1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2025-01-24 13:56:33 +02:00
FFmpeg/libavcodec/dca_xll.c
Andreas Rheinhardt 790f793844 avutil/common: Don't auto-include mem.h
There are lots of files that don't need it: The number of object
files that actually need it went down from 2011 to 884 here.

Keep it for external users in order to not cause breakages.

Also improve the other headers a bit while just at it.

Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
2024-03-31 00:08:43 +01:00

1521 lines
50 KiB
C

/*
* Copyright (C) 2016 foo86
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "avcodec.h"
#include "libavutil/channel_layout.h"
#include "libavutil/mem.h"
#include "dcadec.h"
#include "dcadata.h"
#include "dcamath.h"
#include "dca_syncwords.h"
#include "decode.h"
#include "unary.h"
static int get_linear(GetBitContext *gb, int n)
{
unsigned int v = get_bits_long(gb, n);
return (v >> 1) ^ -(v & 1);
}
static int get_rice_un(GetBitContext *gb, int k)
{
unsigned int v = get_unary(gb, 1, get_bits_left(gb));
return (v << k) | get_bits_long(gb, k);
}
static int get_rice(GetBitContext *gb, int k)
{
unsigned int v = get_rice_un(gb, k);
return (v >> 1) ^ -(v & 1);
}
static void get_array(GetBitContext *gb, int32_t *array, int size, int n)
{
int i;
for (i = 0; i < size; i++)
array[i] = get_bits(gb, n);
}
static void get_linear_array(GetBitContext *gb, int32_t *array, int size, int n)
{
int i;
if (n == 0)
memset(array, 0, sizeof(*array) * size);
else for (i = 0; i < size; i++)
array[i] = get_linear(gb, n);
}
static void get_rice_array(GetBitContext *gb, int32_t *array, int size, int k)
{
int i;
for (i = 0; i < size; i++)
array[i] = get_rice(gb, k);
}
static int parse_dmix_coeffs(DCAXllDecoder *s, DCAXllChSet *c)
{
// Size of downmix coefficient matrix
int m = c->primary_chset ? ff_dca_dmix_primary_nch[c->dmix_type] : c->hier_ofs;
int i, j, *coeff_ptr = c->dmix_coeff;
for (i = 0; i < m; i++) {
int code, sign, coeff, scale, scale_inv = 0;
unsigned int index;
// Downmix scale (only for non-primary channel sets)
if (!c->primary_chset) {
code = get_bits(&s->gb, 9);
sign = (code >> 8) - 1;
index = (code & 0xff) - FF_DCA_DMIXTABLE_OFFSET;
if (index >= FF_DCA_INV_DMIXTABLE_SIZE) {
av_log(s->avctx, AV_LOG_ERROR, "Invalid XLL downmix scale index\n");
return AVERROR_INVALIDDATA;
}
scale = ff_dca_dmixtable[index + FF_DCA_DMIXTABLE_OFFSET];
scale_inv = ff_dca_inv_dmixtable[index];
c->dmix_scale[i] = (scale ^ sign) - sign;
c->dmix_scale_inv[i] = (scale_inv ^ sign) - sign;
}
// Downmix coefficients
for (j = 0; j < c->nchannels; j++) {
code = get_bits(&s->gb, 9);
sign = (code >> 8) - 1;
index = code & 0xff;
if (index >= FF_DCA_DMIXTABLE_SIZE) {
av_log(s->avctx, AV_LOG_ERROR, "Invalid XLL downmix coefficient index\n");
return AVERROR_INVALIDDATA;
}
coeff = ff_dca_dmixtable[index];
if (!c->primary_chset)
// Multiply by |InvDmixScale| to get |UndoDmixScale|
coeff = mul16(scale_inv, coeff);
*coeff_ptr++ = (coeff ^ sign) - sign;
}
}
return 0;
}
static int chs_parse_header(DCAXllDecoder *s, DCAXllChSet *c, DCAExssAsset *asset)
{
int i, j, k, ret, band, header_size, header_pos = get_bits_count(&s->gb);
DCAXllChSet *p = &s->chset[0];
DCAXllBand *b;
// Size of channel set sub-header
header_size = get_bits(&s->gb, 10) + 1;
// Check CRC
if (ff_dca_check_crc(s->avctx, &s->gb, header_pos, header_pos + header_size * 8)) {
av_log(s->avctx, AV_LOG_ERROR, "Invalid XLL sub-header checksum\n");
return AVERROR_INVALIDDATA;
}
// Number of channels in the channel set
c->nchannels = get_bits(&s->gb, 4) + 1;
if (c->nchannels > DCA_XLL_CHANNELS_MAX) {
avpriv_request_sample(s->avctx, "%d XLL channels", c->nchannels);
return AVERROR_PATCHWELCOME;
}
// Residual type
c->residual_encode = get_bits(&s->gb, c->nchannels);
// PCM bit resolution
c->pcm_bit_res = get_bits(&s->gb, 5) + 1;
// Storage unit width
c->storage_bit_res = get_bits(&s->gb, 5) + 1;
if (c->storage_bit_res != 16 && c->storage_bit_res != 20 && c->storage_bit_res != 24) {
avpriv_request_sample(s->avctx, "%d-bit XLL storage resolution", c->storage_bit_res);
return AVERROR_PATCHWELCOME;
}
if (c->pcm_bit_res > c->storage_bit_res) {
av_log(s->avctx, AV_LOG_ERROR, "Invalid PCM bit resolution for XLL channel set (%d > %d)\n", c->pcm_bit_res, c->storage_bit_res);
return AVERROR_INVALIDDATA;
}
// Original sampling frequency
c->freq = ff_dca_sampling_freqs[get_bits(&s->gb, 4)];
if (c->freq > 192000) {
avpriv_request_sample(s->avctx, "%d Hz XLL sampling frequency", c->freq);
return AVERROR_PATCHWELCOME;
}
// Sampling frequency modifier
if (get_bits(&s->gb, 2)) {
avpriv_request_sample(s->avctx, "XLL sampling frequency modifier");
return AVERROR_PATCHWELCOME;
}
// Which replacement set this channel set is member of
if (get_bits(&s->gb, 2)) {
avpriv_request_sample(s->avctx, "XLL replacement set");
return AVERROR_PATCHWELCOME;
}
if (asset->one_to_one_map_ch_to_spkr) {
// Primary channel set flag
c->primary_chset = get_bits1(&s->gb);
if (c->primary_chset != (c == p)) {
av_log(s->avctx, AV_LOG_ERROR, "The first (and only) XLL channel set must be primary\n");
return AVERROR_INVALIDDATA;
}
