1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2024-12-07 11:13:41 +02:00
FFmpeg/libavcodec/hevc.h
Michael Niedermayer 99558270ed avcodec/hevc: Simplify skipped_bytes_pos code further
Signed-off-by: Michael Niedermayer <michael@niedermayer.cc>
2015-07-13 01:09:21 +02:00

1092 lines
29 KiB
C

/*
* HEVC video decoder
*
* Copyright (C) 2012 - 2013 Guillaume Martres
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifndef AVCODEC_HEVC_H
#define AVCODEC_HEVC_H
#include "libavutil/buffer.h"
#include "libavutil/md5.h"
#include "avcodec.h"
#include "bswapdsp.h"
#include "cabac.h"
#include "get_bits.h"
#include "hevcpred.h"
#include "hevcdsp.h"
#include "internal.h"
#include "thread.h"
#include "videodsp.h"
#define MAX_DPB_SIZE 16 // A.4.1
#define MAX_REFS 16
#define MAX_NB_THREADS 16
#define SHIFT_CTB_WPP 2
/**
* 7.4.2.1
*/
#define MAX_SUB_LAYERS 7
#define MAX_VPS_COUNT 16
#define MAX_SPS_COUNT 32
#define MAX_PPS_COUNT 256
#define MAX_SHORT_TERM_RPS_COUNT 64
#define MAX_CU_SIZE 128
//TODO: check if this is really the maximum
#define MAX_TRANSFORM_DEPTH 5
#define MAX_TB_SIZE 32
#define MAX_LOG2_CTB_SIZE 6
#define MAX_QP 51
#define DEFAULT_INTRA_TC_OFFSET 2
#define HEVC_CONTEXTS 199
#define MRG_MAX_NUM_CANDS 5
#define L0 0
#define L1 1
#define EPEL_EXTRA_BEFORE 1
#define EPEL_EXTRA_AFTER 2
#define EPEL_EXTRA 3
#define QPEL_EXTRA_BEFORE 3
#define QPEL_EXTRA_AFTER 4
#define QPEL_EXTRA 7
#define EDGE_EMU_BUFFER_STRIDE 80
/**
* Value of the luma sample at position (x, y) in the 2D array tab.
*/
#define SAMPLE(tab, x, y) ((tab)[(y) * s->sps->width + (x)])
#define SAMPLE_CTB(tab, x, y) ((tab)[(y) * min_cb_width + (x)])
#define IS_IDR(s) ((s)->nal_unit_type == NAL_IDR_W_RADL || (s)->nal_unit_type == NAL_IDR_N_LP)
#define IS_BLA(s) ((s)->nal_unit_type == NAL_BLA_W_RADL || (s)->nal_unit_type == NAL_BLA_W_LP || \
(s)->nal_unit_type == NAL_BLA_N_LP)
#define IS_IRAP(s) ((s)->nal_unit_type >= 16 && (s)->nal_unit_type <= 23)
/**
* Table 7-3: NAL unit type codes
*/
enum NALUnitType {
NAL_TRAIL_N = 0,
NAL_TRAIL_R = 1,
NAL_TSA_N = 2,
NAL_TSA_R = 3,
NAL_STSA_N = 4,
NAL_STSA_R = 5,
NAL_RADL_N = 6,
NAL_RADL_R = 7,
NAL_RASL_N = 8,
NAL_RASL_R = 9,
NAL_BLA_W_LP = 16,
NAL_BLA_W_RADL = 17,
NAL_BLA_N_LP = 18,
NAL_IDR_W_RADL = 19,
NAL_IDR_N_LP = 20,
NAL_CRA_NUT = 21,
NAL_VPS = 32,
NAL_SPS = 33,
NAL_PPS = 34,
NAL_AUD = 35,
NAL_EOS_NUT = 36,
NAL_EOB_NUT = 37,
NAL_FD_NUT = 38,
NAL_SEI_PREFIX = 39,
NAL_SEI_SUFFIX = 40,
};
enum RPSType {
ST_CURR_BEF = 0,
ST_CURR_AFT,
ST_FOLL,
LT_CURR,
LT_FOLL,
NB_RPS_TYPE,
};
enum SliceType {
B_SLICE = 0,
P_SLICE = 1,
I_SLICE = 2,
};
enum SyntaxElement {
SAO_MERGE_FLAG = 0,
SAO_TYPE_IDX,
SAO_EO_CLASS,
SAO_BAND_POSITION,
SAO_OFFSET_ABS,
SAO_OFFSET_SIGN,
END_OF_SLICE_FLAG,
SPLIT_CODING_UNIT_FLAG,
CU_TRANSQUANT_BYPASS_FLAG,
SKIP_FLAG,
CU_QP_DELTA,
PRED_MODE_FLAG,
PART_MODE,
PCM_FLAG,
PREV_INTRA_LUMA_PRED_FLAG,
MPM_IDX,
REM_INTRA_LUMA_PRED_MODE,
INTRA_CHROMA_PRED_MODE,
MERGE_FLAG,
MERGE_IDX,
INTER_PRED_IDC,
REF_IDX_L0,
REF_IDX_L1,
ABS_MVD_GREATER0_FLAG,
ABS_MVD_GREATER1_FLAG,
ABS_MVD_MINUS2,
MVD_SIGN_FLAG,
MVP_LX_FLAG,
NO_RESIDUAL_DATA_FLAG,
