1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2025-01-08 13:22:53 +02:00
FFmpeg/libavcodec/proresdec_lgpl.c
Michael Niedermayer ef74ab20c2 Merge remote-tracking branch 'qatar/master'
* qatar/master: (34 commits)
  dpcm: return error if packet is too small
  dpcm: use smaller data types for static tables
  dpcm: use sol_table_16 directly instead of through the DPCMContext.
  dpcm: replace short with int16_t
  dpcm: check to make sure channels is 1 or 2.
  dpcm: misc pretty-printing
  dpcm: remove unnecessary variable by using bytestream functions.
  dpcm: move codec-specific variable declarations to their corresponding decoding blocks.
  dpcm: consistently use the variable name 'n' for the next input byte.
  dpcm: output AV_SAMPLE_FMT_U8 for Sol DPCM subcodecs 1 and 2.
  dpcm: calculate and check actual output data size prior to decoding.
  dpcm: factor out the stereo flag calculation
  dpcm: cosmetics: rename channel_number to ch
  avserver: Fix a bug where the socket is IPv4, but IPv6 is autoselected for the loopback address.
  lavf: Avoid using av_malloc(0) in av_dump_format
  dxva2_h264: pass the correct 8x8 scaling lists
  dca: NEON optimised high freq VQ decoding
  avcodec: reject audio packets with NULL data and non-zero size
  dxva: Add ability to enable workaround for older ATI cards
  latmenc: Set latmBufferFullness to largest value to indicate it is not used
  ...

Conflicts:
	libavcodec/dxva2_h264.c

Merged-by: Michael Niedermayer <michaelni@gmx.at>
2011-10-01 02:54:46 +02:00

732 lines
24 KiB
C

/*
* Apple ProRes compatible decoder
*
* Copyright (c) 2010-2011 Maxim Poliakovski
*
* This file is part of Libav.
*
* Libav is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* Libav is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with Libav; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* This is a decoder for Apple ProRes 422 SD/HQ/LT/Proxy and ProRes 4444.
* It is used for storing and editing high definition video data in Apple's Final Cut Pro.
*
* @see http://wiki.multimedia.cx/index.php?title=Apple_ProRes
*/
#define A32_BITSTREAM_READER // some ProRes vlc codes require up to 28 bits to be read at once
#include <stdint.h>
#include "libavutil/intmath.h"
#include "avcodec.h"
#include "dsputil.h"
#include "get_bits.h"
#define BITS_PER_SAMPLE 10 ///< output precision of that decoder
#define BIAS (1 << (BITS_PER_SAMPLE - 1)) ///< bias value for converting signed pixels into unsigned ones
#define CLIP_MIN (1 << (BITS_PER_SAMPLE - 8)) ///< minimum value for clipping resulting pixels
#define CLIP_MAX (1 << BITS_PER_SAMPLE) - CLIP_MIN - 1 ///< maximum value for clipping resulting pixels
typedef struct {
DSPContext dsp;
AVFrame picture;
ScanTable scantable;
int scantable_type; ///< -1 = uninitialized, 0 = progressive, 1/2 = interlaced
int frame_type; ///< 0 = progressive, 1 = top-field first, 2 = bottom-field first
int pic_format; ///< 2 = 422, 3 = 444
uint8_t qmat_luma[64]; ///< dequantization matrix for luma
uint8_t qmat_chroma[64]; ///< dequantization matrix for chroma
int qmat_changed; ///< 1 - global quantization matrices changed
int prev_slice_sf; ///< scalefactor of the previous decoded slice