// Downmix coefficients present in stream
c->dmix_coeffs_present = get_bits1(&s->gb);
// Downmix already performed by encoder
c->dmix_embedded = c->dmix_coeffs_present && get_bits1(&s->gb);
// Downmix type
if (c->dmix_coeffs_present && c->primary_chset) {
c->dmix_type = get_bits(&s->gb, 3);
if (c->dmix_type >= DCA_DMIX_TYPE_COUNT) {
av_log(s->avctx, AV_LOG_ERROR, "Invalid XLL primary channel set downmix type\n");
return AVERROR_INVALIDDATA;
}
}
// Whether the channel set is part of a hierarchy
c->hier_chset = get_bits1(&s->gb);
if (!c->hier_chset && s->nchsets != 1) {
avpriv_request_sample(s->avctx, "XLL channel set outside of hierarchy");
return AVERROR_PATCHWELCOME;
}
// Downmix coefficients
if (c->dmix_coeffs_present && (ret = parse_dmix_coeffs(s, c)) < 0)
return ret;
// Channel mask enabled
if (!get_bits1(&s->gb)) {
avpriv_request_sample(s->avctx, "Disabled XLL channel mask");
return AVERROR_PATCHWELCOME;
}
// Channel mask for set
c->ch_mask = get_bits_long(&s->gb, s->ch_mask_nbits);
if (av_popcount(c->ch_mask) != c->nchannels) {
av_log(s->avctx, AV_LOG_ERROR, "Invalid XLL channel mask\n");
return AVERROR_INVALIDDATA;
}
// Build the channel to speaker map
for (i = 0, j = 0; i < s->ch_mask_nbits; i++)
if (c->ch_mask & (1U << i))
c->ch_remap[j++] = i;
} else {
// Mapping coeffs present flag
if (c->nchannels != 2 || s->nchsets != 1 || get_bits1(&s->gb)) {
avpriv_request_sample(s->avctx, "Custom XLL channel to speaker mapping");
return AVERROR_PATCHWELCOME;
}
// Setup for LtRt decoding
c->primary_chset = 1;
c->dmix_coeffs_present = 0;
c->dmix_embedded = 0;
c->hier_chset = 0;
c->ch_mask = DCA_SPEAKER_LAYOUT_STEREO;
c->ch_remap[0] = DCA_SPEAKER_L;
c->ch_remap[1] = DCA_SPEAKER_R;
}
if (c->freq > 96000) {
// Extra frequency bands flag
if (get_bits1(&s->gb)) {
avpriv_request_sample(s->avctx, "Extra XLL frequency bands");
return AVERROR_PATCHWELCOME;
}
c->nfreqbands = 2;
} else {
c->nfreqbands = 1;
}
// Set the sampling frequency to that of the first frequency band.
// Frequency will be doubled again after bands assembly.
c->freq >>= c->nfreqbands - 1;
// Verify that all channel sets have the same audio characteristics
if (c != p && (c->nfreqbands != p->nfreqbands || c->freq != p->freq
|| c->pcm_bit_res != p->pcm_bit_res
|| c->storage_bit_res != p->storage_bit_res)) {
avpriv_request_sample(s->avctx, "Different XLL audio characteristics");
return AVERROR_PATCHWELCOME;
}
// Determine number of bits to read bit allocation coding parameter
if (c->storage_bit_res > 16)
c->nabits = 5;
else if (c->storage_bit_res > 8)
c->nabits = 4;
else
c->nabits = 3;
// Account for embedded downmix and decimator saturation
if ((s->nchsets > 1 || c->nfreqbands > 1) && c->nabits < 5)
c->nabits++;
for (band = 0, b = c->bands; band < c->nfreqbands; band++, b++) {
// Pairwise channel decorrelation
if ((b->decor_enabled = get_bits1(&s->gb)) && c->nchannels > 1) {
int ch_nbits = av_ceil_log2(c->nchannels);
// Original channel order
for (i = 0; i < c->nchannels; i++) {
b->orig_order[i] = get_bits(&s->gb, ch_nbits);
if (b->orig_order[i] >= c->nchannels) {
av_log(s->avctx, AV_LOG_ERROR, "Invalid XLL original channel order\n");
return AVERROR_INVALIDDATA;
}
}
// Pairwise channel coefficients
for (i = 0; i < c->nchannels / 2; i++)
b->decor_coeff[i] = get_bits1(&s->gb) ? get_linear(&s->gb, 7) : 0;
} else {
for (i = 0; i < c->nchannels; i++)
b->orig_order[i] = i;
for (i = 0; i < c->nchannels / 2; i++)
b->decor_coeff[i] = 0;
}
// Adaptive predictor order
b->highest_pred_order = 0;
for (i = 0; i < c->nchannels; i++) {
b->adapt_pred_order[i] = get_bits(&s->gb, 4);
if (b->adapt_pred_order[i] > b->highest_pred_order)
b->highest_pred_order = b->adapt_pred_order[i];
}
if (b->highest_pred_order > s->nsegsamples) {
av_log(s->avctx, AV_LOG_ERROR, "Invalid XLL adaptive predicition order\n");
return AVERROR_INVALIDDATA;
}
// Fixed predictor order
for (i = 0; i < c->nchannels; i++)
b->fixed_pred_order[i] = b->adapt_pred_order[i] ? 0 : get_bits(&s->gb, 2);
// Adaptive predictor quantized reflection coefficients
for (i = 0; i < c->nchannels; i++) {
for (j = 0; j < b->adapt_pred_order[i]; j++) {
k = get_linear(&s->gb, 8);
if (k == -128) {
av_log(s->avctx, AV_LOG_ERROR, "Invalid XLL reflection coefficient index\n");
return AVERROR_INVALIDDATA;
}
if (k < 0)
b->adapt_refl_coeff[i][j] = -(int)ff_dca_xll_refl_coeff[-k];
else
b->adapt_refl_coeff[i][j] = (int)ff_dca_xll_refl_coeff[ k];
}
}
// Downmix performed by encoder in extension frequency band
b->dmix_embedded = c->dmix_embedded && (band == 0 || get_bits1(&s->gb));
// MSB/LSB split flag in extension frequency band
if ((band == 0 && s->scalable_lsbs) || (band != 0 && get_bits1(&s->gb))) {
// Size of LSB section in any segment
b->lsb_section_size = get_bits_long(&s->gb, s->seg_size_nbits);
if (b->lsb_section_size < 0 || b->lsb_section_size > s->frame_size) {
av_log(s->avctx, AV_LOG_ERROR, "Invalid LSB section size\n");
return AVERROR_INVALIDDATA;
}
// Account for optional CRC bytes after LSB section
if (b->lsb_section_size && (s->band_crc_present > 2 ||
(band == 0 && s->band_crc_present > 1)))
b->lsb_section_size += 2;
