1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2024-11-26 19:01:44 +02:00
FFmpeg/libavcodec/cbs_h265_syntax_template.c
James Almer 137c0fcad1 avcodec/cbs_h265: fix storage type for time_offset_value in Time Code SEI
The spec defines it as an array of signed values, inferred to 0 when not
present.

Reviewed-by: Mark Thompson <sw@jkqxz.net>
Signed-off-by: James Almer <jamrial@gmail.com>
2019-04-16 20:33:10 -03:00

2224 lines
83 KiB
C

/*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
static int FUNC(rbsp_trailing_bits)(CodedBitstreamContext *ctx, RWContext *rw)
{
int err;
fixed(1, rbsp_stop_one_bit, 1);
while (byte_alignment(rw) != 0)
fixed(1, rbsp_alignment_zero_bit, 0);
return 0;
}
static int FUNC(nal_unit_header)(CodedBitstreamContext *ctx, RWContext *rw,
H265RawNALUnitHeader *current,
int expected_nal_unit_type)
{
int err;
u(1, forbidden_zero_bit, 0, 0);
if (expected_nal_unit_type >= 0)
u(6, nal_unit_type, expected_nal_unit_type,
expected_nal_unit_type);
else
u(6, nal_unit_type, 0, 63);
u(6, nuh_layer_id, 0, 62);
u(3, nuh_temporal_id_plus1, 1, 7);
return 0;
}
static int FUNC(byte_alignment)(CodedBitstreamContext *ctx, RWContext *rw)
{
int err;
fixed(1, alignment_bit_equal_to_one, 1);
while (byte_alignment(rw) != 0)
fixed(1, alignment_bit_equal_to_zero, 0);
return 0;
}
static int FUNC(extension_data)(CodedBitstreamContext *ctx, RWContext *rw,
H265RawPSExtensionData *current)
{
int err;
size_t k;
#ifdef READ
GetBitContext start;
uint8_t bit;
start = *rw;
for (k = 0; cbs_h2645_read_more_rbsp_data(rw); k++)
skip_bits(rw, 1);
current->bit_length = k;
if (k > 0) {
*rw = start;
allocate(current->data, (current->bit_length + 7) / 8);
for (k = 0; k < current->bit_length; k++) {
xu(1, extension_data, bit, 0, 1, 0);
current->data[k / 8] |= bit << (7 - k % 8);
}
}
#else
for (k = 0; k < current->bit_length; k++)
xu(1, extension_data, current->data[k / 8] >> (7 - k % 8), 0, 1, 0);
#endif
return 0;
}
static int FUNC(profile_tier_level)(CodedBitstreamContext *ctx, RWContext *rw,
H265RawProfileTierLevel *current,
int profile_present_flag,
int max_num_sub_layers_minus1)
{
int err, i, j;
if (profile_present_flag) {
u(2, general_profile_space, 0, 0);
flag(general_tier_flag);
u(5, general_profile_idc, 0, 31);
for (j = 0; j < 32; j++)
flags(general_profile_compatibility_flag[j], 1, j);
flag(general_progressive_source_flag);
flag(general_interlaced_source_flag);
flag(general_non_packed_constraint_flag);
flag(general_frame_only_constraint_flag);
#define profile_compatible(x) (current->general_profile_idc == (x) || \
current->general_profile_compatibility_flag[x])
if (profile_compatible(4) || profile_compatible(5) ||
profile_compatible(6) || profile_compatible(7) ||
profile_compatible(8) || profile_compatible(9) ||
profile_compatible(10)) {
flag(general_max_12bit_constraint_flag);
flag(general_max_10bit_constraint_flag);
flag(general_max_8bit_constraint_flag);
flag(general_max_422chroma_constraint_flag);
flag(general_max_420chroma_constraint_flag);
flag(general_max_monochrome_constraint_flag);
flag(general_intra_constraint_flag);
flag(general_one_picture_only_constraint_flag);
flag(general_lower_bit_rate_constraint_flag);
if (profile_compatible(5) || profile_compatible(9) ||
profile_compatible(10)) {
flag(general_max_14bit_constraint_flag);
fixed(24, general_reserved_zero_33bits, 0);
fixed( 9, general_reserved_zero_33bits, 0);
} else {
fixed(24, general_reserved_zero_34bits, 0);
fixed(10, general_reserved_zero_34bits, 0);
}
} else if (profile_compatible(2)) {
fixed(7, general_reserved_zero_7bits, 0);
flag(general_one_picture_only_constraint_flag);
fixed(24, general_reserved_zero_35bits, 0);
fixed(11, general_reserved_zero_35bits, 0);
} else {
fixed(24, general_reserved_zero_43bits, 0);
fixed(19, general_reserved_zero_43bits, 0);
}
if (profile_compatible(1) || profile_compatible(2) ||
profile_compatible(3) || profile_compatible(4) ||
profile_compatible(5) || profile_compatible(9)) {
flag(general_inbld_flag);
} else {
fixed(1, general_reserved_zero_bit, 0);
}
#undef profile_compatible
}
u(8, general_level_idc, 0, 255);
for (i = 0; i < max_num_sub_layers_minus1; i++) {
flags(sub_layer_profile_present_flag[i], 1, i);
flags(sub_layer_level_present_flag[i], 1, i);
}
if (max_num_sub_layers_minus1 > 0) {
for (i = max_num_sub_layers_minus1; i < 8; i++)
fixed(2, reserved_zero_2bits, 0);
}
for (i = 0; i < max_num_sub_layers_minus1; i++) {
if (current->sub_layer_profile_present_flag[i]) {
us(2, sub_layer_profile_space[i], 0, 0, 1, i);
flags(sub_layer_tier_flag[i], 1, i);
us(5, sub_layer_profile_idc[i], 0, 31, 1, i);
for (j = 0; j < 32; j++)
flags(sub_layer_profile_compatibility_flag[i][j], 2, i, j);
flags(sub_layer_progressive_source_flag[i], 1, i);
flags(sub_layer_interlaced_source_flag[i], 1, i);
flags(sub_layer_non_packed_constraint_flag[i], 1, i);
flags(sub_layer_frame_only_constraint_flag[i], 1, i);
#define profile_compatible(x) (current->sub_layer_profile_idc[i] == (x) || \
current->sub_layer_profile_compatibility_flag[i][x])
if (profile_compatible(4) || profile_compatible(5) ||
profile_compatible(6) || profile_compatible(7) ||
profile_compatible(8) || profile_compatible(9) ||
profile_compatible(10)) {
flags(sub_layer_max_12bit_constraint_flag[i], 1, i);
flags(sub_layer_max_10bit_constraint_flag[i], 1, i);
flags(sub_layer_max_8bit_constraint_flag[i], 1, i);
flags(sub_layer_max_422chroma_constraint_flag[i], 1, i);
flags(sub_layer_max_420chroma_constraint_flag[i], 1, i);
flags(sub_layer_max_monochrome_constraint_flag[i], 1, i);
flags(sub_layer_intra_constraint_flag[i], 1, i);
flags(sub_layer_one_picture_only_constraint_flag[i], 1, i);
flags(sub_layer_lower_bit_rate_constraint_flag[i], 1, i);
if (profile_compatible(5)) {
flags(sub_layer_max_14bit_constraint_flag[i], 1, i);
fixed(24, sub_layer_reserved_zero_33bits, 0);
fixed( 9, sub_layer_reserved_zero_33bits, 0);
} else {
fixed(24, sub_layer_reserved_zero_34bits, 0);
fixed(10, sub_layer_reserved_zero_34bits, 0);
}
} else if (profile_compatible(2)) {
fixed(7, sub_layer_reserved_zero_7bits, 0);
flags(sub_layer_one_picture_only_constraint_flag[i], 1, i);
fixed(24, sub_layer_reserved_zero_43bits, 0);
fixed(11, sub_layer_reserved_zero_43bits, 0);
} else {
fixed(24, sub_layer_reserved_zero_43bits, 0);
fixed(19, sub_layer_reserved_zero_43bits, 0);
}
if (profile_compatible(1) || profile_compatible(2) ||
profile_compatible(3) || profile_compatible(4) ||
profile_compatible(5) || profile_compatible(9)) {
flags(sub_layer_inbld_flag[i], 1, i);
} else {
fixed(1, sub_layer_reserved_zero_bit, 0);
}
#undef profile_compatible
}
if (current->sub_layer_level_present_flag[i])
us(8, sub_layer_level_idc[i], 0, 255, 1, i);
}
return 0;
}
static int FUNC(sub_layer_hrd_parameters)(CodedBitstreamContext *ctx, RWContext *rw,
H265RawHRDParameters *hrd,
int nal, int sub_layer_id)
{
H265RawSubLayerHRDParameters *current;
int err, i;
if (nal)
current = &hrd->nal_sub_layer_hrd_parameters[sub_layer_id];
else
current = &hrd->vcl_sub_layer_hrd_parameters[sub_layer_id];
for (i = 0; i <= hrd->cpb_cnt_minus1[sub_layer_id]; i++) {
ues(bit_rate_value_minus1[i], 0, UINT32_MAX - 1, 1, i);
ues(cpb_size_value_minus1[i], 0, UINT32_MAX - 1, 1, i);
if (hrd->sub_pic_hrd_params_present_flag) {
ues(cpb_size_du_value_minus1[i], 0, UINT32_MAX - 1, 1, i);
ues(bit_rate_du_value_minus1[i], 0, UINT32_MAX - 1, 1, i);
}
flags(cbr_flag[i], 1, i);
}
return 0;
}
static int FUNC(hrd_parameters)(CodedBitstreamContext *ctx, RWContext *rw,
H265RawHRDParameters *current, int common_inf_present_flag,
int max_num_sub_layers_minus1)
{
int err, i;
if (common_inf_present_flag) {
flag(nal_hrd_parameters_present_flag);
flag(vcl_hrd_parameters_present_flag);
if (current->nal_hrd_parameters_present_flag ||
current->vcl_hrd_parameters_present_flag) {
flag(sub_pic_hrd_params_present_flag);
if (current->sub_pic_hrd_params_present_flag) {
u(8, tick_divisor_minus2, 0, 255);
u(5, du_cpb_removal_delay_increment_length_minus1, 0, 31);
flag(sub_pic_cpb_params_in_pic_timing_sei_flag);
u(5, dpb_output_delay_du_length_minus1, 0, 31);
}
u(4, bit_rate_scale, 0, 15);
u(4, cpb_size_scale, 0, 15);
if (current->sub_pic_hrd_params_present_flag)
u(4, cpb_size_du_scale, 0, 15);
u(5, initial_cpb_removal_delay_length_minus1, 0, 31);
u(5, au_cpb_removal_delay_length_minus1, 0, 31);
u(5, dpb_output_delay_length_minus1, 0, 31);
} else {
infer(sub_pic_hrd_params_present_flag, 0);
infer(initial_cpb_removal_delay_length_minus1, 23);
infer(au_cpb_removal_delay_length_minus1, 23);
infer(dpb_output_delay_length_minus1, 23);
}
}
for (i = 0; i <= max_num_sub_layers_minus1; i++) {
flags(fixed_pic_rate_general_flag[i], 1, i);
if (!current->fixed_pic_rate_general_flag[i])
flags(fixed_pic_rate_within_cvs_flag[i], 1, i);
else
infer(fixed_pic_rate_within_cvs_flag[i], 1);
