1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2024-12-28 20:53:54 +02:00
FFmpeg/libavcodec/huffyuvdec.c
2013-03-08 07:38:30 +01:00

771 lines
27 KiB
C

/*
* huffyuv decoder
*
* Copyright (c) 2002-2003 Michael Niedermayer <michaelni@gmx.at>
*
* see http://www.pcisys.net/~melanson/codecs/huffyuv.txt for a description of
* the algorithm used
*
* This file is part of Libav.
*
* Libav is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* Libav is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with Libav; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* huffyuv decoder
*/
#include "avcodec.h"
#include "get_bits.h"
#include "huffyuv.h"
#include "thread.h"
#define classic_shift_luma_table_size 42
static const unsigned char classic_shift_luma[classic_shift_luma_table_size + FF_INPUT_BUFFER_PADDING_SIZE] = {
34,36,35,69,135,232,9,16,10,24,11,23,12,16,13,10,14,8,15,8,
16,8,17,20,16,10,207,206,205,236,11,8,10,21,9,23,8,8,199,70,
69,68, 0
};
#define classic_shift_chroma_table_size 59
static const unsigned char classic_shift_chroma[classic_shift_chroma_table_size + FF_INPUT_BUFFER_PADDING_SIZE] = {
66,36,37,38,39,40,41,75,76,77,110,239,144,81,82,83,84,85,118,183,
56,57,88,89,56,89,154,57,58,57,26,141,57,56,58,57,58,57,184,119,
214,245,116,83,82,49,80,79,78,77,44,75,41,40,39,38,37,36,34, 0
};
static const unsigned char classic_add_luma[256] = {
3, 9, 5, 12, 10, 35, 32, 29, 27, 50, 48, 45, 44, 41, 39, 37,
73, 70, 68, 65, 64, 61, 58, 56, 53, 50, 49, 46, 44, 41, 38, 36,
68, 65, 63, 61, 58, 55, 53, 51, 48, 46, 45, 43, 41, 39, 38, 36,
35, 33, 32, 30, 29, 27, 26, 25, 48, 47, 46, 44, 43, 41, 40, 39,
37, 36, 35, 34, 32, 31, 30, 28, 27, 26, 24, 23, 22, 20, 19, 37,
35, 34, 33, 31, 30, 29, 27, 26, 24, 23, 21, 20, 18, 17, 15, 29,
27, 26, 24, 22, 21, 19, 17, 16, 14, 26, 25, 23, 21, 19, 18, 16,
15, 27, 25, 23, 21, 19, 17, 16, 14, 26, 25, 23, 21, 18, 17, 14,
12, 17, 19, 13, 4, 9, 2, 11, 1, 7, 8, 0, 16, 3, 14, 6,
12, 10, 5, 15, 18, 11, 10, 13, 15, 16, 19, 20, 22, 24, 27, 15,
18, 20, 22, 24, 26, 14, 17, 20, 22, 24, 27, 15, 18, 20, 23, 25,
28, 16, 19, 22, 25, 28, 32, 36, 21, 25, 29, 33, 38, 42, 45, 49,
28, 31, 34, 37, 40, 42, 44, 47, 49, 50, 52, 54, 56, 57, 59, 60,
62, 64, 66, 67, 69, 35, 37, 39, 40, 42, 43, 45, 47, 48, 51, 52,
54, 55, 57, 59, 60, 62, 63, 66, 67, 69, 71, 72, 38, 40, 42, 43,
46, 47, 49, 51, 26, 28, 30, 31, 33, 34, 18, 19, 11, 13, 7, 8,
};
static const unsigned char classic_add_chroma[256] = {
3, 1, 2, 2, 2, 2, 3, 3, 7, 5, 7, 5, 8, 6, 11, 9,
7, 13, 11, 10, 9, 8, 7, 5, 9, 7, 6, 4, 7, 5, 8, 7,
11, 8, 13, 11, 19, 15, 22, 23, 20, 33, 32, 28, 27, 29, 51, 77,
43, 45, 76, 81, 46, 82, 75, 55, 56,144, 58, 80, 60, 74,147, 63,
143, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 27, 30, 21, 22,
17, 14, 5, 6,100, 54, 47, 50, 51, 53,106,107,108,109,110,111,
112,113,114,115, 4,117,118, 92, 94,121,122, 3,124,103, 2, 1,
0,129,130,131,120,119,126,125,136,137,138,139,140,141,142,134,
135,132,133,104, 64,101, 62, 57,102, 95, 93, 59, 61, 28, 97, 96,