// Number of bits to represent the samples in LSB part
for (i = 0; i < c->nchannels; i++) {
b->nscalablelsbs[i] = get_bits(&s->gb, 4);
if (b->nscalablelsbs[i] && !b->lsb_section_size) {
av_log(s->avctx, AV_LOG_ERROR, "LSB section missing with non-zero LSB width\n");
return AVERROR_INVALIDDATA;
}
}
} else {
b->lsb_section_size = 0;
for (i = 0; i < c->nchannels; i++)
b->nscalablelsbs[i] = 0;
}
// Scalable resolution flag in extension frequency band
if ((band == 0 && s->scalable_lsbs) || (band != 0 && get_bits1(&s->gb))) {
// Number of bits discarded by authoring
for (i = 0; i < c->nchannels; i++)
b->bit_width_adjust[i] = get_bits(&s->gb, 4);
} else {
for (i = 0; i < c->nchannels; i++)
b->bit_width_adjust[i] = 0;
}
}
// Reserved
// Byte align
// CRC16 of channel set sub-header
if (ff_dca_seek_bits(&s->gb, header_pos + header_size * 8)) {
av_log(s->avctx, AV_LOG_ERROR, "Read past end of XLL sub-header\n");
return AVERROR_INVALIDDATA;
}
return 0;
}
static int chs_alloc_msb_band_data(DCAXllDecoder *s, DCAXllChSet *c)
{
int ndecisamples = c->nfreqbands > 1 ? DCA_XLL_DECI_HISTORY_MAX : 0;
int nchsamples = s->nframesamples + ndecisamples;
int i, j, nsamples = nchsamples * c->nchannels * c->nfreqbands;
int32_t *ptr;
// Reallocate MSB sample buffer
av_fast_malloc(&c->sample_buffer[0], &c->sample_size[0], nsamples * sizeof(int32_t));
if (!c->sample_buffer[0])
return AVERROR(ENOMEM);
ptr = c->sample_buffer[0] + ndecisamples;
for (i = 0; i < c->nfreqbands; i++) {
for (j = 0; j < c->nchannels; j++) {
c->bands[i].msb_sample_buffer[j] = ptr;
ptr += nchsamples;
}
}
return 0;
}
static int chs_alloc_lsb_band_data(DCAXllDecoder *s, DCAXllChSet *c)
{
int i, j, nsamples = 0;
int32_t *ptr;
// Determine number of frequency bands that have MSB/LSB split
for (i = 0; i < c->nfreqbands; i++)
if (c->bands[i].lsb_section_size)
nsamples += s->nframesamples * c->nchannels;
if (!nsamples)
return 0;
// Reallocate LSB sample buffer
av_fast_malloc(&c->sample_buffer[1], &c->sample_size[1], nsamples * sizeof(int32_t));
if (!c->sample_buffer[1])
return AVERROR(ENOMEM);
ptr = c->sample_buffer[1];
for (i = 0; i < c->nfreqbands; i++) {
if (c->bands[i].lsb_section_size) {
for (j = 0; j < c->nchannels; j++) {
c->bands[i].lsb_sample_buffer[j] = ptr;
ptr += s->nframesamples;
}
} else {
for (j = 0; j < c->nchannels; j++)
c->bands[i].lsb_sample_buffer[j] = NULL;
}
}
return 0;
}
static int chs_parse_band_data(DCAXllDecoder *s, DCAXllChSet *c, int band, int seg, int band_data_end)
{
DCAXllBand *b = &c->bands[band];
int i, j, k;
// Start unpacking MSB portion of the segment
if (!(seg && get_bits1(&s->gb))) {
// Unpack segment type
// 0 - distinct coding parameters for each channel
// 1 - common coding parameters for all channels
c->seg_common = get_bits1(&s->gb);
// Determine number of coding parameters encoded in segment
k = c->seg_common ? 1 : c->nchannels;
// Unpack Rice coding parameters
for (i = 0; i < k; i++) {
// Unpack Rice coding flag
// 0 - linear code, 1 - Rice code
c->rice_code_flag[i] = get_bits1(&s->gb);
// Unpack Hybrid Rice coding flag
// 0 - Rice code, 1 - Hybrid Rice code
if (!c->seg_common && c->rice_code_flag[i] && get_bits1(&s->gb))
// Unpack binary code length for isolated samples
c->bitalloc_hybrid_linear[i] = get_bits(&s->gb, c->nabits) + 1;
else
// 0 indicates no Hybrid Rice coding
c->bitalloc_hybrid_linear[i] = 0;
}
// Unpack coding parameters
for (i = 0; i < k; i++) {
if (seg == 0) {
// Unpack coding parameter for part A of segment 0
c->bitalloc_part_a[i] = get_bits(&s->gb, c->nabits);
// Adjust for the linear code
if (!c->rice_code_flag[i] && c->bitalloc_part_a[i])
c->bitalloc_part_a[i]++;
if (!c->seg_common)
c->nsamples_part_a[i] = b->adapt_pred_order[i];
else
c->nsamples_part_a[i] = b->highest_pred_order;
} else {
c->bitalloc_part_a[i] = 0;
c->nsamples_part_a[i] = 0;
}
// Unpack coding parameter for part B of segment
c->bitalloc_part_b[i] = get_bits(&s->gb, c->nabits);
// Adjust for the linear code
if (!c->rice_code_flag[i] && c->bitalloc_part_b[i])
c->bitalloc_part_b[i]++;
}
}
// Unpack entropy codes
for (i = 0; i < c->nchannels; i++) {
int32_t *part_a, *part_b;
int nsamples_part_b;
// Select index of coding parameters
k = c->seg_common ? 0 : i;
// Slice the segment into parts A and B
part_a = b->msb_sample_buffer[i] + seg * s->nsegsamples;
part_b = part_a + c->nsamples_part_a[k];
nsamples_part_b = s->nsegsamples - c->nsamples_part_a[k];
if (get_bits_left(&s->gb) < 0)
return AVERROR_INVALIDDATA;
if (!c->rice_code_flag[k]) {
// Linear codes
// Unpack all residuals of part A of segment 0
get_linear_array(&s->gb, part_a, c->nsamples_part_a[k],
c->bitalloc_part_a[k]);
// Unpack all residuals of part B of segment 0 and others
get_linear_array(&s->gb, part_b, nsamples_part_b,
c->bitalloc_part_b[k]);
} else {
// Rice codes
// Unpack all residuals of part A of segment 0
get_rice_array(&s->gb, part_a, c->nsamples_part_a[k],
c->bitalloc_part_a[k]);
if (c->bitalloc_hybrid_linear[k]) {
// Hybrid Rice codes
// Unpack the number of isolated samples
int nisosamples = get_bits(&s->gb, s->nsegsamples_log2);
// Set all locations to 0