DECLARE_ALIGNED(16, int16_t, qmat_luma_scaled[64]);
DECLARE_ALIGNED(16, int16_t, qmat_chroma_scaled[64]);
DECLARE_ALIGNED(16, DCTELEM, blocks[8 * 4 * 64]);
int total_slices; ///< total number of slices in a picture
const uint8_t **slice_data_index; ///< array of pointers to the data of each slice
int chroma_factor;
int mb_chroma_factor;
int num_chroma_blocks; ///< number of chrominance blocks in a macroblock
int num_x_slices;
int num_y_slices;
int slice_width_factor;
int slice_height_factor;
int num_x_mbs;
int num_y_mbs;
} ProresContext;
static const uint8_t progressive_scan[64] = {
0, 1, 8, 9, 2, 3, 10, 11,
16, 17, 24, 25, 18, 19, 26, 27,
4, 5, 12, 20, 13, 6, 7, 14,
21, 28, 29, 22, 15, 23, 30, 31,
32, 33, 40, 48, 41, 34, 35, 42,
49, 56, 57, 50, 43, 36, 37, 44,
51, 58, 59, 52, 45, 38, 39, 46,
53, 60, 61, 54, 47, 55, 62, 63
};
static const uint8_t interlaced_scan[64] = {
0, 8, 1, 9, 16, 24, 17, 25,
2, 10, 3, 11, 18, 26, 19, 27,
32, 40, 33, 34, 41, 48, 56, 49,
42, 35, 43, 50, 57, 58, 51, 59,
4, 12, 5, 6, 13, 20, 28, 21,
14, 7, 15, 22, 29, 36, 44, 37,
30, 23, 31, 38, 45, 52, 60, 53,
46, 39, 47, 54, 61, 62, 55, 63
};
static av_cold int decode_init(AVCodecContext *avctx)
{
ProresContext *ctx = avctx->priv_data;
ctx->total_slices = 0;
ctx->slice_data_index = 0;
avctx->pix_fmt = PIX_FMT_YUV422P10; // set default pixel format
avctx->bits_per_raw_sample = BITS_PER_SAMPLE;
dsputil_init(&ctx->dsp, avctx);
avctx->coded_frame = &ctx->picture;
avcodec_get_frame_defaults(&ctx->picture);
ctx->picture.type = AV_PICTURE_TYPE_I;
ctx->picture.key_frame = 1;
ctx->scantable_type = -1; // set scantable type to uninitialized
memset(ctx->qmat_luma, 4, 64);
memset(ctx->qmat_chroma, 4, 64);
ctx->prev_slice_sf = 0;
return 0;
}
static int decode_frame_header(ProresContext *ctx, const uint8_t *buf,
const int data_size, AVCodecContext *avctx)
{
int hdr_size, version, width, height, flags;
const uint8_t *ptr;
hdr_size = AV_RB16(buf);
if (hdr_size > data_size) {
av_log(avctx, AV_LOG_ERROR, "frame data too small\n");
return AVERROR_INVALIDDATA;
}
version = AV_RB16(buf + 2);
if (version >= 2) {
av_log(avctx, AV_LOG_ERROR,
"unsupported header version: %d\n", version);
return AVERROR_INVALIDDATA;
}
width = AV_RB16(buf + 8);
height = AV_RB16(buf + 10);
if (width != avctx->width || height != avctx->height) {
av_log(avctx, AV_LOG_ERROR,
"picture dimension changed: old: %d x %d, new: %d x %d\n",
avctx->width, avctx->height, width, height);
return AVERROR_INVALIDDATA;
}
ctx->frame_type = (buf[12] >> 2) & 3;
if (ctx->frame_type > 2) {
av_log(avctx, AV_LOG_ERROR,
"unsupported frame type: %d\n", ctx->frame_type);
return AVERROR_INVALIDDATA;
}
ctx->chroma_factor = (buf[12] >> 6) & 3;
ctx->mb_chroma_factor = ctx->chroma_factor + 2;
ctx->num_chroma_blocks = (1 << ctx->chroma_factor) >> 1;
switch (ctx->chroma_factor) {
case 2:
avctx->pix_fmt = PIX_FMT_YUV422P10;
break;
case 3:
avctx->pix_fmt = PIX_FMT_YUV444P10;
break;
default:
av_log(avctx, AV_LOG_ERROR,
"unsupported picture format: %d\n", ctx->pic_format);
return AVERROR_INVALIDDATA;
}
if (ctx->scantable_type != ctx->frame_type) {
if (!ctx->frame_type)
ff_init_scantable(ctx->dsp.idct_permutation, &ctx->scantable,
progressive_scan);
else