52, 49, 48, 29, 32, 25, 24, 46, 23, 98, 45, 44, 43, 20, 42, 41,
19, 18, 99, 40, 15, 39, 38, 16, 13, 12, 11, 37, 10, 9, 8, 36,
7,128,127,105,123,116, 35, 34, 33,145, 31, 79, 42,146, 78, 26,
83, 48, 49, 50, 44, 47, 26, 31, 30, 18, 17, 19, 21, 24, 25, 13,
14, 16, 17, 18, 20, 21, 12, 14, 15, 9, 10, 6, 9, 6, 5, 8,
6, 12, 8, 10, 7, 9, 6, 4, 6, 2, 2, 3, 3, 3, 3, 2,
};
static int read_len_table(uint8_t *dst, GetBitContext *gb)
{
int i, val, repeat;
for (i = 0; i < 256;) {
repeat = get_bits(gb, 3);
val = get_bits(gb, 5);
if (repeat == 0)
repeat = get_bits(gb, 8);
if (i + repeat > 256 || get_bits_left(gb) < 0) {
av_log(NULL, AV_LOG_ERROR, "Error reading huffman table\n");
return -1;
}
while (repeat--)
dst[i++] = val;
}
return 0;
}
static void generate_joint_tables(HYuvContext *s)
{
uint16_t symbols[1 << VLC_BITS];
uint16_t bits[1 << VLC_BITS];
uint8_t len[1 << VLC_BITS];
if (s->bitstream_bpp < 24) {
int p, i, y, u;
for (p = 0; p < 3; p++) {
for (i = y = 0; y < 256; y++) {
int len0 = s->len[0][y];
int limit = VLC_BITS - len0;
if(limit <= 0)
continue;
for (u = 0; u < 256; u++) {
int len1 = s->len[p][u];
if (len1 > limit)
continue;
len[i] = len0 + len1;
bits[i] = (s->bits[0][y] << len1) + s->bits[p][u];
symbols[i] = (y << 8) + u;
if(symbols[i] != 0xffff) // reserved to mean "invalid"
i++;
}
}
ff_free_vlc(&s->vlc[3 + p]);
ff_init_vlc_sparse(&s->vlc[3 + p], VLC_BITS, i, len, 1, 1,
bits, 2, 2, symbols, 2, 2, 0);
}
} else {
uint8_t (*map)[4] = (uint8_t(*)[4])s->pix_bgr_map;
int i, b, g, r, code;
int p0 = s->decorrelate;
int p1 = !s->decorrelate;
// restrict the range to +/-16 because that's pretty much guaranteed to
// cover all the combinations that fit in 11 bits total, and it doesn't
// matter if we miss a few rare codes.
for (i = 0, g = -16; g < 16; g++) {
int len0 = s->len[p0][g & 255];
int limit0 = VLC_BITS - len0;
if (limit0 < 2)
continue;
for (b = -16; b < 16; b++) {
int len1 = s->len[p1][b & 255];
int limit1 = limit0 - len1;
if (limit1 < 1)
continue;
code = (s->bits[p0][g & 255] << len1) + s->bits[p1][b & 255];
for (r = -16; r < 16; r++) {
int len2 = s->len[2][r & 255];
if (len2 > limit1)
continue;
len[i] = len0 + len1 + len2;
bits[i] = (code << len2) + s->bits[2][r & 255];
if (s->decorrelate) {
map[i][G] = g;
map[i][B] = g + b;
map[i][R] = g + r;
} else {
map[i][B] = g;
map[i][G] = b;
map[i][R] = r;
}
i++;
}
}
}
ff_free_vlc(&s->vlc[3]);
init_vlc(&s->vlc[3], VLC_BITS, i, len, 1, 1, bits, 2, 2, 0);
}
}
static int read_huffman_tables(HYuvContext *s, const uint8_t *src, int length)
{
GetBitContext gb;
int i;
init_get_bits(&gb, src, length * 8);
for (i = 0; i < 3; i++) {
if (read_len_table(s->len[i], &gb) < 0)
return -1;
if (ff_huffyuv_generate_bits_table(s->bits[i], s->len[i]) < 0) {
return -1;
}
ff_free_vlc(&s->vlc[i]);
init_vlc(&s->vlc[i], VLC_BITS, 256, s->len[i], 1, 1,
s->bits[i], 4, 4, 0);
}
generate_joint_tables(s);
return (get_bits_count(&gb) + 7) / 8;
}
static int read_old_huffman_tables(HYuvContext *s)
{
GetBitContext gb;