memset(part_b, 0, sizeof(*part_b) * nsamples_part_b);
// Extract the locations of isolated samples and flag by -1
for (j = 0; j < nisosamples; j++) {
int loc = get_bits(&s->gb, s->nsegsamples_log2);
if (loc >= nsamples_part_b) {
av_log(s->avctx, AV_LOG_ERROR, "Invalid isolated sample location\n");
return AVERROR_INVALIDDATA;
}
part_b[loc] = -1;
}
// Unpack all residuals of part B of segment 0 and others
for (j = 0; j < nsamples_part_b; j++) {
if (part_b[j])
part_b[j] = get_linear(&s->gb, c->bitalloc_hybrid_linear[k]);
else
part_b[j] = get_rice(&s->gb, c->bitalloc_part_b[k]);
}
} else {
// Rice codes
// Unpack all residuals of part B of segment 0 and others
get_rice_array(&s->gb, part_b, nsamples_part_b, c->bitalloc_part_b[k]);
}
}
}
// Unpack decimator history for frequency band 1
if (seg == 0 && band == 1) {
int nbits = get_bits(&s->gb, 5) + 1;
for (i = 0; i < c->nchannels; i++)
for (j = 1; j < DCA_XLL_DECI_HISTORY_MAX; j++)
c->deci_history[i][j] = get_sbits_long(&s->gb, nbits);
}
// Start unpacking LSB portion of the segment
if (b->lsb_section_size) {
// Skip to the start of LSB portion
if (ff_dca_seek_bits(&s->gb, band_data_end - b->lsb_section_size * 8)) {
av_log(s->avctx, AV_LOG_ERROR, "Read past end of XLL band data\n");
return AVERROR_INVALIDDATA;
}
// Unpack all LSB parts of residuals of this segment
for (i = 0; i < c->nchannels; i++) {
if (b->nscalablelsbs[i]) {
get_array(&s->gb,
b->lsb_sample_buffer[i] + seg * s->nsegsamples,
s->nsegsamples, b->nscalablelsbs[i]);
}
}
}
// Skip to the end of band data
if (ff_dca_seek_bits(&s->gb, band_data_end)) {
av_log(s->avctx, AV_LOG_ERROR, "Read past end of XLL band data\n");
return AVERROR_INVALIDDATA;
}
return 0;
}
static av_cold void chs_clear_band_data(DCAXllDecoder *s, DCAXllChSet *c, int band, int seg)
{
DCAXllBand *b = &c->bands[band];
int i, offset, nsamples;
if (seg < 0) {
offset = 0;
nsamples = s->nframesamples;
} else {
offset = seg * s->nsegsamples;
nsamples = s->nsegsamples;
}
for (i = 0; i < c->nchannels; i++) {
memset(b->msb_sample_buffer[i] + offset, 0, nsamples * sizeof(int32_t));
if (b->lsb_section_size)
memset(b->lsb_sample_buffer[i] + offset, 0, nsamples * sizeof(int32_t));
}
if (seg <= 0 && band)
memset(c->deci_history, 0, sizeof(c->deci_history));
if (seg < 0) {
memset(b->nscalablelsbs, 0, sizeof(b->nscalablelsbs));
memset(b->bit_width_adjust, 0, sizeof(b->bit_width_adjust));
}
}
static void chs_filter_band_data(DCAXllDecoder *s, DCAXllChSet *c, int band)
{
DCAXllBand *b = &c->bands[band];
int nsamples = s->nframesamples;
int i, j, k;
// Inverse adaptive or fixed prediction
for (i = 0; i < c->nchannels; i++) {
int32_t *buf = b->msb_sample_buffer[i];
int order = b->adapt_pred_order[i];
if (order > 0) {
int coeff[DCA_XLL_ADAPT_PRED_ORDER_MAX];
// Conversion from reflection coefficients to direct form coefficients
for (j = 0; j < order; j++) {
int rc = b->adapt_refl_coeff[i][j];
for (k = 0; k < (j + 1) / 2; k++) {
int tmp1 = coeff[ k ];
int tmp2 = coeff[j - k - 1];
coeff[ k ] = tmp1 + mul16(rc, tmp2);
coeff[j - k - 1] = tmp2 + mul16(rc, tmp1);
}
coeff[j] = rc;
}
// Inverse adaptive prediction
for (j = 0; j < nsamples - order; j++) {
int64_t err = 0;
for (k = 0; k < order; k++)
err += (int64_t)buf[j + k] * coeff[order - k - 1];
buf[j + k] -= (SUINT)clip23(norm16(err));
}
} else {
// Inverse fixed coefficient prediction
for (j = 0; j < b->fixed_pred_order[i]; j++)
for (k = 1; k < nsamples; k++)
buf[k] += (unsigned)buf[k - 1];
}
}
// Inverse pairwise channel decorrellation
if (b->decor_enabled) {
int32_t *tmp[DCA_XLL_CHANNELS_MAX];
for (i = 0; i < c->nchannels / 2; i++) {
int coeff = b->decor_coeff[i];
if (coeff) {
s->dcadsp->decor(b->msb_sample_buffer[i * 2 + 1],
b->msb_sample_buffer[i * 2 ],
coeff, nsamples);
}
}
// Reorder channel pointers to the original order
for (i = 0; i < c->nchannels; i++)
tmp[i] = b->msb_sample_buffer[i];
for (i = 0; i < c->nchannels; i++)
b->msb_sample_buffer[b->orig_order[i]] = tmp[i];
}
// Map output channel pointers for frequency band 0
if (c->nfreqbands == 1)
for (i = 0; i < c->nchannels; i++)
s->output_samples[c->ch_remap[i]] = b->msb_sample_buffer[i];
}
static int chs_get_lsb_width(DCAXllDecoder *s, DCAXllChSet *c, int band, int ch)
{
int adj = c->bands[band].bit_width_adjust[ch];
int shift = c->bands[band].nscalablelsbs[ch];
if (s->fixed_lsb_width)
shift = s->fixed_lsb_width;
else if (shift && adj)
shift += adj - 1;
else
shift += adj;
return shift;
}
static void chs_assemble_msbs_lsbs(DCAXllDecoder *s, DCAXllChSet *c, int band)
{
DCAXllBand *b = &c->bands[band];
int n, ch, nsamples = s->nframesamples;
for (ch = 0; ch < c->nchannels; ch++) {
int shift = chs_get_lsb_width(s, c, band, ch);
if (shift) {
int32_t *msb = b->msb_sample_buffer[ch];
if (b->nscalablelsbs[ch]) {
int32_t *lsb = b->lsb_sample_buffer[ch];
int adj = b->bit_width_adjust[ch];
for (n = 0; n < nsamples; n++)
msb[n] = msb[n] * (SUINT)(1 << shift) + (lsb[n] << adj);
} else {
for (n = 0; n < nsamples; n++)
msb[n] = msb[n] * (SUINT)(1 << shift);
}
}
}
}
static int chs_assemble_freq_bands(DCAXllDecoder *s, DCAXllChSet *c)
{
int ch, nsamples = s->nframesamples;