SPLIT_TRANSFORM_FLAG,
CBF_LUMA,
CBF_CB_CR,
TRANSFORM_SKIP_FLAG,
EXPLICIT_RDPCM_FLAG,
EXPLICIT_RDPCM_DIR_FLAG,
LAST_SIGNIFICANT_COEFF_X_PREFIX,
LAST_SIGNIFICANT_COEFF_Y_PREFIX,
LAST_SIGNIFICANT_COEFF_X_SUFFIX,
LAST_SIGNIFICANT_COEFF_Y_SUFFIX,
SIGNIFICANT_COEFF_GROUP_FLAG,
SIGNIFICANT_COEFF_FLAG,
COEFF_ABS_LEVEL_GREATER1_FLAG,
COEFF_ABS_LEVEL_GREATER2_FLAG,
COEFF_ABS_LEVEL_REMAINING,
COEFF_SIGN_FLAG,
LOG2_RES_SCALE_ABS,
RES_SCALE_SIGN_FLAG,
CU_CHROMA_QP_OFFSET_FLAG,
CU_CHROMA_QP_OFFSET_IDX,
};
enum PartMode {
PART_2Nx2N = 0,
PART_2NxN = 1,
PART_Nx2N = 2,
PART_NxN = 3,
PART_2NxnU = 4,
PART_2NxnD = 5,
PART_nLx2N = 6,
PART_nRx2N = 7,
};
enum PredMode {
MODE_INTER = 0,
MODE_INTRA,
MODE_SKIP,
};
enum InterPredIdc {
PRED_L0 = 0,
PRED_L1,
PRED_BI,
};
enum PredFlag {
PF_INTRA = 0,
PF_L0,
PF_L1,
PF_BI,
};
enum IntraPredMode {
INTRA_PLANAR = 0,
INTRA_DC,
INTRA_ANGULAR_2,
INTRA_ANGULAR_3,
INTRA_ANGULAR_4,
INTRA_ANGULAR_5,
INTRA_ANGULAR_6,
INTRA_ANGULAR_7,
INTRA_ANGULAR_8,
INTRA_ANGULAR_9,
INTRA_ANGULAR_10,
INTRA_ANGULAR_11,
INTRA_ANGULAR_12,
INTRA_ANGULAR_13,
INTRA_ANGULAR_14,
INTRA_ANGULAR_15,
INTRA_ANGULAR_16,
INTRA_ANGULAR_17,
INTRA_ANGULAR_18,
INTRA_ANGULAR_19,
INTRA_ANGULAR_20,
INTRA_ANGULAR_21,
INTRA_ANGULAR_22,
INTRA_ANGULAR_23,
INTRA_ANGULAR_24,
INTRA_ANGULAR_25,
INTRA_ANGULAR_26,
INTRA_ANGULAR_27,
INTRA_ANGULAR_28,
INTRA_ANGULAR_29,
INTRA_ANGULAR_30,
INTRA_ANGULAR_31,
INTRA_ANGULAR_32,
INTRA_ANGULAR_33,
INTRA_ANGULAR_34,
};
enum SAOType {
SAO_NOT_APPLIED = 0,
SAO_BAND,
SAO_EDGE,
SAO_APPLIED
};
enum SAOEOClass {
SAO_EO_HORIZ = 0,
SAO_EO_VERT,
SAO_EO_135D,
SAO_EO_45D,
};
enum ScanType {
SCAN_DIAG = 0,
SCAN_HORIZ,
SCAN_VERT,
};
typedef struct ShortTermRPS {
unsigned int num_negative_pics;
int num_delta_pocs;
int32_t delta_poc[32];
uint8_t used[32];
} ShortTermRPS;
typedef struct LongTermRPS {
int poc[32];
uint8_t used[32];
uint8_t nb_refs;
} LongTermRPS;
typedef struct RefPicList {
struct HEVCFrame *ref[MAX_REFS];
int list[MAX_REFS];
int isLongTerm[MAX_REFS];
int nb_refs;
} RefPicList;
typedef struct RefPicListTab {
RefPicList refPicList[2];
} RefPicListTab;
typedef struct HEVCWindow {
unsigned int left_offset;
unsigned int right_offset;
unsigned int top_offset;
unsigned int bottom_offset;
} HEVCWindow;
typedef struct VUI {
AVRational sar;
int overscan_info_present_flag;
int overscan_appropriate_flag;
int video_signal_type_present_flag;
int video_format;
int video_full_range_flag;
int colour_description_present_flag;
uint8_t colour_primaries;
uint8_t transfer_characteristic;
uint8_t matrix_coeffs;
int chroma_loc_info_present_flag;
int chroma_sample_loc_type_top_field;
int chroma_sample_loc_type_bottom_field;
int neutra_chroma_indication_flag;
int field_seq_flag;
int frame_field_info_present_flag;
int default_display_window_flag;
HEVCWindow def_disp_win;
int vui_timing_info_present_flag;
uint32_t vui_num_units_in_tick;
uint32_t vui_time_scale;
int vui_poc_proportional_to_timing_flag;
int vui_num_ticks_poc_diff_one_minus1;
int vui_hrd_parameters_present_flag;
int bitstream_restriction_flag;
int tiles_fixed_structure_flag;