if (current->fixed_pic_rate_within_cvs_flag[i]) {
ues(elemental_duration_in_tc_minus1[i], 0, 2047, 1, i);
infer(low_delay_hrd_flag[i], 0);
} else
flags(low_delay_hrd_flag[i], 1, i);
if (!current->low_delay_hrd_flag[i])
ues(cpb_cnt_minus1[i], 0, 31, 1, i);
else
infer(cpb_cnt_minus1[i], 0);
if (current->nal_hrd_parameters_present_flag)
CHECK(FUNC(sub_layer_hrd_parameters)(ctx, rw, current, 0, i));
if (current->vcl_hrd_parameters_present_flag)
CHECK(FUNC(sub_layer_hrd_parameters)(ctx, rw, current, 1, i));
}
return 0;
}
static int FUNC(vui_parameters)(CodedBitstreamContext *ctx, RWContext *rw,
H265RawVUI *current, const H265RawSPS *sps)
{
int err;
flag(aspect_ratio_info_present_flag);
if (current->aspect_ratio_info_present_flag) {
u(8, aspect_ratio_idc, 0, 255);
if (current->aspect_ratio_idc == 255) {
u(16, sar_width, 0, 65535);
u(16, sar_height, 0, 65535);
}
} else {
infer(aspect_ratio_idc, 0);
}
flag(overscan_info_present_flag);
if (current->overscan_info_present_flag)
flag(overscan_appropriate_flag);
flag(video_signal_type_present_flag);
if (current->video_signal_type_present_flag) {
u(3, video_format, 0, 7);
flag(video_full_range_flag);
flag(colour_description_present_flag);
if (current->colour_description_present_flag) {
u(8, colour_primaries, 0, 255);
u(8, transfer_characteristics, 0, 255);
u(8, matrix_coefficients, 0, 255);
} else {
infer(colour_primaries, 2);
infer(transfer_characteristics, 2);
infer(matrix_coefficients, 2);
}
} else {
infer(video_format, 5);
infer(video_full_range_flag, 0);
infer(colour_primaries, 2);
infer(transfer_characteristics, 2);
infer(matrix_coefficients, 2);
}
flag(chroma_loc_info_present_flag);
if (current->chroma_loc_info_present_flag) {
ue(chroma_sample_loc_type_top_field, 0, 5);
ue(chroma_sample_loc_type_bottom_field, 0, 5);
} else {
infer(chroma_sample_loc_type_top_field, 0);
infer(chroma_sample_loc_type_bottom_field, 0);
}
flag(neutral_chroma_indication_flag);
flag(field_seq_flag);
flag(frame_field_info_present_flag);
flag(default_display_window_flag);
if (current->default_display_window_flag) {
ue(def_disp_win_left_offset, 0, 16384);
ue(def_disp_win_right_offset, 0, 16384);
ue(def_disp_win_top_offset, 0, 16384);
ue(def_disp_win_bottom_offset, 0, 16384);
}
flag(vui_timing_info_present_flag);
if (current->vui_timing_info_present_flag) {
u(32, vui_num_units_in_tick, 1, UINT32_MAX);
u(32, vui_time_scale, 1, UINT32_MAX);
flag(vui_poc_proportional_to_timing_flag);
if (current->vui_poc_proportional_to_timing_flag)
ue(vui_num_ticks_poc_diff_one_minus1, 0, UINT32_MAX - 1);
flag(vui_hrd_parameters_present_flag);
if (current->vui_hrd_parameters_present_flag) {
CHECK(FUNC(hrd_parameters)(ctx, rw, &current->hrd_parameters,
1, sps->sps_max_sub_layers_minus1));
}
}
flag(bitstream_restriction_flag);
if (current->bitstream_restriction_flag) {
flag(tiles_fixed_structure_flag);
flag(motion_vectors_over_pic_boundaries_flag);
flag(restricted_ref_pic_lists_flag);
ue(min_spatial_segmentation_idc, 0, 4095);
ue(max_bytes_per_pic_denom, 0, 16);
ue(max_bits_per_min_cu_denom, 0, 16);
ue(log2_max_mv_length_horizontal, 0, 16);
ue(log2_max_mv_length_vertical, 0, 16);
} else {
infer(tiles_fixed_structure_flag, 0);
infer(motion_vectors_over_pic_boundaries_flag, 1);
infer(min_spatial_segmentation_idc, 0);
infer(max_bytes_per_pic_denom, 2);
infer(max_bits_per_min_cu_denom, 1);
infer(log2_max_mv_length_horizontal, 15);
infer(log2_max_mv_length_vertical, 15);
}
return 0;
}
static int FUNC(vps)(CodedBitstreamContext *ctx, RWContext *rw,
H265RawVPS *current)
{
int err, i, j;
HEADER("Video Parameter Set");
CHECK(FUNC(nal_unit_header)(ctx, rw, &current->nal_unit_header, HEVC_NAL_VPS));
u(4, vps_video_parameter_set_id, 0, 15);
flag(vps_base_layer_internal_flag);
flag(vps_base_layer_available_flag);
u(6, vps_max_layers_minus1, 0, HEVC_MAX_LAYERS - 1);
u(3, vps_max_sub_layers_minus1, 0, HEVC_MAX_SUB_LAYERS - 1);
flag(vps_temporal_id_nesting_flag);
if (current->vps_max_sub_layers_minus1 == 0 &&
current->vps_temporal_id_nesting_flag != 1) {
av_log(ctx->log_ctx, AV_LOG_ERROR, "Invalid stream: "
"vps_temporal_id_nesting_flag must be 1 if "
"vps_max_sub_layers_minus1 is 0.\n");
return AVERROR_INVALIDDATA;
}
fixed(16, vps_reserved_0xffff_16bits, 0xffff);
CHECK(FUNC(profile_tier_level)(ctx, rw, &current->profile_tier_level,
1, current->vps_max_sub_layers_minus1));
flag(vps_sub_layer_ordering_info_present_flag);
for (i = (current->vps_sub_layer_ordering_info_present_flag ?
0 : current->vps_max_sub_layers_minus1);
i <= current->vps_max_sub_layers_minus1; i++) {
ues(vps_max_dec_pic_buffering_minus1[i],
0, HEVC_MAX_DPB_SIZE - 1, 1, i);
ues(vps_max_num_reorder_pics[i],
0, current->vps_max_dec_pic_buffering_minus1[i], 1, i);
ues(vps_max_latency_increase_plus1[i],
0, UINT32_MAX - 1, 1, i);
}
if (!current->vps_sub_layer_ordering_info_present_flag) {
for (i = 0; i < current->vps_max_sub_layers_minus1; i++) {
infer(vps_max_dec_pic_buffering_minus1[i],
current->vps_max_dec_pic_buffering_minus1[current->vps_max_sub_layers_minus1]);
infer(vps_max_num_reorder_pics[i],
current->vps_max_num_reorder_pics[current->vps_max_sub_layers_minus1]);
infer(vps_max_latency_increase_plus1[i],
current->vps_max_latency_increase_plus1[current->vps_max_sub_layers_minus1]);
}
}
u(6, vps_max_layer_id, 0, HEVC_MAX_LAYERS - 1);
ue(vps_num_layer_sets_minus1, 0, HEVC_MAX_LAYER_SETS - 1);
for (i = 1; i <= current->vps_num_layer_sets_minus1; i++) {
for (j = 0; j <= current->vps_max_layer_id; j++)
flags(layer_id_included_flag[i][j], 2, i, j);
}
for (j = 0; j <= current->vps_max_layer_id; j++)
infer(layer_id_included_flag[0][j], j == 0);
flag(vps_timing_info_present_flag);
if (current->vps_timing_info_present_flag) {
u(32, vps_num_units_in_tick, 1, UINT32_MAX);
u(32, vps_time_scale, 1, UINT32_MAX);
flag(vps_poc_proportional_to_timing_flag);
if (current->vps_poc_proportional_to_timing_flag)
ue(vps_num_ticks_poc_diff_one_minus1, 0, UINT32_MAX - 1);
ue(vps_num_hrd_parameters, 0, current->vps_num_layer_sets_minus1 + 1);
for (i = 0; i < current->vps_num_hrd_parameters; i++) {
ues(hrd_layer_set_idx[i],
current->vps_base_layer_internal_flag ? 0 : 1,
current->vps_num_layer_sets_minus1, 1, i);
if (i > 0)
flags(cprms_present_flag[i], 1, i);
else
infer(cprms_present_flag[0], 1);
CHECK(FUNC(hrd_parameters)(ctx, rw, &current->hrd_parameters[i],
current->cprms_present_flag[i],
current->vps_max_sub_layers_minus1));
}
}
flag(vps_extension_flag);
if (current->vps_extension_flag)
CHECK(FUNC(extension_data)(ctx, rw, &current->extension_data));
CHECK(FUNC(rbsp_trailing_bits)(ctx, rw));
return 0;
}
static int FUNC(st_ref_pic_set)(CodedBitstreamContext *ctx, RWContext *rw,
H265RawSTRefPicSet *current, int st_rps_idx,
const H265RawSPS *sps)
{
int err, i, j;
if (st_rps_idx != 0)
flag(inter_ref_pic_set_prediction_flag);
else
infer(inter_ref_pic_set_prediction_flag, 0);
if (current->inter_ref_pic_set_prediction_flag) {
unsigned int ref_rps_idx, num_delta_pocs;
const H265RawSTRefPicSet *ref;
int delta_rps, d_poc;
int ref_delta_poc_s0[HEVC_MAX_REFS], ref_delta_poc_s1[HEVC_MAX_REFS];
int delta_poc_s0[HEVC_MAX_REFS], delta_poc_s1[HEVC_MAX_REFS];
uint8_t used_by_curr_pic_s0[HEVC_MAX_REFS],
used_by_curr_pic_s1[HEVC_MAX_REFS];
if (st_rps_idx == sps->num_short_term_ref_pic_sets)
ue(delta_idx_minus1, 0, st_rps_idx - 1);
else
infer(delta_idx_minus1, 0);
ref_rps_idx = st_rps_idx - (current->delta_idx_minus1 + 1);
ref = &sps->st_ref_pic_set[ref_rps_idx];
num_delta_pocs = ref->num_negative_pics + ref->num_positive_pics;
flag(delta_rps_sign);
ue(abs_delta_rps_minus1, 0, INT16_MAX);
delta_rps = (1 - 2 * current->delta_rps_sign) *
(current->abs_delta_rps_minus1 + 1);
for (j = 0; j <= num_delta_pocs; j++) {
flags(used_by_curr_pic_flag[j], 1, j);
if (!current->used_by_curr_pic_flag[j])
flags(use_delta_flag[j], 1, j);
else
infer(use_delta_flag[j], 1);
}
// Since the stored form of an RPS here is actually the delta-step
// form used when inter_ref_pic_set_prediction_flag is not set, we
// need to reconstruct that here in order to be able to refer to
// the RPS later (which is required for parsing, because we don't
// even know what syntax elements appear without it). Therefore,
// this code takes the delta-step form of the reference set, turns
// it into the delta-array form, applies the prediction process of
// 7.4.8, converts the result back to the delta-step form, and
// stores that as the current set for future use. Note that the
// inferences here mean that writers using prediction will need
// to fill in the delta-step values correctly as well - since the
// whole RPS prediction process is somewhat overly sophisticated,
// this hopefully forms a useful check for them to ensure their
// predicted form actually matches what was intended rather than
// an onerous additional requirement.