ff_init_scantable(ctx->dsp.idct_permutation, &ctx->scantable,
interlaced_scan);
ctx->scantable_type = ctx->frame_type;
}
if (ctx->frame_type) { /* if interlaced */
ctx->picture.interlaced_frame = 1;
ctx->picture.top_field_first = ctx->frame_type & 1;
}
ctx->qmat_changed = 0;
ptr = buf + 20;
flags = buf[19];
if (flags & 2) {
if (ptr - buf > hdr_size - 64) {
av_log(avctx, AV_LOG_ERROR, "header data too small\n");
return AVERROR_INVALIDDATA;
}
if (memcmp(ctx->qmat_luma, ptr, 64)) {
memcpy(ctx->qmat_luma, ptr, 64);
ctx->qmat_changed = 1;
}
ptr += 64;
} else {
memset(ctx->qmat_luma, 4, 64);
ctx->qmat_changed = 1;
}
if (flags & 1) {
if (ptr - buf > hdr_size - 64) {
av_log(avctx, AV_LOG_ERROR, "header data too small\n");
return -1;
}
if (memcmp(ctx->qmat_chroma, ptr, 64)) {
memcpy(ctx->qmat_chroma, ptr, 64);
ctx->qmat_changed = 1;
}
} else {
memset(ctx->qmat_chroma, 4, 64);
ctx->qmat_changed = 1;
}
return hdr_size;
}
static int decode_picture_header(ProresContext *ctx, const uint8_t *buf,
const int data_size, AVCodecContext *avctx)
{
int i, hdr_size, pic_data_size, num_slices;
int slice_width_factor, slice_height_factor;
int remainder, num_x_slices;
const uint8_t *data_ptr, *index_ptr;
hdr_size = data_size > 0 ? buf[0] >> 3 : 0;
if (hdr_size < 8 || hdr_size > data_size) {
av_log(avctx, AV_LOG_ERROR, "picture header too small\n");
return AVERROR_INVALIDDATA;
}
pic_data_size = AV_RB32(buf + 1);
if (pic_data_size > data_size) {
av_log(avctx, AV_LOG_ERROR, "picture data too small\n");
return AVERROR_INVALIDDATA;
}
slice_width_factor = buf[7] >> 4;
slice_height_factor = buf[7] & 0xF;
if (slice_width_factor > 3 || slice_height_factor) {
av_log(avctx, AV_LOG_ERROR,
"unsupported slice dimension: %d x %d\n",
1 << slice_width_factor, 1 << slice_height_factor);
return AVERROR_INVALIDDATA;
}
ctx->slice_width_factor = slice_width_factor;
ctx->slice_height_factor = slice_height_factor;
ctx->num_x_mbs = (avctx->width + 15) >> 4;
ctx->num_y_mbs = (avctx->height +
(1 << (4 + ctx->picture.interlaced_frame)) - 1) >>
(4 + ctx->picture.interlaced_frame);
remainder = ctx->num_x_mbs & ((1 << slice_width_factor) - 1);
num_x_slices = (ctx->num_x_mbs >> slice_width_factor) + (remainder & 1) +
((remainder >> 1) & 1) + ((remainder >> 2) & 1);
num_slices = num_x_slices * ctx->num_y_mbs;
if (num_slices != AV_RB16(buf + 5)) {
av_log(avctx, AV_LOG_ERROR, "invalid number of slices\n");
return AVERROR_INVALIDDATA;
}
if (ctx->total_slices != num_slices) {
av_freep(&ctx->slice_data_index);
ctx->slice_data_index = av_malloc((num_slices + 1) * sizeof(uint8_t*));
if (!ctx->slice_data_index)
return AVERROR(ENOMEM);
ctx->total_slices = num_slices;
}
if (hdr_size + num_slices * 2 > data_size) {
av_log(avctx, AV_LOG_ERROR, "slice table too small\n");
return AVERROR_INVALIDDATA;
}
/* parse slice table allowing quick access to the slice data */
index_ptr = buf + hdr_size;
data_ptr = index_ptr + num_slices * 2;
for (i = 0; i < num_slices; i++) {
ctx->slice_data_index[i] = data_ptr;
data_ptr += AV_RB16(index_ptr + i * 2);
}
ctx->slice_data_index[i] = data_ptr;
if (data_ptr > buf + data_size) {
av_log(avctx, AV_LOG_ERROR, "out of slice data\n");
return -1;
}
return pic_data_size;
}
/**
* Read an unsigned rice/exp golomb codeword.