int motion_vectors_over_pic_boundaries_flag;
int restricted_ref_pic_lists_flag;
int min_spatial_segmentation_idc;
int max_bytes_per_pic_denom;
int max_bits_per_min_cu_denom;
int log2_max_mv_length_horizontal;
int log2_max_mv_length_vertical;
} VUI;
typedef struct PTLCommon {
uint8_t profile_space;
uint8_t tier_flag;
uint8_t profile_idc;
uint8_t profile_compatibility_flag[32];
uint8_t level_idc;
uint8_t progressive_source_flag;
uint8_t interlaced_source_flag;
uint8_t non_packed_constraint_flag;
uint8_t frame_only_constraint_flag;
} PTLCommon;
typedef struct PTL {
PTLCommon general_ptl;
PTLCommon sub_layer_ptl[MAX_SUB_LAYERS];
uint8_t sub_layer_profile_present_flag[MAX_SUB_LAYERS];
uint8_t sub_layer_level_present_flag[MAX_SUB_LAYERS];
} PTL;
typedef struct HEVCVPS {
uint8_t vps_temporal_id_nesting_flag;
int vps_max_layers;
int vps_max_sub_layers; ///< vps_max_temporal_layers_minus1 + 1
PTL ptl;
int vps_sub_layer_ordering_info_present_flag;
unsigned int vps_max_dec_pic_buffering[MAX_SUB_LAYERS];
unsigned int vps_num_reorder_pics[MAX_SUB_LAYERS];
unsigned int vps_max_latency_increase[MAX_SUB_LAYERS];
int vps_max_layer_id;
int vps_num_layer_sets; ///< vps_num_layer_sets_minus1 + 1
uint8_t vps_timing_info_present_flag;
uint32_t vps_num_units_in_tick;
uint32_t vps_time_scale;
uint8_t vps_poc_proportional_to_timing_flag;
int vps_num_ticks_poc_diff_one; ///< vps_num_ticks_poc_diff_one_minus1 + 1
int vps_num_hrd_parameters;
} HEVCVPS;
typedef struct ScalingList {
/* This is a little wasteful, since sizeID 0 only needs 8 coeffs,
* and size ID 3 only has 2 arrays, not 6. */
uint8_t sl[4][6][64];
uint8_t sl_dc[2][6];
} ScalingList;
typedef struct HEVCSPS {
unsigned vps_id;
int chroma_format_idc;
uint8_t separate_colour_plane_flag;
///< output (i.e. cropped) values
int output_width, output_height;
HEVCWindow output_window;
HEVCWindow pic_conf_win;
int bit_depth;
int pixel_shift;
enum AVPixelFormat pix_fmt;
unsigned int log2_max_poc_lsb;
int pcm_enabled_flag;
int max_sub_layers;
struct {
int max_dec_pic_buffering;
int num_reorder_pics;
int max_latency_increase;
} temporal_layer[MAX_SUB_LAYERS];
VUI vui;
PTL ptl;
uint8_t scaling_list_enable_flag;
ScalingList scaling_list;
unsigned int nb_st_rps;
ShortTermRPS st_rps[MAX_SHORT_TERM_RPS_COUNT];
uint8_t amp_enabled_flag;
uint8_t sao_enabled;
uint8_t long_term_ref_pics_present_flag;
uint16_t lt_ref_pic_poc_lsb_sps[32];
uint8_t used_by_curr_pic_lt_sps_flag[32];
uint8_t num_long_term_ref_pics_sps;
struct {
uint8_t bit_depth;
uint8_t bit_depth_chroma;
unsigned int log2_min_pcm_cb_size;
unsigned int log2_max_pcm_cb_size;
uint8_t loop_filter_disable_flag;
} pcm;
uint8_t sps_temporal_mvp_enabled_flag;
uint8_t sps_strong_intra_smoothing_enable_flag;
unsigned int log2_min_cb_size;
unsigned int log2_diff_max_min_coding_block_size;
unsigned int log2_min_tb_size;
unsigned int log2_max_trafo_size;
unsigned int log2_ctb_size;
unsigned int log2_min_pu_size;
int max_transform_hierarchy_depth_inter;
int max_transform_hierarchy_depth_intra;
int transform_skip_rotation_enabled_flag;
int transform_skip_context_enabled_flag;
int implicit_rdpcm_enabled_flag;