d_poc = 0;
for (i = 0; i < ref->num_negative_pics; i++) {
d_poc -= ref->delta_poc_s0_minus1[i] + 1;
ref_delta_poc_s0[i] = d_poc;
}
d_poc = 0;
for (i = 0; i < ref->num_positive_pics; i++) {
d_poc += ref->delta_poc_s1_minus1[i] + 1;
ref_delta_poc_s1[i] = d_poc;
}
i = 0;
for (j = ref->num_positive_pics - 1; j >= 0; j--) {
d_poc = ref_delta_poc_s1[j] + delta_rps;
if (d_poc < 0 && current->use_delta_flag[ref->num_negative_pics + j]) {
delta_poc_s0[i] = d_poc;
used_by_curr_pic_s0[i++] =
current->used_by_curr_pic_flag[ref->num_negative_pics + j];
}
}
if (delta_rps < 0 && current->use_delta_flag[num_delta_pocs]) {
delta_poc_s0[i] = delta_rps;
used_by_curr_pic_s0[i++] =
current->used_by_curr_pic_flag[num_delta_pocs];
}
for (j = 0; j < ref->num_negative_pics; j++) {
d_poc = ref_delta_poc_s0[j] + delta_rps;
if (d_poc < 0 && current->use_delta_flag[j]) {
delta_poc_s0[i] = d_poc;
used_by_curr_pic_s0[i++] = current->used_by_curr_pic_flag[j];
}
}
infer(num_negative_pics, i);
for (i = 0; i < current->num_negative_pics; i++) {
infer(delta_poc_s0_minus1[i],
-(delta_poc_s0[i] - (i == 0 ? 0 : delta_poc_s0[i - 1])) - 1);
infer(used_by_curr_pic_s0_flag[i], used_by_curr_pic_s0[i]);
}
i = 0;
for (j = ref->num_negative_pics - 1; j >= 0; j--) {
d_poc = ref_delta_poc_s0[j] + delta_rps;
if (d_poc > 0 && current->use_delta_flag[j]) {
delta_poc_s1[i] = d_poc;
used_by_curr_pic_s1[i++] = current->used_by_curr_pic_flag[j];
}
}
if (delta_rps > 0 && current->use_delta_flag[num_delta_pocs]) {
delta_poc_s1[i] = delta_rps;
used_by_curr_pic_s1[i++] =
current->used_by_curr_pic_flag[num_delta_pocs];
}
for (j = 0; j < ref->num_positive_pics; j++) {
d_poc = ref_delta_poc_s1[j] + delta_rps;
if (d_poc > 0 && current->use_delta_flag[ref->num_negative_pics + j]) {
delta_poc_s1[i] = d_poc;
used_by_curr_pic_s1[i++] =
current->used_by_curr_pic_flag[ref->num_negative_pics + j];
}
}
infer(num_positive_pics, i);
for (i = 0; i < current->num_positive_pics; i++) {
infer(delta_poc_s1_minus1[i],
delta_poc_s1[i] - (i == 0 ? 0 : delta_poc_s1[i - 1]) - 1);
infer(used_by_curr_pic_s1_flag[i], used_by_curr_pic_s1[i]);
}
} else {
ue(num_negative_pics, 0, 15);
ue(num_positive_pics, 0, 15 - current->num_negative_pics);
for (i = 0; i < current->num_negative_pics; i++) {
ues(delta_poc_s0_minus1[i], 0, INT16_MAX, 1, i);
flags(used_by_curr_pic_s0_flag[i], 1, i);
}
for (i = 0; i < current->num_positive_pics; i++) {
ues(delta_poc_s1_minus1[i], 0, INT16_MAX, 1, i);
flags(used_by_curr_pic_s1_flag[i], 1, i);
}
}
return 0;
}
static int FUNC(scaling_list_data)(CodedBitstreamContext *ctx, RWContext *rw,
H265RawScalingList *current)
{
int sizeId, matrixId;
int err, n, i;
for (sizeId = 0; sizeId < 4; sizeId++) {
for (matrixId = 0; matrixId < 6; matrixId += (sizeId == 3 ? 3 : 1)) {
flags(scaling_list_pred_mode_flag[sizeId][matrixId],
2, sizeId, matrixId);
if (!current->scaling_list_pred_mode_flag[sizeId][matrixId]) {
ues(scaling_list_pred_matrix_id_delta[sizeId][matrixId],
0, sizeId == 3 ? matrixId / 3 : matrixId,
2, sizeId, matrixId);
} else {
n = FFMIN(64, 1 << (4 + (sizeId << 1)));
if (sizeId > 1) {
ses(scaling_list_dc_coef_minus8[sizeId - 2][matrixId], -7, +247,
2, sizeId - 2, matrixId);
}
for (i = 0; i < n; i++) {
ses(scaling_list_delta_coeff[sizeId][matrixId][i],
-128, +127, 3, sizeId, matrixId, i);
}
}
}
}
return 0;
}
static int FUNC(sps_range_extension)(CodedBitstreamContext *ctx, RWContext *rw,
H265RawSPS *current)
{
int err;
flag(transform_skip_rotation_enabled_flag);
flag(transform_skip_context_enabled_flag);
flag(implicit_rdpcm_enabled_flag);
flag(explicit_rdpcm_enabled_flag);
flag(extended_precision_processing_flag);
flag(intra_smoothing_disabled_flag);
flag(high_precision_offsets_enabled_flag);
flag(persistent_rice_adaptation_enabled_flag);
flag(cabac_bypass_alignment_enabled_flag);
return 0;
}
static int FUNC(sps_scc_extension)(CodedBitstreamContext *ctx, RWContext *rw,
H265RawSPS *current)
{
int err, comp, i;
flag(sps_curr_pic_ref_enabled_flag);
flag(palette_mode_enabled_flag);
if (current->palette_mode_enabled_flag) {
ue(palette_max_size, 0, 64);
ue(delta_palette_max_predictor_size, 0, 128);
flag(sps_palette_predictor_initializer_present_flag);
if (current->sps_palette_predictor_initializer_present_flag) {
ue(sps_num_palette_predictor_initializer_minus1, 0, 128);
for (comp = 0; comp < (current->chroma_format_idc ? 3 : 1); comp++) {
int bit_depth = comp == 0 ? current->bit_depth_luma_minus8 + 8
: current->bit_depth_chroma_minus8 + 8;
for (i = 0; i <= current->sps_num_palette_predictor_initializer_minus1; i++)
us(bit_depth, sps_palette_predictor_initializers[comp][i],
0, MAX_UINT_BITS(bit_depth), 2, comp, i);
}
}
}
u(2, motion_vector_resolution_control_idc, 0, 2);
flag(intra_boundary_filtering_disable_flag);
return 0;
}
static int FUNC(sps)(CodedBitstreamContext *ctx, RWContext *rw,
H265RawSPS *current)
{
CodedBitstreamH265Context *h265 = ctx->priv_data;
const H265RawVPS *vps;
int err, i;
unsigned int min_cb_log2_size_y, ctb_log2_size_y,
min_cb_size_y, min_tb_log2_size_y;
HEADER("Sequence Parameter Set");
CHECK(FUNC(nal_unit_header)(ctx, rw, &current->nal_unit_header, HEVC_NAL_SPS));
u(4, sps_video_parameter_set_id, 0, 15);
h265->active_vps = vps = h265->vps[current->sps_video_parameter_set_id];
u(3, sps_max_sub_layers_minus1, 0, HEVC_MAX_SUB_LAYERS - 1);
flag(sps_temporal_id_nesting_flag);
if (vps) {
if (vps->vps_max_sub_layers_minus1 > current->sps_max_sub_layers_minus1) {
av_log(ctx->log_ctx, AV_LOG_ERROR, "Invalid stream: "
"sps_max_sub_layers_minus1 (%d) must be less than or equal to "
"vps_max_sub_layers_minus1 (%d).\n",
vps->vps_max_sub_layers_minus1,
current->sps_max_sub_layers_minus1);
return AVERROR_INVALIDDATA;
}
if (vps->vps_temporal_id_nesting_flag &&
!current->sps_temporal_id_nesting_flag) {
av_log(ctx->log_ctx, AV_LOG_ERROR, "Invalid stream: "
"sps_temporal_id_nesting_flag must be 1 if "
"vps_temporal_id_nesting_flag is 1.\n");
return AVERROR_INVALIDDATA;
}
}
CHECK(FUNC(profile_tier_level)(ctx, rw, &current->profile_tier_level,
1, current->sps_max_sub_layers_minus1));
ue(sps_seq_parameter_set_id, 0, 15);
ue(chroma_format_idc, 0, 3);
if (current->chroma_format_idc == 3)
flag(separate_colour_plane_flag);
else
infer(separate_colour_plane_flag, 0);
ue(pic_width_in_luma_samples, 1, HEVC_MAX_WIDTH);
ue(pic_height_in_luma_samples, 1, HEVC_MAX_HEIGHT);
flag(conformance_window_flag);
if (current->conformance_window_flag) {
ue(conf_win_left_offset, 0, current->pic_width_in_luma_samples);
ue(conf_win_right_offset, 0, current->pic_width_in_luma_samples);
ue(conf_win_top_offset, 0, current->pic_height_in_luma_samples);
ue(conf_win_bottom_offset, 0, current->pic_height_in_luma_samples);
} else {
infer(conf_win_left_offset, 0);
infer(conf_win_right_offset, 0);
infer(conf_win_top_offset, 0);
infer(conf_win_bottom_offset, 0);
}
ue(bit_depth_luma_minus8, 0, 8);
ue(bit_depth_chroma_minus8, 0, 8);
ue(log2_max_pic_order_cnt_lsb_minus4, 0, 12);
flag(sps_sub_layer_ordering_info_present_flag);
for (i = (current->sps_sub_layer_ordering_info_present_flag ?