*/
static inline int decode_vlc_codeword(GetBitContext *gb, uint8_t codebook)
{
unsigned int rice_order, exp_order, switch_bits;
unsigned int buf, code;
int log, prefix_len, len;
OPEN_READER(re, gb);
UPDATE_CACHE(re, gb);
buf = GET_CACHE(re, gb);
/* number of prefix bits to switch between Rice and expGolomb */
switch_bits = (codebook & 3) + 1;
rice_order = codebook >> 5; /* rice code order */
exp_order = (codebook >> 2) & 7; /* exp golomb code order */
log = 31 - av_log2(buf); /* count prefix bits (zeroes) */
if (log < switch_bits) { /* ok, we got a rice code */
if (!rice_order) {
/* shortcut for faster decoding of rice codes without remainder */
code = log;
LAST_SKIP_BITS(re, gb, log + 1);
} else {
prefix_len = log + 1;
code = (log << rice_order) + NEG_USR32(buf << prefix_len, rice_order);
LAST_SKIP_BITS(re, gb, prefix_len + rice_order);
}
} else { /* otherwise we got a exp golomb code */
len = (log << 1) - switch_bits + exp_order + 1;
code = NEG_USR32(buf, len) - (1 << exp_order) + (switch_bits << rice_order);
LAST_SKIP_BITS(re, gb, len);
}
CLOSE_READER(re, gb);
return code;
}
#define LSB2SIGN(x) (-((x) & 1))
#define TOSIGNED(x) (((x) >> 1) ^ LSB2SIGN(x))
#define FIRST_DC_CB 0xB8 // rice_order = 5, exp_golomb_order = 6, switch_bits = 0
static uint8_t dc_codebook[4] = {
0x04, // rice_order = 0, exp_golomb_order = 1, switch_bits = 0
0x28, // rice_order = 1, exp_golomb_order = 2, switch_bits = 0
0x4D, // rice_order = 2, exp_golomb_order = 3, switch_bits = 1
0x70 // rice_order = 3, exp_golomb_order = 4, switch_bits = 0
};
/**
* Decode DC coefficients for all blocks in a slice.
*/
static inline void decode_dc_coeffs(GetBitContext *gb, DCTELEM *out,
int nblocks)
{
DCTELEM prev_dc;
int i, sign;
int16_t delta;
unsigned int code;
code = decode_vlc_codeword(gb, FIRST_DC_CB);
out[0] = prev_dc = TOSIGNED(code);
out += 64; /* move to the DC coeff of the next block */
delta = 3;
for (i = 1; i < nblocks; i++, out += 64) {
code = decode_vlc_codeword(gb, dc_codebook[FFMIN(FFABS(delta), 3)]);
sign = -(((delta >> 15) & 1) ^ (code & 1));
delta = (((code + 1) >> 1) ^ sign) - sign;
prev_dc += delta;
out[0] = prev_dc;
}
}
static uint8_t ac_codebook[7] = {
0x04, // rice_order = 0, exp_golomb_order = 1, switch_bits = 0
0x28, // rice_order = 1, exp_golomb_order = 2, switch_bits = 0
0x4C, // rice_order = 2, exp_golomb_order = 3, switch_bits = 0
0x05, // rice_order = 0, exp_golomb_order = 1, switch_bits = 1
0x29, // rice_order = 1, exp_golomb_order = 2, switch_bits = 1
0x06, // rice_order = 0, exp_golomb_order = 1, switch_bits = 2
0x0A, // rice_order = 0, exp_golomb_order = 2, switch_bits = 2
};
/**
* Lookup tables for adaptive switching between codebooks
* according with previous run/level value.
