1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2025-01-08 13:22:53 +02:00
FFmpeg/libavcodec/vaapi_encode_h265.c
wm4 b945fed629 avcodec: add metadata to identify wrappers and hardware decoders
Explicitly identify decoder/encoder wrappers with a common name. This
saves API users from guessing by the name suffix. For example, they
don't have to guess that "h264_qsv" is the h264 QSV implementation, and
instead they can just check the AVCodec .codec and .wrapper_name fields.

Explicitly mark AVCodec entries that are hardware decoders or most
likely hardware decoders with new AV_CODEC_CAPs. The purpose is allowing
API users listing hardware decoders in a more generic way. The proposed
AVCodecHWConfig does not provide this information fully, because it's
concerned with decoder configuration, not information about the fact
whether the hardware is used or not.

AV_CODEC_CAP_HYBRID exists specifically for QSV, which can have software
implementations in case the hardware is not capable.

Based on a patch by Philip Langdale <philipl@overt.org>.

Merges Libav commit 47687a2f8a.
2017-12-14 19:37:56 +01:00

1029 lines
37 KiB
C

/*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <string.h>
#include <va/va.h>
#include <va/va_enc_hevc.h>
#include "libavutil/avassert.h"
#include "libavutil/common.h"
#include "libavutil/opt.h"
#include "avcodec.h"
#include "cbs.h"
#include "cbs_h265.h"
#include "hevc.h"
#include "internal.h"
#include "put_bits.h"
#include "vaapi_encode.h"
typedef struct VAAPIEncodeH265Context {
unsigned int ctu_width;
unsigned int ctu_height;
int fixed_qp_idr;
int fixed_qp_p;
int fixed_qp_b;
H265RawAUD aud;
H265RawVPS vps;
H265RawSPS sps;
H265RawPPS pps;
H265RawSlice slice;
int64_t last_idr_frame;
int pic_order_cnt;
int slice_nal_unit;
int slice_type;
int pic_type;
CodedBitstreamContext *cbc;
CodedBitstreamFragment current_access_unit;
int aud_needed;
} VAAPIEncodeH265Context;
typedef struct VAAPIEncodeH265Options {
int qp;
int aud;
int profile;
int level;
} VAAPIEncodeH265Options;
static int vaapi_encode_h265_write_access_unit(AVCodecContext *avctx,
char *data, size_t *data_len,
CodedBitstreamFragment *au)
{
VAAPIEncodeContext *ctx = avctx->priv_data;
VAAPIEncodeH265Context *priv = ctx->priv_data;
int err;
err = ff_cbs_write_fragment_data(priv->cbc, au);
if (err < 0) {
av_log(avctx, AV_LOG_ERROR, "Failed to write packed header.\n");
return err;
}
if (*data_len < 8 * au->data_size - au->data_bit_padding) {
av_log(avctx, AV_LOG_ERROR, "Access unit too large: "
"%zu < %zu.\n", *data_len,
8 * au->data_size - au->data_bit_padding);
return AVERROR(ENOSPC);
}
memcpy(data, au->data, au->data_size);
*data_len = 8 * au->data_size - au->data_bit_padding;
return 0;
}
static int vaapi_encode_h265_add_nal(AVCodecContext *avctx,
CodedBitstreamFragment *au,
void *nal_unit)
{
VAAPIEncodeContext *ctx = avctx->priv_data;
VAAPIEncodeH265Context *priv = ctx->priv_data;
H265RawNALUnitHeader *header = nal_unit;
int err;
err = ff_cbs_insert_unit_content(priv->cbc, au, -1,
header->nal_unit_type, nal_unit);
if (err < 0) {
av_log(avctx, AV_LOG_ERROR, "Failed to add NAL unit: "
"type = %d.\n", header->nal_unit_type);
return err;
}
return 0;
}
static int vaapi_encode_h265_write_sequence_header(AVCodecContext *avctx,
char *data, size_t *data_len)
{
VAAPIEncodeContext *ctx = avctx->priv_data;
VAAPIEncodeH265Context *priv = ctx->priv_data;
CodedBitstreamFragment *au = &priv->current_access_unit;
int err;
if (priv->aud_needed) {
err = vaapi_encode_h265_add_nal(avctx, au, &priv->aud);
if (err < 0)
goto fail;
priv->aud_needed = 0;
}
err = vaapi_encode_h265_add_nal(avctx, au, &priv->vps);
if (err < 0)
goto fail;
err = vaapi_encode_h265_add_nal(avctx, au, &priv->sps);
if (err < 0)
goto fail;
err = vaapi_encode_h265_add_nal(avctx, au, &priv->pps);
if (err < 0)
goto fail;
err = vaapi_encode_h265_write_access_unit(avctx, data, data_len, au);
fail:
ff_cbs_fragment_uninit(priv->cbc, au);
return err;
}
static int vaapi_encode_h265_write_slice_header(AVCodecContext *avctx,
VAAPIEncodePicture *pic,
VAAPIEncodeSlice *slice,
char *data, size_t *data_len)
{
VAAPIEncodeContext *ctx = avctx->priv_data;
VAAPIEncodeH265Context *priv = ctx->priv_data;
CodedBitstreamFragment *au = &priv->current_access_unit;