int32_t *ptr;
av_assert1(c->nfreqbands > 1);
// Reallocate frequency band assembly buffer
av_fast_malloc(&c->sample_buffer[2], &c->sample_size[2],
2 * nsamples * c->nchannels * sizeof(int32_t));
if (!c->sample_buffer[2])
return AVERROR(ENOMEM);
// Assemble frequency bands 0 and 1
ptr = c->sample_buffer[2];
for (ch = 0; ch < c->nchannels; ch++) {
int32_t *band0 = c->bands[0].msb_sample_buffer[ch];
int32_t *band1 = c->bands[1].msb_sample_buffer[ch];
// Copy decimator history
memcpy(band0 - DCA_XLL_DECI_HISTORY_MAX,
c->deci_history[ch], sizeof(c->deci_history[0]));
// Filter
s->dcadsp->assemble_freq_bands(ptr, band0, band1,
ff_dca_xll_band_coeff,
nsamples);
// Remap output channel pointer to assembly buffer
s->output_samples[c->ch_remap[ch]] = ptr;
ptr += nsamples * 2;
}
return 0;
}
static int parse_common_header(DCAXllDecoder *s)
{
int stream_ver, header_size, frame_size_nbits, nframesegs_log2;
// XLL extension sync word
if (get_bits_long(&s->gb, 32) != DCA_SYNCWORD_XLL) {
av_log(s->avctx, AV_LOG_VERBOSE, "Invalid XLL sync word\n");
return AVERROR(EAGAIN);
}
// Version number
stream_ver = get_bits(&s->gb, 4) + 1;
if (stream_ver > 1) {
avpriv_request_sample(s->avctx, "XLL stream version %d", stream_ver);
return AVERROR_PATCHWELCOME;
}
// Lossless frame header length
header_size = get_bits(&s->gb, 8) + 1;
// Check CRC
if (ff_dca_check_crc(s->avctx, &s->gb, 32, header_size * 8)) {
av_log(s->avctx, AV_LOG_ERROR, "Invalid XLL common header checksum\n");
return AVERROR_INVALIDDATA;
}
// Number of bits used to read frame size
frame_size_nbits = get_bits(&s->gb, 5) + 1;
// Number of bytes in a lossless frame
s->frame_size = get_bits_long(&s->gb, frame_size_nbits);
if (s->frame_size < 0 || s->frame_size >= DCA_XLL_PBR_BUFFER_MAX) {
av_log(s->avctx, AV_LOG_ERROR, "Invalid XLL frame size (%d bytes)\n", s->frame_size);
return AVERROR_INVALIDDATA;
}
s->frame_size++;
// Number of channels sets per frame
s->nchsets = get_bits(&s->gb, 4) + 1;
if (s->nchsets > DCA_XLL_CHSETS_MAX) {
avpriv_request_sample(s->avctx, "%d XLL channel sets", s->nchsets);
return AVERROR_PATCHWELCOME;
}
// Number of segments per frame
nframesegs_log2 = get_bits(&s->gb, 4);
s->nframesegs = 1 << nframesegs_log2;
if (s->nframesegs > 1024) {
av_log(s->avctx, AV_LOG_ERROR, "Too many segments per XLL frame\n");
return AVERROR_INVALIDDATA;
}
// Samples in segment per one frequency band for the first channel set
// Maximum value is 256 for sampling frequencies <= 48 kHz
// Maximum value is 512 for sampling frequencies > 48 kHz
s->nsegsamples_log2 = get_bits(&s->gb, 4);
if (!s->nsegsamples_log2) {
av_log(s->avctx, AV_LOG_ERROR, "Too few samples per XLL segment\n");
return AVERROR_INVALIDDATA;
}
s->nsegsamples = 1 << s->nsegsamples_log2;
if (s->nsegsamples > 512) {
av_log(s->avctx, AV_LOG_ERROR, "Too many samples per XLL segment\n");
return AVERROR_INVALIDDATA;
}
// Samples in frame per one frequency band for the first channel set
s->nframesamples_log2 = s->nsegsamples_log2 + nframesegs_log2;
s->nframesamples = 1 << s->nframesamples_log2;
if (s->nframesamples > 65536) {
av_log(s->avctx, AV_LOG_ERROR, "Too many samples per XLL frame\n");
return AVERROR_INVALIDDATA;
}
// Number of bits used to read segment size
s->seg_size_nbits = get_bits(&s->gb, 5) + 1;
// Presence of CRC16 within each frequency band
// 0 - No CRC16 within band
// 1 - CRC16 placed at the end of MSB0
// 2 - CRC16 placed at the end of MSB0 and LSB0
// 3 - CRC16 placed at the end of MSB0 and LSB0 and other frequency bands
s->band_crc_present = get_bits(&s->gb, 2);
// MSB/LSB split flag
s->scalable_lsbs = get_bits1(&s->gb);
// Channel position mask
s->ch_mask_nbits = get_bits(&s->gb, 5) + 1;
// Fixed LSB width
if (s->scalable_lsbs)
s->fixed_lsb_width = get_bits(&s->gb, 4);
else
s->fixed_lsb_width = 0;
// Reserved
// Byte align
// Header CRC16 protection
if (ff_dca_seek_bits(&s->gb, header_size * 8)) {
av_log(s->avctx, AV_LOG_ERROR, "Read past end of XLL common header\n");
return AVERROR_INVALIDDATA;
}
return 0;
}
static int is_hier_dmix_chset(DCAXllChSet *c)
{
return !c->primary_chset && c->dmix_embedded && c->hier_chset;
}
static DCAXllChSet *find_next_hier_dmix_chset(DCAXllDecoder *s, DCAXllChSet *c)
{
if (c->hier_chset)
while (++c < &s->chset[s->nchsets])
if (is_hier_dmix_chset(c))
return c;
return NULL;
}
static void prescale_down_mix(DCAXllChSet *c, DCAXllChSet *o)
{
int i, j, *coeff_ptr = c->dmix_coeff;
for (i = 0; i < c->hier_ofs; i++) {
int scale = o->dmix_scale[i];
int scale_inv = o->dmix_scale_inv[i];
c->dmix_scale[i] = mul15(c->dmix_scale[i], scale);
c->dmix_scale_inv[i] = mul16(c->dmix_scale_inv[i], scale_inv);
for (j = 0; j < c->nchannels; j++) {
int coeff = mul16(*coeff_ptr, scale_inv);
*coeff_ptr++ = mul15(coeff, o->dmix_scale[c->hier_ofs + j]);
}
}
}
static int parse_sub_headers(DCAXllDecoder *s, DCAExssAsset *asset)
{
DCAContext *dca = s->avctx->priv_data;
DCAXllChSet *c;
int i, ret;
// Parse channel set headers
s->nfreqbands = 0;
s->nchannels = 0;
s->nreschsets = 0;
for (i = 0, c = s->chset; i < s->nchsets; i++, c++) {
c->hier_ofs = s->nchannels;
