + 2*p0 + 2*q0 + q1 + 4 ) >> 3;
|
|
pix[-2] = ( p2 + p1 + p0 + q0 + 2 ) >> 2;
|
|
pix[-3] = ( 2*p3 + 3*p2 + p1 + p0 + q0 + 4 ) >> 3;
|
|
} else {
|
|
/* p0' */
|
|
pix[-1] = ( 2*p1 + p0 + q1 + 2 ) >> 2;
|
|
}
|
|
if( FFABS( q2 - q0 ) < beta)
|
|
{
|
|
const int q3 = pix[3];
|
|
/* q0', q1', q2' */
|
|
pix[0] = ( p1 + 2*p0 + 2*q0 + 2*q1 + q2 + 4 ) >> 3;
|
|
pix[1] = ( p0 + q0 + q1 + q2 + 2 ) >> 2;
|
|
pix[2] = ( 2*q3 + 3*q2 + q1 + q0 + p0 + 4 ) >> 3;
|
|
} else {
|
|
/* q0' */
|
|
pix[0] = ( 2*q1 + q0 + p1 + 2 ) >> 2;
|
|
}
|
|
}else{
|
|
/* p0', q0' */
|
|
pix[-1] = ( 2*p1 + p0 + q1 + 2 ) >> 2;
|
|
pix[ 0] = ( 2*q1 + q0 + p1 + 2 ) >> 2;
|
|
}
|
|
tprintf(h->s.avctx, "filter_mb_edgev i:%d d:%d\n# bS:4 -> [%02x, %02x, %02x, %02x, %02x, %02x] =>[%02x, %02x, %02x, %02x]\n", i, d, p2, p1, p0, q0, q1, q2, pix[-2], pix[-1], pix[0], pix[1]);
|
|
}
|
|
pix += stride;
|
|
}
|
|
}
|
|
}
|
|
static void filter_mb_edgecv( H264Context *h, uint8_t *pix, int stride, int16_t bS[4], int qp ) {
|
|
int i;
|
|
const int index_a = qp + h->slice_alpha_c0_offset;
|
|
const int alpha = (alpha_table+52)[index_a];
|
|
const int beta = (beta_table+52)[qp + h->slice_beta_offset];
|
|
|
|
if( bS[0] < 4 ) {
|
|
int8_t tc[4];
|
|
for(i=0; i<4; i++)
|
|
tc[i] = bS[i] ? (tc0_table+52)[index_a][bS[i] - 1] + 1 : 0;
|
|
h->s.dsp.h264_h_loop_filter_chroma(pix, stride, alpha, beta, tc);
|
|
} else {
|
|
h->s.dsp.h264_h_loop_filter_chroma_intra(pix, stride, alpha, beta);
|
|
}
|
|
}
|
|
|
|
static void filter_mb_mbaff_edgev( H264Context *h, uint8_t *pix, int stride, int16_t bS[8], int qp[2] ) {
|
|
int i;
|
|
for( i = 0; i < 16; i++, pix += stride) {
|
|
int index_a;
|
|
int alpha;
|
|
int beta;
|
|
|
|
int qp_index;
|
|
int bS_index = (i >> 1);
|
|
if (!MB_FIELD) {
|
|
bS_index &= ~1;
|
|
bS_index |= (i & 1);
|
|
}
|
|
|
|
if( bS[bS_index] == 0 ) {
|
|
continue;
|
|
}
|
|
|
|
qp_index = MB_FIELD ? (i >> 3) : (i & 1);
|
|
index_a = qp[qp_index] + h->slice_alpha_c0_offset;
|
|
alpha = (alpha_table+52)[index_a];
|
|
beta = (beta_table+52)[qp[qp_index] + h->slice_beta_offset];
|
|
|
|
if( bS[bS_index] < 4 ) {
|
|
const int tc0 = (tc0_table+52)[index_a][bS[bS_index] - 1];
|
|
const int p0 = pix[-1];
|
|
const int p1 = pix[-2];
|
|
const int p2 = pix[-3];
|
|
const int q0 = pix[0];
|
|
const int q1 = pix[1];
|
|
const int q2 = pix[2];
|
|
|
|
if( FFABS( p0 - q0 ) < alpha &&
|
|
FFABS( p1 - p0 ) < beta &&
|
|
FFABS( q1 - q0 ) < beta ) {
|
|
int tc = tc0;
|
|
int i_delta;
|
|
|
|
if( FFABS( p2 - p0 ) < beta ) {
|
|
pix[-2] = p1 + av_clip( ( p2 + ( ( p0 + q0 + 1 ) >> 1 ) - ( p1 << 1 ) ) >> 1, -tc0, tc0 );
|
|
tc++;
|
|
}
|
|
if( FFABS( q2 - q0 ) < beta ) {
|
|
pix[1] = q1 + av_clip( ( q2 + ( ( p0 + q0 + 1 ) >> 1 ) - ( q1 << 1 ) ) >> 1, -tc0, tc0 );
|
|
tc++;
|
|
}
|
|
|
|
i_delta = av_clip( (((q0 - p0 ) << 2) + (p1 - q1) + 4) >> 3, -tc, tc );
|
|
pix[-1] = av_clip_uint8( p0 + i_delta ); /* p0' */
|
|
pix[0] = av_clip_uint8( q0 - i_delta ); /* q0' */
|
|
tprintf(h->s.avctx, "filter_mb_mbaff_edgev i:%d, qp:%d, indexA:%d, alpha:%d, beta:%d, tc:%d\n# bS:%d -> [%02x, %02x, %02x, %02x, %02x, %02x] =>[%02x, %02x, %02x, %02x]\n", i, qp[qp_index], index_a, alpha, beta, tc, bS[bS_index], pix[-3], p1, p0, q0, q1, pix[2], p1, pix[-1], pix[0], q1);
|
|
}
|
|
}else{
|
|
const int p0 = pix[-1];
|
|
const int p1 = pix[-2];
|
|
const int p2 = pix[-3];
|
|
|
|
const int q0 = pix[0];
|
|
const int q1 = pix[1];
|
|
const int q2 = pix[2];
|
|
|
|
if( FFABS( p0 - q0 ) < alpha &&
|
|
FFABS( p1 - p0 ) < beta &&
|
|
FFABS( q1 - q0 ) < beta ) {
|
|
|
|
if(FFABS( p0 - q0 ) < (( alpha >> 2 ) + 2 )){
|
|
if( FFABS( p2 - p0 ) < beta)
|
|
{
|
|
const int p3 = pix[-4];
|
|
/* p0', p1', p2' */
|
|
pix[-1] = ( p2 + 2*p1 + 2*p0 + 2*q0 + q1 + 4 ) >> 3;
|
|
pix[-2] = ( p2 + p1 + p0 + q0 + 2 ) >> 2;
|
|
pix[-3] = ( 2*p3 + 3*p2 + p1 + p0 + q0 + 4 ) >> 3;
|
|
} else {
|
|
/* p0' */
|
|
pix[-1] = ( 2*p1 + p0 + q1 + 2 ) >> 2;
|
|
}
|
|
if( FFABS( q2 - q0 ) < beta)
|
|
{
|
|
const int q3 = pix[3];
|
|
/* q0', q1', q2' */
|
|
pix[0] = ( p1 + 2*p0 + 2*q0 + 2*q1 + q2 + 4 ) >> 3;
|
|
pix[1] = ( p0 + q0 + q1 + q2 + 2 ) >> 2;
|
|
pix[2] = ( 2*q3 + 3*q2 + q1 + q0 + p0 + 4 ) >> 3;
|
|
} else {
|
|
/* q0' */
|
|
pix[0] = ( 2*q1 + q0 + p1 + 2 ) >> 2;
|
|
}
|
|
}else{
|
|
/* p0', q0' */
|
|
pix[-1] = ( 2*p1 + p0 + q1 + 2 ) >> 2;
|
|
pix[ 0] = ( 2*q1 + q0 + p1 + 2 ) >> 2;
|
|
}
|
|
tprintf(h->s.avctx, "filter_mb_mbaff_edgev i:%d, qp:%d, indexA:%d, alpha:%d, beta:%d\n# bS:4 -> [%02x, %02x, %02x, %02x, %02x, %02x] =>[%02x, %02x, %02x, %02x, %02x, %02x]\n", i, qp[qp_index], index_a, alpha, beta, p2, p1, p0, q0, q1, q2, pix[-3], pix[-2], pix[-1], pix[0], pix[1], pix[2]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
static void filter_mb_mbaff_edgecv( H264Context *h, uint8_t *pix, int stride, int16_t bS[8], int qp[2] ) {
|
|
int i;
|
|
for( i = 0; i < 8; i++, pix += stride) {
|
|
int index_a;
|
|
int alpha;
|
|
int beta;
|
|
|
|
int qp_index;
|
|
int bS_index = i;
|
|
|
|
if( bS[bS_index] == 0 ) {
|
|
continue;
|
|
}
|
|
|
|
qp_index = MB_FIELD ? (i >> 2) : (i & 1);
|
|
index_a = qp[qp_index] + h->slice_alpha_c0_offset;
|
|
alpha = (alpha_table+52)[index_a];
|
|
beta = (beta_table+52)[qp[qp_index] + h->slice_beta_offset];
|
|
|
|
if( bS[bS_index] < 4 ) {
|
|
const int tc = (tc0_table+52)[index_a][bS[bS_index] - 1] + 1;
|
|
const int p0 = pix[-1];
|
|
const int p1 = pix[-2];
|
|
const int q0 = pix[0];
|
|
const int q1 = pix[1];
|
|
|
|
if( FFABS( p0 - q0 ) < alpha &&
|
|
FFABS( p1 - p0 ) < beta &&
|
|
FFABS( q1 - q0 ) < beta ) {
|
|
const int i_delta = av_clip( (((q0 - p0 ) << 2) + (p1 - q1) + 4) >> 3, -tc, tc );
|
|
|
|
pix[-1] = av_clip_uint8( p0 + i_delta ); /* p0' */
|
|
pix[0] = av_clip_uint8( q0 - i_delta ); /* q0' */
|
|
tprintf(h->s.avctx, "filter_mb_mbaff_edgecv i:%d, qp:%d, indexA:%d, alpha:%d, beta:%d, tc:%d\n# bS:%d -> [%02x, %02x, %02x, %02x, %02x, %02x] =>[%02x, %02x, %02x, %02x]\n", i, qp[qp_index], index_a, alpha, beta, tc, bS[bS_index], pix[-3], p1, p0, q0, q1, pix[2], p1, pix[-1], pix[0], q1);
|
|
}
|
|
}else{
|
|
const int p0 = pix[-1];
|
|
const int p1 = pix[-2];
|
|
const int q0 = pix[0];
|
|
const int q1 = pix[1];
|
|
|
|
if( FFABS( p0 - q0 ) < alpha &&
|
|
FFABS( p1 - p0 ) < beta &&
|
|
FFABS( q1 - q0 ) < beta ) {
|
|
|
|
pix[-1] = ( 2*p1 + p0 + q1 + 2 ) >> 2; /* p0' */
|
|
pix[0] = ( 2*q1 + q0 + p1 + 2 ) >> 2; /* q0' */
|
|
tprintf(h->s.avctx, "filter_mb_mbaff_edgecv i:%d\n# bS:4 -> [%02x, %02x, %02x, %02x, %02x, %02x] =>[%02x, %02x, %02x, %02x, %02x, %02x]\n", i, pix[-3], p1, p0, q0, q1, pix[2], pix[-3], pix[-2], pix[-1], pix[0], pix[1], pix[2]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void filter_mb_edgeh( H264Context *h, uint8_t *pix, int stride, int16_t bS[4], int qp ) {
|
|
int i, d;
|
|
const int index_a = qp + h->slice_alpha_c0_offset;
|
|
const int alpha = (alpha_table+52)[index_a];
|
|
const int beta = (beta_table+52)[qp + h->slice_beta_offset];
|
|
const int pix_next = stride;
|
|
|
|
if( bS[0] < 4 ) {
|
|
int8_t tc[4];
|
|
for(i=0; i<4; i++)
|
|
tc[i] = bS[i] ? (tc0_table+52)[index_a][bS[i] - 1] : -1;
|
|
h->s.dsp.h264_v_loop_filter_luma(pix, stride, alpha, beta, tc);
|
|
} else {
|
|
/* 16px edge length, see filter_mb_edgev */
|
|
for( d = 0; d < 16; d++ ) {
|
|
const int p0 = pix[-1*pix_next];
|
|
const int p1 = pix[-2*pix_next];
|
|
const int p2 = pix[-3*pix_next];
|
|
const int q0 = pix[0];
|
|
const int q1 = pix[1*pix_next];
|
|
const int q2 = pix[2*pix_next];
|
|
|
|
if( FFABS( p0 - q0 ) < alpha &&
|
|
FFABS( p1 - p0 ) < beta &&
|
|
FFABS( q1 - q0 ) < beta ) {
|
|
|
|
const int p3 = pix[-4*pix_next];
|
|
const int q3 = pix[ 3*pix_next];
|
|
|
|
if(FFABS( p0 - q0 ) < (( alpha >> 2 ) + 2 )){
|
|