int err;
if (priv->aud_needed) {
err = vaapi_encode_h265_add_nal(avctx, au, &priv->aud);
if (err < 0)
goto fail;
priv->aud_needed = 0;
}
err = vaapi_encode_h265_add_nal(avctx, au, &priv->slice);
if (err < 0)
goto fail;
err = vaapi_encode_h265_write_access_unit(avctx, data, data_len, au);
fail:
ff_cbs_fragment_uninit(priv->cbc, au);
return err;
}
static int vaapi_encode_h265_init_sequence_params(AVCodecContext *avctx)
{
VAAPIEncodeContext *ctx = avctx->priv_data;
VAAPIEncodeH265Context *priv = ctx->priv_data;
H265RawVPS *vps = &priv->vps;
H265RawSPS *sps = &priv->sps;
H265RawPPS *pps = &priv->pps;
H265RawVUI *vui = &sps->vui;
VAEncSequenceParameterBufferHEVC *vseq = ctx->codec_sequence_params;
VAEncPictureParameterBufferHEVC *vpic = ctx->codec_picture_params;
int i;
memset(&priv->current_access_unit, 0,
sizeof(priv->current_access_unit));
memset(vps, 0, sizeof(*vps));
memset(sps, 0, sizeof(*sps));
memset(pps, 0, sizeof(*pps));
// VPS
vps->nal_unit_header = (H265RawNALUnitHeader) {
.nal_unit_type = HEVC_NAL_VPS,
.nuh_layer_id = 0,
.nuh_temporal_id_plus1 = 1,
};
vps->vps_video_parameter_set_id = 0;
vps->vps_base_layer_internal_flag = 1;
vps->vps_base_layer_available_flag = 1;
vps->vps_max_layers_minus1 = 0;
vps->vps_max_sub_layers_minus1 = 0;
vps->vps_temporal_id_nesting_flag = 1;
vps->profile_tier_level = (H265RawProfileTierLevel) {
.general_profile_space = 0,
.general_profile_idc = avctx->profile,
.general_tier_flag = 0,
.general_progressive_source_flag = 1,
.general_interlaced_source_flag = 0,
.general_non_packed_constraint_flag = 1,
.general_frame_only_constraint_flag = 1,
.general_level_idc = avctx->level,
};
vps->profile_tier_level.general_profile_compatibility_flag[avctx->profile & 31] = 1;
vps->vps_sub_layer_ordering_info_present_flag = 0;
vps->vps_max_dec_pic_buffering_minus1[0] = (ctx->b_per_p > 0) + 1;
vps->vps_max_num_reorder_pics[0] = (ctx->b_per_p > 0);
vps->vps_max_latency_increase_plus1[0] = 0;
vps->vps_max_layer_id = 0;
vps->vps_num_layer_sets_minus1 = 0;
vps->layer_id_included_flag[0][0] = 1;
vps->vps_timing_info_present_flag = 1;
if (avctx->framerate.num > 0 && avctx->framerate.den > 0) {
vps->vps_num_units_in_tick = avctx->framerate.den;
vps->vps_time_scale = avctx->framerate.num;
vps->vps_poc_proportional_to_timing_flag = 1;
vps->vps_num_ticks_poc_diff_one_minus1 = 0;
} else {
vps->vps_num_units_in_tick = avctx->time_base.num;
vps->vps_time_scale = avctx->time_base.den;
vps->vps_poc_proportional_to_timing_flag = 0;
}
vps->vps_num_hrd_parameters = 0;
// SPS
sps->nal_unit_header = (H265RawNALUnitHeader) {
.nal_unit_type = HEVC_NAL_SPS,
.nuh_layer_id = 0,
.nuh_temporal_id_plus1 = 1,
};
sps->sps_video_parameter_set_id = vps->vps_video_parameter_set_id;
sps->sps_max_sub_layers_minus1 = vps->vps_max_sub_layers_minus1;
sps->sps_temporal_id_nesting_flag = vps->vps_temporal_id_nesting_flag;
sps->profile_tier_level = vps->profile_tier_level;
sps->sps_seq_parameter_set_id = 0;
sps->chroma_format_idc = 1; // YUV 4:2:0.
sps->separate_colour_plane_flag = 0;
sps->pic_width_in_luma_samples = ctx->surface_width;
sps->pic_height_in_luma_samples = ctx->surface_height;
if (avctx->width != ctx->surface_width ||
avctx->height != ctx->surface_height) {
sps->conformance_window_flag = 1;
sps->conf_win_left_offset = 0;
sps->conf_win_right_offset =
(ctx->surface_width - avctx->width) / 2;
sps->conf_win_top_offset = 0;
sps->conf_win_bottom_offset =
(ctx->surface_height - avctx->height) / 2;
} else {
sps->conformance_window_flag = 0;
}
sps->bit_depth_luma_minus8 =
avctx->profile == FF_PROFILE_HEVC_MAIN_10 ? 2 : 0;
sps->bit_depth_chroma_minus8 = sps->bit_depth_luma_minus8;
sps->log2_max_pic_order_cnt_lsb_minus4 = 8;
sps->sps_sub_layer_ordering_info_present_flag =
vps->vps_sub_layer_ordering_info_present_flag;
for (i = 0; i <= sps->sps_max_sub_layers_minus1; i++) {
sps->sps_max_dec_pic_buffering_minus1[i] =
vps->vps_max_dec_pic_buffering_minus1[i];
sps->sps_max_num_reorder_pics[i] =
vps->vps_max_num_reorder_pics[i];
sps->sps_max_latency_increase_plus1[i] =
vps->vps_max_latency_increase_plus1[i];
}
// These have to come from the capabilities of the encoder. We have no
// way to query them, so just hardcode parameters which work on the Intel
// driver.