int explicit_rdpcm_enabled_flag;
int intra_smoothing_disabled_flag;
int persistent_rice_adaptation_enabled_flag;
///< coded frame dimension in various units
int width;
int height;
int ctb_width;
int ctb_height;
int ctb_size;
int min_cb_width;
int min_cb_height;
int min_tb_width;
int min_tb_height;
int min_pu_width;
int min_pu_height;
int tb_mask;
int hshift[3];
int vshift[3];
int qp_bd_offset;
} HEVCSPS;
typedef struct HEVCPPS {
unsigned int sps_id; ///< seq_parameter_set_id
uint8_t sign_data_hiding_flag;
uint8_t cabac_init_present_flag;
int num_ref_idx_l0_default_active; ///< num_ref_idx_l0_default_active_minus1 + 1
int num_ref_idx_l1_default_active; ///< num_ref_idx_l1_default_active_minus1 + 1
int pic_init_qp_minus26;
uint8_t constrained_intra_pred_flag;
uint8_t transform_skip_enabled_flag;
uint8_t cu_qp_delta_enabled_flag;
int diff_cu_qp_delta_depth;
int cb_qp_offset;
int cr_qp_offset;
uint8_t pic_slice_level_chroma_qp_offsets_present_flag;
uint8_t weighted_pred_flag;
uint8_t weighted_bipred_flag;
uint8_t output_flag_present_flag;
uint8_t transquant_bypass_enable_flag;
uint8_t dependent_slice_segments_enabled_flag;
uint8_t tiles_enabled_flag;
uint8_t entropy_coding_sync_enabled_flag;
int num_tile_columns; ///< num_tile_columns_minus1 + 1
int num_tile_rows; ///< num_tile_rows_minus1 + 1
uint8_t uniform_spacing_flag;
uint8_t loop_filter_across_tiles_enabled_flag;
uint8_t seq_loop_filter_across_slices_enabled_flag;
uint8_t deblocking_filter_control_present_flag;
uint8_t deblocking_filter_override_enabled_flag;
uint8_t disable_dbf;
int beta_offset; ///< beta_offset_div2 * 2
int tc_offset; ///< tc_offset_div2 * 2
uint8_t scaling_list_data_present_flag;
ScalingList scaling_list;
uint8_t lists_modification_present_flag;
int log2_parallel_merge_level; ///< log2_parallel_merge_level_minus2 + 2
int num_extra_slice_header_bits;
uint8_t slice_header_extension_present_flag;
uint8_t log2_max_transform_skip_block_size;
uint8_t cross_component_prediction_enabled_flag;
uint8_t chroma_qp_offset_list_enabled_flag;
uint8_t diff_cu_chroma_qp_offset_depth;
uint8_t chroma_qp_offset_list_len_minus1;
int8_t cb_qp_offset_list[5];
int8_t cr_qp_offset_list[5];
uint8_t log2_sao_offset_scale_luma;
uint8_t log2_sao_offset_scale_chroma;
// Inferred parameters
unsigned int *column_width; ///< ColumnWidth
unsigned int *row_height; ///< RowHeight
unsigned int *col_bd; ///< ColBd
unsigned int *row_bd; ///< RowBd
int *col_idxX;
int *ctb_addr_rs_to_ts; ///< CtbAddrRSToTS
int *ctb_addr_ts_to_rs; ///< CtbAddrTSToRS
int *tile_id; ///< TileId
int *tile_pos_rs; ///< TilePosRS
int *min_tb_addr_zs; ///< MinTbAddrZS
int *min_tb_addr_zs_tab;///< MinTbAddrZS
} HEVCPPS;
typedef struct HEVCParamSets {
AVBufferRef *vps_list[MAX_VPS_COUNT];
AVBufferRef *sps_list[MAX_SPS_COUNT];
AVBufferRef *pps_list[MAX_PPS_COUNT];
/* currently active parameter sets */
const HEVCVPS *vps;
const HEVCSPS *sps;
const HEVCPPS *pps;
} HEVCParamSets;
typedef struct SliceHeader {
unsigned int pps_id;
///< address (in raster order) of the first block in the current slice segment