*/
static uint8_t run_to_cb_index[16] =
{ 5, 5, 3, 3, 0, 4, 4, 4, 4, 1, 1, 1, 1, 1, 1, 2 };
static uint8_t lev_to_cb_index[10] = { 0, 6, 3, 5, 0, 1, 1, 1, 1, 2 };
/**
* Decode AC coefficients for all blocks in a slice.
*/
static inline void decode_ac_coeffs(GetBitContext *gb, DCTELEM *out,
int blocks_per_slice,
int plane_size_factor,
const uint8_t *scan)
{
int pos, block_mask, run, level, sign, run_cb_index, lev_cb_index;
int max_coeffs, bits_left;
/* set initial prediction values */
run = 4;
level = 2;
max_coeffs = blocks_per_slice << 6;
block_mask = blocks_per_slice - 1;
for (pos = blocks_per_slice - 1; pos < max_coeffs;) {
run_cb_index = run_to_cb_index[FFMIN(run, 15)];
lev_cb_index = lev_to_cb_index[FFMIN(level, 9)];
bits_left = get_bits_left(gb);
if (bits_left <= 0 || (bits_left <= 8 && !show_bits(gb, bits_left)))
return;
run = decode_vlc_codeword(gb, ac_codebook[run_cb_index]);
bits_left = get_bits_left(gb);
if (bits_left <= 0 || (bits_left <= 8 && !show_bits(gb, bits_left)))
return;
level = decode_vlc_codeword(gb, ac_codebook[lev_cb_index]) + 1;
pos += run + 1;
if (pos >= max_coeffs)
break;
sign = get_sbits(gb, 1);
out[((pos & block_mask) << 6) + scan[pos >> plane_size_factor]] =
(level ^ sign) - sign;
}
}
#define CLIP_AND_BIAS(x) (av_clip((x) + BIAS, CLIP_MIN, CLIP_MAX))
/**
* Add bias value, clamp and output pixels of a slice
*/
static void put_pixels(const DCTELEM *in, uint16_t *out, int stride,
int mbs_per_slice, int blocks_per_mb)
{
int mb, x, y, src_offset, dst_offset;
const DCTELEM *src1, *src2;
uint16_t *dst1, *dst2;
src1 = in;
src2 = in + (blocks_per_mb << 5);
dst1 = out;
dst2 = out + (stride << 3);
for (mb = 0; mb < mbs_per_slice; mb++) {
for (y = 0, dst_offset = 0; y < 8; y++, dst_offset += stride) {
for (x = 0; x < 8; x++) {
src_offset = (y << 3) + x;
dst1[dst_offset + x] = CLIP_AND_BIAS(src1[src_offset]);
dst2[dst_offset + x] = CLIP_AND_BIAS(src2[src_offset]);
if (blocks_per_mb > 2) {
dst1[dst_offset + x + 8] =
CLIP_AND_BIAS(src1[src_offset + 64]);
dst2[dst_offset + x + 8] =
CLIP_AND_BIAS(src2[src_offset + 64]);
}
}
}
src1 += blocks_per_mb << 6;
src2 += blocks_per_mb << 6;
dst1 += blocks_per_mb << 2;
dst2 += blocks_per_mb << 2;
}
}
/**
* Decode a slice plane (luma or chroma).