// CTB size from 8x8 to 32x32.
sps->log2_min_luma_coding_block_size_minus3 = 0;
sps->log2_diff_max_min_luma_coding_block_size = 2;
// Transform size from 4x4 to 32x32.
sps->log2_min_luma_transform_block_size_minus2 = 0;
sps->log2_diff_max_min_luma_transform_block_size = 3;
// Full transform hierarchy allowed (2-5).
sps->max_transform_hierarchy_depth_inter = 3;
sps->max_transform_hierarchy_depth_intra = 3;
// AMP works.
sps->amp_enabled_flag = 1;
// SAO and temporal MVP do not work.
sps->sample_adaptive_offset_enabled_flag = 0;
sps->sps_temporal_mvp_enabled_flag = 0;
sps->pcm_enabled_flag = 0;
// STRPSs should ideally be here rather than defined individually in
// each slice, but the structure isn't completely fixed so for now
// don't bother.
sps->num_short_term_ref_pic_sets = 0;
sps->long_term_ref_pics_present_flag = 0;
sps->vui_parameters_present_flag = 1;
if (avctx->sample_aspect_ratio.num != 0 &&
avctx->sample_aspect_ratio.den != 0) {
static const AVRational sar_idc[] = {
{ 0, 0 },
{ 1, 1 }, { 12, 11 }, { 10, 11 }, { 16, 11 },
{ 40, 33 }, { 24, 11 }, { 20, 11 }, { 32, 11 },
{ 80, 33 }, { 18, 11 }, { 15, 11 }, { 64, 33 },
{ 160, 99 }, { 4, 3 }, { 3, 2 }, { 2, 1 },
};
int i;
for (i = 0; i < FF_ARRAY_ELEMS(sar_idc); i++) {
if (avctx->sample_aspect_ratio.num == sar_idc[i].num &&
avctx->sample_aspect_ratio.den == sar_idc[i].den) {
vui->aspect_ratio_idc = i;
break;
}
}
if (i >= FF_ARRAY_ELEMS(sar_idc)) {
vui->aspect_ratio_idc = 255;
vui->sar_width = avctx->sample_aspect_ratio.num;
vui->sar_height = avctx->sample_aspect_ratio.den;
}
vui->aspect_ratio_info_present_flag = 1;
}
if (avctx->color_range != AVCOL_RANGE_UNSPECIFIED ||
avctx->color_primaries != AVCOL_PRI_UNSPECIFIED ||
avctx->color_trc != AVCOL_TRC_UNSPECIFIED ||
avctx->colorspace != AVCOL_SPC_UNSPECIFIED) {
vui->video_signal_type_present_flag = 1;
vui->video_format = 5; // Unspecified.
vui->video_full_range_flag =
avctx->color_range == AVCOL_RANGE_JPEG;
if (avctx->color_primaries != AVCOL_PRI_UNSPECIFIED ||
avctx->color_trc != AVCOL_TRC_UNSPECIFIED ||
avctx->colorspace != AVCOL_SPC_UNSPECIFIED) {
vui->colour_description_present_flag = 1;
vui->colour_primaries = avctx->color_primaries;
vui->transfer_characteristics = avctx->color_trc;
vui->matrix_coefficients = avctx->colorspace;
}
} else {
vui->video_format = 5;
vui->video_full_range_flag = 0;
vui->colour_primaries = avctx->color_primaries;
vui->transfer_characteristics = avctx->color_trc;
vui->matrix_coefficients = avctx->colorspace;
}
if (avctx->chroma_sample_location != AVCHROMA_LOC_UNSPECIFIED) {
vui->chroma_loc_info_present_flag = 1;
vui->chroma_sample_loc_type_top_field =
vui->chroma_sample_loc_type_bottom_field =
avctx->chroma_sample_location - 1;
}
vui->vui_timing_info_present_flag = 1;
vui->vui_num_units_in_tick = vps->vps_num_units_in_tick;
vui->vui_time_scale = vps->vps_time_scale;
vui->vui_poc_proportional_to_timing_flag = vps->vps_poc_proportional_to_timing_flag;
vui->vui_num_ticks_poc_diff_one_minus1 = vps->vps_num_ticks_poc_diff_one_minus1;
vui->vui_hrd_parameters_present_flag = 0;
vui->bitstream_restriction_flag = 1;
vui->motion_vectors_over_pic_boundaries_flag = 1;
vui->restricted_ref_pic_lists_flag = 1;
vui->max_bytes_per_pic_denom = 0;
vui->max_bits_per_min_cu_denom = 0;
vui->log2_max_mv_length_horizontal = 15;
vui->log2_max_mv_length_vertical = 15;
// PPS
pps->nal_unit_header = (H265RawNALUnitHeader) {
.nal_unit_type = HEVC_NAL_PPS,
.nuh_layer_id = 0,
.nuh_temporal_id_plus1 = 1,
};
pps->pps_pic_parameter_set_id = 0;
pps->pps_seq_parameter_set_id = sps->sps_seq_parameter_set_id;
pps->num_ref_idx_l0_default_active_minus1 = 0;
pps->num_ref_idx_l1_default_active_minus1 = 0;
pps->init_qp_minus26 = priv->fixed_qp_idr - 26;
pps->cu_qp_delta_enabled_flag = (ctx->va_rc_mode != VA_RC_CQP);
pps->diff_cu_qp_delta_depth = 0;
pps->pps_loop_filter_across_slices_enabled_flag = 1;
// Fill VAAPI parameter buffers.