0 : current->sps_max_sub_layers_minus1);
i <= current->sps_max_sub_layers_minus1; i++) {
ues(sps_max_dec_pic_buffering_minus1[i],
0, HEVC_MAX_DPB_SIZE - 1, 1, i);
ues(sps_max_num_reorder_pics[i],
0, current->sps_max_dec_pic_buffering_minus1[i], 1, i);
ues(sps_max_latency_increase_plus1[i],
0, UINT32_MAX - 1, 1, i);
}
if (!current->sps_sub_layer_ordering_info_present_flag) {
for (i = 0; i < current->sps_max_sub_layers_minus1; i++) {
infer(sps_max_dec_pic_buffering_minus1[i],
current->sps_max_dec_pic_buffering_minus1[current->sps_max_sub_layers_minus1]);
infer(sps_max_num_reorder_pics[i],
current->sps_max_num_reorder_pics[current->sps_max_sub_layers_minus1]);
infer(sps_max_latency_increase_plus1[i],
current->sps_max_latency_increase_plus1[current->sps_max_sub_layers_minus1]);
}
}
ue(log2_min_luma_coding_block_size_minus3, 0, 3);
min_cb_log2_size_y = current->log2_min_luma_coding_block_size_minus3 + 3;
ue(log2_diff_max_min_luma_coding_block_size, 0, 3);
ctb_log2_size_y = min_cb_log2_size_y +
current->log2_diff_max_min_luma_coding_block_size;
min_cb_size_y = 1 << min_cb_log2_size_y;
if (current->pic_width_in_luma_samples % min_cb_size_y ||
current->pic_height_in_luma_samples % min_cb_size_y) {
av_log(ctx->log_ctx, AV_LOG_ERROR, "Invalid dimensions: %ux%u not divisible "
"by MinCbSizeY = %u.\n", current->pic_width_in_luma_samples,
current->pic_height_in_luma_samples, min_cb_size_y);
return AVERROR_INVALIDDATA;
}
ue(log2_min_luma_transform_block_size_minus2, 0, min_cb_log2_size_y - 3);
min_tb_log2_size_y = current->log2_min_luma_transform_block_size_minus2 + 2;
ue(log2_diff_max_min_luma_transform_block_size,
0, FFMIN(ctb_log2_size_y, 5) - min_tb_log2_size_y);
ue(max_transform_hierarchy_depth_inter,
0, ctb_log2_size_y - min_tb_log2_size_y);
ue(max_transform_hierarchy_depth_intra,
0, ctb_log2_size_y - min_tb_log2_size_y);
flag(scaling_list_enabled_flag);
if (current->scaling_list_enabled_flag) {
flag(sps_scaling_list_data_present_flag);
if (current->sps_scaling_list_data_present_flag)
CHECK(FUNC(scaling_list_data)(ctx, rw, &current->scaling_list));
} else {
infer(sps_scaling_list_data_present_flag, 0);
}
flag(amp_enabled_flag);
flag(sample_adaptive_offset_enabled_flag);
flag(pcm_enabled_flag);
if (current->pcm_enabled_flag) {
u(4, pcm_sample_bit_depth_luma_minus1,
0, current->bit_depth_luma_minus8 + 8 - 1);
u(4, pcm_sample_bit_depth_chroma_minus1,
0, current->bit_depth_chroma_minus8 + 8 - 1);
ue(log2_min_pcm_luma_coding_block_size_minus3,
FFMIN(min_cb_log2_size_y, 5) - 3, FFMIN(ctb_log2_size_y, 5) - 3);
ue(log2_diff_max_min_pcm_luma_coding_block_size,
0, FFMIN(ctb_log2_size_y, 5) - (current->log2_min_pcm_luma_coding_block_size_minus3 + 3));
flag(pcm_loop_filter_disabled_flag);
}
ue(num_short_term_ref_pic_sets, 0, HEVC_MAX_SHORT_TERM_REF_PIC_SETS);
for (i = 0; i < current->num_short_term_ref_pic_sets; i++)
CHECK(FUNC(st_ref_pic_set)(ctx, rw, &current->st_ref_pic_set[i], i, current));
flag(long_term_ref_pics_present_flag);
if (current->long_term_ref_pics_present_flag) {
ue(num_long_term_ref_pics_sps, 0, HEVC_MAX_LONG_TERM_REF_PICS);
for (i = 0; i < current->num_long_term_ref_pics_sps; i++) {
us(current->log2_max_pic_order_cnt_lsb_minus4 + 4,
lt_ref_pic_poc_lsb_sps[i],
0, MAX_UINT_BITS(current->log2_max_pic_order_cnt_lsb_minus4 + 4), 1, i);
flags(used_by_curr_pic_lt_sps_flag[i], 1, i);
}
}
flag(sps_temporal_mvp_enabled_flag);
flag(strong_intra_smoothing_enabled_flag);
flag(vui_parameters_present_flag);
if (current->vui_parameters_present_flag)
CHECK(FUNC(vui_parameters)(ctx, rw, &current->vui, current));
flag(sps_extension_present_flag);
if (current->sps_extension_present_flag) {
flag(sps_range_extension_flag);
flag(sps_multilayer_extension_flag);
flag(sps_3d_extension_flag);
flag(sps_scc_extension_flag);
u(4, sps_extension_4bits, 0, MAX_UINT_BITS(4));
}
if (current->sps_range_extension_flag)
CHECK(FUNC(sps_range_extension)(ctx, rw, current));
if (current->sps_multilayer_extension_flag)
return AVERROR_PATCHWELCOME;
if (current->sps_3d_extension_flag)
return AVERROR_PATCHWELCOME;
if (current->sps_scc_extension_flag)
CHECK(FUNC(sps_scc_extension)(ctx, rw, current));
if (current->sps_extension_4bits)
CHECK(FUNC(extension_data)(ctx, rw, &current->extension_data));
CHECK(FUNC(rbsp_trailing_bits)(ctx, rw));
return 0;
}
static int FUNC(pps_range_extension)(CodedBitstreamContext *ctx, RWContext *rw,
H265RawPPS *current)
{
CodedBitstreamH265Context *h265 = ctx->priv_data;
const H265RawSPS *sps = h265->active_sps;
int err, i;
if (current->transform_skip_enabled_flag)
ue(log2_max_transform_skip_block_size_minus2, 0, 3);
flag(cross_component_prediction_enabled_flag);
flag(chroma_qp_offset_list_enabled_flag);
if (current->chroma_qp_offset_list_enabled_flag) {
ue(diff_cu_chroma_qp_offset_depth,
0, sps->log2_diff_max_min_luma_coding_block_size);
ue(chroma_qp_offset_list_len_minus1, 0, 5);
for (i = 0; i <= current->chroma_qp_offset_list_len_minus1; i++) {
ses(cb_qp_offset_list[i], -12, +12, 1, i);
ses(cr_qp_offset_list[i], -12, +12, 1, i);
}
}
ue(log2_sao_offset_scale_luma, 0, FFMAX(0, sps->bit_depth_luma_minus8 - 2));
ue(log2_sao_offset_scale_chroma, 0, FFMAX(0, sps->bit_depth_chroma_minus8 - 2));
return 0;
}
static int FUNC(pps_scc_extension)(CodedBitstreamContext *ctx, RWContext *rw,
H265RawPPS *current)
{
int err, comp, i;
flag(pps_curr_pic_ref_enabled_flag);
flag(residual_adaptive_colour_transform_enabled_flag);
if (current->residual_adaptive_colour_transform_enabled_flag) {
flag(pps_slice_act_qp_offsets_present_flag);
se(pps_act_y_qp_offset_plus5, -7, +17);
se(pps_act_cb_qp_offset_plus5, -7, +17);
se(pps_act_cr_qp_offset_plus3, -9, +15);
} else {
infer(pps_slice_act_qp_offsets_present_flag, 0);
infer(pps_act_y_qp_offset_plus5, 0);
infer(pps_act_cb_qp_offset_plus5, 0);
infer(pps_act_cr_qp_offset_plus3, 0);
}
flag(pps_palette_predictor_initializer_present_flag);
if (current->pps_palette_predictor_initializer_present_flag) {
ue(pps_num_palette_predictor_initializer, 0, 128);
if (current->pps_num_palette_predictor_initializer > 0) {
flag(monochrome_palette_flag);
ue(luma_bit_depth_entry_minus8, 0, 8);
if (!current->monochrome_palette_flag)
ue(chroma_bit_depth_entry_minus8, 0, 8);
for (comp = 0; comp < (current->monochrome_palette_flag ? 1 : 3); comp++) {
int bit_depth = comp == 0 ? current->luma_bit_depth_entry_minus8 + 8
: current->chroma_bit_depth_entry_minus8 + 8;
for (i = 0; i < current->pps_num_palette_predictor_initializer; i++)
us(bit_depth, pps_palette_predictor_initializers[comp][i],
0, MAX_UINT_BITS(bit_depth), 2, comp, i);
}
}
}
return 0;
}
static int FUNC(pps)(CodedBitstreamContext *ctx, RWContext *rw,
H265RawPPS *current)
{
CodedBitstreamH265Context *h265 = ctx->priv_data;
const H265RawSPS *sps;
int err, i;
HEADER("Picture Parameter Set");
CHECK(FUNC(nal_unit_header)(ctx, rw, &current->nal_unit_header, HEVC_NAL_PPS));
ue(pps_pic_parameter_set_id, 0, 63);
ue(pps_seq_parameter_set_id, 0, 15);
sps = h265->sps[current->pps_seq_parameter_set_id];
if (!sps) {
av_log(ctx->log_ctx, AV_LOG_ERROR, "SPS id %d not available.\n",
current->pps_seq_parameter_set_id);
return AVERROR_INVALIDDATA;
}
h265->active_sps = sps;
flag(dependent_slice_segments_enabled_flag);
flag(output_flag_present_flag);
u(3, num_extra_slice_header_bits, 0, 7);
flag(sign_data_hiding_enabled_flag);
flag(cabac_init_present_flag);
ue(num_ref_idx_l0_default_active_minus1, 0, 14);
ue(num_ref_idx_l1_default_active_minus1, 0, 14);
se(init_qp_minus26, -(26 + 6 * sps->bit_depth_luma_minus8), +25);
flag(constrained_intra_pred_flag);
flag(transform_skip_enabled_flag);
flag(cu_qp_delta_enabled_flag);
if (current->cu_qp_delta_enabled_flag)
ue(diff_cu_qp_delta_depth,
0, sps->log2_diff_max_min_luma_coding_block_size);
else
infer(diff_cu_qp_delta_depth, 0);
se(pps_cb_qp_offset, -12, +12);
se(pps_cr_qp_offset, -12, +12);
flag(pps_slice_chroma_qp_offsets_present_flag);
flag(weighted_pred_flag);
flag(weighted_bipred_flag);
flag(transquant_bypass_enabled_flag);
flag(tiles_enabled_flag);
flag(entropy_coding_sync_enabled_flag);
if (current->tiles_enabled_flag) {
ue(num_tile_columns_minus1, 0, HEVC_MAX_TILE_COLUMNS);
ue(num_tile_rows_minus1, 0, HEVC_MAX_TILE_ROWS);
flag(uniform_spacing_flag);
if (!current->uniform_spacing_flag) {
for (i = 0; i < current->num_tile_columns_minus1; i++)
ues(column_width_minus1[i], 0, sps->pic_width_in_luma_samples, 1, i);
for (i = 0; i < current->num_tile_rows_minus1; i++)
ues(row_height_minus1[i], 0, sps->pic_height_in_luma_samples, 1, i);
}
flag(loop_filter_across_tiles_enabled_flag);
} else {
infer(num_tile_columns_minus1, 0);
infer(num_tile_rows_minus1, 0);
}
flag(pps_loop_filter_across_slices_enabled_flag);
flag(deblocking_filter_control_present_flag);
if (current->deblocking_filter_control_present_flag) {
flag(deblocking_filter_override_enabled_flag);
flag(pps_deblocking_filter_disabled_flag);
if (!current->pps_deblocking_filter_disabled_flag) {
se(pps_beta_offset_div2, -6, +6);
se(pps_tc_offset_div2, -6, +6);
} else {
infer(pps_beta_offset_div2, 0);
infer(pps_tc_offset_div2, 0);
}
} else {
infer(deblocking_filter_override_enabled_flag, 0);