int i;
init_get_bits(&gb, classic_shift_luma,
classic_shift_luma_table_size * 8);
if (read_len_table(s->len[0], &gb) < 0)
return -1;
init_get_bits(&gb, classic_shift_chroma,
classic_shift_chroma_table_size * 8);
if (read_len_table(s->len[1], &gb) < 0)
return -1;
for(i=0; i<256; i++) s->bits[0][i] = classic_add_luma [i];
for(i=0; i<256; i++) s->bits[1][i] = classic_add_chroma[i];
if (s->bitstream_bpp >= 24) {
memcpy(s->bits[1], s->bits[0], 256 * sizeof(uint32_t));
memcpy(s->len[1] , s->len [0], 256 * sizeof(uint8_t));
}
memcpy(s->bits[2], s->bits[1], 256 * sizeof(uint32_t));
memcpy(s->len[2] , s->len [1], 256 * sizeof(uint8_t));
for (i = 0; i < 3; i++) {
ff_free_vlc(&s->vlc[i]);
init_vlc(&s->vlc[i], VLC_BITS, 256, s->len[i], 1, 1,
s->bits[i], 4, 4, 0);
}
generate_joint_tables(s);
return 0;
}
static av_cold int decode_init(AVCodecContext *avctx)
{
HYuvContext *s = avctx->priv_data;
ff_huffyuv_common_init(avctx);
memset(s->vlc, 0, 3 * sizeof(VLC));
s->interlaced = s->height > 288;
s->bgr32 = 1;
if (avctx->extradata_size) {
if ((avctx->bits_per_coded_sample & 7) &&
avctx->bits_per_coded_sample != 12)
s->version = 1; // do such files exist at all?
else
s->version = 2;
} else
s->version = 0;
if (s->version == 2) {
int method, interlace;
if (avctx->extradata_size < 4)
return -1;
method = ((uint8_t*)avctx->extradata)[0];
s->decorrelate = method & 64 ? 1 : 0;
s->predictor = method & 63;
s->bitstream_bpp = ((uint8_t*)avctx->extradata)[1];
if (s->bitstream_bpp == 0)
s->bitstream_bpp = avctx->bits_per_coded_sample & ~7;
interlace = (((uint8_t*)avctx->extradata)[2] & 0x30) >> 4;
s->interlaced = (interlace == 1) ? 1 : (interlace == 2) ? 0 : s->interlaced;
s->context = ((uint8_t*)avctx->extradata)[2] & 0x40 ? 1 : 0;
if ( read_huffman_tables(s, ((uint8_t*)avctx->extradata) + 4,
avctx->extradata_size - 4) < 0)
return -1;
}else{
switch (avctx->bits_per_coded_sample & 7) {
case 1:
s->predictor = LEFT;
s->decorrelate = 0;
break;
case 2:
s->predictor = LEFT;
s->decorrelate = 1;
break;
case 3:
s->predictor = PLANE;
s->decorrelate = avctx->bits_per_coded_sample >= 24;
break;
case 4:
s->predictor = MEDIAN;
s->decorrelate = 0;
break;
default:
s->predictor = LEFT; //OLD
s->decorrelate = 0;
break;
}
s->bitstream_bpp = avctx->bits_per_coded_sample & ~7;
s->context = 0;
if (read_old_huffman_tables(s) < 0)
return -1;
}
switch (s->bitstream_bpp) {
case 12:
avctx->pix_fmt = AV_PIX_FMT_YUV420P;
break;
case 16:
if (s->yuy2) {
avctx->pix_fmt = AV_PIX_FMT_YUYV422;
} else {
avctx->pix_fmt = AV_PIX_FMT_YUV422P;
}
break;
case 24:
case 32:
if (s->bgr32) {
avctx->pix_fmt = AV_PIX_FMT_RGB32;
} else {
avctx->pix_fmt = AV_PIX_FMT_BGR24;
}
break;
default:
return AVERROR_INVALIDDATA;
}
ff_huffyuv_alloc_temp(s);
return 0;
}
static av_cold int decode_init_thread_copy(AVCodecContext *avctx)
{
HYuvContext *s = avctx->priv_data;
int i;
ff_huffyuv_alloc_temp(s);
for (i = 0; i < 6; i++)
s->vlc[i].table = NULL;
if (s->version == 2) {
if (read_huffman_tables(s, ((uint8_t*)avctx->extradata) + 4,
