1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2024-11-21 10:55:51 +02:00
FFmpeg/libavcodec/aacpsdsp.c
Mirjana Vulin 46d52a0b09 mips: optimization for float aac decoder (ps module)
Signed-off-by: Mirjana Vulin <mvulin@mips.com>
Signed-off-by: Michael Niedermayer <michaelni@gmx.at>
2013-02-21 22:43:26 +01:00

217 lines
7.1 KiB
C

/*
* Copyright (c) 2010 Alex Converse <alex.converse@gmail.com>
*
* This file is part of Libav.
*
* Libav is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* Libav is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with Libav; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "config.h"
#include "libavutil/attributes.h"
#include "aacpsdsp.h"
static void ps_add_squares_c(float *dst, const float (*src)[2], int n)
{
int i;
for (i = 0; i < n; i++)
dst[i] += src[i][0] * src[i][0] + src[i][1] * src[i][1];
}
static void ps_mul_pair_single_c(float (*dst)[2], float (*src0)[2], float *src1,
int n)
{
int i;
for (i = 0; i < n; i++) {
dst[i][0] = src0[i][0] * src1[i];
dst[i][1] = src0[i][1] * src1[i];
}
}
static void ps_hybrid_analysis_c(float (*out)[2], float (*in)[2],
const float (*filter)[8][2],
int stride, int n)
{
int i, j;
for (i = 0; i < n; i++) {
float sum_re = filter[i][6][0] * in[6][0];
float sum_im = filter[i][6][0] * in[6][1];
for (j = 0; j < 6; j++) {
float in0_re = in[j][0];
float in0_im = in[j][1];
float in1_re = in[12-j][0];
float in1_im = in[12-j][1];
sum_re += filter[i][j][0] * (in0_re + in1_re) -
filter[i][j][1] * (in0_im - in1_im);
sum_im += filter[i][j][0] * (in0_im + in1_im) +
filter[i][j][1] * (in0_re - in1_re);
}
out[i * stride][0] = sum_re;
out[i * stride][1] = sum_im;
}
}
static void ps_hybrid_analysis_ileave_c(float (*out)[32][2], float L[2][38][64],
int i, int len)
{
int j;
for (; i < 64; i++) {
for (j = 0; j < len; j++) {
out[i][j][0] = L[0][j][i];
out[i][j][1] = L[1][j][i];
}
}
}
static void ps_hybrid_synthesis_deint_c(float out[2][38][64],
float (*in)[32][2],
int i, int len)
{
int n;
for (; i < 64; i++) {
for (n = 0; n < len; n++) {
out[0][n][i] = in[i][n][0];
out[1][n][i] = in[i][n][1];
}
}
}
static void ps_decorrelate_c(float (*out)[2], float (*delay)[2],
float (*ap_delay)[PS_QMF_TIME_SLOTS + PS_MAX_AP_DELAY][2],
const float phi_fract[2], float (*Q_fract)[2],
const float *transient_gain,
float g_decay_slope,
int len)
{
static const float a[] = { 0.65143905753106f,
0.56471812200776f,
0.48954165955695f };
float ag[PS_AP_LINKS];
int m, n;
for (m = 0; m < PS_AP_LINKS; m++)
ag[m] = a[m] * g_decay_slope;
for (n = 0; n < len; n++) {
float in_re = delay[n][0] * phi_fract[0] - delay[n][1] * phi_fract[1];
float in_im = delay[n][0] * phi_fract[1] + delay[n][1] * phi_fract[0];
for (m = 0; m < PS_AP_LINKS; m++) {
float a_re = ag[m] * in_re;
float a_im = ag[m] * in_im;
float link_delay_re = ap_delay[m][n+2-m][0];
float link_delay_im = ap_delay[m][n+2-m][1];
float fractional_delay_re = Q_fract[m][0];
float fractional_delay_im = Q_fract[m][1];
float apd_re = in_re;
float apd_im = in_im;
in_re = link_delay_re * fractional_delay_re -
link_delay_im * fractional_delay_im - a_re;
in_im = link_delay_re * fractional_delay_im +
link_delay_im * fractional_delay_re - a_im;
ap_delay[m][n+5][0] = apd_re + ag[m] * in_re;
ap_delay[m][n+5][1] = apd_im + ag[m] * in_im;
}
out[n][0] = transient_gain[n] * in_re;
out[n][1] = transient_gain[n] * in_im;
}
}
static void ps_stereo_interpolate_c(float (*l)[2], float (*r)[2],
float h[2][4], float h_step[2][4],
int len)
{
float h0 = h[0][0];
float h1 = h[0][1];
float h2 = h[0][2];
float h3 = h[0][3];
float hs0 = h_step[0][0];
float hs1 = h_step[0][1];
float hs2 = h_step[0][2];
float hs3 = h_step[0][3];
int n;
for (n = 0; n < len; n++) {
//l is s, r is d
float l_re = l[n][0];
float l_im = l[n][1];
float r_re = r[n][0];
float r_im = r[n][1];
h0 += hs0;
h1 += hs1;
h2 += hs2;
h3 += hs3;
l[n][0] = h0 * l_re + h2 * r_re;
l[n][1] = h0 * l_im + h2 * r_im;
r[n][0] = h1 * l_re + h3 * r_re;
r[n][1] = h1 * l_im + h3 * r_im;
}
}
static void ps_stereo_interpolate_ipdopd_c(float (*l)[2], float (*r)[2],
float h[2][4], float h_step[2][4],
int len)
{
float h00 = h[0][0], h10 = h[1][0];
float h01 = h[0][1], h11 = h[1][1];
float h02 = h[0][2], h12 = h[1][2];
float h03 = h[0][3], h13 = h[1][3];
float hs00 = h_step[0][0], hs10 = h_step[1][0];
float hs01 = h_step[0][1], hs11 = h_step[1][1];
float hs02 = h_step[0][2], hs12 = h_step[1][2];
float hs03 = h_step[0][3], hs13 = h_step[1][3];
int n;
for (n = 0; n < len; n++) {
//l is s, r is d
float l_re = l[n][0];
float l_im = l[n][1];
float r_re = r[n][0];
float r_im = r[n][1];
h00 += hs00;
h01 += hs01;
h02 += hs02;
h03 += hs03;
h10 += hs10;
h11 += hs11;
h12 += hs12;
h13 += hs13;
l[n][0] = h00 * l_re + h02 * r_re - h10 * l_im - h12 * r_im;
l[n][1] = h00 * l_im + h02 * r_im + h10 * l_re + h12 * r_re;
r[n][0] = h01 * l_re + h03 * r_re - h11 * l_im - h13 * r_im;
r[n][1] = h01 * l_im + h03 * r_im + h11 * l_re + h13 * r_re;
}
}
av_cold void ff_psdsp_init(PSDSPContext *s)
{
s->add_squares = ps_add_squares_c;
s->mul_pair_single = ps_mul_pair_single_c;
s->hybrid_analysis = ps_hybrid_analysis_c;
s->hybrid_analysis_ileave = ps_hybrid_analysis_ileave_c;
s->hybrid_synthesis_deint = ps_hybrid_synthesis_deint_c;
s->decorrelate = ps_decorrelate_c;
s->stereo_interpolate[0] = ps_stereo_interpolate_c;
s->stereo_interpolate[1] = ps_stereo_interpolate_ipdopd_c;
if (ARCH_ARM)
ff_psdsp_init_arm(s);
if (ARCH_MIPS)
ff_psdsp_init_mips(s);
}