*vseq = (VAEncSequenceParameterBufferHEVC) {
.general_profile_idc = vps->profile_tier_level.general_profile_idc,
.general_level_idc = vps->profile_tier_level.general_level_idc,
.general_tier_flag = vps->profile_tier_level.general_tier_flag,
.intra_period = avctx->gop_size,
.intra_idr_period = avctx->gop_size,
.ip_period = ctx->b_per_p + 1,
.bits_per_second = avctx->bit_rate,
.pic_width_in_luma_samples = sps->pic_width_in_luma_samples,
.pic_height_in_luma_samples = sps->pic_height_in_luma_samples,
.seq_fields.bits = {
.chroma_format_idc = sps->chroma_format_idc,
.separate_colour_plane_flag = sps->separate_colour_plane_flag,
.bit_depth_luma_minus8 = sps->bit_depth_luma_minus8,
.bit_depth_chroma_minus8 = sps->bit_depth_chroma_minus8,
.scaling_list_enabled_flag = sps->scaling_list_enabled_flag,
.strong_intra_smoothing_enabled_flag =
sps->strong_intra_smoothing_enabled_flag,
.amp_enabled_flag = sps->amp_enabled_flag,
.sample_adaptive_offset_enabled_flag =
sps->sample_adaptive_offset_enabled_flag,
.pcm_enabled_flag = sps->pcm_enabled_flag,
.pcm_loop_filter_disabled_flag = sps->pcm_loop_filter_disabled_flag,
.sps_temporal_mvp_enabled_flag = sps->sps_temporal_mvp_enabled_flag,
},
.log2_min_luma_coding_block_size_minus3 =
sps->log2_min_luma_coding_block_size_minus3,
.log2_diff_max_min_luma_coding_block_size =
sps->log2_diff_max_min_luma_coding_block_size,
.log2_min_transform_block_size_minus2 =
sps->log2_min_luma_transform_block_size_minus2,
.log2_diff_max_min_transform_block_size =
sps->log2_diff_max_min_luma_transform_block_size,
.max_transform_hierarchy_depth_inter =
sps->max_transform_hierarchy_depth_inter,
.max_transform_hierarchy_depth_intra =
sps->max_transform_hierarchy_depth_intra,
.pcm_sample_bit_depth_luma_minus1 =
sps->pcm_sample_bit_depth_luma_minus1,
.pcm_sample_bit_depth_chroma_minus1 =
sps->pcm_sample_bit_depth_chroma_minus1,
.log2_min_pcm_luma_coding_block_size_minus3 =
sps->log2_min_pcm_luma_coding_block_size_minus3,
.log2_max_pcm_luma_coding_block_size_minus3 =
sps->log2_min_pcm_luma_coding_block_size_minus3 +
sps->log2_diff_max_min_pcm_luma_coding_block_size,
.vui_parameters_present_flag = 0,
};
*vpic = (VAEncPictureParameterBufferHEVC) {
.decoded_curr_pic = {
.picture_id = VA_INVALID_ID,
.flags = VA_PICTURE_HEVC_INVALID,
},
.coded_buf = VA_INVALID_ID,
.collocated_ref_pic_index = 0xff,
.last_picture = 0,
.pic_init_qp = pps->init_qp_minus26 + 26,
.diff_cu_qp_delta_depth = pps->diff_cu_qp_delta_depth,
.pps_cb_qp_offset = pps->pps_cb_qp_offset,
.pps_cr_qp_offset = pps->pps_cr_qp_offset,
.num_tile_columns_minus1 = pps->num_tile_columns_minus1,
.num_tile_rows_minus1 = pps->num_tile_rows_minus1,
.log2_parallel_merge_level_minus2 = pps->log2_parallel_merge_level_minus2,
.ctu_max_bitsize_allowed = 0,
.num_ref_idx_l0_default_active_minus1 =
pps->num_ref_idx_l0_default_active_minus1,
.num_ref_idx_l1_default_active_minus1 =
pps->num_ref_idx_l1_default_active_minus1,
.slice_pic_parameter_set_id = pps->pps_pic_parameter_set_id,
.pic_fields.bits = {
.sign_data_hiding_enabled_flag = pps->sign_data_hiding_enabled_flag,
.constrained_intra_pred_flag = pps->constrained_intra_pred_flag,
.transform_skip_enabled_flag = pps->transform_skip_enabled_flag,
.cu_qp_delta_enabled_flag = pps->cu_qp_delta_enabled_flag,
.weighted_pred_flag = pps->weighted_pred_flag,
.weighted_bipred_flag = pps->weighted_bipred_flag,
.transquant_bypass_enabled_flag = pps->transquant_bypass_enabled_flag,
.tiles_enabled_flag = pps->tiles_enabled_flag,
.entropy_coding_sync_enabled_flag = pps->entropy_coding_sync_enabled_flag,
.loop_filter_across_tiles_enabled_flag =
pps->loop_filter_across_tiles_enabled_flag,
.scaling_list_data_present_flag = (sps->sps_scaling_list_data_present_flag |
pps->pps_scaling_list_data_present_flag),
.screen_content_flag = 0,