unsigned int slice_segment_addr;
///< address (in raster order) of the first block in the current slice
unsigned int slice_addr;
enum SliceType slice_type;
int pic_order_cnt_lsb;
uint8_t first_slice_in_pic_flag;
uint8_t dependent_slice_segment_flag;
uint8_t pic_output_flag;
uint8_t colour_plane_id;
///< RPS coded in the slice header itself is stored here
int short_term_ref_pic_set_sps_flag;
int short_term_ref_pic_set_size;
ShortTermRPS slice_rps;
const ShortTermRPS *short_term_rps;
int long_term_ref_pic_set_size;
LongTermRPS long_term_rps;
unsigned int list_entry_lx[2][32];
uint8_t rpl_modification_flag[2];
uint8_t no_output_of_prior_pics_flag;
uint8_t slice_temporal_mvp_enabled_flag;
unsigned int nb_refs[2];
uint8_t slice_sample_adaptive_offset_flag[3];
uint8_t mvd_l1_zero_flag;
uint8_t cabac_init_flag;
uint8_t disable_deblocking_filter_flag; ///< slice_header_disable_deblocking_filter_flag
uint8_t slice_loop_filter_across_slices_enabled_flag;
uint8_t collocated_list;
unsigned int collocated_ref_idx;
int slice_qp_delta;
int slice_cb_qp_offset;
int slice_cr_qp_offset;
uint8_t cu_chroma_qp_offset_enabled_flag;
int beta_offset; ///< beta_offset_div2 * 2
int tc_offset; ///< tc_offset_div2 * 2
unsigned int max_num_merge_cand; ///< 5 - 5_minus_max_num_merge_cand
int *entry_point_offset;
int * offset;
int * size;
int num_entry_point_offsets;
int8_t slice_qp;
uint8_t luma_log2_weight_denom;
int16_t chroma_log2_weight_denom;
int16_t luma_weight_l0[16];
int16_t chroma_weight_l0[16][2];
int16_t chroma_weight_l1[16][2];
int16_t luma_weight_l1[16];
int16_t luma_offset_l0[16];
int16_t chroma_offset_l0[16][2];
int16_t luma_offset_l1[16];
int16_t chroma_offset_l1[16][2];
int slice_ctb_addr_rs;
} SliceHeader;
typedef struct CodingUnit {
int x;
int y;
enum PredMode pred_mode; ///< PredMode
enum PartMode part_mode; ///< PartMode
// Inferred parameters
uint8_t intra_split_flag; ///< IntraSplitFlag
uint8_t max_trafo_depth; ///< MaxTrafoDepth
uint8_t cu_transquant_bypass_flag;
} CodingUnit;
typedef struct Mv {
int16_t x; ///< horizontal component of motion vector
int16_t y; ///< vertical component of motion vector
} Mv;
typedef struct MvField {
DECLARE_ALIGNED(4, Mv, mv)[2];
int8_t ref_idx[2];
int8_t pred_flag;
} MvField;
typedef struct NeighbourAvailable {
int cand_bottom_left;
int cand_left;
int cand_up;
int cand_up_left;
int cand_up_right;
int cand_up_right_sap;
} NeighbourAvailable;
typedef struct PredictionUnit {
int mpm_idx;
int rem_intra_luma_pred_mode;
uint8_t intra_pred_mode[4];
Mv mvd;
uint8_t merge_flag;
uint8_t intra_pred_mode_c[4];
uint8_t chroma_mode_c[4];
} PredictionUnit;
typedef struct TransformUnit {
int cu_qp_delta;
int res_scale_val;
// Inferred parameters;
int intra_pred_mode;
int intra_pred_mode_c;
int chroma_mode_c;
uint8_t is_cu_qp_delta_coded;
uint8_t is_cu_chroma_qp_offset_coded;
int8_t cu_qp_offset_cb;
int8_t cu_qp_offset_cr;
uint8_t cross_pf;
} TransformUnit;
typedef struct DBParams {
int beta_offset;
int tc_offset;
} DBParams;
#define HEVC_FRAME_FLAG_OUTPUT (1 << 0)
#define HEVC_FRAME_FLAG_SHORT_REF (1 << 1)
#define HEVC_FRAME_FLAG_LONG_REF (1 << 2)