infer(pps_deblocking_filter_disabled_flag, 0);
infer(pps_beta_offset_div2, 0);
infer(pps_tc_offset_div2, 0);
}
flag(pps_scaling_list_data_present_flag);
if (current->pps_scaling_list_data_present_flag)
CHECK(FUNC(scaling_list_data)(ctx, rw, &current->scaling_list));
flag(lists_modification_present_flag);
ue(log2_parallel_merge_level_minus2,
0, (sps->log2_min_luma_coding_block_size_minus3 + 3 +
sps->log2_diff_max_min_luma_coding_block_size - 2));
flag(slice_segment_header_extension_present_flag);
flag(pps_extension_present_flag);
if (current->pps_extension_present_flag) {
flag(pps_range_extension_flag);
flag(pps_multilayer_extension_flag);
flag(pps_3d_extension_flag);
flag(pps_scc_extension_flag);
u(4, pps_extension_4bits, 0, MAX_UINT_BITS(4));
}
if (current->pps_range_extension_flag)
CHECK(FUNC(pps_range_extension)(ctx, rw, current));
if (current->pps_multilayer_extension_flag)
return AVERROR_PATCHWELCOME;
if (current->pps_3d_extension_flag)
return AVERROR_PATCHWELCOME;
if (current->pps_scc_extension_flag)
CHECK(FUNC(pps_scc_extension)(ctx, rw, current));
if (current->pps_extension_4bits)
CHECK(FUNC(extension_data)(ctx, rw, &current->extension_data));
CHECK(FUNC(rbsp_trailing_bits)(ctx, rw));
return 0;
}
static int FUNC(aud)(CodedBitstreamContext *ctx, RWContext *rw,
H265RawAUD *current)
{
int err;
HEADER("Access Unit Delimiter");
CHECK(FUNC(nal_unit_header)(ctx, rw, &current->nal_unit_header, HEVC_NAL_AUD));
u(3, pic_type, 0, 2);
CHECK(FUNC(rbsp_trailing_bits)(ctx, rw));
return 0;
}
static int FUNC(ref_pic_lists_modification)(CodedBitstreamContext *ctx, RWContext *rw,
H265RawSliceHeader *current,
unsigned int num_pic_total_curr)
{
unsigned int entry_size;
int err, i;
entry_size = av_log2(num_pic_total_curr - 1) + 1;
flag(ref_pic_list_modification_flag_l0);
if (current->ref_pic_list_modification_flag_l0) {
for (i = 0; i <= current->num_ref_idx_l0_active_minus1; i++)
us(entry_size, list_entry_l0[i], 0, num_pic_total_curr - 1, 1, i);
}
if (current->slice_type == HEVC_SLICE_B) {
flag(ref_pic_list_modification_flag_l1);
if (current->ref_pic_list_modification_flag_l1) {
for (i = 0; i <= current->num_ref_idx_l1_active_minus1; i++)
us(entry_size, list_entry_l1[i], 0, num_pic_total_curr - 1, 1, i);
}
}
return 0;
}
static int FUNC(pred_weight_table)(CodedBitstreamContext *ctx, RWContext *rw,
H265RawSliceHeader *current)
{
CodedBitstreamH265Context *h265 = ctx->priv_data;
const H265RawSPS *sps = h265->active_sps;
int err, i, j;
int chroma = !sps->separate_colour_plane_flag &&
sps->chroma_format_idc != 0;
ue(luma_log2_weight_denom, 0, 7);
if (chroma)
se(delta_chroma_log2_weight_denom, -7, 7);
else
infer(delta_chroma_log2_weight_denom, 0);
for (i = 0; i <= current->num_ref_idx_l0_active_minus1; i++) {
if (1 /* is not same POC and same layer_id */)
flags(luma_weight_l0_flag[i], 1, i);
else
infer(luma_weight_l0_flag[i], 0);
}
if (chroma) {
for (i = 0; i <= current->num_ref_idx_l0_active_minus1; i++) {
if (1 /* is not same POC and same layer_id */)
flags(chroma_weight_l0_flag[i], 1, i);
else
infer(chroma_weight_l0_flag[i], 0);
}
}
for (i = 0; i <= current->num_ref_idx_l0_active_minus1; i++) {
if (current->luma_weight_l0_flag[i]) {
ses(delta_luma_weight_l0[i], -128, +127, 1, i);
ses(luma_offset_l0[i],
-(1 << (sps->bit_depth_luma_minus8 + 8 - 1)),
((1 << (sps->bit_depth_luma_minus8 + 8 - 1)) - 1), 1, i);
} else {
infer(delta_luma_weight_l0[i], 0);
infer(luma_offset_l0[i], 0);
}
if (current->chroma_weight_l0_flag[i]) {
for (j = 0; j < 2; j++) {
ses(delta_chroma_weight_l0[i][j], -128, +127, 2, i, j);
ses(chroma_offset_l0[i][j],
-(4 << (sps->bit_depth_chroma_minus8 + 8 - 1)),
((4 << (sps->bit_depth_chroma_minus8 + 8 - 1)) - 1), 2, i, j);
}
} else {
for (j = 0; j < 2; j++) {
infer(delta_chroma_weight_l0[i][j], 0);
infer(chroma_offset_l0[i][j], 0);
}
}
}
if (current->slice_type == HEVC_SLICE_B) {
for (i = 0; i <= current->num_ref_idx_l1_active_minus1; i++) {
if (1 /* RefPicList1[i] is not CurrPic, nor is it in a different layer */)
flags(luma_weight_l1_flag[i], 1, i);
else
infer(luma_weight_l1_flag[i], 0);
}
if (chroma) {
for (i = 0; i <= current->num_ref_idx_l1_active_minus1; i++) {
if (1 /* RefPicList1[i] is not CurrPic, nor is it in a different layer */)
flags(chroma_weight_l1_flag[i], 1, i);
else
infer(chroma_weight_l1_flag[i], 0);
}
}
for (i = 0; i <= current->num_ref_idx_l1_active_minus1; i++) {
if (current->luma_weight_l1_flag[i]) {
ses(delta_luma_weight_l1[i], -128, +127, 1, i);
ses(luma_offset_l1[i],
-(1 << (sps->bit_depth_luma_minus8 + 8 - 1)),
((1 << (sps->bit_depth_luma_minus8 + 8 - 1)) - 1), 1, i);
} else {
infer(delta_luma_weight_l1[i], 0);
infer(luma_offset_l1[i], 0);
}
if (current->chroma_weight_l1_flag[i]) {
for (j = 0; j < 2; j++) {
ses(delta_chroma_weight_l1[i][j], -128, +127, 2, i, j);
ses(chroma_offset_l1[i][j],
-(4 << (sps->bit_depth_chroma_minus8 + 8 - 1)),
((4 << (sps->bit_depth_chroma_minus8 + 8 - 1)) - 1), 2, i, j);
}
} else {
for (j = 0; j < 2; j++) {
infer(delta_chroma_weight_l1[i][j], 0);
infer(chroma_offset_l1[i][j], 0);
}
}
}
}
return 0;
}
static int FUNC(slice_segment_header)(CodedBitstreamContext *ctx, RWContext *rw,
H265RawSliceHeader *current)
{
CodedBitstreamH265Context *h265 = ctx->priv_data;
const H265RawSPS *sps;
const H265RawPPS *pps;
unsigned int min_cb_log2_size_y, ctb_log2_size_y, ctb_size_y;
unsigned int pic_width_in_ctbs_y, pic_height_in_ctbs_y, pic_size_in_ctbs_y;
unsigned int num_pic_total_curr = 0;
int err, i;
HEADER("Slice Segment Header");
CHECK(FUNC(nal_unit_header)(ctx, rw, &current->nal_unit_header, -1));
flag(first_slice_segment_in_pic_flag);
if (current->nal_unit_header.nal_unit_type >= HEVC_NAL_BLA_W_LP &&
current->nal_unit_header.nal_unit_type <= HEVC_NAL_IRAP_VCL23)
flag(no_output_of_prior_pics_flag);
ue(slice_pic_parameter_set_id, 0, 63);
pps = h265->pps[current->slice_pic_parameter_set_id];
if (!pps) {
av_log(ctx->log_ctx, AV_LOG_ERROR, "PPS id %d not available.\n",
current->slice_pic_parameter_set_id);
return AVERROR_INVALIDDATA;
}
h265->active_pps = pps;
sps = h265->sps[pps->pps_seq_parameter_set_id];
if (!sps) {
av_log(ctx->log_ctx, AV_LOG_ERROR, "SPS id %d not available.\n",
pps->pps_seq_parameter_set_id);
return AVERROR_INVALIDDATA;
}
h265->active_sps = sps;
min_cb_log2_size_y = sps->log2_min_luma_coding_block_size_minus3 + 3;
ctb_log2_size_y = min_cb_log2_size_y + sps->log2_diff_max_min_luma_coding_block_size;
ctb_size_y = 1 << ctb_log2_size_y;
pic_width_in_ctbs_y =
(sps->pic_width_in_luma_samples + ctb_size_y - 1) / ctb_size_y;
pic_height_in_ctbs_y =
(sps->pic_height_in_luma_samples + ctb_size_y - 1) / ctb_size_y;
pic_size_in_ctbs_y = pic_width_in_ctbs_y * pic_height_in_ctbs_y;
if (!current->first_slice_segment_in_pic_flag) {
unsigned int address_size = av_log2(pic_size_in_ctbs_y - 1) + 1;
if (pps->dependent_slice_segments_enabled_flag)
flag(dependent_slice_segment_flag);
else
infer(dependent_slice_segment_flag, 0);
u(address_size, slice_segment_address, 0, pic_size_in_ctbs_y - 1);
} else {
infer(dependent_slice_segment_flag, 0);
}
if (!current->dependent_slice_segment_flag) {
for (i = 0; i < pps->num_extra_slice_header_bits; i++)
flags(slice_reserved_flag[i], 1, i);
ue(slice_type, 0, 2);
if (pps->output_flag_present_flag)
flag(pic_output_flag);
if (sps->separate_colour_plane_flag)
u(2, colour_plane_id, 0, 2);
if (current->nal_unit_header.nal_unit_type != HEVC_NAL_IDR_W_RADL &&
current->nal_unit_header.nal_unit_type != HEVC_NAL_IDR_N_LP) {
const H265RawSTRefPicSet *rps;
u(sps->log2_max_pic_order_cnt_lsb_minus4 + 4, slice_pic_order_cnt_lsb,
0, MAX_UINT_BITS(sps->log2_max_pic_order_cnt_lsb_minus4 + 4));
flag(short_term_ref_pic_set_sps_flag);
if (!current->short_term_ref_pic_set_sps_flag) {
CHECK(FUNC(st_ref_pic_set)(ctx, rw, &current->short_term_ref_pic_set,
sps->num_short_term_ref_pic_sets, sps));
rps = &current->short_term_ref_pic_set;
} else if (sps->num_short_term_ref_pic_sets > 1) {
unsigned int idx_size = av_log2(sps->num_short_term_ref_pic_sets - 1) + 1;
u(idx_size, short_term_ref_pic_set_idx,
0, sps->num_short_term_ref_pic_sets - 1);
rps = &sps->st_ref_pic_set[current->short_term_ref_pic_set_idx];
} else {
infer(short_term_ref_pic_set_idx, 0);
rps = &sps->st_ref_pic_set[0];
}
num_pic_total_curr = 0;
for (i = 0; i < rps->num_negative_pics; i++)
if (rps->used_by_curr_pic_s0_flag[i])
++num_pic_total_curr;
for (i = 0; i < rps->num_positive_pics; i++)
if (rps->used_by_curr_pic_s1_flag[i])
++num_pic_total_curr;
if (sps->long_term_ref_pics_present_flag) {
unsigned int idx_size;
if (sps->num_long_term_ref_pics_sps > 0) {
ue(num_long_term_sps, 0, sps->num_long_term_ref_pics_sps);
idx_size = av_log2(sps->num_long_term_ref_pics_sps - 1) + 1;
} else {
infer(num_long_term_sps, 0);
idx_size = 0;
}
ue(num_long_term_pics, 0, HEVC_MAX_LONG_TERM_REF_PICS);
for (i = 0; i < current->num_long_term_sps +
current->num_long_term_pics; i++) {
if (i < current->num_long_term_sps) {
if (sps->num_long_term_ref_pics_sps > 1)
us(idx_size, lt_idx_sps[i],
0, sps->num_long_term_ref_pics_sps - 1, 1, i);
if (sps->used_by_curr_pic_lt_sps_flag[current->lt_idx_sps[i]])