avctx->extradata_size) < 0)
return -1;
} else {
if (read_old_huffman_tables(s) < 0)
return -1;
}
return 0;
}
/* TODO instead of restarting the read when the code isn't in the first level
* of the joint table, jump into the 2nd level of the individual table. */
#define READ_2PIX(dst0, dst1, plane1){\
uint16_t code = get_vlc2(&s->gb, s->vlc[3+plane1].table, VLC_BITS, 1);\
if(code != 0xffff){\
dst0 = code>>8;\
dst1 = code;\
}else{\
dst0 = get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);\
dst1 = get_vlc2(&s->gb, s->vlc[plane1].table, VLC_BITS, 3);\
}\
}
static void decode_422_bitstream(HYuvContext *s, int count)
{
int i;
count /= 2;
if (count >= (get_bits_left(&s->gb)) / (31 * 4)) {
for (i = 0; i < count && get_bits_left(&s->gb) > 0; i++) {
READ_2PIX(s->temp[0][2 * i ], s->temp[1][i], 1);
READ_2PIX(s->temp[0][2 * i + 1], s->temp[2][i], 2);
}
} else {
for (i = 0; i < count; i++) {
READ_2PIX(s->temp[0][2 * i ], s->temp[1][i], 1);
READ_2PIX(s->temp[0][2 * i + 1], s->temp[2][i], 2);
}
}
}
static void decode_gray_bitstream(HYuvContext *s, int count)
{
int i;
count/=2;
if (count >= (get_bits_left(&s->gb)) / (31 * 2)) {
for (i = 0; i < count && get_bits_left(&s->gb) > 0; i++) {
READ_2PIX(s->temp[0][2 * i], s->temp[0][2 * i + 1], 0);
}
} else {
for(i=0; i<count; i++){
READ_2PIX(s->temp[0][2 * i], s->temp[0][2 * i + 1], 0);
}
}
}
static av_always_inline void decode_bgr_1(HYuvContext *s, int count,
int decorrelate, int alpha)
{
int i;
for (i = 0; i < count; i++) {
int code = get_vlc2(&s->gb, s->vlc[3].table, VLC_BITS, 1);
if (code != -1) {
*(uint32_t*)&s->temp[0][4 * i] = s->pix_bgr_map[code];
} else if(decorrelate) {
s->temp[0][4 * i + G] = get_vlc2(&s->gb, s->vlc[1].table, VLC_BITS, 3);
s->temp[0][4 * i + B] = get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3) +
s->temp[0][4 * i + G];
s->temp[0][4 * i + R] = get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3) +
s->temp[0][4 * i + G];
} else {
s->temp[0][4 * i + B] = get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);
s->temp[0][4 * i + G] = get_vlc2(&s->gb, s->vlc[1].table, VLC_BITS, 3);
s->temp[0][4 * i + R] = get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3);
}
if (alpha)
s->temp[0][4 * i + A] = get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3);
}
}
static void decode_bgr_bitstream(HYuvContext *s, int count)
{
if (s->decorrelate) {
if (s->bitstream_bpp==24)
decode_bgr_1(s, count, 1, 0);
else
decode_bgr_1(s, count, 1, 1);
} else {
if (s->bitstream_bpp==24)
decode_bgr_1(s, count, 0, 0);
else
decode_bgr_1(s, count, 0, 1);
}
}
static void draw_slice(HYuvContext *s, AVFrame *frame, int y)
{
int h, cy, i;
int offset[AV_NUM_DATA_POINTERS];
if (s->avctx->draw_horiz_band==NULL)
return;
h = y - s->last_slice_end;
y -= h;
if (s->bitstream_bpp == 12) {
cy = y>>1;
} else {
cy = y;
}
offset[0] = frame->linesize[0] * y;
offset[1] = frame->linesize[1] * cy;
offset[2] = frame->linesize[2] * cy;
for (i = 3; i < AV_NUM_DATA_POINTERS; i++)