if( FFABS( p2 - p0 ) < beta) {
|
|
/* p0', p1', p2' */
|
|
pix[-1*pix_next] = ( p2 + 2*p1 + 2*p0 + 2*q0 + q1 + 4 ) >> 3;
|
|
pix[-2*pix_next] = ( p2 + p1 + p0 + q0 + 2 ) >> 2;
|
|
pix[-3*pix_next] = ( 2*p3 + 3*p2 + p1 + p0 + q0 + 4 ) >> 3;
|
|
} else {
|
|
/* p0' */
|
|
pix[-1*pix_next] = ( 2*p1 + p0 + q1 + 2 ) >> 2;
|
|
}
|
|
if( FFABS( q2 - q0 ) < beta) {
|
|
/* q0', q1', q2' */
|
|
pix[0*pix_next] = ( p1 + 2*p0 + 2*q0 + 2*q1 + q2 + 4 ) >> 3;
|
|
pix[1*pix_next] = ( p0 + q0 + q1 + q2 + 2 ) >> 2;
|
|
pix[2*pix_next] = ( 2*q3 + 3*q2 + q1 + q0 + p0 + 4 ) >> 3;
|
|
} else {
|
|
/* q0' */
|
|
pix[0*pix_next] = ( 2*q1 + q0 + p1 + 2 ) >> 2;
|
|
}
|
|
}else{
|
|
/* p0', q0' */
|
|
pix[-1*pix_next] = ( 2*p1 + p0 + q1 + 2 ) >> 2;
|
|
pix[ 0*pix_next] = ( 2*q1 + q0 + p1 + 2 ) >> 2;
|
|
}
|
|
tprintf(h->s.avctx, "filter_mb_edgeh i:%d d:%d, qp:%d, indexA:%d, alpha:%d, beta:%d\n# bS:%d -> [%02x, %02x, %02x, %02x, %02x, %02x] =>[%02x, %02x, %02x, %02x]\n", i, d, qp, index_a, alpha, beta, bS[i], p2, p1, p0, q0, q1, q2, pix[-2*pix_next], pix[-pix_next], pix[0], pix[pix_next]);
|
|
}
|
|
pix++;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void filter_mb_edgech( H264Context *h, uint8_t *pix, int stride, int16_t bS[4], int qp ) {
|
|
int i;
|
|
const int index_a = qp + h->slice_alpha_c0_offset;
|
|
const int alpha = (alpha_table+52)[index_a];
|
|
const int beta = (beta_table+52)[qp + h->slice_beta_offset];
|
|
|
|
if( bS[0] < 4 ) {
|
|
int8_t tc[4];
|
|
for(i=0; i<4; i++)
|
|
tc[i] = bS[i] ? (tc0_table+52)[index_a][bS[i] - 1] + 1 : 0;
|
|
h->s.dsp.h264_v_loop_filter_chroma(pix, stride, alpha, beta, tc);
|
|
} else {
|
|
h->s.dsp.h264_v_loop_filter_chroma_intra(pix, stride, alpha, beta);
|
|
}
|
|
}
|
|
|
|
static void filter_mb_fast( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize) {
|
|
MpegEncContext * const s = &h->s;
|
|
int mb_y_firstrow = s->picture_structure == PICT_BOTTOM_FIELD;
|
|
int mb_xy, mb_type;
|
|
int qp, qp0, qp1, qpc, qpc0, qpc1, qp_thresh;
|
|
|
|
mb_xy = h->mb_xy;
|
|
|
|
if(mb_x==0 || mb_y==mb_y_firstrow || !s->dsp.h264_loop_filter_strength || h->pps.chroma_qp_diff ||
|
|
(h->deblocking_filter == 2 && (h->slice_table[mb_xy] != h->slice_table[h->top_mb_xy] ||
|
|
h->slice_table[mb_xy] != h->slice_table[mb_xy - 1]))) {
|
|
filter_mb(h, mb_x, mb_y, img_y, img_cb, img_cr, linesize, uvlinesize);
|
|
return;
|
|
}
|
|
assert(!FRAME_MBAFF);
|
|
|
|
mb_type = s->current_picture.mb_type[mb_xy];
|
|
qp = s->current_picture.qscale_table[mb_xy];
|
|
qp0 = s->current_picture.qscale_table[mb_xy-1];
|
|
qp1 = s->current_picture.qscale_table[h->top_mb_xy];
|
|
qpc = get_chroma_qp( h, 0, qp );
|
|
qpc0 = get_chroma_qp( h, 0, qp0 );
|
|
qpc1 = get_chroma_qp( h, 0, qp1 );
|
|
qp0 = (qp + qp0 + 1) >> 1;
|
|
qp1 = (qp + qp1 + 1) >> 1;
|
|
qpc0 = (qpc + qpc0 + 1) >> 1;
|
|
qpc1 = (qpc + qpc1 + 1) >> 1;
|
|
qp_thresh = 15 - h->slice_alpha_c0_offset;
|
|
if(qp <= qp_thresh && qp0 <= qp_thresh && qp1 <= qp_thresh &&
|
|
qpc <= qp_thresh && qpc0 <= qp_thresh && qpc1 <= qp_thresh)
|
|
return;
|
|
|
|
if( IS_INTRA(mb_type) ) {
|
|
int16_t bS4[4] = {4,4,4,4};
|
|
int16_t bS3[4] = {3,3,3,3};
|
|
int16_t *bSH = FIELD_PICTURE ? bS3 : bS4;
|
|
if( IS_8x8DCT(mb_type) ) {
|
|
filter_mb_edgev( h, &img_y[4*0], linesize, bS4, qp0 );
|
|
filter_mb_edgev( h, &img_y[4*2], linesize, bS3, qp );
|
|
filter_mb_edgeh( h, &img_y[4*0*linesize], linesize, bSH, qp1 );
|
|
filter_mb_edgeh( h, &img_y[4*2*linesize], linesize, bS3, qp );
|
|
} else {
|
|
filter_mb_edgev( h, &img_y[4*0], linesize, bS4, qp0 );
|
|
filter_mb_edgev( h, &img_y[4*1], linesize, bS3, qp );
|
|
filter_mb_edgev( h, &img_y[4*2], linesize, bS3, qp );
|
|
filter_mb_edgev( h, &img_y[4*3], linesize, bS3, qp );
|
|
filter_mb_edgeh( h, &img_y[4*0*linesize], linesize, bSH, qp1 );
|
|
filter_mb_edgeh( h, &img_y[4*1*linesize], linesize, bS3, qp );
|
|
filter_mb_edgeh( h, &img_y[4*2*linesize], linesize, bS3, qp );
|
|
filter_mb_edgeh( h, &img_y[4*3*linesize], linesize, bS3, qp );
|
|
}
|
|
filter_mb_edgecv( h, &img_cb[2*0], uvlinesize, bS4, qpc0 );
|
|
filter_mb_edgecv( h, &img_cb[2*2], uvlinesize, bS3, qpc );
|
|
filter_mb_edgecv( h, &img_cr[2*0], uvlinesize, bS4, qpc0 );
|
|
filter_mb_edgecv( h, &img_cr[2*2], uvlinesize, bS3, qpc );
|
|
filter_mb_edgech( h, &img_cb[2*0*uvlinesize], uvlinesize, bSH, qpc1 );
|
|
filter_mb_edgech( h, &img_cb[2*2*uvlinesize], uvlinesize, bS3, qpc );
|
|
filter_mb_edgech( h, &img_cr[2*0*uvlinesize], uvlinesize, bSH, qpc1 );
|
|
filter_mb_edgech( h, &img_cr[2*2*uvlinesize], uvlinesize, bS3, qpc );
|
|
return;
|
|
} else {
|
|
DECLARE_ALIGNED_8(int16_t, bS[2][4][4]);
|
|
uint64_t (*bSv)[4] = (uint64_t(*)[4])bS;
|
|
int edges;
|
|
if( IS_8x8DCT(mb_type) && (h->cbp&7) == 7 ) {
|
|
edges = 4;
|
|
bSv[0][0] = bSv[0][2] = bSv[1][0] = bSv[1][2] = 0x0002000200020002ULL;
|
|
} else {
|
|
int mask_edge1 = (mb_type & (MB_TYPE_16x16 | MB_TYPE_8x16)) ? 3 :
|
|
(mb_type & MB_TYPE_16x8) ? 1 : 0;
|
|
int mask_edge0 = (mb_type & (MB_TYPE_16x16 | MB_TYPE_8x16))
|
|
&& (s->current_picture.mb_type[mb_xy-1] & (MB_TYPE_16x16 | MB_TYPE_8x16))
|
|
? 3 : 0;
|
|
int step = IS_8x8DCT(mb_type) ? 2 : 1;
|
|
edges = (mb_type & MB_TYPE_16x16) && !(h->cbp & 15) ? 1 : 4;
|
|
s->dsp.h264_loop_filter_strength( bS, h->non_zero_count_cache, h->ref_cache, h->mv_cache,
|
|
(h->slice_type == FF_B_TYPE), edges, step, mask_edge0, mask_edge1 );
|
|
}
|
|
if( IS_INTRA(s->current_picture.mb_type[mb_xy-1]) )
|
|
bSv[0][0] = 0x0004000400040004ULL;
|
|
if( IS_INTRA(s->current_picture.mb_type[h->top_mb_xy]) )
|
|
bSv[1][0] = FIELD_PICTURE ? 0x0003000300030003ULL : 0x0004000400040004ULL;
|
|
|
|
#define FILTER(hv,dir,edge)\
|
|
if(bSv[dir][edge]) {\
|
|
filter_mb_edge##hv( h, &img_y[4*edge*(dir?linesize:1)], linesize, bS[dir][edge], edge ? qp : qp##dir );\
|
|
if(!(edge&1)) {\
|
|
filter_mb_edgec##hv( h, &img_cb[2*edge*(dir?uvlinesize:1)], uvlinesize, bS[dir][edge], edge ? qpc : qpc##dir );\
|
|
filter_mb_edgec##hv( h, &img_cr[2*edge*(dir?uvlinesize:1)], uvlinesize, bS[dir][edge], edge ? qpc : qpc##dir );\
|
|
}\
|
|
}
|
|
if( edges == 1 ) {
|
|
FILTER(v,0,0);
|
|
FILTER(h,1,0);
|
|
} else if( IS_8x8DCT(mb_type) ) {
|
|
FILTER(v,0,0);
|
|
FILTER(v,0,2);
|
|
FILTER(h,1,0);
|
|
FILTER(h,1,2);
|
|
} else {
|
|
FILTER(v,0,0);
|
|
FILTER(v,0,1);
|
|
FILTER(v,0,2);
|
|
FILTER(v,0,3);
|
|
FILTER(h,1,0);
|
|
FILTER(h,1,1);
|
|
FILTER(h,1,2);
|
|
FILTER(h,1,3);
|
|
}
|
|
#undef FILTER
|
|
}
|
|
}
|
|
|
|
static void filter_mb( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize) {
|
|
MpegEncContext * const s = &h->s;
|
|
const int mb_xy= mb_x + mb_y*s->mb_stride;
|
|
const int mb_type = s->current_picture.mb_type[mb_xy];
|
|
const int mvy_limit = IS_INTERLACED(mb_type) ? 2 : 4;
|
|
int first_vertical_edge_done = 0;
|
|
int dir;
|
|
/* FIXME: A given frame may occupy more than one position in
|
|
* the reference list. So ref2frm should be populated with
|
|
* frame numbers, not indexes. */
|
|
static const int ref2frm[34] = {-1,-1,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,
|
|
16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31};
|
|
|
|
//for sufficiently low qp, filtering wouldn't do anything
|
|
//this is a conservative estimate: could also check beta_offset and more accurate chroma_qp
|
|
if(!FRAME_MBAFF){
|
|
int qp_thresh = 15 - h->slice_alpha_c0_offset - FFMAX3(0, h->pps.chroma_qp_index_offset[0], h->pps.chroma_qp_index_offset[1]);
|
|
int qp = s->current_picture.qscale_table[mb_xy];
|
|
if(qp <= qp_thresh
|
|
&& (mb_x == 0 || ((qp + s->current_picture.qscale_table[mb_xy-1] + 1)>>1) <= qp_thresh)
|
|
&& (mb_y == 0 || ((qp + s->current_picture.qscale_table[h->top_mb_xy] + 1)>>1) <= qp_thresh)){