++num_pic_total_curr;
} else {
us(sps->log2_max_pic_order_cnt_lsb_minus4 + 4, poc_lsb_lt[i],
0, MAX_UINT_BITS(sps->log2_max_pic_order_cnt_lsb_minus4 + 4), 1, i);
flags(used_by_curr_pic_lt_flag[i], 1, i);
if (current->used_by_curr_pic_lt_flag[i])
++num_pic_total_curr;
}
flags(delta_poc_msb_present_flag[i], 1, i);
if (current->delta_poc_msb_present_flag[i])
ues(delta_poc_msb_cycle_lt[i], 0, UINT32_MAX - 1, 1, i);
else
infer(delta_poc_msb_cycle_lt[i], 0);
}
}
if (sps->sps_temporal_mvp_enabled_flag)
flag(slice_temporal_mvp_enabled_flag);
else
infer(slice_temporal_mvp_enabled_flag, 0);
if (pps->pps_curr_pic_ref_enabled_flag)
++num_pic_total_curr;
}
if (sps->sample_adaptive_offset_enabled_flag) {
flag(slice_sao_luma_flag);
if (!sps->separate_colour_plane_flag && sps->chroma_format_idc != 0)
flag(slice_sao_chroma_flag);
else
infer(slice_sao_chroma_flag, 0);
} else {
infer(slice_sao_luma_flag, 0);
infer(slice_sao_chroma_flag, 0);
}
if (current->slice_type == HEVC_SLICE_P ||
current->slice_type == HEVC_SLICE_B) {
flag(num_ref_idx_active_override_flag);
if (current->num_ref_idx_active_override_flag) {
ue(num_ref_idx_l0_active_minus1, 0, 14);
if (current->slice_type == HEVC_SLICE_B)
ue(num_ref_idx_l1_active_minus1, 0, 14);
else
infer(num_ref_idx_l1_active_minus1, pps->num_ref_idx_l1_default_active_minus1);
} else {
infer(num_ref_idx_l0_active_minus1, pps->num_ref_idx_l0_default_active_minus1);
infer(num_ref_idx_l1_active_minus1, pps->num_ref_idx_l1_default_active_minus1);
}
if (pps->lists_modification_present_flag && num_pic_total_curr > 1)
CHECK(FUNC(ref_pic_lists_modification)(ctx, rw, current,
num_pic_total_curr));
if (current->slice_type == HEVC_SLICE_B)
flag(mvd_l1_zero_flag);
if (pps->cabac_init_present_flag)
flag(cabac_init_flag);
else
infer(cabac_init_flag, 0);
if (current->slice_temporal_mvp_enabled_flag) {
if (current->slice_type == HEVC_SLICE_B)
flag(collocated_from_l0_flag);
else
infer(collocated_from_l0_flag, 1);
if (current->collocated_from_l0_flag) {
if (current->num_ref_idx_l0_active_minus1 > 0)
ue(collocated_ref_idx, 0, current->num_ref_idx_l0_active_minus1);
else
infer(collocated_ref_idx, 0);
} else {
if (current->num_ref_idx_l1_active_minus1 > 0)
ue(collocated_ref_idx, 0, current->num_ref_idx_l1_active_minus1);
else
infer(collocated_ref_idx, 0);
}
}
if ((pps->weighted_pred_flag && current->slice_type == HEVC_SLICE_P) ||
(pps->weighted_bipred_flag && current->slice_type == HEVC_SLICE_B))
CHECK(FUNC(pred_weight_table)(ctx, rw, current));
ue(five_minus_max_num_merge_cand, 0, 4);
if (sps->motion_vector_resolution_control_idc == 2)
flag(use_integer_mv_flag);
else
infer(use_integer_mv_flag, sps->motion_vector_resolution_control_idc);
}
se(slice_qp_delta,
- 6 * sps->bit_depth_luma_minus8 - (pps->init_qp_minus26 + 26),
+ 51 - (pps->init_qp_minus26 + 26));
if (pps->pps_slice_chroma_qp_offsets_present_flag) {
se(slice_cb_qp_offset, -12, +12);
se(slice_cr_qp_offset, -12, +12);
} else {
infer(slice_cb_qp_offset, 0);
infer(slice_cr_qp_offset, 0);
}
if (pps->pps_slice_act_qp_offsets_present_flag) {
se(slice_act_y_qp_offset,
-12 - (pps->pps_act_y_qp_offset_plus5 - 5),
+12 - (pps->pps_act_y_qp_offset_plus5 - 5));
se(slice_act_cb_qp_offset,
-12 - (pps->pps_act_cb_qp_offset_plus5 - 5),
+12 - (pps->pps_act_cb_qp_offset_plus5 - 5));
se(slice_act_cr_qp_offset,
-12 - (pps->pps_act_cr_qp_offset_plus3 - 3),
+12 - (pps->pps_act_cr_qp_offset_plus3 - 3));
} else {
infer(slice_act_y_qp_offset, 0);
infer(slice_act_cb_qp_offset, 0);
infer(slice_act_cr_qp_offset, 0);
}
if (pps->chroma_qp_offset_list_enabled_flag)
flag(cu_chroma_qp_offset_enabled_flag);
else
infer(cu_chroma_qp_offset_enabled_flag, 0);
if (pps->deblocking_filter_override_enabled_flag)
flag(deblocking_filter_override_flag);
else
infer(deblocking_filter_override_flag, 0);
if (current->deblocking_filter_override_flag) {
flag(slice_deblocking_filter_disabled_flag);
if (!current->slice_deblocking_filter_disabled_flag) {
se(slice_beta_offset_div2, -6, +6);
se(slice_tc_offset_div2, -6, +6);
} else {
infer(slice_beta_offset_div2, pps->pps_beta_offset_div2);
infer(slice_tc_offset_div2, pps->pps_tc_offset_div2);
}
} else {
infer(slice_deblocking_filter_disabled_flag,
pps->pps_deblocking_filter_disabled_flag);
infer(slice_beta_offset_div2, pps->pps_beta_offset_div2);
infer(slice_tc_offset_div2, pps->pps_tc_offset_div2);
}
if (pps->pps_loop_filter_across_slices_enabled_flag &&
(current->slice_sao_luma_flag || current->slice_sao_chroma_flag ||
!current->slice_deblocking_filter_disabled_flag))
flag(slice_loop_filter_across_slices_enabled_flag);
else
infer(slice_loop_filter_across_slices_enabled_flag,
pps->pps_loop_filter_across_slices_enabled_flag);
}
if (pps->tiles_enabled_flag || pps->entropy_coding_sync_enabled_flag) {
unsigned int num_entry_point_offsets_limit;
if (!pps->tiles_enabled_flag && pps->entropy_coding_sync_enabled_flag)
num_entry_point_offsets_limit = pic_height_in_ctbs_y - 1;
else if (pps->tiles_enabled_flag && !pps->entropy_coding_sync_enabled_flag)
num_entry_point_offsets_limit =
(pps->num_tile_columns_minus1 + 1) * (pps->num_tile_rows_minus1 + 1);
else
num_entry_point_offsets_limit =
(pps->num_tile_columns_minus1 + 1) * pic_height_in_ctbs_y - 1;
ue(num_entry_point_offsets, 0, num_entry_point_offsets_limit);
if (current->num_entry_point_offsets > HEVC_MAX_ENTRY_POINT_OFFSETS) {
av_log(ctx->log_ctx, AV_LOG_ERROR, "Too many entry points: "
"%"PRIu16".\n", current->num_entry_point_offsets);
return AVERROR_PATCHWELCOME;
}
if (current->num_entry_point_offsets > 0) {
ue(offset_len_minus1, 0, 31);
for (i = 0; i < current->num_entry_point_offsets; i++)
us(current->offset_len_minus1 + 1, entry_point_offset_minus1[i],
0, MAX_UINT_BITS(current->offset_len_minus1 + 1), 1, i);
}
}
if (pps->slice_segment_header_extension_present_flag) {
ue(slice_segment_header_extension_length, 0, 256);
for (i = 0; i < current->slice_segment_header_extension_length; i++)
us(8, slice_segment_header_extension_data_byte[i], 0x00, 0xff, 1, i);
}
CHECK(FUNC(byte_alignment)(ctx, rw));
return 0;
}
static int FUNC(sei_buffering_period)(CodedBitstreamContext *ctx, RWContext *rw,
H265RawSEIBufferingPeriod *current,
uint32_t *payload_size)
{
CodedBitstreamH265Context *h265 = ctx->priv_data;
const H265RawSPS *sps;
const H265RawHRDParameters *hrd;
int err, i, length;
#ifdef READ
int start_pos, end_pos, bits_left;
start_pos = get_bits_count(rw);
#endif
HEADER("Buffering Period");
ue(bp_seq_parameter_set_id, 0, HEVC_MAX_SPS_COUNT - 1);
sps = h265->sps[current->bp_seq_parameter_set_id];
if (!sps) {
av_log(ctx->log_ctx, AV_LOG_ERROR, "SPS id %d not available.\n",
current->bp_seq_parameter_set_id);
return AVERROR_INVALIDDATA;
}
h265->active_sps = sps;
if (!sps->vui_parameters_present_flag ||
!sps->vui.vui_hrd_parameters_present_flag) {
av_log(ctx->log_ctx, AV_LOG_ERROR, "Buffering period SEI requires "
"HRD parameters to be present in SPS.\n");
return AVERROR_INVALIDDATA;
}
hrd = &sps->vui.hrd_parameters;
if (!hrd->nal_hrd_parameters_present_flag &&
!hrd->vcl_hrd_parameters_present_flag) {
av_log(ctx->log_ctx, AV_LOG_ERROR, "Buffering period SEI requires "
"NAL or VCL HRD parameters to be present.\n");
return AVERROR_INVALIDDATA;
}
if (!hrd->sub_pic_hrd_params_present_flag)
flag(irap_cpb_params_present_flag);
else
infer(irap_cpb_params_present_flag, 0);
if (current->irap_cpb_params_present_flag) {
length = hrd->au_cpb_removal_delay_length_minus1 + 1;
u(length, cpb_delay_offset, 0, MAX_UINT_BITS(length));
length = hrd->dpb_output_delay_length_minus1 + 1;
u(length, dpb_delay_offset, 0, MAX_UINT_BITS(length));
} else {
infer(cpb_delay_offset, 0);
infer(dpb_delay_offset, 0);
}
flag(concatenation_flag);
length = hrd->au_cpb_removal_delay_length_minus1 + 1;
u(length, au_cpb_removal_delay_delta_minus1, 0, MAX_UINT_BITS(length));
if (hrd->nal_hrd_parameters_present_flag) {
for (i = 0; i <= hrd->cpb_cnt_minus1[0]; i++) {
length = hrd->initial_cpb_removal_delay_length_minus1 + 1;
us(length, nal_initial_cpb_removal_delay[i],
0, MAX_UINT_BITS(length), 1, i);
us(length, nal_initial_cpb_removal_offset[i],
0, MAX_UINT_BITS(length), 1, i);
if (hrd->sub_pic_hrd_params_present_flag ||
current->irap_cpb_params_present_flag) {
us(length, nal_initial_alt_cpb_removal_delay[i],
0, MAX_UINT_BITS(length), 1, i);
us(length, nal_initial_alt_cpb_removal_offset[i],
0, MAX_UINT_BITS(length), 1, i);
}
}
}
if (hrd->vcl_hrd_parameters_present_flag) {
for (i = 0; i <= hrd->cpb_cnt_minus1[0]; i++) {
length = hrd->initial_cpb_removal_delay_length_minus1 + 1;
us(length, vcl_initial_cpb_removal_delay[i],
0, MAX_UINT_BITS(length), 1, i);
us(length, vcl_initial_cpb_removal_offset[i],
0, MAX_UINT_BITS(length), 1, i);
if (hrd->sub_pic_hrd_params_present_flag ||
current->irap_cpb_params_present_flag) {
us(length, vcl_initial_alt_cpb_removal_delay[i],
0, MAX_UINT_BITS(length), 1, i);
us(length, vcl_initial_alt_cpb_removal_offset[i],
0, MAX_UINT_BITS(length), 1, i);
}
}
}
#ifdef READ
// payload_extension_present() - true if we are before the last 1-bit
// in the payload structure, which must be in the last byte.