offset[i] = 0;
emms_c();
s->avctx->draw_horiz_band(s->avctx, frame, offset, y, 3, h);
s->last_slice_end = y + h;
}
static int decode_frame(AVCodecContext *avctx, void *data, int *got_frame,
AVPacket *avpkt)
{
const uint8_t *buf = avpkt->data;
int buf_size = avpkt->size;
HYuvContext *s = avctx->priv_data;
const int width = s->width;
const int width2 = s->width>>1;
const int height = s->height;
int fake_ystride, fake_ustride, fake_vstride;
ThreadFrame frame = { .f = data };
AVFrame * const p = data;
int table_size = 0;
av_fast_malloc(&s->bitstream_buffer,
&s->bitstream_buffer_size,
buf_size + FF_INPUT_BUFFER_PADDING_SIZE);
if (!s->bitstream_buffer)
return AVERROR(ENOMEM);
memset(s->bitstream_buffer + buf_size, 0, FF_INPUT_BUFFER_PADDING_SIZE);
s->dsp.bswap_buf((uint32_t*)s->bitstream_buffer,
(const uint32_t*)buf, buf_size / 4);
if (ff_thread_get_buffer(avctx, &frame, 0) < 0) {
av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
return -1;
}
if (s->context) {
table_size = read_huffman_tables(s, s->bitstream_buffer, buf_size);
if (table_size < 0)
return -1;
}
if ((unsigned)(buf_size-table_size) >= INT_MAX / 8)
return -1;
init_get_bits(&s->gb, s->bitstream_buffer+table_size,
(buf_size-table_size) * 8);
fake_ystride = s->interlaced ? p->linesize[0] * 2 : p->linesize[0];
fake_ustride = s->interlaced ? p->linesize[1] * 2 : p->linesize[1];
fake_vstride = s->interlaced ? p->linesize[2] * 2 : p->linesize[2];
s->last_slice_end = 0;
if (s->bitstream_bpp < 24) {
int y, cy;
int lefty, leftu, leftv;
int lefttopy, lefttopu, lefttopv;
if (s->yuy2) {
p->data[0][3] = get_bits(&s->gb, 8);
p->data[0][2] = get_bits(&s->gb, 8);
p->data[0][1] = get_bits(&s->gb, 8);
p->data[0][0] = get_bits(&s->gb, 8);
av_log(avctx, AV_LOG_ERROR,
"YUY2 output is not implemented yet\n");
return -1;
} else {
leftv = p->data[2][0] = get_bits(&s->gb, 8);
lefty = p->data[0][1] = get_bits(&s->gb, 8);
leftu = p->data[1][0] = get_bits(&s->gb, 8);
p->data[0][0] = get_bits(&s->gb, 8);
switch (s->predictor) {
case LEFT:
case PLANE:
decode_422_bitstream(s, width-2);
lefty = s->dsp.add_hfyu_left_prediction(p->data[0] + 2, s->temp[0], width-2, lefty);
if (!(s->flags&CODEC_FLAG_GRAY)) {
leftu = s->dsp.add_hfyu_left_prediction(p->data[1] + 1, s->temp[1], width2 - 1, leftu);
leftv = s->dsp.add_hfyu_left_prediction(p->data[2] + 1, s->temp[2], width2 - 1, leftv);
}
for (cy = y = 1; y < s->height; y++, cy++) {
uint8_t *ydst, *udst, *vdst;
if (s->bitstream_bpp == 12) {
decode_gray_bitstream(s, width);
ydst = p->data[0] + p->linesize[0] * y;
lefty = s->dsp.add_hfyu_left_prediction(ydst, s->temp[0], width, lefty);
if (s->predictor == PLANE) {
if (y > s->interlaced)
s->dsp.add_bytes(ydst, ydst - fake_ystride, width);
}
y++;
if (y >= s->height) break;
}
draw_slice(s, p, y);
ydst = p->data[0] + p->linesize[0]*y;
udst = p->data[1] + p->linesize[1]*cy;
vdst = p->data[2] + p->linesize[2]*cy;
decode_422_bitstream(s, width);
lefty = s->dsp.add_hfyu_left_prediction(ydst, s->temp[0], width, lefty);