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (FRAME_MBAFF
|
|
// left mb is in picture
|
|
&& h->slice_table[mb_xy-1] != 255
|
|
// and current and left pair do not have the same interlaced type
|
|
&& (IS_INTERLACED(mb_type) != IS_INTERLACED(s->current_picture.mb_type[mb_xy-1]))
|
|
// and left mb is in the same slice if deblocking_filter == 2
|
|
&& (h->deblocking_filter!=2 || h->slice_table[mb_xy-1] == h->slice_table[mb_xy])) {
|
|
/* First vertical edge is different in MBAFF frames
|
|
* There are 8 different bS to compute and 2 different Qp
|
|
*/
|
|
const int pair_xy = mb_x + (mb_y&~1)*s->mb_stride;
|
|
const int left_mb_xy[2] = { pair_xy-1, pair_xy-1+s->mb_stride };
|
|
int16_t bS[8];
|
|
int qp[2];
|
|
int bqp[2];
|
|
int rqp[2];
|
|
int mb_qp, mbn0_qp, mbn1_qp;
|
|
int i;
|
|
first_vertical_edge_done = 1;
|
|
|
|
if( IS_INTRA(mb_type) )
|
|
bS[0] = bS[1] = bS[2] = bS[3] = bS[4] = bS[5] = bS[6] = bS[7] = 4;
|
|
else {
|
|
for( i = 0; i < 8; i++ ) {
|
|
int mbn_xy = MB_FIELD ? left_mb_xy[i>>2] : left_mb_xy[i&1];
|
|
|
|
if( IS_INTRA( s->current_picture.mb_type[mbn_xy] ) )
|
|
bS[i] = 4;
|
|
else if( h->non_zero_count_cache[12+8*(i>>1)] != 0 ||
|
|
/* FIXME: with 8x8dct + cavlc, should check cbp instead of nnz */
|
|
h->non_zero_count[mbn_xy][MB_FIELD ? i&3 : (i>>2)+(mb_y&1)*2] )
|
|
bS[i] = 2;
|
|
else
|
|
bS[i] = 1;
|
|
}
|
|
}
|
|
|
|
mb_qp = s->current_picture.qscale_table[mb_xy];
|
|
mbn0_qp = s->current_picture.qscale_table[left_mb_xy[0]];
|
|
mbn1_qp = s->current_picture.qscale_table[left_mb_xy[1]];
|
|
qp[0] = ( mb_qp + mbn0_qp + 1 ) >> 1;
|
|
bqp[0] = ( get_chroma_qp( h, 0, mb_qp ) +
|
|
get_chroma_qp( h, 0, mbn0_qp ) + 1 ) >> 1;
|
|
rqp[0] = ( get_chroma_qp( h, 1, mb_qp ) +
|
|
get_chroma_qp( h, 1, mbn0_qp ) + 1 ) >> 1;
|
|
qp[1] = ( mb_qp + mbn1_qp + 1 ) >> 1;
|
|
bqp[1] = ( get_chroma_qp( h, 0, mb_qp ) +
|
|
get_chroma_qp( h, 0, mbn1_qp ) + 1 ) >> 1;
|
|
rqp[1] = ( get_chroma_qp( h, 1, mb_qp ) +
|
|
get_chroma_qp( h, 1, mbn1_qp ) + 1 ) >> 1;
|
|
|
|
/* Filter edge */
|
|
tprintf(s->avctx, "filter mb:%d/%d MBAFF, QPy:%d/%d, QPb:%d/%d QPr:%d/%d ls:%d uvls:%d", mb_x, mb_y, qp[0], qp[1], bqp[0], bqp[1], rqp[0], rqp[1], linesize, uvlinesize);
|
|
{ int i; for (i = 0; i < 8; i++) tprintf(s->avctx, " bS[%d]:%d", i, bS[i]); tprintf(s->avctx, "\n"); }
|
|
filter_mb_mbaff_edgev ( h, &img_y [0], linesize, bS, qp );
|
|
filter_mb_mbaff_edgecv( h, &img_cb[0], uvlinesize, bS, bqp );
|
|
filter_mb_mbaff_edgecv( h, &img_cr[0], uvlinesize, bS, rqp );
|
|
}
|
|
/* dir : 0 -> vertical edge, 1 -> horizontal edge */
|
|
for( dir = 0; dir < 2; dir++ )
|
|
{
|
|
int edge;
|
|
const int mbm_xy = dir == 0 ? mb_xy -1 : h->top_mb_xy;
|
|
const int mbm_type = s->current_picture.mb_type[mbm_xy];
|
|
int start = h->slice_table[mbm_xy] == 255 ? 1 : 0;
|
|
|
|
const int edges = (mb_type & (MB_TYPE_16x16|MB_TYPE_SKIP))
|
|
== (MB_TYPE_16x16|MB_TYPE_SKIP) ? 1 : 4;
|
|
// how often to recheck mv-based bS when iterating between edges
|
|
const int mask_edge = (mb_type & (MB_TYPE_16x16 | (MB_TYPE_16x8 << dir))) ? 3 :
|
|
(mb_type & (MB_TYPE_8x16 >> dir)) ? 1 : 0;
|
|
// how often to recheck mv-based bS when iterating along each edge
|
|
const int mask_par0 = mb_type & (MB_TYPE_16x16 | (MB_TYPE_8x16 >> dir));
|
|
|
|
if (first_vertical_edge_done) {
|
|
start = 1;
|
|
first_vertical_edge_done = 0;
|
|
}
|
|
|
|
if (h->deblocking_filter==2 && h->slice_table[mbm_xy] != h->slice_table[mb_xy])
|
|
start = 1;
|
|
|
|
if (FRAME_MBAFF && (dir == 1) && ((mb_y&1) == 0) && start == 0
|
|
&& !IS_INTERLACED(mb_type)
|
|
&& IS_INTERLACED(mbm_type)
|
|
) {
|
|
// This is a special case in the norm where the filtering must
|
|
// be done twice (one each of the field) even if we are in a
|
|
// frame macroblock.
|
|
//
|
|
static const int nnz_idx[4] = {4,5,6,3};
|
|
unsigned int tmp_linesize = 2 * linesize;
|
|
unsigned int tmp_uvlinesize = 2 * uvlinesize;
|
|
int mbn_xy = mb_xy - 2 * s->mb_stride;
|
|
int qp;
|
|
int i, j;
|
|
int16_t bS[4];
|
|
|
|
for(j=0; j<2; j++, mbn_xy += s->mb_stride){
|
|
if( IS_INTRA(mb_type) ||
|
|
IS_INTRA(s->current_picture.mb_type[mbn_xy]) ) {
|
|
bS[0] = bS[1] = bS[2] = bS[3] = 3;
|
|
} else {
|
|
const uint8_t *mbn_nnz = h->non_zero_count[mbn_xy];
|
|
for( i = 0; i < 4; i++ ) {
|
|
if( h->non_zero_count_cache[scan8[0]+i] != 0 ||
|
|
mbn_nnz[nnz_idx[i]] != 0 )
|
|
bS[i] = 2;
|
|
else
|
|
bS[i] = 1;
|
|
}
|
|
}
|
|
// Do not use s->qscale as luma quantizer because it has not the same
|
|
// value in IPCM macroblocks.
|
|
qp = ( s->current_picture.qscale_table[mb_xy] + s->current_picture.qscale_table[mbn_xy] + 1 ) >> 1;
|
|
tprintf(s->avctx, "filter mb:%d/%d dir:%d edge:%d, QPy:%d ls:%d uvls:%d", mb_x, mb_y, dir, edge, qp, tmp_linesize, tmp_uvlinesize);
|
|
{ int i; for (i = 0; i < 4; i++) tprintf(s->avctx, " bS[%d]:%d", i, bS[i]); tprintf(s->avctx, "\n"); }
|
|
filter_mb_edgeh( h, &img_y[j*linesize], tmp_linesize, bS, qp );
|
|
filter_mb_edgech( h, &img_cb[j*uvlinesize], tmp_uvlinesize, bS,
|
|
( h->chroma_qp[0] + get_chroma_qp( h, 0, s->current_picture.qscale_table[mbn_xy] ) + 1 ) >> 1);
|
|
filter_mb_edgech( h, &img_cr[j*uvlinesize], tmp_uvlinesize, bS,
|
|
( h->chroma_qp[1] + get_chroma_qp( h, 1, s->current_picture.qscale_table[mbn_xy] ) + 1 ) >> 1);
|
|
}
|
|
|
|
start = 1;
|
|
}
|
|
|
|
/* Calculate bS */
|
|
for( edge = start; edge < edges; edge++ ) {
|
|
/* mbn_xy: neighbor macroblock */
|
|
const int mbn_xy = edge > 0 ? mb_xy : mbm_xy;
|
|
const int mbn_type = s->current_picture.mb_type[mbn_xy];
|
|
int16_t bS[4];
|
|
int qp;
|
|
|
|
if( (edge&1) && IS_8x8DCT(mb_type) )
|
|
continue;
|
|
|
|
if( IS_INTRA(mb_type) ||
|
|
IS_INTRA(mbn_type) ) {
|
|
int value;
|
|
if (edge == 0) {
|
|
if ( (!IS_INTERLACED(mb_type) && !IS_INTERLACED(mbm_type))
|
|
|| ((FRAME_MBAFF || (s->picture_structure != PICT_FRAME)) && (dir == 0))
|
|
) {
|
|
value = 4;
|
|
} else {
|
|
value = 3;
|
|
}
|
|
} else {
|
|
value = 3;
|
|
}
|
|
bS[0] = bS[1] = bS[2] = bS[3] = value;
|
|
} else {
|
|
int i, l;
|
|
int mv_done;
|
|
|
|
if( edge & mask_edge ) {
|
|
bS[0] = bS[1] = bS[2] = bS[3] = 0;
|
|
mv_done = 1;
|
|
}
|
|
else if( FRAME_MBAFF && IS_INTERLACED(mb_type ^ mbn_type)) {
|
|
bS[0] = bS[1] = bS[2] = bS[3] = 1;
|
|
mv_done = 1;
|
|
}
|
|
else if( mask_par0 && (edge || (mbn_type & (MB_TYPE_16x16 | (MB_TYPE_8x16 >> dir)))) ) {
|
|
int b_idx= 8 + 4 + edge * (dir ? 8:1);
|
|
int bn_idx= b_idx - (dir ? 8:1);
|
|
int v = 0;
|
|
for( l = 0; !v && l < 1 + (h->slice_type == FF_B_TYPE); l++ ) {
|
|
v |= ref2frm[h->ref_cache[l][b_idx]+2] != ref2frm[h->ref_cache[l][bn_idx]+2] ||
|
|
FFABS( h->mv_cache[l][b_idx][0] - h->mv_cache[l][bn_idx][0] ) >= 4 ||
|
|
FFABS( h->mv_cache[l][b_idx][1] - h->mv_cache[l][bn_idx][1] ) >= mvy_limit;
|
|
}
|
|
bS[0] = bS[1] = bS[2] = bS[3] = v;
|
|
mv_done = 1;
|
|
}
|
|
else
|
|
mv_done = 0;
|
|
|
|
for( i = 0; i < 4; i++ ) {
|
|
int x = dir == 0 ? edge : i;
|
|
int y = dir == 0 ? i : edge;
|
|
int b_idx= 8 + 4 + x + 8*y;
|
|
int bn_idx= b_idx - (dir ? 8:1);
|
|
|
|
if( h->non_zero_count_cache[b_idx] != 0 ||
|
|
h->non_zero_count_cache[bn_idx] != 0 ) {
|
|
bS[i] = 2;
|
|
}
|
|
else if(!mv_done)
|
|
{
|
|
bS[i] = 0;
|
|
for( l = 0; l < 1 + (h->slice_type == FF_B_TYPE); l++ ) {
|
|
if( ref2frm[h->ref_cache[l][b_idx]+2] != ref2frm[h->ref_cache[l][bn_idx]+2] ||
|
|
FFABS( h->mv_cache[l][b_idx][0] - h->mv_cache[l][bn_idx][0] ) >= 4 ||
|
|
FFABS( h->mv_cache[l][b_idx][1] - h->mv_cache[l][bn_idx][1] ) >= mvy_limit ) {
|
|
bS[i] = 1;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if(bS[0]+bS[1]+bS[2]+bS[3] == 0)
|
|
continue;
|
|
}
|
|
|
|
/* Filter edge */
|
|
// Do not use s->qscale as luma quantizer because it has not the same
|
|
// value in IPCM macroblocks.