end_pos = get_bits_count(rw);
bits_left = *payload_size * 8 - (end_pos - start_pos);
if (bits_left > 0 &&
(bits_left > 7 || ff_ctz(show_bits(rw, bits_left)) < bits_left - 1))
flag(use_alt_cpb_params_flag);
else
infer(use_alt_cpb_params_flag, 0);
#else
if (current->use_alt_cpb_params_flag)
flag(use_alt_cpb_params_flag);
#endif
return 0;
}
static int FUNC(sei_pic_timing)(CodedBitstreamContext *ctx, RWContext *rw,
H265RawSEIPicTiming *current)
{
CodedBitstreamH265Context *h265 = ctx->priv_data;
const H265RawSPS *sps;
const H265RawHRDParameters *hrd;
int err, expected_source_scan_type, i, length;
HEADER("Picture Timing");
sps = h265->active_sps;
if (!sps) {
av_log(ctx->log_ctx, AV_LOG_ERROR,
"No active SPS for pic_timing.\n");
return AVERROR_INVALIDDATA;
}
expected_source_scan_type = 2 -
2 * sps->profile_tier_level.general_interlaced_source_flag -
sps->profile_tier_level.general_progressive_source_flag;
if (sps->vui.frame_field_info_present_flag) {
u(4, pic_struct, 0, 12);
u(2, source_scan_type,
expected_source_scan_type >= 0 ? expected_source_scan_type : 0,
expected_source_scan_type >= 0 ? expected_source_scan_type : 2);
flag(duplicate_flag);
} else {
infer(pic_struct, 0);
infer(source_scan_type,
expected_source_scan_type >= 0 ? expected_source_scan_type : 2);
infer(duplicate_flag, 0);
}
if (sps->vui_parameters_present_flag &&
sps->vui.vui_hrd_parameters_present_flag)
hrd = &sps->vui.hrd_parameters;
else
hrd = NULL;
if (hrd && (hrd->nal_hrd_parameters_present_flag ||
hrd->vcl_hrd_parameters_present_flag)) {
length = hrd->au_cpb_removal_delay_length_minus1 + 1;
u(length, au_cpb_removal_delay_minus1, 0, MAX_UINT_BITS(length));
length = hrd->dpb_output_delay_length_minus1 + 1;
u(length, pic_dpb_output_delay, 0, MAX_UINT_BITS(length));
if (hrd->sub_pic_hrd_params_present_flag) {
length = hrd->dpb_output_delay_du_length_minus1 + 1;
u(length, pic_dpb_output_du_delay, 0, MAX_UINT_BITS(length));
}
if (hrd->sub_pic_hrd_params_present_flag &&
hrd->sub_pic_cpb_params_in_pic_timing_sei_flag) {
// Each decoding unit must contain at least one slice segment.
ue(num_decoding_units_minus1, 0, HEVC_MAX_SLICE_SEGMENTS);
flag(du_common_cpb_removal_delay_flag);
length = hrd->du_cpb_removal_delay_increment_length_minus1 + 1;
if (current->du_common_cpb_removal_delay_flag)
u(length, du_common_cpb_removal_delay_increment_minus1,
0, MAX_UINT_BITS(length));
for (i = 0; i <= current->num_decoding_units_minus1; i++) {
ues(num_nalus_in_du_minus1[i],
0, HEVC_MAX_SLICE_SEGMENTS, 1, i);
if (!current->du_common_cpb_removal_delay_flag &&
i < current->num_decoding_units_minus1)
us(length, du_cpb_removal_delay_increment_minus1[i],
0, MAX_UINT_BITS(length), 1, i);
}
}
}
return 0;
}
static int FUNC(sei_pan_scan_rect)(CodedBitstreamContext *ctx, RWContext *rw,
H265RawSEIPanScanRect *current)
{
int err, i;
HEADER("Pan-Scan Rectangle");
ue(pan_scan_rect_id, 0, UINT32_MAX - 1);
flag(pan_scan_rect_cancel_flag);
if (!current->pan_scan_rect_cancel_flag) {
ue(pan_scan_cnt_minus1, 0, 2);
for (i = 0; i <= current->pan_scan_cnt_minus1; i++) {
ses(pan_scan_rect_left_offset[i], INT32_MIN + 1, INT32_MAX, 1, i);
ses(pan_scan_rect_right_offset[i], INT32_MIN + 1, INT32_MAX, 1, i);
ses(pan_scan_rect_top_offset[i], INT32_MIN + 1, INT32_MAX, 1, i);
ses(pan_scan_rect_bottom_offset[i], INT32_MIN + 1, INT32_MAX, 1, i);
}
flag(pan_scan_rect_persistence_flag);
}
return 0;
}
static int FUNC(sei_user_data_registered)(CodedBitstreamContext *ctx, RWContext *rw,
H265RawSEIUserDataRegistered *current,
uint32_t *payload_size)
{
int err, i, j;
HEADER("User Data Registered ITU-T T.35");
u(8, itu_t_t35_country_code, 0x00, 0xff);
if (current->itu_t_t35_country_code != 0xff)
i = 1;
else {
u(8, itu_t_t35_country_code_extension_byte, 0x00, 0xff);
i = 2;
}
#ifdef READ
if (*payload_size < i) {
av_log(ctx->log_ctx, AV_LOG_ERROR,
"Invalid SEI user data registered payload.\n");
return AVERROR_INVALIDDATA;
}
current->data_length = *payload_size - i;
#else
*payload_size = i + current->data_length;
#endif
allocate(current->data, current->data_length);
for (j = 0; j < current->data_length; j++)
xu(8, itu_t_t35_payload_byte[i], current->data[j], 0x00, 0xff, 1, i + j);
return 0;
}
static int FUNC(sei_user_data_unregistered)(CodedBitstreamContext *ctx, RWContext *rw,
H265RawSEIUserDataUnregistered *current,
uint32_t *payload_size)
{
int err, i;
HEADER("User Data Unregistered");
#ifdef READ
if (*payload_size < 16) {
av_log(ctx->log_ctx, AV_LOG_ERROR,
"Invalid SEI user data unregistered payload.\n");
return AVERROR_INVALIDDATA;
}
current->data_length = *payload_size - 16;
#else
*payload_size = 16 + current->data_length;
#endif
for (i = 0; i < 16; i++)
us(8, uuid_iso_iec_11578[i], 0x00, 0xff, 1, i);
allocate(current->data, current->data_length);
for (i = 0; i < current->data_length; i++)
xu(8, user_data_payload_byte[i], current->data[i], 0x00, 0xff, 1, i);
return 0;
}
static int FUNC(sei_recovery_point)(CodedBitstreamContext *ctx, RWContext *rw,
H265RawSEIRecoveryPoint *current)
{
int err;
HEADER("Recovery Point");
se(recovery_poc_cnt, -32768, 32767);
flag(exact_match_flag);
flag(broken_link_flag);
return 0;
}
static int FUNC(sei_display_orientation)(CodedBitstreamContext *ctx, RWContext *rw,
H265RawSEIDisplayOrientation *current)
{
int err;
HEADER("Display Orientation");
flag(display_orientation_cancel_flag);
if (!current->display_orientation_cancel_flag) {
flag(hor_flip);
flag(ver_flip);
u(16, anticlockwise_rotation, 0, 65535);
flag(display_orientation_persistence_flag);
}
return 0;
}
static int FUNC(sei_active_parameter_sets)(CodedBitstreamContext *ctx, RWContext *rw,
H265RawSEIActiveParameterSets *current)
{
CodedBitstreamH265Context *h265 = ctx->priv_data;
const H265RawVPS *vps;
int err, i;
HEADER("Active Parameter Sets");
u(4, active_video_parameter_set_id, 0, HEVC_MAX_VPS_COUNT);
vps = h265->vps[current->active_video_parameter_set_id];
if (!vps) {
av_log(ctx->log_ctx, AV_LOG_ERROR, "VPS id %d not available for active "
"parameter sets.\n", current->active_video_parameter_set_id);
return AVERROR_INVALIDDATA;
}
h265->active_vps = vps;
flag(self_contained_cvs_flag);
flag(no_parameter_set_update_flag);
ue(num_sps_ids_minus1, 0, HEVC_MAX_SPS_COUNT - 1);
for (i = 0; i <= current->num_sps_ids_minus1; i++)
ues(active_seq_parameter_set_id[i], 0, HEVC_MAX_SPS_COUNT - 1, 1, i);
for (i = vps->vps_base_layer_internal_flag;
i <= FFMIN(62, vps->vps_max_layers_minus1); i++) {
ues(layer_sps_idx[i], 0, current->num_sps_ids_minus1, 1, i);
if (i == 0)
h265->active_sps = h265->sps[current->active_seq_parameter_set_id[current->layer_sps_idx[0]]];
}
return 0;
}
static int FUNC(sei_decoded_picture_hash)(CodedBitstreamContext *ctx, RWContext *rw,
H265RawSEIDecodedPictureHash *current)
{
CodedBitstreamH265Context *h265 = ctx->priv_data;
const H265RawSPS *sps = h265->active_sps;
int err, c, i;
HEADER("Decoded Picture Hash");
if (!sps) {
av_log(ctx->log_ctx, AV_LOG_ERROR,
"No active SPS for decoded picture hash.\n");
return AVERROR_INVALIDDATA;
}
u(8, hash_type, 0, 2);
for (c = 0; c < (sps->chroma_format_idc == 0 ? 1 : 3); c++) {
if (current->hash_type == 0) {
for (i = 0; i < 16; i++)
us(8, picture_md5[c][i], 0x00, 0xff, 2, c, i);
} else if (current->hash_type == 1) {
us(16, picture_crc[c], 0x0000, 0xffff, 1, c);