if ((ret = chs_parse_header(s, c, asset)) < 0)
return ret;
if (c->nfreqbands > s->nfreqbands)
s->nfreqbands = c->nfreqbands;
if (c->hier_chset)
s->nchannels += c->nchannels;
if (c->residual_encode != (1 << c->nchannels) - 1)
s->nreschsets++;
}
// Pre-scale downmixing coefficients for all non-primary channel sets
for (i = s->nchsets - 1, c = &s->chset[i]; i > 0; i--, c--) {
if (is_hier_dmix_chset(c)) {
DCAXllChSet *o = find_next_hier_dmix_chset(s, c);
if (o)
prescale_down_mix(c, o);
}
}
// Determine number of active channel sets to decode
switch (dca->request_channel_layout) {
case DCA_SPEAKER_LAYOUT_STEREO:
s->nactivechsets = 1;
break;
case DCA_SPEAKER_LAYOUT_5POINT0:
case DCA_SPEAKER_LAYOUT_5POINT1:
s->nactivechsets = (s->chset[0].nchannels < 5 && s->nchsets > 1) ? 2 : 1;
break;
default:
s->nactivechsets = s->nchsets;
break;
}
return 0;
}
static int parse_navi_table(DCAXllDecoder *s)
{
int chs, seg, band, navi_nb, navi_pos, *navi_ptr;
DCAXllChSet *c;
// Determine size of NAVI table
navi_nb = s->nfreqbands * s->nframesegs * s->nchsets;
if (navi_nb > 1024) {
av_log(s->avctx, AV_LOG_ERROR, "Too many NAVI entries (%d)\n", navi_nb);
return AVERROR_INVALIDDATA;
}
// Reallocate NAVI table
av_fast_malloc(&s->navi, &s->navi_size, navi_nb * sizeof(*s->navi));
if (!s->navi)
return AVERROR(ENOMEM);
// Parse NAVI
navi_pos = get_bits_count(&s->gb);
navi_ptr = s->navi;
for (band = 0; band < s->nfreqbands; band++) {
for (seg = 0; seg < s->nframesegs; seg++) {
for (chs = 0, c = s->chset; chs < s->nchsets; chs++, c++) {
int size = 0;
if (c->nfreqbands > band) {
size = get_bits_long(&s->gb, s->seg_size_nbits);
if (size < 0 || size >= s->frame_size) {
av_log(s->avctx, AV_LOG_ERROR, "Invalid NAVI segment size (%d bytes)\n", size);
return AVERROR_INVALIDDATA;
}
size++;
}
*navi_ptr++ = size;
}
}
}
// Byte align
// CRC16
skip_bits(&s->gb, -get_bits_count(&s->gb) & 7);
skip_bits(&s->gb, 16);
// Check CRC
if (ff_dca_check_crc(s->avctx, &s->gb, navi_pos, get_bits_count(&s->gb))) {
av_log(s->avctx, AV_LOG_ERROR, "Invalid NAVI checksum\n");
return AVERROR_INVALIDDATA;
}
return 0;
}
static int parse_band_data(DCAXllDecoder *s)
{
int ret, chs, seg, band, navi_pos, *navi_ptr;
DCAXllChSet *c;
for (chs = 0, c = s->chset; chs < s->nactivechsets; chs++, c++) {
if ((ret = chs_alloc_msb_band_data(s, c)) < 0)
return ret;
if ((ret = chs_alloc_lsb_band_data(s, c)) < 0)
return ret;
}
navi_pos = get_bits_count(&s->gb);
navi_ptr = s->navi;
for (band = 0; band < s->nfreqbands; band++) {
for (seg = 0; seg < s->nframesegs; seg++) {
for (chs = 0, c = s->chset; chs < s->nchsets; chs++, c++) {
if (c->nfreqbands > band) {
navi_pos += *navi_ptr * 8;
if (navi_pos > s->gb.size_in_bits) {
av_log(s->avctx, AV_LOG_ERROR, "Invalid NAVI position\n");
return AVERROR_INVALIDDATA;
}
if (chs < s->nactivechsets &&
(ret = chs_parse_band_data(s, c, band, seg, navi_pos)) < 0) {
if (s->avctx->err_recognition & AV_EF_EXPLODE)
return ret;
chs_clear_band_data(s, c, band, seg);
}
skip_bits_long(&s->gb, navi_pos - get_bits_count(&s->gb));
}
navi_ptr++;
}
}
}
return 0;
}
static int parse_frame(DCAXllDecoder *s, const uint8_t *data, int size, DCAExssAsset *asset)
{
int ret;
if ((ret = init_get_bits8(&s->gb, data, size)) < 0)
return ret;
if ((ret = parse_common_header(s)) < 0)
return ret;
if ((ret = parse_sub_headers(s, asset)) < 0)
return ret;
if ((ret = parse_navi_table(s)) < 0)
return ret;
if ((ret = parse_band_data(s)) < 0)
return ret;
if (s->frame_size * 8 > FFALIGN(get_bits_count(&s->gb), 32)) {
unsigned int extradata_syncword;
// Align to dword
skip_bits_long(&s->gb, -get_bits_count(&s->gb) & 31);
extradata_syncword = show_bits_long(&s->gb, 32);
if (extradata_syncword == DCA_SYNCWORD_XLL_X) {
s->x_syncword_present = 1;
} else if ((extradata_syncword >> 1) == (DCA_SYNCWORD_XLL_X_IMAX >> 1)) {
s->x_imax_syncword_present = 1;
}
}
if (ff_dca_seek_bits(&s->gb, s->frame_size * 8)) {
av_log(s->avctx, AV_LOG_ERROR, "Read past end of XLL frame\n");
return AVERROR_INVALIDDATA;
}
return ret;
}
static void clear_pbr(DCAXllDecoder *s)
{
s->pbr_length = 0;
s->pbr_delay = 0;
}
static int copy_to_pbr(DCAXllDecoder *s, const uint8_t *data, int size, int delay)
{
if (size > DCA_XLL_PBR_BUFFER_MAX)
return AVERROR(ENOSPC);
if (!s->pbr_buffer && !(s->pbr_buffer = av_malloc(DCA_XLL_PBR_BUFFER_MAX + AV_INPUT_BUFFER_PADDING_SIZE)))
return AVERROR(ENOMEM);
memcpy(s->pbr_buffer, data, size);
s->pbr_length = size;
s->pbr_delay = delay;
return 0;
}
static int parse_frame_no_pbr(DCAXllDecoder *s, const uint8_t *data, int size, DCAExssAsset *asset)
{
int ret = parse_frame(s, data, size, asset);
// If XLL packet data didn't start with a sync word, we must have jumped
// right into the middle of PBR smoothing period
if (ret == AVERROR(EAGAIN) && asset->xll_sync_present && asset->xll_sync_offset < size) {
// Skip to the next sync word in this packet
data += asset->xll_sync_offset;
size -= asset->xll_sync_offset;
// If decoding delay is set, put the frame into PBR buffer and return
// failure code. Higher level decoder is expected to switch to lossy
// core decoding or mute its output until decoding delay expires.