|
|
qp = ( s->current_picture.qscale_table[mb_xy] + s->current_picture.qscale_table[mbn_xy] + 1 ) >> 1;
|
|
//tprintf(s->avctx, "filter mb:%d/%d dir:%d edge:%d, QPy:%d, QPc:%d, QPcn:%d\n", mb_x, mb_y, dir, edge, qp, h->chroma_qp, s->current_picture.qscale_table[mbn_xy]);
|
|
tprintf(s->avctx, "filter mb:%d/%d dir:%d edge:%d, QPy:%d ls:%d uvls:%d", mb_x, mb_y, dir, edge, qp, linesize, uvlinesize);
|
|
{ int i; for (i = 0; i < 4; i++) tprintf(s->avctx, " bS[%d]:%d", i, bS[i]); tprintf(s->avctx, "\n"); }
|
|
if( dir == 0 ) {
|
|
filter_mb_edgev( h, &img_y[4*edge], linesize, bS, qp );
|
|
if( (edge&1) == 0 ) {
|
|
filter_mb_edgecv( h, &img_cb[2*edge], uvlinesize, bS,
|
|
( h->chroma_qp[0] + get_chroma_qp( h, 0, s->current_picture.qscale_table[mbn_xy] ) + 1 ) >> 1);
|
|
filter_mb_edgecv( h, &img_cr[2*edge], uvlinesize, bS,
|
|
( h->chroma_qp[1] + get_chroma_qp( h, 1, s->current_picture.qscale_table[mbn_xy] ) + 1 ) >> 1);
|
|
}
|
|
} else {
|
|
filter_mb_edgeh( h, &img_y[4*edge*linesize], linesize, bS, qp );
|
|
if( (edge&1) == 0 ) {
|
|
filter_mb_edgech( h, &img_cb[2*edge*uvlinesize], uvlinesize, bS,
|
|
( h->chroma_qp[0] + get_chroma_qp( h, 0, s->current_picture.qscale_table[mbn_xy] ) + 1 ) >> 1);
|
|
filter_mb_edgech( h, &img_cr[2*edge*uvlinesize], uvlinesize, bS,
|
|
( h->chroma_qp[1] + get_chroma_qp( h, 1, s->current_picture.qscale_table[mbn_xy] ) + 1 ) >> 1);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static int decode_slice(struct AVCodecContext *avctx, H264Context *h){
|
|
MpegEncContext * const s = &h->s;
|
|
const int part_mask= s->partitioned_frame ? (AC_END|AC_ERROR) : 0x7F;
|
|
|
|
s->mb_skip_run= -1;
|
|
|
|
if( h->pps.cabac ) {
|
|
int i;
|
|
|
|
/* realign */
|
|
align_get_bits( &s->gb );
|
|
|
|
/* init cabac */
|
|
ff_init_cabac_states( &h->cabac);
|
|
ff_init_cabac_decoder( &h->cabac,
|
|
s->gb.buffer + get_bits_count(&s->gb)/8,
|
|
( s->gb.size_in_bits - get_bits_count(&s->gb) + 7)/8);
|
|
/* calculate pre-state */
|
|
for( i= 0; i < 460; i++ ) {
|
|
int pre;
|
|
if( h->slice_type == FF_I_TYPE )
|
|
pre = av_clip( ((cabac_context_init_I[i][0] * s->qscale) >>4 ) + cabac_context_init_I[i][1], 1, 126 );
|
|
else
|
|
pre = av_clip( ((cabac_context_init_PB[h->cabac_init_idc][i][0] * s->qscale) >>4 ) + cabac_context_init_PB[h->cabac_init_idc][i][1], 1, 126 );
|
|
|
|
if( pre <= 63 )
|
|
h->cabac_state[i] = 2 * ( 63 - pre ) + 0;
|
|
else
|
|
h->cabac_state[i] = 2 * ( pre - 64 ) + 1;
|
|
}
|
|
|
|
for(;;){
|
|
//START_TIMER
|
|
int ret = decode_mb_cabac(h);
|
|
int eos;
|
|
//STOP_TIMER("decode_mb_cabac")
|
|
|
|
if(ret>=0) hl_decode_mb(h);
|
|
|
|
if( ret >= 0 && FRAME_MBAFF ) { //FIXME optimal? or let mb_decode decode 16x32 ?
|
|
s->mb_y++;
|
|
|
|
if(ret>=0) ret = decode_mb_cabac(h);
|
|
|
|
if(ret>=0) hl_decode_mb(h);
|
|
s->mb_y--;
|
|
}
|
|
eos = get_cabac_terminate( &h->cabac );
|
|
|
|
if( ret < 0 || h->cabac.bytestream > h->cabac.bytestream_end + 2) {
|
|
av_log(h->s.avctx, AV_LOG_ERROR, "error while decoding MB %d %d, bytestream (%td)\n", s->mb_x, s->mb_y, h->cabac.bytestream_end - h->cabac.bytestream);
|
|
ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_ERROR|DC_ERROR|MV_ERROR)&part_mask);
|
|
return -1;
|
|
}
|
|
|
|
if( ++s->mb_x >= s->mb_width ) {
|
|
s->mb_x = 0;
|
|
ff_draw_horiz_band(s, 16*s->mb_y, 16);
|
|
++s->mb_y;
|
|
if(FIELD_OR_MBAFF_PICTURE) {
|
|
++s->mb_y;
|
|
}
|
|
}
|
|
|
|
if( eos || s->mb_y >= s->mb_height ) {
|
|
tprintf(s->avctx, "slice end %d %d\n", get_bits_count(&s->gb), s->gb.size_in_bits);
|
|
ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
} else {
|
|
for(;;){
|
|
int ret = decode_mb_cavlc(h);
|
|
|
|
if(ret>=0) hl_decode_mb(h);
|
|
|
|
if(ret>=0 && FRAME_MBAFF){ //FIXME optimal? or let mb_decode decode 16x32 ?
|
|
s->mb_y++;
|
|
ret = decode_mb_cavlc(h);
|
|
|
|
if(ret>=0) hl_decode_mb(h);
|
|
s->mb_y--;
|
|
}
|
|
|
|
if(ret<0){
|
|
av_log(h->s.avctx, AV_LOG_ERROR, "error while decoding MB %d %d\n", s->mb_x, s->mb_y);
|
|
ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_ERROR|DC_ERROR|MV_ERROR)&part_mask);
|
|
|
|
return -1;
|
|
}
|
|
|
|
if(++s->mb_x >= s->mb_width){
|
|
s->mb_x=0;
|
|
ff_draw_horiz_band(s, 16*s->mb_y, 16);
|
|
++s->mb_y;
|
|
if(FIELD_OR_MBAFF_PICTURE) {
|
|
++s->mb_y;
|
|
}
|
|
if(s->mb_y >= s->mb_height){
|
|
tprintf(s->avctx, "slice end %d %d\n", get_bits_count(&s->gb), s->gb.size_in_bits);
|
|
|
|
if(get_bits_count(&s->gb) == s->gb.size_in_bits ) {
|
|
ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
|
|
|
|
return 0;
|
|
}else{
|
|
ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
|
|
|
|
return -1;
|
|
}
|
|
}
|
|
}
|
|
|
|
if(get_bits_count(&s->gb) >= s->gb.size_in_bits && s->mb_skip_run<=0){
|
|
tprintf(s->avctx, "slice end %d %d\n", get_bits_count(&s->gb), s->gb.size_in_bits);
|
|
if(get_bits_count(&s->gb) == s->gb.size_in_bits ){
|
|
ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
|
|
|
|
return 0;
|
|
}else{
|
|
ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_ERROR|DC_ERROR|MV_ERROR)&part_mask);
|
|
|
|
return -1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#if 0
|
|
for(;s->mb_y < s->mb_height; s->mb_y++){
|
|
for(;s->mb_x < s->mb_width; s->mb_x++){
|
|
int ret= decode_mb(h);
|
|
|
|
hl_decode_mb(h);
|
|
|
|
if(ret<0){
|
|
av_log(s->avctx, AV_LOG_ERROR, "error while decoding MB %d %d\n", s->mb_x, s->mb_y);
|
|
ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_ERROR|DC_ERROR|MV_ERROR)&part_mask);
|
|
|
|
return -1;
|
|
}
|
|
|
|
if(++s->mb_x >= s->mb_width){
|
|
s->mb_x=0;
|
|
if(++s->mb_y >= s->mb_height){
|
|
if(get_bits_count(s->gb) == s->gb.size_in_bits){
|
|
ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
|
|
|
|
return 0;
|
|
}else{
|
|
ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
|
|
|
|
return -1;
|
|
}
|
|
}
|
|
}
|
|
|
|
if(get_bits_count(s->?gb) >= s->gb?.size_in_bits){
|
|
if(get_bits_count(s->gb) == s->gb.size_in_bits){
|
|
ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
|
|
|
|
return 0;
|
|
}else{
|
|
ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_ERROR|DC_ERROR|MV_ERROR)&part_mask);
|
|
|
|
return -1;
|
|
}
|
|
}
|
|
}
|
|
s->mb_x=0;
|
|
ff_draw_horiz_band(s, 16*s->mb_y, 16);
|
|
}
|
|
#endif
|
|
return -1; //not reached
|
|
}
|
|
|
|
static int decode_unregistered_user_data(H264Context *h, int size){
|
|
MpegEncContext * const s = &h->s;
|
|
uint8_t user_data[16+256];
|
|
int e, build, i;
|
|
|
|
if(size<16)
|
|
return -1;
|
|
|
|
for(i=0; i<sizeof(user_data)-1 && i<size; i++){
|
|
user_data[i]= get_bits(&s->gb, 8);
|
|
}
|
|
|
|
user_data[i]= 0;
|
|
e= sscanf(user_data+16, "x264 - core %d"/*%s - H.264/MPEG-4 AVC codec - Copyleft 2005 - http://www.videolan.org/x264.html*/, &build);
|
|
if(e==1 && build>=0)
|
|
h->x264_build= build;
|
|
|
|
if(s->avctx->debug & FF_DEBUG_BUGS)
|
|
av_log(s->avctx, AV_LOG_DEBUG, "user data:\"%s\"\n", user_data+16);
|
|
|
|
for(; i<size; i++)
|
|
skip_bits(&s->gb, 8);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int decode_sei(H264Context *h){
|
|
MpegEncContext * const s = &h->s;
|
|
|
|
while(get_bits_count(&s->gb) + 16 < s->gb.size_in_bits){
|
|
int size, type;
|
|
|
|
type=0;
|
|
do{
|
|
type+= show_bits(&s->gb, 8);
|
|
}while(get_bits(&s->gb, 8) == 255);
|
|
|
|
size=0;
|
|
do{
|
|
size+= show_bits(&s->gb, 8);
|
|
}while(get_bits(&s->gb, 8) == 255);
|
|
|
|
switch(type){
|
|
case 5:
|
|
if(decode_unregistered_user_data(h, size) < 0)
|
|
return -1;
|
|
break;
|
|
default:
|
|
skip_bits(&s->gb, 8*size);
|
|
}
|
|
|
|
//FIXME check bits here
|
|
align_get_bits(&s->gb);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline void decode_hrd_parameters(H264Context *h, SPS *sps){
|
|
MpegEncContext * const s = &h->s;
|
|
int cpb_count, i;
|
|
cpb_count = get_ue_golomb(&s->gb) + 1;
|
|
get_bits(&s->gb, 4); /* bit_rate_scale */
|
|
get_bits(&s->gb, 4); /* cpb_size_scale */
|
|
for(i=0; i<cpb_count; i++){
|
|
get_ue_golomb(&s->gb); /* bit_rate_value_minus1 */
|
|
get_ue_golomb(&s->gb); /* cpb_size_value_minus1 */
|
|
get_bits1(&s->gb); /* cbr_flag */
|
|
}
|
|
get_bits(&s->gb, 5); /* initial_cpb_removal_delay_length_minus1 */
|
|
get_bits(&s->gb, 5); /* cpb_removal_delay_length_minus1 */
|
|
get_bits(&s->gb, 5); /* dpb_output_delay_length_minus1 */
|
|
get_bits(&s->gb, 5); /* time_offset_length */
|
|
}
|
|
|
|
static inline int decode_vui_parameters(H264Context *h, SPS *sps){
|
|
MpegEncContext * const s = &h->s;
|
|
int aspect_ratio_info_present_flag;
|
|
unsigned int aspect_ratio_idc;
|
|
int nal_hrd_parameters_present_flag, vcl_hrd_parameters_present_flag;