} else if (current->hash_type == 2) {
us(32, picture_checksum[c], 0x00000000, 0xffffffff, 1, c);
}
}
return 0;
}
static int FUNC(sei_time_code)(CodedBitstreamContext *ctx, RWContext *rw,
H265RawSEITimeCode *current)
{
int err, i;
HEADER("Time Code");
u(2, num_clock_ts, 1, 3);
for (i = 0; i < current->num_clock_ts; i++) {
flags(clock_timestamp_flag[i], 1, i);
if (current->clock_timestamp_flag[i]) {
flags(units_field_based_flag[i], 1, i);
us(5, counting_type[i], 0, 6, 1, i);
flags(full_timestamp_flag[i], 1, i);
flags(discontinuity_flag[i], 1, i);
flags(cnt_dropped_flag[i], 1, i);
us(9, n_frames[i], 0, MAX_UINT_BITS(9), 1, i);
if (current->full_timestamp_flag[i]) {
us(6, seconds_value[i], 0, 59, 1, i);
us(6, minutes_value[i], 0, 59, 1, i);
us(5, hours_value[i], 0, 23, 1, i);
} else {
flags(seconds_flag[i], 1, i);
if (current->seconds_flag[i]) {
us(6, seconds_value[i], 0, 59, 1, i);
flags(minutes_flag[i], 1, i);
if (current->minutes_flag[i]) {
us(6, minutes_value[i], 0, 59, 1, i);
flags(hours_flag[i], 1, i);
if (current->hours_flag[i])
us(5, hours_value[i], 0, 23, 1, i);
}
}
}
us(5, time_offset_length[i], 0, 31, 1, i);
if (current->time_offset_length[i] > 0)
is(current->time_offset_length[i], time_offset_value[i],
MIN_INT_BITS(current->time_offset_length[i]),
MAX_INT_BITS(current->time_offset_length[i]), 1, i);
else
infer(time_offset_value[i], 0);
}
}
return 0;
}
static int FUNC(sei_mastering_display)(CodedBitstreamContext *ctx, RWContext *rw,
H265RawSEIMasteringDisplayColourVolume *current)
{
int err, c;
HEADER("Mastering Display Colour Volume");
for (c = 0; c < 3; c++) {
us(16, display_primaries_x[c], 0, 50000, 1, c);
us(16, display_primaries_y[c], 0, 50000, 1, c);
}
u(16, white_point_x, 0, 50000);
u(16, white_point_y, 0, 50000);
u(32, max_display_mastering_luminance,
1, MAX_UINT_BITS(32));
u(32, min_display_mastering_luminance,
0, current->max_display_mastering_luminance - 1);
return 0;
}
static int FUNC(sei_content_light_level)(CodedBitstreamContext *ctx, RWContext *rw,
H265RawSEIContentLightLevelInfo *current)
{
int err;
HEADER("Content Light Level");
u(16, max_content_light_level, 0, MAX_UINT_BITS(16));
u(16, max_pic_average_light_level, 0, MAX_UINT_BITS(16));
return 0;
}
static int FUNC(sei_alternative_transfer_characteristics)(CodedBitstreamContext *ctx,
RWContext *rw,
H265RawSEIAlternativeTransferCharacteristics *current)
{
int err;
HEADER("Alternative Transfer Characteristics");
u(8, preferred_transfer_characteristics, 0, 255);
return 0;
}
static int FUNC(sei_payload)(CodedBitstreamContext *ctx, RWContext *rw,
H265RawSEIPayload *current, int prefix)
{
int err, i;
int start_position, end_position;
#ifdef READ
start_position = get_bits_count(rw);
#else
start_position = put_bits_count(rw);
#endif
switch (current->payload_type) {
#define SEI_TYPE_CHECK_VALID(name, prefix_valid, suffix_valid) do { \
if (prefix && !prefix_valid) { \
av_log(ctx->log_ctx, AV_LOG_ERROR, "SEI type %s invalid " \
"as prefix SEI!\n", #name); \
return AVERROR_INVALIDDATA; \
} \
if (!prefix && !suffix_valid) { \
av_log(ctx->log_ctx, AV_LOG_ERROR, "SEI type %s invalid " \
"as suffix SEI!\n", #name); \
return AVERROR_INVALIDDATA; \
} \
} while (0)
#define SEI_TYPE_N(type, prefix_valid, suffix_valid, name) \
case HEVC_SEI_TYPE_ ## type: \
SEI_TYPE_CHECK_VALID(name, prefix_valid, suffix_valid); \
CHECK(FUNC(sei_ ## name)(ctx, rw, &current->payload.name)); \
break
#define SEI_TYPE_S(type, prefix_valid, suffix_valid, name) \
case HEVC_SEI_TYPE_ ## type: \
SEI_TYPE_CHECK_VALID(name, prefix_valid, suffix_valid); \
CHECK(FUNC(sei_ ## name)(ctx, rw, &current->payload.name, \
&current->payload_size)); \
break
SEI_TYPE_S(BUFFERING_PERIOD, 1, 0, buffering_period);
SEI_TYPE_N(PICTURE_TIMING, 1, 0, pic_timing);
SEI_TYPE_N(PAN_SCAN_RECT, 1, 0, pan_scan_rect);
SEI_TYPE_S(USER_DATA_REGISTERED_ITU_T_T35,
1, 1, user_data_registered);
SEI_TYPE_S(USER_DATA_UNREGISTERED, 1, 1, user_data_unregistered);
SEI_TYPE_N(RECOVERY_POINT, 1, 0, recovery_point);
SEI_TYPE_N(DISPLAY_ORIENTATION, 1, 0, display_orientation);
SEI_TYPE_N(ACTIVE_PARAMETER_SETS, 1, 0, active_parameter_sets);
SEI_TYPE_N(DECODED_PICTURE_HASH, 0, 1, decoded_picture_hash);
SEI_TYPE_N(TIME_CODE, 1, 0, time_code);
SEI_TYPE_N(MASTERING_DISPLAY_INFO, 1, 0, mastering_display);
SEI_TYPE_N(CONTENT_LIGHT_LEVEL_INFO, 1, 0, content_light_level);
SEI_TYPE_N(ALTERNATIVE_TRANSFER_CHARACTERISTICS,
1, 0, alternative_transfer_characteristics);
#undef SEI_TYPE
default:
{
#ifdef READ
current->payload.other.data_length = current->payload_size;
#endif
allocate(current->payload.other.data, current->payload.other.data_length);
for (i = 0; i < current->payload_size; i++)
xu(8, payload_byte[i], current->payload.other.data[i], 0, 255,
1, i);
}
}
if (byte_alignment(rw)) {
fixed(1, bit_equal_to_one, 1);
while (byte_alignment(rw))
fixed(1, bit_equal_to_zero, 0);
}
#ifdef READ
end_position = get_bits_count(rw);
if (end_position < start_position + 8 * current->payload_size) {
av_log(ctx->log_ctx, AV_LOG_ERROR, "Incorrect SEI payload length: "
"header %"PRIu32" bits, actually %d bits.\n",
8 * current->payload_size,
end_position - start_position);
return AVERROR_INVALIDDATA;
}
#else
end_position = put_bits_count(rw);
current->payload_size = (end_position - start_position) >> 3;
#endif
return 0;
}
static int FUNC(sei)(CodedBitstreamContext *ctx, RWContext *rw,
H265RawSEI *current, int prefix)
{
int err, k;
if (prefix)
HEADER("Prefix Supplemental Enhancement Information");
else
HEADER("Suffix Supplemental Enhancement Information");
CHECK(FUNC(nal_unit_header)(ctx, rw, &current->nal_unit_header,
prefix ? HEVC_NAL_SEI_PREFIX
: HEVC_NAL_SEI_SUFFIX));
#ifdef READ
for (k = 0; k < H265_MAX_SEI_PAYLOADS; k++) {
uint32_t payload_type = 0;
uint32_t payload_size = 0;
uint32_t tmp;
while (show_bits(rw, 8) == 0xff) {
fixed(8, ff_byte, 0xff);
payload_type += 255;
}
xu(8, last_payload_type_byte, tmp, 0, 254, 0);
payload_type += tmp;
while (show_bits(rw, 8) == 0xff) {
fixed(8, ff_byte, 0xff);
payload_size += 255;
}
xu(8, last_payload_size_byte, tmp, 0, 254, 0);
payload_size += tmp;
current->payload[k].payload_type = payload_type;
current->payload[k].payload_size = payload_size;
CHECK(FUNC(sei_payload)(ctx, rw, &current->payload[k], prefix));
if (!cbs_h2645_read_more_rbsp_data(rw))
break;
}
if (k >= H265_MAX_SEI_PAYLOADS) {
av_log(ctx->log_ctx, AV_LOG_ERROR, "Too many payloads in "
"SEI message: found %d.\n", k);
return AVERROR_INVALIDDATA;
}
current->payload_count = k + 1;
#else
for (k = 0; k < current->payload_count; k++) {
PutBitContext start_state;
uint32_t tmp;
int need_size, i;
// Somewhat clumsy: we write the payload twice when
// we don't know the size in advance. This will mess
// with trace output, but is otherwise harmless.
start_state = *rw;
need_size = !current->payload[k].payload_size;
for (i = 0; i < 1 + need_size; i++) {
*rw = start_state;
tmp = current->payload[k].payload_type;
while (tmp >= 255) {
fixed(8, ff_byte, 0xff);
tmp -= 255;
}
xu(8, last_payload_type_byte, tmp, 0, 254, 0);
tmp = current->payload[k].payload_size;
while (tmp >= 255) {
fixed(8, ff_byte, 0xff);
tmp -= 255;
}
xu(8, last_payload_size_byte, tmp, 0, 254, 0);
CHECK(FUNC(sei_payload)(ctx, rw, &current->payload[k], prefix));
}
}
#endif
CHECK(FUNC(rbsp_trailing_bits)(ctx, rw));
return 0;
}