.enable_gpu_weighted_prediction = 0,
.no_output_of_prior_pics_flag = 0,
},
};
return 0;
}
static int vaapi_encode_h265_init_picture_params(AVCodecContext *avctx,
VAAPIEncodePicture *pic)
{
VAAPIEncodeContext *ctx = avctx->priv_data;
VAAPIEncodeH265Context *priv = ctx->priv_data;
VAAPIEncodeH265Options *opt = ctx->codec_options;
VAEncPictureParameterBufferHEVC *vpic = pic->codec_picture_params;
int i;
if (pic->type == PICTURE_TYPE_IDR) {
av_assert0(pic->display_order == pic->encode_order);
priv->last_idr_frame = pic->display_order;
priv->slice_nal_unit = HEVC_NAL_IDR_W_RADL;
priv->slice_type = HEVC_SLICE_I;
priv->pic_type = 0;
} else {
av_assert0(pic->encode_order > priv->last_idr_frame);
if (pic->type == PICTURE_TYPE_I) {
priv->slice_nal_unit = HEVC_NAL_CRA_NUT;
priv->slice_type = HEVC_SLICE_I;
priv->pic_type = 0;
} else if (pic->type == PICTURE_TYPE_P) {
av_assert0(pic->refs[0]);
priv->slice_nal_unit = HEVC_NAL_TRAIL_R;
priv->slice_type = HEVC_SLICE_P;
priv->pic_type = 1;
} else {
av_assert0(pic->refs[0] && pic->refs[1]);
if (pic->refs[1]->type == PICTURE_TYPE_I)
priv->slice_nal_unit = HEVC_NAL_RASL_N;
else
priv->slice_nal_unit = HEVC_NAL_TRAIL_N;
priv->slice_type = HEVC_SLICE_B;
priv->pic_type = 2;
}
}
priv->pic_order_cnt = pic->display_order - priv->last_idr_frame;
if (opt->aud) {
priv->aud_needed = 1;
priv->aud.nal_unit_header = (H265RawNALUnitHeader) {
.nal_unit_type = HEVC_NAL_AUD,
.nuh_layer_id = 0,
.nuh_temporal_id_plus1 = 1,
};
priv->aud.pic_type = priv->pic_type;
} else {
priv->aud_needed = 0;
}
vpic->decoded_curr_pic = (VAPictureHEVC) {
.picture_id = pic->recon_surface,
.pic_order_cnt = priv->pic_order_cnt,
.flags = 0,
};
for (i = 0; i < pic->nb_refs; i++) {
VAAPIEncodePicture *ref = pic->refs[i];
av_assert0(ref && ref->encode_order < pic->encode_order);
vpic->reference_frames[i] = (VAPictureHEVC) {
.picture_id = ref->recon_surface,
.pic_order_cnt = ref->display_order - priv->last_idr_frame,
.flags = (ref->display_order < pic->display_order ?
VA_PICTURE_HEVC_RPS_ST_CURR_BEFORE : 0) |
(ref->display_order > pic->display_order ?
VA_PICTURE_HEVC_RPS_ST_CURR_AFTER : 0),
};
}
for (; i < FF_ARRAY_ELEMS(vpic->reference_frames); i++) {
vpic->reference_frames[i] = (VAPictureHEVC) {
.picture_id = VA_INVALID_ID,
.flags = VA_PICTURE_HEVC_INVALID,
};
}
vpic->coded_buf = pic->output_buffer;
vpic->nal_unit_type = priv->slice_nal_unit;
switch (pic->type) {
case PICTURE_TYPE_IDR:
vpic->pic_fields.bits.idr_pic_flag = 1;
vpic->pic_fields.bits.coding_type = 1;
vpic->pic_fields.bits.reference_pic_flag = 1;
break;
case PICTURE_TYPE_I:
vpic->pic_fields.bits.idr_pic_flag = 0;
vpic->pic_fields.bits.coding_type = 1;
vpic->pic_fields.bits.reference_pic_flag = 1;
break;
case PICTURE_TYPE_P:
vpic->pic_fields.bits.idr_pic_flag = 0;
vpic->pic_fields.bits.coding_type = 2;
vpic->pic_fields.bits.reference_pic_flag = 1;
break;
case PICTURE_TYPE_B:
vpic->pic_fields.bits.idr_pic_flag = 0;
vpic->pic_fields.bits.coding_type = 3;
vpic->pic_fields.bits.reference_pic_flag = 0;
break;
default:
av_assert0(0 && "invalid picture type");
}
pic->nb_slices = 1;
return 0;
}
static int vaapi_encode_h265_init_slice_params(AVCodecContext *avctx,
VAAPIEncodePicture *pic,
VAAPIEncodeSlice *slice)
{
VAAPIEncodeContext *ctx = avctx->priv_data;
VAAPIEncodeH265Context *priv = ctx->priv_data;
const H265RawSPS *sps = &priv->sps;
const H265RawPPS *pps = &priv->pps;
H265RawSliceHeader *sh = &priv->slice.header;
VAEncPictureParameterBufferHEVC *vpic = pic->codec_picture_params;
VAEncSliceParameterBufferHEVC *vslice = slice->codec_slice_params;
int i;
sh->nal_unit_header = (H265RawNALUnitHeader) {
.nal_unit_type = priv->slice_nal_unit,
.nuh_layer_id = 0,
.nuh_temporal_id_plus1 = 1,
};
sh->slice_pic_parameter_set_id = pps->pps_pic_parameter_set_id;
// Currently we only support one slice per frame.