#define HEVC_FRAME_FLAG_BUMPING (1 << 3)
typedef struct HEVCFrame {
AVFrame *frame;
ThreadFrame tf;
MvField *tab_mvf;
RefPicList *refPicList;
RefPicListTab **rpl_tab;
int ctb_count;
int poc;
struct HEVCFrame *collocated_ref;
HEVCWindow window;
AVBufferRef *tab_mvf_buf;
AVBufferRef *rpl_tab_buf;
AVBufferRef *rpl_buf;
AVBufferRef *hwaccel_priv_buf;
void *hwaccel_picture_private;
/**
* A sequence counter, so that old frames are output first
* after a POC reset
*/
uint16_t sequence;
/**
* A combination of HEVC_FRAME_FLAG_*
*/
uint8_t flags;
} HEVCFrame;
typedef struct HEVCNAL {
uint8_t *rbsp_buffer;
int rbsp_buffer_size;
int size;
const uint8_t *data;
int raw_size;
const uint8_t *raw_data;
GetBitContext gb;
enum NALUnitType type;
int temporal_id;
int skipped_bytes;
int skipped_bytes_pos_size;
int *skipped_bytes_pos;
} HEVCNAL;
/* an input packet split into unescaped NAL units */
typedef struct HEVCPacket {
HEVCNAL *nals;
int nb_nals;
int nals_allocated;
} HEVCPacket;
typedef struct HEVCLocalContext {
uint8_t cabac_state[HEVC_CONTEXTS];
uint8_t stat_coeff[4];
uint8_t first_qp_group;
GetBitContext gb;
CABACContext cc;
int8_t qp_y;
int8_t curr_qp_y;
int qPy_pred;
TransformUnit tu;
uint8_t ctb_left_flag;
uint8_t ctb_up_flag;
uint8_t ctb_up_right_flag;
uint8_t ctb_up_left_flag;
int end_of_tiles_x;
int end_of_tiles_y;
/* +7 is for subpixel interpolation, *2 for high bit depths */
DECLARE_ALIGNED(32, uint8_t, edge_emu_buffer)[(MAX_PB_SIZE + 7) * EDGE_EMU_BUFFER_STRIDE * 2];
/* The extended size between the new edge emu buffer is abused by SAO */
DECLARE_ALIGNED(32, uint8_t, edge_emu_buffer2)[(MAX_PB_SIZE + 7) * EDGE_EMU_BUFFER_STRIDE * 2];
DECLARE_ALIGNED(32, int16_t, tmp [MAX_PB_SIZE * MAX_PB_SIZE]);
int ct_depth;
CodingUnit cu;
PredictionUnit pu;
NeighbourAvailable na;
#define BOUNDARY_LEFT_SLICE (1 << 0)
#define BOUNDARY_LEFT_TILE (1 << 1)
#define BOUNDARY_UPPER_SLICE (1 << 2)
#define BOUNDARY_UPPER_TILE (1 << 3)
/* properties of the boundary of the current CTB for the purposes
* of the deblocking filter */
int boundary_flags;
} HEVCLocalContext;
typedef struct HEVCContext {
const AVClass *c; // needed by private avoptions
AVCodecContext *avctx;
struct HEVCContext *sList[MAX_NB_THREADS];
HEVCLocalContext *HEVClcList[MAX_NB_THREADS];
HEVCLocalContext *HEVClc;
uint8_t threads_type;
uint8_t threads_number;
int width;
int height;
uint8_t *cabac_state;
/** 1 if the independent slice segment header was successfully parsed */
uint8_t slice_initialized;
AVFrame *frame;
AVFrame *output_frame;
uint8_t *sao_pixel_buffer_h[3];
uint8_t *sao_pixel_buffer_v[3];
HEVCParamSets ps;
AVBufferPool *tab_mvf_pool;
AVBufferPool *rpl_tab_pool;
///< candidate references for the current frame
RefPicList rps[5];
SliceHeader sh;
SAOParams *sao;
DBParams *deblock;
enum NALUnitType nal_unit_type;
int temporal_id; ///< temporal_id_plus1 - 1
HEVCFrame *ref;
HEVCFrame DPB[32];
int poc;
int pocTid0;
int slice_idx; ///< number of the slice being currently decoded
int eos; ///< current packet contains an EOS/EOB NAL
int last_eos; ///< last packet contains an EOS/EOB NAL