|
|
|
|
aspect_ratio_info_present_flag= get_bits1(&s->gb);
|
|
|
|
if( aspect_ratio_info_present_flag ) {
|
|
aspect_ratio_idc= get_bits(&s->gb, 8);
|
|
if( aspect_ratio_idc == EXTENDED_SAR ) {
|
|
sps->sar.num= get_bits(&s->gb, 16);
|
|
sps->sar.den= get_bits(&s->gb, 16);
|
|
}else if(aspect_ratio_idc < sizeof(pixel_aspect)/sizeof(*pixel_aspect)){
|
|
sps->sar= pixel_aspect[aspect_ratio_idc];
|
|
}else{
|
|
av_log(h->s.avctx, AV_LOG_ERROR, "illegal aspect ratio\n");
|
|
return -1;
|
|
}
|
|
}else{
|
|
sps->sar.num=
|
|
sps->sar.den= 0;
|
|
}
|
|
// s->avctx->aspect_ratio= sar_width*s->width / (float)(s->height*sar_height);
|
|
|
|
if(get_bits1(&s->gb)){ /* overscan_info_present_flag */
|
|
get_bits1(&s->gb); /* overscan_appropriate_flag */
|
|
}
|
|
|
|
if(get_bits1(&s->gb)){ /* video_signal_type_present_flag */
|
|
get_bits(&s->gb, 3); /* video_format */
|
|
get_bits1(&s->gb); /* video_full_range_flag */
|
|
if(get_bits1(&s->gb)){ /* colour_description_present_flag */
|
|
get_bits(&s->gb, 8); /* colour_primaries */
|
|
get_bits(&s->gb, 8); /* transfer_characteristics */
|
|
get_bits(&s->gb, 8); /* matrix_coefficients */
|
|
}
|
|
}
|
|
|
|
if(get_bits1(&s->gb)){ /* chroma_location_info_present_flag */
|
|
get_ue_golomb(&s->gb); /* chroma_sample_location_type_top_field */
|
|
get_ue_golomb(&s->gb); /* chroma_sample_location_type_bottom_field */
|
|
}
|
|
|
|
sps->timing_info_present_flag = get_bits1(&s->gb);
|
|
if(sps->timing_info_present_flag){
|
|
sps->num_units_in_tick = get_bits_long(&s->gb, 32);
|
|
sps->time_scale = get_bits_long(&s->gb, 32);
|
|
sps->fixed_frame_rate_flag = get_bits1(&s->gb);
|
|
}
|
|
|
|
nal_hrd_parameters_present_flag = get_bits1(&s->gb);
|
|
if(nal_hrd_parameters_present_flag)
|
|
decode_hrd_parameters(h, sps);
|
|
vcl_hrd_parameters_present_flag = get_bits1(&s->gb);
|
|
if(vcl_hrd_parameters_present_flag)
|
|
decode_hrd_parameters(h, sps);
|
|
if(nal_hrd_parameters_present_flag || vcl_hrd_parameters_present_flag)
|
|
get_bits1(&s->gb); /* low_delay_hrd_flag */
|
|
get_bits1(&s->gb); /* pic_struct_present_flag */
|
|
|
|
sps->bitstream_restriction_flag = get_bits1(&s->gb);
|
|
if(sps->bitstream_restriction_flag){
|
|
unsigned int num_reorder_frames;
|
|
get_bits1(&s->gb); /* motion_vectors_over_pic_boundaries_flag */
|
|
get_ue_golomb(&s->gb); /* max_bytes_per_pic_denom */
|
|
get_ue_golomb(&s->gb); /* max_bits_per_mb_denom */
|
|
get_ue_golomb(&s->gb); /* log2_max_mv_length_horizontal */
|
|
get_ue_golomb(&s->gb); /* log2_max_mv_length_vertical */
|
|
num_reorder_frames= get_ue_golomb(&s->gb);
|
|
get_ue_golomb(&s->gb); /*max_dec_frame_buffering*/
|
|
|
|
if(num_reorder_frames > 16 /*max_dec_frame_buffering || max_dec_frame_buffering > 16*/){
|
|
av_log(h->s.avctx, AV_LOG_ERROR, "illegal num_reorder_frames %d\n", num_reorder_frames);
|
|
return -1;
|
|
}
|
|
|
|
sps->num_reorder_frames= num_reorder_frames;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void decode_scaling_list(H264Context *h, uint8_t *factors, int size,
|
|
const uint8_t *jvt_list, const uint8_t *fallback_list){
|
|
MpegEncContext * const s = &h->s;
|
|
int i, last = 8, next = 8;
|
|
const uint8_t *scan = size == 16 ? zigzag_scan : zigzag_scan8x8;
|
|
if(!get_bits1(&s->gb)) /* matrix not written, we use the predicted one */
|
|
memcpy(factors, fallback_list, size*sizeof(uint8_t));
|
|
else
|
|
for(i=0;i<size;i++){
|
|
if(next)
|
|
next = (last + get_se_golomb(&s->gb)) & 0xff;
|
|
if(!i && !next){ /* matrix not written, we use the preset one */
|
|
memcpy(factors, jvt_list, size*sizeof(uint8_t));
|
|
break;
|
|
}
|
|
last = factors[scan[i]] = next ? next : last;
|
|
}
|
|
}
|
|
|
|
static void decode_scaling_matrices(H264Context *h, SPS *sps, PPS *pps, int is_sps,
|
|
uint8_t (*scaling_matrix4)[16], uint8_t (*scaling_matrix8)[64]){
|
|
MpegEncContext * const s = &h->s;
|
|
int fallback_sps = !is_sps && sps->scaling_matrix_present;
|
|
const uint8_t *fallback[4] = {
|
|
fallback_sps ? sps->scaling_matrix4[0] : default_scaling4[0],
|
|
fallback_sps ? sps->scaling_matrix4[3] : default_scaling4[1],
|
|
fallback_sps ? sps->scaling_matrix8[0] : default_scaling8[0],
|
|
fallback_sps ? sps->scaling_matrix8[1] : default_scaling8[1]
|
|
};
|
|
if(get_bits1(&s->gb)){
|
|
sps->scaling_matrix_present |= is_sps;
|
|
decode_scaling_list(h,scaling_matrix4[0],16,default_scaling4[0],fallback[0]); // Intra, Y
|
|
decode_scaling_list(h,scaling_matrix4[1],16,default_scaling4[0],scaling_matrix4[0]); // Intra, Cr
|
|
decode_scaling_list(h,scaling_matrix4[2],16,default_scaling4[0],scaling_matrix4[1]); // Intra, Cb
|
|
decode_scaling_list(h,scaling_matrix4[3],16,default_scaling4[1],fallback[1]); // Inter, Y
|
|
decode_scaling_list(h,scaling_matrix4[4],16,default_scaling4[1],scaling_matrix4[3]); // Inter, Cr
|
|
decode_scaling_list(h,scaling_matrix4[5],16,default_scaling4[1],scaling_matrix4[4]); // Inter, Cb
|
|
if(is_sps || pps->transform_8x8_mode){
|
|
decode_scaling_list(h,scaling_matrix8[0],64,default_scaling8[0],fallback[2]); // Intra, Y
|
|
decode_scaling_list(h,scaling_matrix8[1],64,default_scaling8[1],fallback[3]); // Inter, Y
|
|
}
|
|
} else if(fallback_sps) {
|
|
memcpy(scaling_matrix4, sps->scaling_matrix4, 6*16*sizeof(uint8_t));
|
|
memcpy(scaling_matrix8, sps->scaling_matrix8, 2*64*sizeof(uint8_t));
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Returns and optionally allocates SPS / PPS structures in the supplied array 'vec'
|
|
*/
|
|
static void *
|
|
alloc_parameter_set(H264Context *h, void **vec, const unsigned int id, const unsigned int max,
|
|
const size_t size, const char *name)
|
|
{
|
|
if(id>=max) {
|
|
av_log(h->s.avctx, AV_LOG_ERROR, "%s_id (%d) out of range\n", name, id);
|
|
return NULL;
|
|
}
|
|
|
|
if(!vec[id]) {
|
|
vec[id] = av_mallocz(size);
|
|
if(vec[id] == NULL)
|
|
av_log(h->s.avctx, AV_LOG_ERROR, "cannot allocate memory for %s\n", name);
|
|
}
|
|
return vec[id];
|
|
}
|
|
|
|
static inline int decode_seq_parameter_set(H264Context *h){
|
|
MpegEncContext * const s = &h->s;
|
|
int profile_idc, level_idc;
|
|
unsigned int sps_id, tmp, mb_width, mb_height;
|
|
int i;
|
|
SPS *sps;
|
|
|
|
profile_idc= get_bits(&s->gb, 8);
|
|
get_bits1(&s->gb); //constraint_set0_flag
|
|
get_bits1(&s->gb); //constraint_set1_flag
|
|
get_bits1(&s->gb); //constraint_set2_flag
|
|
get_bits1(&s->gb); //constraint_set3_flag
|
|
get_bits(&s->gb, 4); // reserved
|
|
level_idc= get_bits(&s->gb, 8);
|
|
sps_id= get_ue_golomb(&s->gb);
|
|
|
|
sps = alloc_parameter_set(h, (void **)h->sps_buffers, sps_id, MAX_SPS_COUNT, sizeof(SPS), "sps");
|
|
if(sps == NULL)
|
|
return -1;
|
|
|
|
sps->profile_idc= profile_idc;
|
|
sps->level_idc= level_idc;
|
|
|
|
if(sps->profile_idc >= 100){ //high profile
|
|
if(get_ue_golomb(&s->gb) == 3) //chroma_format_idc
|
|
get_bits1(&s->gb); //residual_color_transform_flag
|
|
get_ue_golomb(&s->gb); //bit_depth_luma_minus8
|
|
get_ue_golomb(&s->gb); //bit_depth_chroma_minus8
|
|
sps->transform_bypass = get_bits1(&s->gb);
|
|
decode_scaling_matrices(h, sps, NULL, 1, sps->scaling_matrix4, sps->scaling_matrix8);
|
|
}else
|
|
sps->scaling_matrix_present = 0;
|
|
|
|
sps->log2_max_frame_num= get_ue_golomb(&s->gb) + 4;
|
|
sps->poc_type= get_ue_golomb(&s->gb);
|
|
|
|
if(sps->poc_type == 0){ //FIXME #define
|
|
sps->log2_max_poc_lsb= get_ue_golomb(&s->gb) + 4;
|
|
} else if(sps->poc_type == 1){//FIXME #define
|
|
sps->delta_pic_order_always_zero_flag= get_bits1(&s->gb);
|
|
sps->offset_for_non_ref_pic= get_se_golomb(&s->gb);
|
|
sps->offset_for_top_to_bottom_field= get_se_golomb(&s->gb);
|
|
tmp= get_ue_golomb(&s->gb);
|
|
|
|
if(tmp >= sizeof(sps->offset_for_ref_frame) / sizeof(sps->offset_for_ref_frame[0])){
|
|
av_log(h->s.avctx, AV_LOG_ERROR, "poc_cycle_length overflow %u\n", tmp);
|
|
return -1;
|
|
}
|
|
sps->poc_cycle_length= tmp;
|
|
|
|
for(i=0; i<sps->poc_cycle_length; i++)
|
|
sps->offset_for_ref_frame[i]= get_se_golomb(&s->gb);
|
|
}else if(sps->poc_type != 2){
|
|
av_log(h->s.avctx, AV_LOG_ERROR, "illegal POC type %d\n", sps->poc_type);
|
|
return -1;
|
|
}
|
|
|
|
tmp= get_ue_golomb(&s->gb);
|
|
if(tmp > MAX_PICTURE_COUNT-2 || tmp >= 32){
|
|
av_log(h->s.avctx, AV_LOG_ERROR, "too many reference frames\n");
|
|
return -1;
|
|
}
|
|
sps->ref_frame_count= tmp;
|
|
sps->gaps_in_frame_num_allowed_flag= get_bits1(&s->gb);
|
|
mb_width= get_ue_golomb(&s->gb) + 1;
|
|
mb_height= get_ue_golomb(&s->gb) + 1;
|
|
if(mb_width >= INT_MAX/16 || mb_height >= INT_MAX/16 ||
|
|
avcodec_check_dimensions(NULL, 16*mb_width, 16*mb_height)){