if (asset->xll_delay_nframes > 0) {
if ((ret = copy_to_pbr(s, data, size, asset->xll_delay_nframes)) < 0)
return ret;
return AVERROR(EAGAIN);
}
// No decoding delay, just parse the frame in place
ret = parse_frame(s, data, size, asset);
}
if (ret < 0)
return ret;
if (s->frame_size > size)
return AVERROR(EINVAL);
// If the XLL decoder didn't consume full packet, start PBR smoothing period
if (s->frame_size < size)
if ((ret = copy_to_pbr(s, data + s->frame_size, size - s->frame_size, 0)) < 0)
return ret;
return 0;
}
static int parse_frame_pbr(DCAXllDecoder *s, const uint8_t *data, int size, DCAExssAsset *asset)
{
int ret;
if (size > DCA_XLL_PBR_BUFFER_MAX - s->pbr_length) {
ret = AVERROR(ENOSPC);
goto fail;
}
memcpy(s->pbr_buffer + s->pbr_length, data, size);
s->pbr_length += size;
// Respect decoding delay after synchronization error
if (s->pbr_delay > 0 && --s->pbr_delay)
return AVERROR(EAGAIN);
if ((ret = parse_frame(s, s->pbr_buffer, s->pbr_length, asset)) < 0)
goto fail;
if (s->frame_size > s->pbr_length) {
ret = AVERROR(EINVAL);
goto fail;
}
if (s->frame_size == s->pbr_length) {
// End of PBR smoothing period
clear_pbr(s);
} else {
s->pbr_length -= s->frame_size;
memmove(s->pbr_buffer, s->pbr_buffer + s->frame_size, s->pbr_length);
}
return 0;
fail:
// For now, throw out all PBR state on failure.
// Perhaps we can be smarter and try to resync somehow.
clear_pbr(s);
return ret;
}
int ff_dca_xll_parse(DCAXllDecoder *s, const uint8_t *data, DCAExssAsset *asset)
{
int ret;
if (s->hd_stream_id != asset->hd_stream_id) {
clear_pbr(s);
s->hd_stream_id = asset->hd_stream_id;
}
if (s->pbr_length)
ret = parse_frame_pbr(s, data + asset->xll_offset, asset->xll_size, asset);
else
ret = parse_frame_no_pbr(s, data + asset->xll_offset, asset->xll_size, asset);
return ret;
}
static void undo_down_mix(DCAXllDecoder *s, DCAXllChSet *o, int band)
{
int i, j, k, nchannels = 0, *coeff_ptr = o->dmix_coeff;
DCAXllChSet *c;
for (i = 0, c = s->chset; i < s->nactivechsets; i++, c++) {
if (!c->hier_chset)
continue;
av_assert1(band < c->nfreqbands);
for (j = 0; j < c->nchannels; j++) {
for (k = 0; k < o->nchannels; k++) {
int coeff = *coeff_ptr++;
if (coeff) {
s->dcadsp->dmix_sub(c->bands[band].msb_sample_buffer[j],
o->bands[band].msb_sample_buffer[k],
coeff, s->nframesamples);
if (band)
s->dcadsp->dmix_sub(c->deci_history[j],
o->deci_history[k],
coeff, DCA_XLL_DECI_HISTORY_MAX);
}
}
}
nchannels += c->nchannels;
if (nchannels >= o->hier_ofs)
break;
}
}
static void scale_down_mix(DCAXllDecoder *s, DCAXllChSet *o, int band)
{
int i, j, nchannels = 0;
DCAXllChSet *c;
for (i = 0, c = s->chset; i < s->nactivechsets; i++, c++) {
if (!c->hier_chset)
continue;
av_assert1(band < c->nfreqbands);
for (j = 0; j < c->nchannels; j++) {
int scale = o->dmix_scale[nchannels++];
if (scale != (1 << 15)) {
s->dcadsp->dmix_scale(c->bands[band].msb_sample_buffer[j],
scale, s->nframesamples);
if (band)
s->dcadsp->dmix_scale(c->deci_history[j],
scale, DCA_XLL_DECI_HISTORY_MAX);
}
}
if (nchannels >= o->hier_ofs)
break;
}
}
// Clear all band data and replace non-residual encoded channels with lossy
// counterparts
static av_cold void force_lossy_output(DCAXllDecoder *s, DCAXllChSet *c)
{
DCAContext *dca = s->avctx->priv_data;
int band, ch;
for (band = 0; band < c->nfreqbands; band++)
chs_clear_band_data(s, c, band, -1);
for (ch = 0; ch < c->nchannels; ch++) {
if (!(c->residual_encode & (1 << ch)))
continue;
if (ff_dca_core_map_spkr(&dca->core, c->ch_remap[ch]) < 0)
continue;
c->residual_encode &= ~(1 << ch);
}
}
static int combine_residual_frame(DCAXllDecoder *s, DCAXllChSet *c)
{
DCAContext *dca = s->avctx->priv_data;
int ch, nsamples = s->nframesamples;
DCAXllChSet *o;
// Verify that core is compatible
if (!(dca->packet & DCA_PACKET_CORE)) {
av_log(s->avctx, AV_LOG_ERROR, "Residual encoded channels are present without core\n");
return AVERROR(EINVAL);
}
if (c->freq != dca->core.output_rate) {
av_log(s->avctx, AV_LOG_WARNING, "Sample rate mismatch between core (%d Hz) and XLL (%d Hz)\n", dca->core.output_rate, c->freq);
return AVERROR_INVALIDDATA;
}
if (nsamples != dca->core.npcmsamples) {
av_log(s->avctx, AV_LOG_WARNING, "Number of samples per frame mismatch between core (%d) and XLL (%d)\n", dca->core.npcmsamples, nsamples);
return AVERROR_INVALIDDATA;
}
// See if this channel set is downmixed and find the next channel set in
// hierarchy. If downmixed, undo core pre-scaling before combining with
// residual (residual is not scaled).