if (!(s->flags & CODEC_FLAG_GRAY)) {
leftu= s->dsp.add_hfyu_left_prediction(udst, s->temp[1], width2, leftu);
leftv= s->dsp.add_hfyu_left_prediction(vdst, s->temp[2], width2, leftv);
}
if (s->predictor == PLANE) {
if (cy > s->interlaced) {
s->dsp.add_bytes(ydst, ydst - fake_ystride, width);
if (!(s->flags & CODEC_FLAG_GRAY)) {
s->dsp.add_bytes(udst, udst - fake_ustride, width2);
s->dsp.add_bytes(vdst, vdst - fake_vstride, width2);
}
}
}
}
draw_slice(s, p, height);
break;
case MEDIAN:
/* first line except first 2 pixels is left predicted */
decode_422_bitstream(s, width - 2);
lefty= s->dsp.add_hfyu_left_prediction(p->data[0] + 2, s->temp[0], width - 2, lefty);
if (!(s->flags & CODEC_FLAG_GRAY)) {
leftu = s->dsp.add_hfyu_left_prediction(p->data[1] + 1, s->temp[1], width2 - 1, leftu);
leftv = s->dsp.add_hfyu_left_prediction(p->data[2] + 1, s->temp[2], width2 - 1, leftv);
}
cy = y = 1;
/* second line is left predicted for interlaced case */
if (s->interlaced) {
decode_422_bitstream(s, width);
lefty = s->dsp.add_hfyu_left_prediction(p->data[0] + p->linesize[0], s->temp[0], width, lefty);
if (!(s->flags & CODEC_FLAG_GRAY)) {
leftu = s->dsp.add_hfyu_left_prediction(p->data[1] + p->linesize[2], s->temp[1], width2, leftu);
leftv = s->dsp.add_hfyu_left_prediction(p->data[2] + p->linesize[1], s->temp[2], width2, leftv);
}
y++; cy++;
}
/* next 4 pixels are left predicted too */
decode_422_bitstream(s, 4);
lefty = s->dsp.add_hfyu_left_prediction(p->data[0] + fake_ystride, s->temp[0], 4, lefty);
if (!(s->flags&CODEC_FLAG_GRAY)) {
leftu = s->dsp.add_hfyu_left_prediction(p->data[1] + fake_ustride, s->temp[1], 2, leftu);
leftv = s->dsp.add_hfyu_left_prediction(p->data[2] + fake_vstride, s->temp[2], 2, leftv);
}
/* next line except the first 4 pixels is median predicted */
lefttopy = p->data[0][3];
decode_422_bitstream(s, width - 4);
s->dsp.add_hfyu_median_prediction(p->data[0] + fake_ystride+4, p->data[0]+4, s->temp[0], width-4, &lefty, &lefttopy);
if (!(s->flags&CODEC_FLAG_GRAY)) {
lefttopu = p->data[1][1];
lefttopv = p->data[2][1];
s->dsp.add_hfyu_median_prediction(p->data[1] + fake_ustride+2, p->data[1] + 2, s->temp[1], width2 - 2, &leftu, &lefttopu);
s->dsp.add_hfyu_median_prediction(p->data[2] + fake_vstride+2, p->data[2] + 2, s->temp[2], width2 - 2, &leftv, &lefttopv);
}
y++; cy++;
for (; y<height; y++, cy++) {
uint8_t *ydst, *udst, *vdst;
if (s->bitstream_bpp == 12) {
while (2 * cy > y) {
decode_gray_bitstream(s, width);
ydst = p->data[0] + p->linesize[0] * y;
s->dsp.add_hfyu_median_prediction(ydst, ydst - fake_ystride, s->temp[0], width, &lefty, &lefttopy);
y++;
}
if (y >= height) break;
}
draw_slice(s, p, y);
decode_422_bitstream(s, width);
ydst = p->data[0] + p->linesize[0] * y;
udst = p->data[1] + p->linesize[1] * cy;
vdst = p->data[2] + p->linesize[2] * cy;
s->dsp.add_hfyu_median_prediction(ydst, ydst - fake_ystride, s->temp[0], width, &lefty, &lefttopy);
if (!(s->flags & CODEC_FLAG_GRAY)) {