int max_ra;
int bs_width;
int bs_height;
int is_decoded;
HEVCPredContext hpc;
HEVCDSPContext hevcdsp;
VideoDSPContext vdsp;
BswapDSPContext bdsp;
int8_t *qp_y_tab;
uint8_t *horizontal_bs;
uint8_t *vertical_bs;
int32_t *tab_slice_address;
// CU
uint8_t *skip_flag;
uint8_t *tab_ct_depth;
// PU
uint8_t *tab_ipm;
uint8_t *cbf_luma; // cbf_luma of colocated TU
uint8_t *is_pcm;
// CTB-level flags affecting loop filter operation
uint8_t *filter_slice_edges;
/** used on BE to byteswap the lines for checksumming */
uint8_t *checksum_buf;
int checksum_buf_size;
/**
* Sequence counters for decoded and output frames, so that old
* frames are output first after a POC reset
*/
uint16_t seq_decode;
uint16_t seq_output;
int enable_parallel_tiles;
int wpp_err;
const uint8_t *data;
HEVCPacket pkt;
// type of the first VCL NAL of the current frame
enum NALUnitType first_nal_type;
// for checking the frame checksums
struct AVMD5 *md5_ctx;
uint8_t md5[3][16];
uint8_t is_md5;
uint8_t context_initialized;
uint8_t is_nalff; ///< this flag is != 0 if bitstream is encapsulated
///< as a format defined in 14496-15
int apply_defdispwin;
int active_seq_parameter_set_id;
int nal_length_size; ///< Number of bytes used for nal length (1, 2 or 4)
int nuh_layer_id;
/** frame packing arrangement variables */
int sei_frame_packing_present;
int frame_packing_arrangement_type;
int content_interpretation_type;
int quincunx_subsampling;
/** display orientation */
int sei_display_orientation_present;
int sei_anticlockwise_rotation;
int sei_hflip, sei_vflip;
int picture_struct;
} HEVCContext;
int ff_hevc_decode_short_term_rps(GetBitContext *gb, AVCodecContext *avctx,
ShortTermRPS *rps, const HEVCSPS *sps, int is_slice_header);
/**
* Parse the SPS from the bitstream into the provided HEVCSPS struct.
*
* @param sps_id the SPS id will be written here
* @param apply_defdispwin if set 1, the default display window from the VUI
* will be applied to the video dimensions
* @param vps_list if non-NULL, this function will validate that the SPS refers
* to an existing VPS
*/
int ff_hevc_parse_sps(HEVCSPS *sps, GetBitContext *gb, unsigned int *sps_id,
int apply_defdispwin, AVBufferRef **vps_list, AVCodecContext *avctx);
int ff_hevc_decode_nal_vps(GetBitContext *gb, AVCodecContext *avctx,
HEVCParamSets *ps);
int ff_hevc_decode_nal_sps(GetBitContext *gb, AVCodecContext *avctx,
HEVCParamSets *ps, int apply_defdispwin);
int ff_hevc_decode_nal_pps(GetBitContext *gb, AVCodecContext *avctx,
HEVCParamSets *ps);
int ff_hevc_decode_nal_sei(HEVCContext *s);
/**
* Mark all frames in DPB as unused for reference.
*/
void ff_hevc_clear_refs(HEVCContext *s);
/**
* Drop all frames currently in DPB.
*/
void ff_hevc_flush_dpb(HEVCContext *s);
/**
* Compute POC of the current frame and return it.
*/
int ff_hevc_compute_poc(HEVCContext *s, int poc_lsb);
RefPicList *ff_hevc_get_ref_list(HEVCContext *s, HEVCFrame *frame,
int x0, int y0);
/**
* Construct the reference picture sets for the current frame.
*/
int ff_hevc_frame_rps(HEVCContext *s);
/**
* Construct the reference picture list(s) for the current slice.