sh->first_slice_segment_in_pic_flag = 1;
sh->slice_segment_address = 0;
sh->slice_type = priv->slice_type;
sh->slice_pic_order_cnt_lsb = priv->pic_order_cnt &
(1 << (sps->log2_max_pic_order_cnt_lsb_minus4 + 4)) - 1;
if (pic->type != PICTURE_TYPE_IDR) {
H265RawSTRefPicSet *rps;
VAAPIEncodePicture *st;
int used;
sh->short_term_ref_pic_set_sps_flag = 0;
rps = &sh->short_term_ref_pic_set;
memset(rps, 0, sizeof(*rps));
for (st = ctx->pic_start; st; st = st->next) {
if (st->encode_order >= pic->encode_order) {
// Not yet in DPB.
continue;
}
used = 0;
for (i = 0; i < pic->nb_refs; i++) {
if (pic->refs[i] == st)
used = 1;
}
if (!used) {
// Usually each picture always uses all of the others in the
// DPB as references. The one case we have to treat here is
// a non-IDR IRAP picture, which may need to hold unused
// references across itself to be used for the decoding of
// following RASL pictures. This looks for such an RASL
// picture, and keeps the reference if there is one.
VAAPIEncodePicture *rp;
for (rp = ctx->pic_start; rp; rp = rp->next) {
if (rp->encode_order < pic->encode_order)
continue;
if (rp->type != PICTURE_TYPE_B)
continue;
if (rp->refs[0] == st && rp->refs[1] == pic)
break;
}
if (!rp)
continue;
}
// This only works for one instance of each (delta_poc_sN_minus1
// is relative to the previous frame in the list, not relative to
// the current frame directly).
if (st->display_order < pic->display_order) {
rps->delta_poc_s0_minus1[rps->num_negative_pics] =
pic->display_order - st->display_order - 1;
rps->used_by_curr_pic_s0_flag[rps->num_negative_pics] = used;
++rps->num_negative_pics;
} else {
rps->delta_poc_s1_minus1[rps->num_positive_pics] =
st->display_order - pic->display_order - 1;
rps->used_by_curr_pic_s1_flag[rps->num_positive_pics] = used;
++rps->num_positive_pics;
}
}
sh->num_long_term_sps = 0;
sh->num_long_term_pics = 0;
sh->slice_temporal_mvp_enabled_flag =
sps->sps_temporal_mvp_enabled_flag;
if (sh->slice_temporal_mvp_enabled_flag) {
sh->collocated_from_l0_flag = sh->slice_type == HEVC_SLICE_B;
sh->collocated_ref_idx = 0;
}
sh->num_ref_idx_active_override_flag = 0;
sh->num_ref_idx_l0_active_minus1 = pps->num_ref_idx_l0_default_active_minus1;
sh->num_ref_idx_l1_active_minus1 = pps->num_ref_idx_l1_default_active_minus1;
}
sh->slice_sao_luma_flag = sh->slice_sao_chroma_flag =
sps->sample_adaptive_offset_enabled_flag;
if (pic->type == PICTURE_TYPE_B)
sh->slice_qp_delta = priv->fixed_qp_b - (pps->init_qp_minus26 + 26);
else if (pic->type == PICTURE_TYPE_P)
sh->slice_qp_delta = priv->fixed_qp_p - (pps->init_qp_minus26 + 26);
else
sh->slice_qp_delta = priv->fixed_qp_idr - (pps->init_qp_minus26 + 26);
*vslice = (VAEncSliceParameterBufferHEVC) {
.slice_segment_address = sh->slice_segment_address,
.num_ctu_in_slice = priv->ctu_width * priv->ctu_height,
.slice_type = sh->slice_type,
.slice_pic_parameter_set_id = sh->slice_pic_parameter_set_id,
.num_ref_idx_l0_active_minus1 = sh->num_ref_idx_l0_active_minus1,
.num_ref_idx_l1_active_minus1 = sh->num_ref_idx_l1_active_minus1,
.ref_pic_list0[0] = vpic->reference_frames[0],
.ref_pic_list1[0] = vpic->reference_frames[1],
.luma_log2_weight_denom = sh->luma_log2_weight_denom,
.delta_chroma_log2_weight_denom = sh->delta_chroma_log2_weight_denom,
.max_num_merge_cand = 5 - sh->five_minus_max_num_merge_cand,
.slice_qp_delta = sh->slice_qp_delta,
.slice_cb_qp_offset = sh->slice_cb_qp_offset,
.slice_cr_qp_offset = sh->slice_cr_qp_offset,
.slice_beta_offset_div2 = sh->slice_beta_offset_div2,
.slice_tc_offset_div2 = sh->slice_tc_offset_div2,
.slice_fields.bits = {
.last_slice_of_pic_flag = 1,
.dependent_slice_segment_flag = sh->dependent_slice_segment_flag,
.colour_plane_id = sh->colour_plane_id,
.slice_temporal_mvp_enabled_flag =
sh->slice_temporal_mvp_enabled_flag,
.slice_sao_luma_flag = sh->slice_sao_luma_flag,
.slice_sao_chroma_flag = sh->slice_sao_chroma_flag,
.num_ref_idx_active_override_flag =