s->dsp.add_hfyu_median_prediction(udst, udst - fake_ustride, s->temp[1], width2, &leftu, &lefttopu);
s->dsp.add_hfyu_median_prediction(vdst, vdst - fake_vstride, s->temp[2], width2, &leftv, &lefttopv);
}
}
draw_slice(s, p, height);
break;
}
}
} else {
int y;
int leftr, leftg, leftb, lefta;
const int last_line = (height - 1) * p->linesize[0];
if (s->bitstream_bpp == 32) {
lefta = p->data[0][last_line+A] = get_bits(&s->gb, 8);
leftr = p->data[0][last_line+R] = get_bits(&s->gb, 8);
leftg = p->data[0][last_line+G] = get_bits(&s->gb, 8);
leftb = p->data[0][last_line+B] = get_bits(&s->gb, 8);
} else {
leftr = p->data[0][last_line+R] = get_bits(&s->gb, 8);
leftg = p->data[0][last_line+G] = get_bits(&s->gb, 8);
leftb = p->data[0][last_line+B] = get_bits(&s->gb, 8);
lefta = p->data[0][last_line+A] = 255;
skip_bits(&s->gb, 8);
}
if (s->bgr32) {
switch (s->predictor) {
case LEFT:
case PLANE:
decode_bgr_bitstream(s, width - 1);
s->dsp.add_hfyu_left_prediction_bgr32(p->data[0] + last_line+4, s->temp[0], width - 1, &leftr, &leftg, &leftb, &lefta);
for (y = s->height - 2; y >= 0; y--) { //Yes it is stored upside down.
decode_bgr_bitstream(s, width);
s->dsp.add_hfyu_left_prediction_bgr32(p->data[0] + p->linesize[0]*y, s->temp[0], width, &leftr, &leftg, &leftb, &lefta);
if (s->predictor == PLANE) {
if (s->bitstream_bpp != 32) lefta = 0;
if ((y & s->interlaced) == 0 &&
y < s->height - 1 - s->interlaced) {
s->dsp.add_bytes(p->data[0] + p->linesize[0] * y,
p->data[0] + p->linesize[0] * y +
fake_ystride, fake_ystride);
}
}
}
// just 1 large slice as this is not possible in reverse order
draw_slice(s, p, height);
break;
default:
av_log(avctx, AV_LOG_ERROR,
"prediction type not supported!\n");
}
}else{
av_log(avctx, AV_LOG_ERROR,
"BGR24 output is not implemented yet\n");
return -1;
}
}
emms_c();
*got_frame = 1;
return (get_bits_count(&s->gb) + 31) / 32 * 4 + table_size;
}
static av_cold int decode_end(AVCodecContext *avctx)
{
HYuvContext *s = avctx->priv_data;
int i;
ff_huffyuv_common_end(s);
av_freep(&s->bitstream_buffer);
for (i = 0; i < 6; i++) {
ff_free_vlc(&s->vlc[i]);
}
return 0;
}
#if CONFIG_HUFFYUV_DECODER
AVCodec ff_huffyuv_decoder = {
.name = "huffyuv",
.type = AVMEDIA_TYPE_VIDEO,
.id = AV_CODEC_ID_HUFFYUV,
.priv_data_size = sizeof(HYuvContext),
.init = decode_init,
.close = decode_end,
.decode = decode_frame,
.capabilities = CODEC_CAP_DR1 | CODEC_CAP_DRAW_HORIZ_BAND |
CODEC_CAP_FRAME_THREADS,
.init_thread_copy = ONLY_IF_THREADS_ENABLED(decode_init_thread_copy),
.long_name = NULL_IF_CONFIG_SMALL("Huffyuv / HuffYUV"),
};
#endif
#if CONFIG_FFVHUFF_DECODER
AVCodec ff_ffvhuff_decoder = {
.name = "ffvhuff",
.type = AVMEDIA_TYPE_VIDEO,
.id = AV_CODEC_ID_FFVHUFF,
.priv_data_size = sizeof(HYuvContext),
.init = decode_init,
.close = decode_end,
.decode = decode_frame,
.capabilities = CODEC_CAP_DR1 | CODEC_CAP_DRAW_HORIZ_BAND |
CODEC_CAP_FRAME_THREADS,
.init_thread_copy = ONLY_IF_THREADS_ENABLED(decode_init_thread_copy),
.long_name = NULL_IF_CONFIG_SMALL("Huffyuv FFmpeg variant"),
};
#endif