|
|
av_log(h->s.avctx, AV_LOG_ERROR, "mb_width/height overflow\n");
|
|
return -1;
|
|
}
|
|
sps->mb_width = mb_width;
|
|
sps->mb_height= mb_height;
|
|
|
|
sps->frame_mbs_only_flag= get_bits1(&s->gb);
|
|
if(!sps->frame_mbs_only_flag)
|
|
sps->mb_aff= get_bits1(&s->gb);
|
|
else
|
|
sps->mb_aff= 0;
|
|
|
|
sps->direct_8x8_inference_flag= get_bits1(&s->gb);
|
|
|
|
#ifndef ALLOW_INTERLACE
|
|
if(sps->mb_aff)
|
|
av_log(h->s.avctx, AV_LOG_ERROR, "MBAFF support not included; enable it at compile-time.\n");
|
|
#endif
|
|
if(!sps->direct_8x8_inference_flag && sps->mb_aff)
|
|
av_log(h->s.avctx, AV_LOG_ERROR, "MBAFF + !direct_8x8_inference is not implemented\n");
|
|
|
|
sps->crop= get_bits1(&s->gb);
|
|
if(sps->crop){
|
|
sps->crop_left = get_ue_golomb(&s->gb);
|
|
sps->crop_right = get_ue_golomb(&s->gb);
|
|
sps->crop_top = get_ue_golomb(&s->gb);
|
|
sps->crop_bottom= get_ue_golomb(&s->gb);
|
|
if(sps->crop_left || sps->crop_top){
|
|
av_log(h->s.avctx, AV_LOG_ERROR, "insane cropping not completely supported, this could look slightly wrong ...\n");
|
|
}
|
|
if(sps->crop_right >= 8 || sps->crop_bottom >= (8>> !h->sps.frame_mbs_only_flag)){
|
|
av_log(h->s.avctx, AV_LOG_ERROR, "brainfart cropping not supported, this could look slightly wrong ...\n");
|
|
}
|
|
}else{
|
|
sps->crop_left =
|
|
sps->crop_right =
|
|
sps->crop_top =
|
|
sps->crop_bottom= 0;
|
|
}
|
|
|
|
sps->vui_parameters_present_flag= get_bits1(&s->gb);
|
|
if( sps->vui_parameters_present_flag )
|
|
decode_vui_parameters(h, sps);
|
|
|
|
if(s->avctx->debug&FF_DEBUG_PICT_INFO){
|
|
av_log(h->s.avctx, AV_LOG_DEBUG, "sps:%u profile:%d/%d poc:%d ref:%d %dx%d %s %s crop:%d/%d/%d/%d %s\n",
|
|
sps_id, sps->profile_idc, sps->level_idc,
|
|
sps->poc_type,
|
|
sps->ref_frame_count,
|
|
sps->mb_width, sps->mb_height,
|
|
sps->frame_mbs_only_flag ? "FRM" : (sps->mb_aff ? "MB-AFF" : "PIC-AFF"),
|
|
sps->direct_8x8_inference_flag ? "8B8" : "",
|
|
sps->crop_left, sps->crop_right,
|
|
sps->crop_top, sps->crop_bottom,
|
|
sps->vui_parameters_present_flag ? "VUI" : ""
|
|
);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
build_qp_table(PPS *pps, int t, int index)
|
|
{
|
|
int i;
|
|
for(i = 0; i < 255; i++)
|
|
pps->chroma_qp_table[t][i & 0xff] = chroma_qp[av_clip(i + index, 0, 51)];
|
|
}
|
|
|
|
static inline int decode_picture_parameter_set(H264Context *h, int bit_length){
|
|
MpegEncContext * const s = &h->s;
|
|
unsigned int tmp, pps_id= get_ue_golomb(&s->gb);
|
|
PPS *pps;
|
|
|
|
pps = alloc_parameter_set(h, (void **)h->pps_buffers, pps_id, MAX_PPS_COUNT, sizeof(PPS), "pps");
|
|
if(pps == NULL)
|
|
return -1;
|
|
|
|
tmp= get_ue_golomb(&s->gb);
|
|
if(tmp>=MAX_SPS_COUNT || h->sps_buffers[tmp] == NULL){
|
|
av_log(h->s.avctx, AV_LOG_ERROR, "sps_id out of range\n");
|
|
return -1;
|
|
}
|
|
pps->sps_id= tmp;
|
|
|
|
pps->cabac= get_bits1(&s->gb);
|
|
pps->pic_order_present= get_bits1(&s->gb);
|
|
pps->slice_group_count= get_ue_golomb(&s->gb) + 1;
|
|
if(pps->slice_group_count > 1 ){
|
|
pps->mb_slice_group_map_type= get_ue_golomb(&s->gb);
|
|
av_log(h->s.avctx, AV_LOG_ERROR, "FMO not supported\n");
|
|
switch(pps->mb_slice_group_map_type){
|
|
case 0:
|
|
#if 0
|
|
| for( i = 0; i <= num_slice_groups_minus1; i++ ) | | |
|
|
| run_length[ i ] |1 |ue(v) |
|
|
#endif
|
|
break;
|
|
case 2:
|
|
#if 0
|
|
| for( i = 0; i < num_slice_groups_minus1; i++ ) | | |
|
|
|{ | | |
|
|
| top_left_mb[ i ] |1 |ue(v) |
|
|
| bottom_right_mb[ i ] |1 |ue(v) |
|
|
| } | | |
|
|
#endif
|
|
break;
|
|
case 3:
|
|
case 4:
|
|
case 5:
|
|
#if 0
|
|
| slice_group_change_direction_flag |1 |u(1) |
|
|
| slice_group_change_rate_minus1 |1 |ue(v) |
|
|
#endif
|
|
break;
|
|
case 6:
|
|
#if 0
|
|
| slice_group_id_cnt_minus1 |1 |ue(v) |
|
|
| for( i = 0; i <= slice_group_id_cnt_minus1; i++ | | |
|
|
|) | | |
|
|
| slice_group_id[ i ] |1 |u(v) |
|
|
#endif
|
|
break;
|
|
}
|
|
}
|
|
pps->ref_count[0]= get_ue_golomb(&s->gb) + 1;
|
|
pps->ref_count[1]= get_ue_golomb(&s->gb) + 1;
|
|
if(pps->ref_count[0]-1 > 32-1 || pps->ref_count[1]-1 > 32-1){
|
|
av_log(h->s.avctx, AV_LOG_ERROR, "reference overflow (pps)\n");
|
|
pps->ref_count[0]= pps->ref_count[1]= 1;
|
|
return -1;
|
|
}
|
|
|
|
pps->weighted_pred= get_bits1(&s->gb);
|
|
pps->weighted_bipred_idc= get_bits(&s->gb, 2);
|
|
pps->init_qp= get_se_golomb(&s->gb) + 26;
|
|
pps->init_qs= get_se_golomb(&s->gb) + 26;
|
|
pps->chroma_qp_index_offset[0]= get_se_golomb(&s->gb);
|
|
pps->deblocking_filter_parameters_present= get_bits1(&s->gb);
|
|
pps->constrained_intra_pred= get_bits1(&s->gb);
|
|
pps->redundant_pic_cnt_present = get_bits1(&s->gb);
|
|
|
|
pps->transform_8x8_mode= 0;
|
|
h->dequant_coeff_pps= -1; //contents of sps/pps can change even if id doesn't, so reinit
|
|
memset(pps->scaling_matrix4, 16, 6*16*sizeof(uint8_t));
|
|
memset(pps->scaling_matrix8, 16, 2*64*sizeof(uint8_t));
|
|
|
|
if(get_bits_count(&s->gb) < bit_length){
|
|
pps->transform_8x8_mode= get_bits1(&s->gb);
|
|
decode_scaling_matrices(h, h->sps_buffers[pps->sps_id], pps, 0, pps->scaling_matrix4, pps->scaling_matrix8);
|
|
pps->chroma_qp_index_offset[1]= get_se_golomb(&s->gb); //second_chroma_qp_index_offset
|
|
} else {
|
|
pps->chroma_qp_index_offset[1]= pps->chroma_qp_index_offset[0];
|
|
}
|
|
|
|
build_qp_table(pps, 0, pps->chroma_qp_index_offset[0]);
|
|
if(pps->chroma_qp_index_offset[0] != pps->chroma_qp_index_offset[1]) {
|
|
build_qp_table(pps, 1, pps->chroma_qp_index_offset[1]);
|
|
h->pps.chroma_qp_diff= 1;
|
|
} else
|
|
memcpy(pps->chroma_qp_table[1], pps->chroma_qp_table[0], 256);
|
|
|
|
if(s->avctx->debug&FF_DEBUG_PICT_INFO){
|
|
av_log(h->s.avctx, AV_LOG_DEBUG, "pps:%u sps:%u %s slice_groups:%d ref:%d/%d %s qp:%d/%d/%d/%d %s %s %s %s\n",
|
|
pps_id, pps->sps_id,
|
|
pps->cabac ? "CABAC" : "CAVLC",
|
|
pps->slice_group_count,
|
|
pps->ref_count[0], pps->ref_count[1],
|
|
pps->weighted_pred ? "weighted" : "",
|
|
pps->init_qp, pps->init_qs, pps->chroma_qp_index_offset[0], pps->chroma_qp_index_offset[1],
|
|
pps->deblocking_filter_parameters_present ? "LPAR" : "",
|
|
pps->constrained_intra_pred ? "CONSTR" : "",
|
|
pps->redundant_pic_cnt_present ? "REDU" : "",
|
|
pps->transform_8x8_mode ? "8x8DCT" : ""
|
|
);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Call decode_slice() for each context.
|
|
*
|
|
* @param h h264 master context
|
|
* @param context_count number of contexts to execute
|
|
*/
|
|
static void execute_decode_slices(H264Context *h, int context_count){
|
|
MpegEncContext * const s = &h->s;
|
|
AVCodecContext * const avctx= s->avctx;
|
|
H264Context *hx;
|
|
int i;
|
|
|
|
if(context_count == 1) {
|
|
decode_slice(avctx, h);
|
|
} else {
|
|
for(i = 1; i < context_count; i++) {
|
|
hx = h->thread_context[i];
|
|
hx->s.error_resilience = avctx->error_resilience;
|
|
hx->s.error_count = 0;
|
|
}
|
|
|
|
avctx->execute(avctx, (void *)decode_slice,
|
|
(void **)h->thread_context, NULL, context_count);
|
|
|
|
/* pull back stuff from slices to master context */
|
|
hx = h->thread_context[context_count - 1];
|
|
s->mb_x = hx->s.mb_x;
|
|
s->mb_y = hx->s.mb_y;
|
|
s->dropable = hx->s.dropable;
|
|
s->picture_structure = hx->s.picture_structure;
|
|
for(i = 1; i < context_count; i++)
|
|
h->s.error_count += h->thread_context[i]->s.error_count;
|
|
}
|
|
}
|
|
|
|
|
|
static int decode_nal_units(H264Context *h, const uint8_t *buf, int buf_size){
|
|
MpegEncContext * const s = &h->s;
|
|
AVCodecContext * const avctx= s->avctx;
|
|
int buf_index=0;
|
|
H264Context *hx; ///< thread context
|
|
int context_count = 0;
|
|
|
|
h->max_contexts = avctx->thread_count;
|
|
#if 0
|
|
int i;
|
|
for(i=0; i<50; i++){
|
|
av_log(NULL, AV_LOG_ERROR,"%02X ", buf[i]);
|
|
}
|
|
#endif
|
|
if(!(s->flags2 & CODEC_FLAG2_CHUNKS)){
|
|
h->current_slice = 0;
|
|
if (!s->first_field)
|
|
s->current_picture_ptr= NULL;
|
|
}
|
|
|
|
for(;;){
|
|
int consumed;
|
|
int dst_length;
|
|
int bit_length;
|
|
const uint8_t *ptr;
|
|
int i, nalsize = 0;
|
|
int err;
|
|
|
|
if(h->is_avc) {
|
|
if(buf_index >= buf_size) break;
|
|
nalsize = 0;
|
|
for(i = 0; i < h->nal_length_size; i++)
|
|
nalsize = (nalsize << 8) | buf[buf_index++];
|
|
if(nalsize <= 1 || (nalsize+buf_index > buf_size)){
|
|
if(nalsize == 1){
|
|
buf_index++;
|
|
continue;
|
|
}else{
|
|
av_log(h->s.avctx, AV_LOG_ERROR, "AVC: nal size %d\n", nalsize);
|
|
break;
|
|
}
|
|
}
|
|
} else {
|
|
// start code prefix search
|
|
for(; buf_index + 3 < buf_size; buf_index++){
|
|
// This should always succeed in the first iteration.