sh->num_ref_idx_active_override_flag,
.mvd_l1_zero_flag = sh->mvd_l1_zero_flag,
.cabac_init_flag = sh->cabac_init_flag,
.slice_deblocking_filter_disabled_flag =
sh->slice_deblocking_filter_disabled_flag,
.slice_loop_filter_across_slices_enabled_flag =
sh->slice_loop_filter_across_slices_enabled_flag,
.collocated_from_l0_flag = sh->collocated_from_l0_flag,
},
};
return 0;
}
static av_cold int vaapi_encode_h265_configure(AVCodecContext *avctx)
{
VAAPIEncodeContext *ctx = avctx->priv_data;
VAAPIEncodeH265Context *priv = ctx->priv_data;
VAAPIEncodeH265Options *opt = ctx->codec_options;
int err;
err = ff_cbs_init(&priv->cbc, AV_CODEC_ID_HEVC, avctx);
if (err < 0)
return err;
priv->ctu_width = FFALIGN(ctx->surface_width, 32) / 32;
priv->ctu_height = FFALIGN(ctx->surface_height, 32) / 32;
av_log(avctx, AV_LOG_VERBOSE, "Input %ux%u -> Surface %ux%u -> CTU %ux%u.\n",
avctx->width, avctx->height, ctx->surface_width,
ctx->surface_height, priv->ctu_width, priv->ctu_height);
if (ctx->va_rc_mode == VA_RC_CQP) {
priv->fixed_qp_p = opt->qp;
if (avctx->i_quant_factor > 0.0)
priv->fixed_qp_idr = (int)((priv->fixed_qp_p * avctx->i_quant_factor +
avctx->i_quant_offset) + 0.5);
else
priv->fixed_qp_idr = priv->fixed_qp_p;
if (avctx->b_quant_factor > 0.0)
priv->fixed_qp_b = (int)((priv->fixed_qp_p * avctx->b_quant_factor +
avctx->b_quant_offset) + 0.5);
else
priv->fixed_qp_b = priv->fixed_qp_p;
av_log(avctx, AV_LOG_DEBUG, "Using fixed QP = "
"%d / %d / %d for IDR- / P- / B-frames.\n",
priv->fixed_qp_idr, priv->fixed_qp_p, priv->fixed_qp_b);
} else if (ctx->va_rc_mode == VA_RC_CBR ||
ctx->va_rc_mode == VA_RC_VBR) {
// These still need to be set for pic_init_qp/slice_qp_delta.
priv->fixed_qp_idr = 30;
priv->fixed_qp_p = 30;
priv->fixed_qp_b = 30;
av_log(avctx, AV_LOG_DEBUG, "Using %s-bitrate = %"PRId64" bps.\n",
ctx->va_rc_mode == VA_RC_CBR ? "constant" : "variable",
avctx->bit_rate);
} else {
av_assert0(0 && "Invalid RC mode.");
}
return 0;
}
static const VAAPIEncodeType vaapi_encode_type_h265 = {
.priv_data_size = sizeof(VAAPIEncodeH265Context),
.configure = &vaapi_encode_h265_configure,
.sequence_params_size = sizeof(VAEncSequenceParameterBufferHEVC),
.init_sequence_params = &vaapi_encode_h265_init_sequence_params,
.picture_params_size = sizeof(VAEncPictureParameterBufferHEVC),
.init_picture_params = &vaapi_encode_h265_init_picture_params,
.slice_params_size = sizeof(VAEncSliceParameterBufferHEVC),
.init_slice_params = &vaapi_encode_h265_init_slice_params,
.sequence_header_type = VAEncPackedHeaderSequence,
.write_sequence_header = &vaapi_encode_h265_write_sequence_header,
.slice_header_type = VAEncPackedHeaderHEVC_Slice,
.write_slice_header = &vaapi_encode_h265_write_slice_header,
};
static av_cold int vaapi_encode_h265_init(AVCodecContext *avctx)
{
VAAPIEncodeContext *ctx = avctx->priv_data;
VAAPIEncodeH265Options *opt =
(VAAPIEncodeH265Options*)ctx->codec_options_data;
ctx->codec = &vaapi_encode_type_h265;
if (avctx->profile == FF_PROFILE_UNKNOWN)
avctx->profile = opt->profile;
if (avctx->level == FF_LEVEL_UNKNOWN)
avctx->level = opt->level;
switch (avctx->profile) {
case FF_PROFILE_HEVC_MAIN:
case FF_PROFILE_UNKNOWN:
ctx->va_profile = VAProfileHEVCMain;
ctx->va_rt_format = VA_RT_FORMAT_YUV420;
break;
case FF_PROFILE_HEVC_MAIN_10:
#ifdef VA_RT_FORMAT_YUV420_10BPP
ctx->va_profile = VAProfileHEVCMain10;
ctx->va_rt_format = VA_RT_FORMAT_YUV420_10BPP;
break;
#else
av_log(avctx, AV_LOG_ERROR, "10-bit encoding is not "
"supported with this VAAPI version.\n");
return AVERROR(ENOSYS);
#endif
default:
av_log(avctx, AV_LOG_ERROR, "Unknown H.265 profile %d.\n",
avctx->profile);
return AVERROR(EINVAL);
}
ctx->va_entrypoint = VAEntrypointEncSlice;
if (avctx->bit_rate > 0) {
if (avctx->rc_max_rate == avctx->bit_rate)
ctx->va_rc_mode = VA_RC_CBR;
else
ctx->va_rc_mode = VA_RC_VBR;
} else
ctx->va_rc_mode = VA_RC_CQP;
ctx->va_packed_headers =
VA_ENC_PACKED_HEADER_SEQUENCE | // VPS, SPS and PPS.