*/
static void decode_slice_plane(ProresContext *ctx, const uint8_t *buf,
int data_size, uint16_t *out_ptr,
int linesize, int mbs_per_slice,
int blocks_per_mb, int plane_size_factor,
const int16_t *qmat)
{
GetBitContext gb;
DCTELEM *block_ptr;
int i, blk_num, blocks_per_slice;
blocks_per_slice = mbs_per_slice * blocks_per_mb;
memset(ctx->blocks, 0, 8 * 4 * 64 * sizeof(*ctx->blocks));
init_get_bits(&gb, buf, data_size << 3);
decode_dc_coeffs(&gb, ctx->blocks, blocks_per_slice);
decode_ac_coeffs(&gb, ctx->blocks, blocks_per_slice,
plane_size_factor, ctx->scantable.permutated);
/* inverse quantization, inverse transform and output */
block_ptr = ctx->blocks;
for (blk_num = 0; blk_num < blocks_per_slice; blk_num++, block_ptr += 64) {
/* TODO: the correct solution shoud be (block_ptr[i] * qmat[i]) >> 1
* and the input of the inverse transform should be scaled by 2
* in order to avoid rounding errors.
* Due to the fact the existing Libav transforms are incompatible with
* that input I temporally introduced the coarse solution below... */
for (i = 0; i < 64; i++)
block_ptr[i] = (block_ptr[i] * qmat[i]) >> 2;
ctx->dsp.idct(block_ptr);
}
put_pixels(ctx->blocks, out_ptr, linesize >> 1, mbs_per_slice,
blocks_per_mb);
}
static int decode_slice(ProresContext *ctx, int pic_num, int slice_num,
int mb_x_pos, int mb_y_pos, int mbs_per_slice,
AVCodecContext *avctx)
{
const uint8_t *buf;
uint8_t *y_data, *u_data, *v_data;
AVFrame *pic = avctx->coded_frame;
int i, sf, slice_width_factor;
int slice_data_size, hdr_size, y_data_size, u_data_size, v_data_size;
int y_linesize, u_linesize, v_linesize;
buf = ctx->slice_data_index[slice_num];
slice_data_size = ctx->slice_data_index[slice_num + 1] - buf;
slice_width_factor = av_log2(mbs_per_slice);
y_data = pic->data[0];
u_data = pic->data[1];
v_data = pic->data[2];
y_linesize = pic->linesize[0];
u_linesize = pic->linesize[1];
v_linesize = pic->linesize[2];
if (pic->interlaced_frame) {
if (!(pic_num ^ pic->top_field_first)) {
y_data += y_linesize;
u_data += u_linesize;
v_data += v_linesize;
}
y_linesize <<= 1;
u_linesize <<= 1;
v_linesize <<= 1;
}
if (slice_data_size < 6) {
av_log(avctx, AV_LOG_ERROR, "slice data too small\n");
return AVERROR_INVALIDDATA;
}
/* parse slice header */
hdr_size = buf[0] >> 3;
y_data_size = AV_RB16(buf + 2);
u_data_size = AV_RB16(buf + 4);
v_data_size = slice_data_size - y_data_size - u_data_size - hdr_size;
if (v_data_size < 0 || hdr_size < 6) {
av_log(avctx, AV_LOG_ERROR, "invalid data size\n");
return AVERROR_INVALIDDATA;
}
sf = av_clip(buf[1], 1, 224);
sf = sf > 128 ? (sf - 96) << 2 : sf;
/* scale quantization matrixes according with slice's scale factor */
/* TODO: this can be SIMD-optimized alot */
if (ctx->qmat_changed || sf != ctx->prev_slice_sf) {
ctx->prev_slice_sf = sf;
for (i = 0; i < 64; i++) {
ctx->qmat_luma_scaled[i] = ctx->qmat_luma[i] * sf;
ctx->qmat_chroma_scaled[i] = ctx->qmat_chroma[i] * sf;
}
}
/* decode luma plane */
decode_slice_plane(ctx, buf + hdr_size, y_data_size,
(uint16_t*) (y_data + (mb_y_pos << 4) * y_linesize +