|
|
if(buf[buf_index] == 0 && buf[buf_index+1] == 0 && buf[buf_index+2] == 1)
|
|
break;
|
|
}
|
|
|
|
if(buf_index+3 >= buf_size) break;
|
|
|
|
buf_index+=3;
|
|
}
|
|
|
|
hx = h->thread_context[context_count];
|
|
|
|
ptr= decode_nal(hx, buf + buf_index, &dst_length, &consumed, h->is_avc ? nalsize : buf_size - buf_index);
|
|
if (ptr==NULL || dst_length < 0){
|
|
return -1;
|
|
}
|
|
while(ptr[dst_length - 1] == 0 && dst_length > 0)
|
|
dst_length--;
|
|
bit_length= !dst_length ? 0 : (8*dst_length - decode_rbsp_trailing(h, ptr + dst_length - 1));
|
|
|
|
if(s->avctx->debug&FF_DEBUG_STARTCODE){
|
|
av_log(h->s.avctx, AV_LOG_DEBUG, "NAL %d at %d/%d length %d\n", hx->nal_unit_type, buf_index, buf_size, dst_length);
|
|
}
|
|
|
|
if (h->is_avc && (nalsize != consumed)){
|
|
av_log(h->s.avctx, AV_LOG_ERROR, "AVC: Consumed only %d bytes instead of %d\n", consumed, nalsize);
|
|
consumed= nalsize;
|
|
}
|
|
|
|
buf_index += consumed;
|
|
|
|
if( (s->hurry_up == 1 && h->nal_ref_idc == 0) //FIXME do not discard SEI id
|
|
||(avctx->skip_frame >= AVDISCARD_NONREF && h->nal_ref_idc == 0))
|
|
continue;
|
|
|
|
again:
|
|
err = 0;
|
|
switch(hx->nal_unit_type){
|
|
case NAL_IDR_SLICE:
|
|
if (h->nal_unit_type != NAL_IDR_SLICE) {
|
|
av_log(h->s.avctx, AV_LOG_ERROR, "Invalid mix of idr and non-idr slices");
|
|
return -1;
|
|
}
|
|
idr(h); //FIXME ensure we don't loose some frames if there is reordering
|
|
case NAL_SLICE:
|
|
init_get_bits(&hx->s.gb, ptr, bit_length);
|
|
hx->intra_gb_ptr=
|
|
hx->inter_gb_ptr= &hx->s.gb;
|
|
hx->s.data_partitioning = 0;
|
|
|
|
if((err = decode_slice_header(hx, h)))
|
|
break;
|
|
|
|
s->current_picture_ptr->key_frame|= (hx->nal_unit_type == NAL_IDR_SLICE);
|
|
if(hx->redundant_pic_count==0 && hx->s.hurry_up < 5
|
|
&& (avctx->skip_frame < AVDISCARD_NONREF || hx->nal_ref_idc)
|
|
&& (avctx->skip_frame < AVDISCARD_BIDIR || hx->slice_type!=FF_B_TYPE)
|
|
&& (avctx->skip_frame < AVDISCARD_NONKEY || hx->slice_type==FF_I_TYPE)
|
|
&& avctx->skip_frame < AVDISCARD_ALL)
|
|
context_count++;
|
|
break;
|
|
case NAL_DPA:
|
|
init_get_bits(&hx->s.gb, ptr, bit_length);
|
|
hx->intra_gb_ptr=
|
|
hx->inter_gb_ptr= NULL;
|
|
hx->s.data_partitioning = 1;
|
|
|
|
err = decode_slice_header(hx, h);
|
|
break;
|
|
case NAL_DPB:
|
|
init_get_bits(&hx->intra_gb, ptr, bit_length);
|
|
hx->intra_gb_ptr= &hx->intra_gb;
|
|
break;
|
|
case NAL_DPC:
|
|
init_get_bits(&hx->inter_gb, ptr, bit_length);
|
|
hx->inter_gb_ptr= &hx->inter_gb;
|
|
|
|
if(hx->redundant_pic_count==0 && hx->intra_gb_ptr && hx->s.data_partitioning
|
|
&& s->context_initialized
|
|
&& s->hurry_up < 5
|
|
&& (avctx->skip_frame < AVDISCARD_NONREF || hx->nal_ref_idc)
|
|
&& (avctx->skip_frame < AVDISCARD_BIDIR || hx->slice_type!=FF_B_TYPE)
|
|
&& (avctx->skip_frame < AVDISCARD_NONKEY || hx->slice_type==FF_I_TYPE)
|
|
&& avctx->skip_frame < AVDISCARD_ALL)
|
|
context_count++;
|
|
break;
|
|
case NAL_SEI:
|
|
init_get_bits(&s->gb, ptr, bit_length);
|
|
decode_sei(h);
|
|
break;
|
|
case NAL_SPS:
|
|
init_get_bits(&s->gb, ptr, bit_length);
|
|
decode_seq_parameter_set(h);
|
|
|
|
if(s->flags& CODEC_FLAG_LOW_DELAY)
|
|
s->low_delay=1;
|
|
|
|
if(avctx->has_b_frames < 2)
|
|
avctx->has_b_frames= !s->low_delay;
|
|
break;
|
|
case NAL_PPS:
|
|
init_get_bits(&s->gb, ptr, bit_length);
|
|
|
|
decode_picture_parameter_set(h, bit_length);
|
|
|
|
break;
|
|
case NAL_AUD:
|
|
case NAL_END_SEQUENCE:
|
|
case NAL_END_STREAM:
|
|
case NAL_FILLER_DATA:
|
|
case NAL_SPS_EXT:
|
|
case NAL_AUXILIARY_SLICE:
|
|
break;
|
|
default:
|
|
av_log(avctx, AV_LOG_DEBUG, "Unknown NAL code: %d (%d bits)\n", h->nal_unit_type, bit_length);
|
|
}
|
|
|
|
if(context_count == h->max_contexts) {
|
|
execute_decode_slices(h, context_count);
|
|
context_count = 0;
|
|
}
|
|
|
|
if (err < 0)
|
|
av_log(h->s.avctx, AV_LOG_ERROR, "decode_slice_header error\n");
|
|
else if(err == 1) {
|
|
/* Slice could not be decoded in parallel mode, copy down
|
|
* NAL unit stuff to context 0 and restart. Note that
|
|
* rbsp_buffer is not transfered, but since we no longer
|
|
* run in parallel mode this should not be an issue. */
|
|
h->nal_unit_type = hx->nal_unit_type;
|
|
h->nal_ref_idc = hx->nal_ref_idc;
|
|
hx = h;
|
|
goto again;
|
|
}
|
|
}
|
|
if(context_count)
|
|
execute_decode_slices(h, context_count);
|
|
return buf_index;
|
|
}
|
|
|
|
/**
|
|
* returns the number of bytes consumed for building the current frame
|
|
*/
|
|
static int get_consumed_bytes(MpegEncContext *s, int pos, int buf_size){
|
|
if(s->flags&CODEC_FLAG_TRUNCATED){
|
|
pos -= s->parse_context.last_index;
|
|
if(pos<0) pos=0; // FIXME remove (unneeded?)
|
|
|
|
return pos;
|
|
}else{
|
|
if(pos==0) pos=1; //avoid infinite loops (i doubt that is needed but ...)
|
|
if(pos+10>buf_size) pos=buf_size; // oops ;)
|
|
|
|
return pos;
|
|
}
|
|
}
|
|
|
|
static int decode_frame(AVCodecContext *avctx,
|
|
void *data, int *data_size,
|
|
const uint8_t *buf, int buf_size)
|
|
{
|
|
H264Context *h = avctx->priv_data;
|
|
MpegEncContext *s = &h->s;
|
|
AVFrame *pict = data;
|
|
int buf_index;
|
|
|
|
s->flags= avctx->flags;
|
|
s->flags2= avctx->flags2;
|
|
|
|
/* no supplementary picture */
|
|
if (buf_size == 0) {
|
|
Picture *out;
|
|
int i, out_idx;
|
|
|
|
//FIXME factorize this with the output code below
|
|
out = h->delayed_pic[0];
|
|
out_idx = 0;
|
|
for(i=1; h->delayed_pic[i] && !h->delayed_pic[i]->key_frame; i++)
|
|
if(h->delayed_pic[i]->poc < out->poc){
|
|
out = h->delayed_pic[i];
|
|
out_idx = i;
|
|
}
|
|
|
|
for(i=out_idx; h->delayed_pic[i]; i++)
|
|
h->delayed_pic[i] = h->delayed_pic[i+1];
|
|
|
|
if(out){
|
|
*data_size = sizeof(AVFrame);
|
|
*pict= *(AVFrame*)out;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
if(s->flags&CODEC_FLAG_TRUNCATED){
|
|
int next= ff_h264_find_frame_end(h, buf, buf_size);
|
|
|
|
if( ff_combine_frame(&s->parse_context, next, (const uint8_t **)&buf, &buf_size) < 0 )
|
|
return buf_size;
|
|
//printf("next:%d buf_size:%d last_index:%d\n", next, buf_size, s->parse_context.last_index);
|
|
}
|
|
|
|
if(h->is_avc && !h->got_avcC) {
|
|
int i, cnt, nalsize;
|
|
unsigned char *p = avctx->extradata;
|
|
if(avctx->extradata_size < 7) {
|
|
av_log(avctx, AV_LOG_ERROR, "avcC too short\n");
|
|
return -1;
|
|
}
|
|
if(*p != 1) {
|
|
av_log(avctx, AV_LOG_ERROR, "Unknown avcC version %d\n", *p);
|
|
return -1;
|
|
}
|
|
/* sps and pps in the avcC always have length coded with 2 bytes,
|
|
so put a fake nal_length_size = 2 while parsing them */
|
|
h->nal_length_size = 2;
|
|
// Decode sps from avcC
|
|
cnt = *(p+5) & 0x1f; // Number of sps
|
|
p += 6;
|
|
for (i = 0; i < cnt; i++) {
|
|
nalsize = AV_RB16(p) + 2;
|
|
if(decode_nal_units(h, p, nalsize) < 0) {
|
|
av_log(avctx, AV_LOG_ERROR, "Decoding sps %d from avcC failed\n", i);
|
|
return -1;
|
|
}
|
|
p += nalsize;
|
|
}
|
|
// Decode pps from avcC
|
|
cnt = *(p++); // Number of pps
|
|
for (i = 0; i < cnt; i++) {
|
|
nalsize = AV_RB16(p) + 2;
|
|
if(decode_nal_units(h, p, nalsize) != nalsize) {
|
|
av_log(avctx, AV_LOG_ERROR, "Decoding pps %d from avcC failed\n", i);
|
|
return -1;
|
|
}
|
|
p += nalsize;
|
|
}
|
|
// Now store right nal length size, that will be use to parse all other nals
|
|
h->nal_length_size = ((*(((char*)(avctx->extradata))+4))&0x03)+1;
|
|
// Do not reparse avcC
|
|
h->got_avcC = 1;
|
|
}
|
|
|
|
if(avctx->frame_number==0 && !h->is_avc && s->avctx->extradata_size){
|
|
if(decode_nal_units(h, s->avctx->extradata, s->avctx->extradata_size) < 0)
|
|
return -1;
|
|
}
|
|
|
|
buf_index=decode_nal_units(h, buf, buf_size);
|
|
if(buf_index < 0)
|
|
return -1;
|
|
|
|
if(!(s->flags2 & CODEC_FLAG2_CHUNKS) && !s->current_picture_ptr){
|
|
if (avctx->skip_frame >= AVDISCARD_NONREF || s->hurry_up) return 0;
|
|
av_log(avctx, AV_LOG_ERROR, "no frame!\n");
|
|
return -1;
|
|
}
|
|
|
|
if(!(s->flags2 & CODEC_FLAG2_CHUNKS) || (s->mb_y >= s->mb_height && s->mb_height)){
|
|
Picture *out = s->current_picture_ptr;
|
|
Picture *cur = s->current_picture_ptr;
|
|
Picture *prev = h->delayed_output_pic;
|
|
int i, pics, cross_idr, out_of_order, out_idx;
|
|
|
|
s->mb_y= 0;
|
|
|
|
s->current_picture_ptr->qscale_type= FF_QSCALE_TYPE_H264;
|
|
s->current_picture_ptr->pict_type= s->pict_type;
|
|
|
|
h->prev_frame_num_offset= h->frame_num_offset;
|
|
h->prev_frame_num= h->frame_num;
|
|
if(!s->dropable) {
|
|
h->prev_poc_msb= h->poc_msb;
|
|
h->prev_poc_lsb= h->poc_lsb;
|
|
execute_ref_pic_marking(h, h->mmco, h->mmco_index);
|
|
}
|
|
|
|
/*
|
|
* FIXME: Error handling code does not seem to support interlaced
|
|
* when slices span multiple rows
|
|
* The ff_er_add_slice calls don't work right for bottom
|
|
* fields; they cause massive erroneous error concealing
|
|
* Error marking covers both fields (top and bottom).