*/
int ff_hevc_slice_rpl(HEVCContext *s);
void ff_hevc_save_states(HEVCContext *s, int ctb_addr_ts);
void ff_hevc_cabac_init(HEVCContext *s, int ctb_addr_ts);
int ff_hevc_sao_merge_flag_decode(HEVCContext *s);
int ff_hevc_sao_type_idx_decode(HEVCContext *s);
int ff_hevc_sao_band_position_decode(HEVCContext *s);
int ff_hevc_sao_offset_abs_decode(HEVCContext *s);
int ff_hevc_sao_offset_sign_decode(HEVCContext *s);
int ff_hevc_sao_eo_class_decode(HEVCContext *s);
int ff_hevc_end_of_slice_flag_decode(HEVCContext *s);
int ff_hevc_cu_transquant_bypass_flag_decode(HEVCContext *s);
int ff_hevc_skip_flag_decode(HEVCContext *s, int x0, int y0,
int x_cb, int y_cb);
int ff_hevc_pred_mode_decode(HEVCContext *s);
int ff_hevc_split_coding_unit_flag_decode(HEVCContext *s, int ct_depth,
int x0, int y0);
int ff_hevc_part_mode_decode(HEVCContext *s, int log2_cb_size);
int ff_hevc_pcm_flag_decode(HEVCContext *s);
int ff_hevc_prev_intra_luma_pred_flag_decode(HEVCContext *s);
int ff_hevc_mpm_idx_decode(HEVCContext *s);
int ff_hevc_rem_intra_luma_pred_mode_decode(HEVCContext *s);
int ff_hevc_intra_chroma_pred_mode_decode(HEVCContext *s);
int ff_hevc_merge_idx_decode(HEVCContext *s);
int ff_hevc_merge_flag_decode(HEVCContext *s);
int ff_hevc_inter_pred_idc_decode(HEVCContext *s, int nPbW, int nPbH);
int ff_hevc_ref_idx_lx_decode(HEVCContext *s, int num_ref_idx_lx);
int ff_hevc_mvp_lx_flag_decode(HEVCContext *s);
int ff_hevc_no_residual_syntax_flag_decode(HEVCContext *s);
int ff_hevc_split_transform_flag_decode(HEVCContext *s, int log2_trafo_size);
int ff_hevc_cbf_cb_cr_decode(HEVCContext *s, int trafo_depth);
int ff_hevc_cbf_luma_decode(HEVCContext *s, int trafo_depth);
int ff_hevc_log2_res_scale_abs(HEVCContext *s, int idx);
int ff_hevc_res_scale_sign_flag(HEVCContext *s, int idx);
/**
* Get the number of candidate references for the current frame.
*/
int ff_hevc_frame_nb_refs(HEVCContext *s);
int ff_hevc_set_new_ref(HEVCContext *s, AVFrame **frame, int poc);
/**
* Find next frame in output order and put a reference to it in frame.
* @return 1 if a frame was output, 0 otherwise
*/
int ff_hevc_output_frame(HEVCContext *s, AVFrame *frame, int flush);
void ff_hevc_bump_frame(HEVCContext *s);
void ff_hevc_unref_frame(HEVCContext *s, HEVCFrame *frame, int flags);
void ff_hevc_set_neighbour_available(HEVCContext *s, int x0, int y0,
int nPbW, int nPbH);
void ff_hevc_luma_mv_merge_mode(HEVCContext *s, int x0, int y0,
int nPbW, int nPbH, int log2_cb_size,
int part_idx, int merge_idx, MvField *mv);
void ff_hevc_luma_mv_mvp_mode(HEVCContext *s, int x0, int y0,
int nPbW, int nPbH, int log2_cb_size,
int part_idx, int merge_idx,
MvField *mv, int mvp_lx_flag, int LX);
void ff_hevc_set_qPy(HEVCContext *s, int xBase, int yBase,
int log2_cb_size);
void ff_hevc_deblocking_boundary_strengths(HEVCContext *s, int x0, int y0,
int log2_trafo_size);
int ff_hevc_cu_qp_delta_sign_flag(HEVCContext *s);
int ff_hevc_cu_qp_delta_abs(HEVCContext *s);
int ff_hevc_cu_chroma_qp_offset_flag(HEVCContext *s);
int ff_hevc_cu_chroma_qp_offset_idx(HEVCContext *s);
void ff_hevc_hls_filter(HEVCContext *s, int x, int y, int ctb_size);
void ff_hevc_hls_filters(HEVCContext *s, int x_ctb, int y_ctb, int ctb_size);
void ff_hevc_hls_residual_coding(HEVCContext *s, int x0, int y0,
int log2_trafo_size, enum ScanType scan_idx,
int c_idx);
void ff_hevc_hls_mvd_coding(HEVCContext *s, int x0, int y0, int log2_cb_size);
/**
* Extract the raw (unescaped) HEVC bitstream.
*/
int ff_hevc_extract_rbsp(HEVCContext *s, const uint8_t *src, int length,
HEVCNAL *nal);
/**
* Split an input packet into NAL units.
*/
int ff_hevc_split_packet(HEVCContext *s, HEVCPacket *pkt, const uint8_t *buf, int length,
AVCodecContext *avctx, int is_nalff, int nal_length_size);
int ff_hevc_encode_nal_vps(HEVCVPS *vps, unsigned int id,
uint8_t *buf, int buf_size);
extern const uint8_t ff_hevc_qpel_extra_before[4];
extern const uint8_t ff_hevc_qpel_extra_after[4];
extern const uint8_t ff_hevc_qpel_extra[4];
extern const uint8_t ff_hevc_diag_scan4x4_x[16];
extern const uint8_t ff_hevc_diag_scan4x4_y[16];
extern const uint8_t ff_hevc_diag_scan8x8_x[64];
extern const uint8_t ff_hevc_diag_scan8x8_y[64];
#endif /* AVCODEC_HEVC_H */