VA_ENC_PACKED_HEADER_SLICE; // Slice headers.
ctx->surface_width = FFALIGN(avctx->width, 16);
ctx->surface_height = FFALIGN(avctx->height, 16);
return ff_vaapi_encode_init(avctx);
}
static av_cold int vaapi_encode_h265_close(AVCodecContext *avctx)
{
VAAPIEncodeContext *ctx = avctx->priv_data;
VAAPIEncodeH265Context *priv = ctx->priv_data;
if (priv)
ff_cbs_close(&priv->cbc);
return ff_vaapi_encode_close(avctx);
}
#define OFFSET(x) (offsetof(VAAPIEncodeContext, codec_options_data) + \
offsetof(VAAPIEncodeH265Options, x))
#define FLAGS (AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM)
static const AVOption vaapi_encode_h265_options[] = {
{ "qp", "Constant QP (for P-frames; scaled by qfactor/qoffset for I/B)",
OFFSET(qp), AV_OPT_TYPE_INT, { .i64 = 25 }, 0, 52, FLAGS },
{ "aud", "Include AUD",
OFFSET(aud), AV_OPT_TYPE_INT, { .i64 = 0 }, 0, 1, FLAGS },
{ "profile", "Set profile (general_profile_idc)",
OFFSET(profile), AV_OPT_TYPE_INT,
{ .i64 = FF_PROFILE_HEVC_MAIN }, 0x00, 0xff, FLAGS, "profile" },
#define PROFILE(name, value) name, NULL, 0, AV_OPT_TYPE_CONST, \
{ .i64 = value }, 0, 0, FLAGS, "profile"
{ PROFILE("main", FF_PROFILE_HEVC_MAIN) },
{ PROFILE("main10", FF_PROFILE_HEVC_MAIN_10) },
#undef PROFILE
{ "level", "Set level (general_level_idc)",
OFFSET(level), AV_OPT_TYPE_INT,
{ .i64 = 153 }, 0x00, 0xff, FLAGS, "level" },
#define LEVEL(name, value) name, NULL, 0, AV_OPT_TYPE_CONST, \
{ .i64 = value }, 0, 0, FLAGS, "level"
{ LEVEL("1", 30) },
{ LEVEL("2", 60) },
{ LEVEL("2.1", 63) },
{ LEVEL("3", 90) },
{ LEVEL("3.1", 93) },
{ LEVEL("4", 120) },
{ LEVEL("4.1", 123) },
{ LEVEL("5", 150) },
{ LEVEL("5.1", 153) },
{ LEVEL("5.2", 156) },
{ LEVEL("6", 180) },
{ LEVEL("6.1", 183) },
{ LEVEL("6.2", 186) },
#undef LEVEL
{ NULL },
};
static const AVCodecDefault vaapi_encode_h265_defaults[] = {
{ "b", "0" },
{ "bf", "2" },
{ "g", "120" },
{ "i_qfactor", "1" },
{ "i_qoffset", "0" },
{ "b_qfactor", "6/5" },
{ "b_qoffset", "0" },
{ NULL },
};
static const AVClass vaapi_encode_h265_class = {
.class_name = "h265_vaapi",
.item_name = av_default_item_name,
.option = vaapi_encode_h265_options,
.version = LIBAVUTIL_VERSION_INT,
};
AVCodec ff_hevc_vaapi_encoder = {
.name = "hevc_vaapi",
.long_name = NULL_IF_CONFIG_SMALL("H.265/HEVC (VAAPI)"),
.type = AVMEDIA_TYPE_VIDEO,
.id = AV_CODEC_ID_HEVC,
.priv_data_size = (sizeof(VAAPIEncodeContext) +
sizeof(VAAPIEncodeH265Options)),
.init = &vaapi_encode_h265_init,
.encode2 = &ff_vaapi_encode2,
.close = &vaapi_encode_h265_close,
.priv_class = &vaapi_encode_h265_class,
.capabilities = AV_CODEC_CAP_DELAY | AV_CODEC_CAP_HARDWARE,
.defaults = vaapi_encode_h265_defaults,
.pix_fmts = (const enum AVPixelFormat[]) {
AV_PIX_FMT_VAAPI,
AV_PIX_FMT_NONE,
},
.wrapper_name = "vaapi",
};