(mb_x_pos << 5)), y_linesize,
mbs_per_slice, 4, slice_width_factor + 2,
ctx->qmat_luma_scaled);
/* decode U chroma plane */
decode_slice_plane(ctx, buf + hdr_size + y_data_size, u_data_size,
(uint16_t*) (u_data + (mb_y_pos << 4) * u_linesize +
(mb_x_pos << ctx->mb_chroma_factor)),
u_linesize, mbs_per_slice, ctx->num_chroma_blocks,
slice_width_factor + ctx->chroma_factor - 1,
ctx->qmat_chroma_scaled);
/* decode V chroma plane */
decode_slice_plane(ctx, buf + hdr_size + y_data_size + u_data_size,
v_data_size,
(uint16_t*) (v_data + (mb_y_pos << 4) * v_linesize +
(mb_x_pos << ctx->mb_chroma_factor)),
v_linesize, mbs_per_slice, ctx->num_chroma_blocks,
slice_width_factor + ctx->chroma_factor - 1,
ctx->qmat_chroma_scaled);
return 0;
}
static int decode_picture(ProresContext *ctx, int pic_num,
AVCodecContext *avctx)
{
int slice_num, slice_width, x_pos, y_pos;
slice_num = 0;
for (y_pos = 0; y_pos < ctx->num_y_mbs; y_pos++) {
slice_width = 1 << ctx->slice_width_factor;
for (x_pos = 0; x_pos < ctx->num_x_mbs && slice_width;
x_pos += slice_width) {
while (ctx->num_x_mbs - x_pos < slice_width)
slice_width >>= 1;
if (decode_slice(ctx, pic_num, slice_num, x_pos, y_pos,
slice_width, avctx) < 0)
return -1;
slice_num++;
}
}
return 0;
}
#define FRAME_ID MKBETAG('i', 'c', 'p', 'f')
#define MOVE_DATA_PTR(nbytes) buf += (nbytes); buf_size -= (nbytes)
static int decode_frame(AVCodecContext *avctx, void *data, int *data_size,
AVPacket *avpkt)
{
ProresContext *ctx = avctx->priv_data;
AVFrame *picture = avctx->coded_frame;
const uint8_t *buf = avpkt->data;
int buf_size = avpkt->size;
int frame_hdr_size, pic_num, pic_data_size;
/* check frame atom container */
if (buf_size < 28 || buf_size < AV_RB32(buf) ||
AV_RB32(buf + 4) != FRAME_ID) {
av_log(avctx, AV_LOG_ERROR, "invalid frame\n");
return AVERROR_INVALIDDATA;
}
MOVE_DATA_PTR(8);
frame_hdr_size = decode_frame_header(ctx, buf, buf_size, avctx);
if (frame_hdr_size < 0)
return AVERROR_INVALIDDATA;
MOVE_DATA_PTR(frame_hdr_size);
if (picture->data[0])
avctx->release_buffer(avctx, picture);
picture->reference = 0;
if (avctx->get_buffer(avctx, picture) < 0)
return -1;
for (pic_num = 0; ctx->picture.interlaced_frame - pic_num + 1; pic_num++) {
pic_data_size = decode_picture_header(ctx, buf, buf_size, avctx);
if (pic_data_size < 0)
return AVERROR_INVALIDDATA;
if (decode_picture(ctx, pic_num, avctx))
return -1;
MOVE_DATA_PTR(pic_data_size);
}
*data_size = sizeof(AVPicture);
*(AVFrame*) data = *avctx->coded_frame;
return avpkt->size;
}
static av_cold int decode_close(AVCodecContext *avctx)
{
ProresContext *ctx = avctx->priv_data;
if (ctx->picture.data[0])
avctx->release_buffer(avctx, &ctx->picture);
av_freep(&ctx->slice_data_index);
return 0;
}
AVCodec ff_prores_lgpl_decoder = {
.name = "prores_lgpl",
.type = AVMEDIA_TYPE_VIDEO,
.id = CODEC_ID_PRORES,
.priv_data_size = sizeof(ProresContext),
.init = decode_init,
.close = decode_close,
.decode = decode_frame,
.capabilities = CODEC_CAP_DR1,
.long_name = NULL_IF_CONFIG_SMALL("Apple ProRes (iCodec Pro)")
};