o = find_next_hier_dmix_chset(s, c);
// Reduce core bit width and combine with residual
for (ch = 0; ch < c->nchannels; ch++) {
int n, spkr, shift, round;
int32_t *src, *dst;
if (c->residual_encode & (1 << ch))
continue;
// Map this channel to core speaker
spkr = ff_dca_core_map_spkr(&dca->core, c->ch_remap[ch]);
if (spkr < 0) {
av_log(s->avctx, AV_LOG_WARNING, "Residual encoded channel (%d) references unavailable core channel\n", c->ch_remap[ch]);
return AVERROR_INVALIDDATA;
}
// Account for LSB width
shift = 24 - c->pcm_bit_res + chs_get_lsb_width(s, c, 0, ch);
if (shift > 24) {
av_log(s->avctx, AV_LOG_WARNING, "Invalid core shift (%d bits)\n", shift);
return AVERROR_INVALIDDATA;
}
round = shift > 0 ? 1 << (shift - 1) : 0;
src = dca->core.output_samples[spkr];
dst = c->bands[0].msb_sample_buffer[ch];
if (o) {
// Undo embedded core downmix pre-scaling
int scale_inv = o->dmix_scale_inv[c->hier_ofs + ch];
for (n = 0; n < nsamples; n++)
dst[n] += (SUINT)clip23((mul16(src[n], scale_inv) + round) >> shift);
} else {
// No downmix scaling
for (n = 0; n < nsamples; n++)
dst[n] += (unsigned)((src[n] + round) >> shift);
}
}
return 0;
}
int ff_dca_xll_filter_frame(DCAXllDecoder *s, AVFrame *frame)
{
AVCodecContext *avctx = s->avctx;
DCAContext *dca = avctx->priv_data;
DCAExssAsset *asset = &dca->exss.assets[0];
DCAXllChSet *p = &s->chset[0], *c;
enum AVMatrixEncoding matrix_encoding = AV_MATRIX_ENCODING_NONE;
int i, j, k, ret, shift, nsamples, request_mask;
int ch_remap[DCA_SPEAKER_COUNT];
// Force lossy downmixed output during recovery
if (dca->packet & DCA_PACKET_RECOVERY) {
for (i = 0, c = s->chset; i < s->nchsets; i++, c++) {
if (i < s->nactivechsets)
force_lossy_output(s, c);
if (!c->primary_chset)
c->dmix_embedded = 0;
}
s->scalable_lsbs = 0;
s->fixed_lsb_width = 0;
}
// Filter frequency bands for active channel sets
s->output_mask = 0;
for (i = 0, c = s->chset; i < s->nactivechsets; i++, c++) {
chs_filter_band_data(s, c, 0);
if (c->residual_encode != (1 << c->nchannels) - 1
&& (ret = combine_residual_frame(s, c)) < 0)
return ret;
if (s->scalable_lsbs)
chs_assemble_msbs_lsbs(s, c, 0);
if (c->nfreqbands > 1) {
chs_filter_band_data(s, c, 1);
chs_assemble_msbs_lsbs(s, c, 1);
}
s->output_mask |= c->ch_mask;
}
// Undo hierarchial downmix and/or apply scaling
for (i = 1, c = &s->chset[1]; i < s->nchsets; i++, c++) {
if (!is_hier_dmix_chset(c))
continue;
if (i >= s->nactivechsets) {
for (j = 0; j < c->nfreqbands; j++)
if (c->bands[j].dmix_embedded)
scale_down_mix(s, c, j);
break;
}
for (j = 0; j < c->nfreqbands; j++)
if (c->bands[j].dmix_embedded)
undo_down_mix(s, c, j);
}
// Assemble frequency bands for active channel sets
if (s->nfreqbands > 1) {
for (i = 0; i < s->nactivechsets; i++)
if ((ret = chs_assemble_freq_bands(s, &s->chset[i])) < 0)
return ret;
}
// Normalize to regular 5.1 layout if downmixing
if (dca->request_channel_layout) {
if (s->output_mask & DCA_SPEAKER_MASK_Lss) {
s->output_samples[DCA_SPEAKER_Ls] = s->output_samples[DCA_SPEAKER_Lss];
s->output_mask = (s->output_mask & ~DCA_SPEAKER_MASK_Lss) | DCA_SPEAKER_MASK_Ls;
}
if (s->output_mask & DCA_SPEAKER_MASK_Rss) {
s->output_samples[DCA_SPEAKER_Rs] = s->output_samples[DCA_SPEAKER_Rss];
s->output_mask = (s->output_mask & ~DCA_SPEAKER_MASK_Rss) | DCA_SPEAKER_MASK_Rs;
}
}
// Handle downmixing to stereo request
if (dca->request_channel_layout == DCA_SPEAKER_LAYOUT_STEREO
&& DCA_HAS_STEREO(s->output_mask) && p->dmix_embedded
&& (p->dmix_type == DCA_DMIX_TYPE_LoRo ||
p->dmix_type == DCA_DMIX_TYPE_LtRt))
request_mask = DCA_SPEAKER_LAYOUT_STEREO;
else
request_mask = s->output_mask;
if (!ff_dca_set_channel_layout(avctx, ch_remap, request_mask))
return AVERROR(EINVAL);
avctx->sample_rate = p->freq << (s->nfreqbands - 1);
switch (p->storage_bit_res) {
case 16:
avctx->sample_fmt = AV_SAMPLE_FMT_S16P;
shift = 16 - p->pcm_bit_res;
break;
case 20:
case 24:
avctx->sample_fmt = AV_SAMPLE_FMT_S32P;
shift = 24 - p->pcm_bit_res;
break;
default:
return AVERROR(EINVAL);
}
if (s->x_imax_syncword_present) {
avctx->profile = AV_PROFILE_DTS_HD_MA_X_IMAX;
} else if (s->x_syncword_present) {
avctx->profile = AV_PROFILE_DTS_HD_MA_X;
} else {
avctx->profile = AV_PROFILE_DTS_HD_MA;
}
avctx->bits_per_raw_sample = p->storage_bit_res;
avctx->bit_rate = 0;
frame->nb_samples = nsamples = s->nframesamples << (s->nfreqbands - 1);
if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
return ret;
// Downmix primary channel set to stereo
if (request_mask != s->output_mask) {
ff_dca_downmix_to_stereo_fixed(s->dcadsp, s->output_samples,
p->dmix_coeff, nsamples,
s->output_mask);
}
for (i = 0; i < avctx->ch_layout.nb_channels; i++) {
int32_t *samples = s->output_samples[ch_remap[i]];
if (frame->format == AV_SAMPLE_FMT_S16P) {
int16_t *plane = (int16_t *)frame->extended_data[i];
for (k = 0; k < nsamples; k++)
plane[k] = av_clip_int16(samples[k] * (SUINT)(1 << shift));
} else {
int32_t *plane = (int32_t *)frame->extended_data[i];
for (k = 0; k < nsamples; k++)
plane[k] = clip23(samples[k] * (SUINT)(1 << shift)) * (1 << 8);
}
}
if (!asset->one_to_one_map_ch_to_spkr) {
if (asset->representation_type == DCA_REPR_TYPE_LtRt)
matrix_encoding = AV_MATRIX_ENCODING_DOLBY;
else if (asset->representation_type == DCA_REPR_TYPE_LhRh)
matrix_encoding = AV_MATRIX_ENCODING_DOLBYHEADPHONE;
} else if (request_mask != s->output_mask && p->dmix_type == DCA_DMIX_TYPE_LtRt) {
matrix_encoding = AV_MATRIX_ENCODING_DOLBY;
}
if ((ret = ff_side_data_update_matrix_encoding(frame, matrix_encoding)) < 0)
return ret;
return 0;
}
av_cold void ff_dca_xll_flush(DCAXllDecoder *s)
{
clear_pbr(s);
}
av_cold void ff_dca_xll_close(DCAXllDecoder *s)
{
DCAXllChSet *c;
int i, j;
for (i = 0, c = s->chset; i < DCA_XLL_CHSETS_MAX; i++, c++) {
for (j = 0; j < DCA_XLL_SAMPLE_BUFFERS_MAX; j++) {
av_freep(&c->sample_buffer[j]);
c->sample_size[j] = 0;
}
}
av_freep(&s->navi);
s->navi_size = 0;
av_freep(&s->pbr_buffer);
clear_pbr(s);
}