|
|
* This causes a mismatched s->error_count
|
|
* and a bad error table. Further, the error count goes to
|
|
* INT_MAX when called for bottom field, because mb_y is
|
|
* past end by one (callers fault) and resync_mb_y != 0
|
|
* causes problems for the first MB line, too.
|
|
*/
|
|
if (!FIELD_PICTURE)
|
|
ff_er_frame_end(s);
|
|
|
|
MPV_frame_end(s);
|
|
|
|
if (s->first_field) {
|
|
/* Wait for second field. */
|
|
*data_size = 0;
|
|
|
|
} else {
|
|
cur->interlaced_frame = FIELD_OR_MBAFF_PICTURE;
|
|
/* Derive top_field_first from field pocs. */
|
|
cur->top_field_first = cur->field_poc[0] < cur->field_poc[1];
|
|
|
|
//FIXME do something with unavailable reference frames
|
|
|
|
#if 0 //decode order
|
|
*data_size = sizeof(AVFrame);
|
|
#else
|
|
/* Sort B-frames into display order */
|
|
|
|
if(h->sps.bitstream_restriction_flag
|
|
&& s->avctx->has_b_frames < h->sps.num_reorder_frames){
|
|
s->avctx->has_b_frames = h->sps.num_reorder_frames;
|
|
s->low_delay = 0;
|
|
}
|
|
|
|
pics = 0;
|
|
while(h->delayed_pic[pics]) pics++;
|
|
|
|
assert(pics+1 < sizeof(h->delayed_pic) / sizeof(h->delayed_pic[0]));
|
|
|
|
h->delayed_pic[pics++] = cur;
|
|
if(cur->reference == 0)
|
|
cur->reference = DELAYED_PIC_REF;
|
|
|
|
cross_idr = 0;
|
|
for(i=0; h->delayed_pic[i]; i++)
|
|
if(h->delayed_pic[i]->key_frame || h->delayed_pic[i]->poc==0)
|
|
cross_idr = 1;
|
|
|
|
out = h->delayed_pic[0];
|
|
out_idx = 0;
|
|
for(i=1; h->delayed_pic[i] && !h->delayed_pic[i]->key_frame; i++)
|
|
if(h->delayed_pic[i]->poc < out->poc){
|
|
out = h->delayed_pic[i];
|
|
out_idx = i;
|
|
}
|
|
|
|
out_of_order = !cross_idr && prev && out->poc < prev->poc;
|
|
if(h->sps.bitstream_restriction_flag && s->avctx->has_b_frames >= h->sps.num_reorder_frames)
|
|
{ }
|
|
else if(prev && pics <= s->avctx->has_b_frames)
|
|
out = prev;
|
|
else if((out_of_order && pics-1 == s->avctx->has_b_frames && pics < 15)
|
|
|| (s->low_delay &&
|
|
((!cross_idr && prev && out->poc > prev->poc + 2)
|
|
|| cur->pict_type == FF_B_TYPE)))
|
|
{
|
|
s->low_delay = 0;
|
|
s->avctx->has_b_frames++;
|
|
out = prev;
|
|
}
|
|
else if(out_of_order)
|
|
out = prev;
|
|
|
|
if(out_of_order || pics > s->avctx->has_b_frames){
|
|
for(i=out_idx; h->delayed_pic[i]; i++)
|
|
h->delayed_pic[i] = h->delayed_pic[i+1];
|
|
}
|
|
|
|
if(prev == out)
|
|
*data_size = 0;
|
|
else
|
|
*data_size = sizeof(AVFrame);
|
|
if(prev && prev != out && prev->reference == DELAYED_PIC_REF)
|
|
prev->reference = 0;
|
|
h->delayed_output_pic = out;
|
|
#endif
|
|
|
|
if(out)
|
|
*pict= *(AVFrame*)out;
|
|
else
|
|
av_log(avctx, AV_LOG_DEBUG, "no picture\n");
|
|
}
|
|
}
|
|
|
|
assert(pict->data[0] || !*data_size);
|
|
ff_print_debug_info(s, pict);
|
|
//printf("out %d\n", (int)pict->data[0]);
|
|
#if 0 //?
|
|
|
|
/* Return the Picture timestamp as the frame number */
|
|
/* we subtract 1 because it is added on utils.c */
|
|
avctx->frame_number = s->picture_number - 1;
|
|
#endif
|
|
return get_consumed_bytes(s, buf_index, buf_size);
|
|
}
|
|
#if 0
|
|
static inline void fill_mb_avail(H264Context *h){
|
|
MpegEncContext * const s = &h->s;
|
|
const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
|
|
|
|
if(s->mb_y){
|
|
h->mb_avail[0]= s->mb_x && h->slice_table[mb_xy - s->mb_stride - 1] == h->slice_num;
|
|
h->mb_avail[1]= h->slice_table[mb_xy - s->mb_stride ] == h->slice_num;
|
|
h->mb_avail[2]= s->mb_x+1 < s->mb_width && h->slice_table[mb_xy - s->mb_stride + 1] == h->slice_num;
|
|
}else{
|
|
h->mb_avail[0]=
|
|
h->mb_avail[1]=
|
|
h->mb_avail[2]= 0;
|
|
}
|
|
h->mb_avail[3]= s->mb_x && h->slice_table[mb_xy - 1] == h->slice_num;
|
|
h->mb_avail[4]= 1; //FIXME move out
|
|
h->mb_avail[5]= 0; //FIXME move out
|
|
}
|
|
#endif
|
|
|
|
#ifdef TEST
|
|
#undef printf
|
|
#undef random
|
|
#define COUNT 8000
|
|
#define SIZE (COUNT*40)
|
|
int main(void){
|
|
int i;
|
|
uint8_t temp[SIZE];
|
|
PutBitContext pb;
|
|
GetBitContext gb;
|
|
// int int_temp[10000];
|
|
DSPContext dsp;
|
|
AVCodecContext avctx;
|
|
|
|
dsputil_init(&dsp, &avctx);
|
|
|
|
init_put_bits(&pb, temp, SIZE);
|
|
printf("testing unsigned exp golomb\n");
|
|
for(i=0; i<COUNT; i++){
|
|
START_TIMER
|
|
set_ue_golomb(&pb, i);
|
|
STOP_TIMER("set_ue_golomb");
|
|
}
|
|
flush_put_bits(&pb);
|
|
|
|
init_get_bits(&gb, temp, 8*SIZE);
|
|
for(i=0; i<COUNT; i++){
|
|
int j, s;
|
|
|
|
s= show_bits(&gb, 24);
|
|
|
|
START_TIMER
|
|
j= get_ue_golomb(&gb);
|
|
if(j != i){
|
|
printf("mismatch! at %d (%d should be %d) bits:%6X\n", i, j, i, s);
|
|
// return -1;
|
|
}
|
|
STOP_TIMER("get_ue_golomb");
|
|
}
|
|
|
|
|
|
init_put_bits(&pb, temp, SIZE);
|
|
printf("testing signed exp golomb\n");
|
|
for(i=0; i<COUNT; i++){
|
|
START_TIMER
|
|
set_se_golomb(&pb, i - COUNT/2);
|
|
STOP_TIMER("set_se_golomb");
|
|
}
|
|
flush_put_bits(&pb);
|
|
|
|
init_get_bits(&gb, temp, 8*SIZE);
|
|
for(i=0; i<COUNT; i++){
|
|
int j, s;
|
|
|
|
s= show_bits(&gb, 24);
|
|
|
|
START_TIMER
|
|
j= get_se_golomb(&gb);
|
|
if(j != i - COUNT/2){
|
|
printf("mismatch! at %d (%d should be %d) bits:%6X\n", i, j, i, s);
|
|
// return -1;
|
|
}
|
|
STOP_TIMER("get_se_golomb");
|
|
}
|
|
|
|
#if 0
|
|
printf("testing 4x4 (I)DCT\n");
|
|
|
|
DCTELEM block[16];
|
|
uint8_t src[16], ref[16];
|
|
uint64_t error= 0, max_error=0;
|
|
|
|
for(i=0; i<COUNT; i++){
|
|
int j;
|
|
// printf("%d %d %d\n", r1, r2, (r2-r1)*16);
|
|
for(j=0; j<16; j++){
|
|
ref[j]= random()%255;
|
|
src[j]= random()%255;
|
|
}
|
|
|
|
h264_diff_dct_c(block, src, ref, 4);
|
|
|
|
//normalize
|
|
for(j=0; j<16; j++){
|
|
// printf("%d ", block[j]);
|
|
block[j]= block[j]*4;
|
|
if(j&1) block[j]= (block[j]*4 + 2)/5;
|
|
if(j&4) block[j]= (block[j]*4 + 2)/5;
|
|
}
|
|
// printf("\n");
|
|
|
|
s->dsp.h264_idct_add(ref, block, 4);
|
|
/* for(j=0; j<16; j++){
|
|
printf("%d ", ref[j]);
|
|
}
|
|
printf("\n");*/
|
|
|
|
for(j=0; j<16; j++){
|
|
int diff= FFABS(src[j] - ref[j]);
|
|
|
|
error+= diff*diff;
|
|
max_error= FFMAX(max_error, diff);
|
|
}
|
|
}
|
|
printf("error=%f max_error=%d\n", ((float)error)/COUNT/16, (int)max_error );
|
|
printf("testing quantizer\n");
|
|
for(qp=0; qp<52; qp++){
|
|
for(i=0; i<16; i++)
|
|
src1_block[i]= src2_block[i]= random()%255;
|
|
|
|
}
|
|
printf("Testing NAL layer\n");
|
|
|
|
uint8_t bitstream[COUNT];
|
|
uint8_t nal[COUNT*2];
|
|
H264Context h;
|
|
memset(&h, 0, sizeof(H264Context));
|
|
|
|
for(i=0; i<COUNT; i++){
|
|
int zeros= i;
|
|
int nal_length;
|
|
int consumed;
|
|
int out_length;
|
|
uint8_t *out;
|
|
int j;
|
|
|
|
for(j=0; j<COUNT; j++){
|
|
bitstream[j]= (random() % 255) + 1;
|
|
}
|
|
|
|
for(j=0; j<zeros; j++){
|
|
int pos= random() % COUNT;
|
|
while(bitstream[pos] == 0){
|
|
pos++;
|
|
pos %= COUNT;
|
|
}
|
|
bitstream[pos]=0;
|
|
}
|
|
|
|
START_TIMER
|
|
|
|
nal_length= encode_nal(&h, nal, bitstream, COUNT, COUNT*2);
|
|
if(nal_length<0){
|
|
printf("encoding failed\n");
|
|
return -1;
|
|
}
|
|
|
|
out= decode_nal(&h, nal, &out_length, &consumed, nal_length);
|
|
|
|
STOP_TIMER("NAL")
|
|
|
|
if(out_length != COUNT){
|
|
printf("incorrect length %d %d\n", out_length, COUNT);
|
|
return -1;
|
|
}
|
|
|
|
if(consumed != nal_length){
|
|
printf("incorrect consumed length %d %d\n", nal_length, consumed);
|
|
return -1;
|
|
}
|
|
|
|
if(memcmp(bitstream, out, COUNT)){
|
|
printf("mismatch\n");
|
|
return -1;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
printf("Testing RBSP\n");
|
|
|
|
|
|
return 0;
|
|
}
|
|
#endif /* TEST */
|
|
|
|
|
|
static av_cold int decode_end(AVCodecContext *avctx)
|
|
{
|
|
H264Context *h = avctx->priv_data;
|
|
MpegEncContext *s = &h->s;
|
|
|
|
av_freep(&h->rbsp_buffer[0]);
|
|
av_freep(&h->rbsp_buffer[1]);
|
|
free_tables(h); //FIXME cleanup init stuff perhaps
|
|
MPV_common_end(s);
|
|
|
|
// memset(h, 0, sizeof(H264Context));
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
AVCodec h264_decoder = {
|
|
"h264",
|
|
CODEC_TYPE_VIDEO,
|
|
CODEC_ID_H264,
|
|
sizeof(H264Context),
|
|
decode_init,
|
|
NULL,
|
|
decode_end,
|
|
decode_frame,
|
|
/*CODEC_CAP_DRAW_HORIZ_BAND |*/ CODEC_CAP_DR1 | CODEC_CAP_TRUNCATED | CODEC_CAP_DELAY,
|
|
.flush= flush_dpb,
|
|
.long_name = "H.264 / AVC / MPEG-4 AVC / MPEG-4 part 10",
|
|
};
|
|
|
|
#include "svq3.c"
|