1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2025-01-24 13:56:33 +02:00
FFmpeg/libavcodec/magicyuv.c
Paul B Mahol 12461636ea avcodec/magicyuv: export colorspace and color_range for YUV
Signed-off-by: Paul B Mahol <onemda@gmail.com>
2016-12-26 17:34:57 +01:00

735 lines
23 KiB
C

/*
* MagicYUV decoder
* Copyright (c) 2016 Paul B Mahol
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <stdlib.h>
#include <string.h>
#include "libavutil/pixdesc.h"
#include "libavutil/qsort.h"
#include "avcodec.h"
#include "bytestream.h"
#include "get_bits.h"
#include "huffyuvdsp.h"
#include "internal.h"
#include "lossless_videodsp.h"
#include "thread.h"
typedef struct Slice {
uint32_t start;
uint32_t size;
} Slice;
typedef enum Prediction {
LEFT = 1,
GRADIENT,
MEDIAN,
} Prediction;
typedef struct HuffEntry {
uint16_t sym;
uint8_t len;
uint32_t code;
} HuffEntry;
typedef struct MagicYUVContext {
AVFrame *p;
int max;
int slice_height;
int nb_slices;
int planes; // number of encoded planes in bitstream
int decorrelate; // postprocessing work
int color_matrix; // video color matrix
int flags;
int interlaced; // video is interlaced
uint8_t *buf; // pointer to AVPacket->data
int hshift[4];
int vshift[4];
Slice *slices[4]; // slice bitstream positions for each plane
unsigned int slices_size[4]; // slice sizes for each plane
uint8_t len[4][1024]; // table of code lengths for each plane
VLC vlc[4]; // VLC for each plane
int (*huff_build)(VLC *vlc, uint8_t *len);
int (*magy_decode_slice)(AVCodecContext *avctx, void *tdata,
int j, int threadnr);
HuffYUVDSPContext hdsp;
LLVidDSPContext llviddsp;
} MagicYUVContext;
static int huff_cmp_len(const void *a, const void *b)
{
const HuffEntry *aa = a, *bb = b;
return (aa->len - bb->len) * 256 + aa->sym - bb->sym;
}
static int huff_cmp_len10(const void *a, const void *b)
{
const HuffEntry *aa = a, *bb = b;
return (aa->len - bb->len) * 1024 + aa->sym - bb->sym;
}
static int huff_build10(VLC *vlc, uint8_t *len)
{
HuffEntry he[1024];
uint32_t codes[1024];
uint8_t bits[1024];
uint16_t syms[1024];
uint32_t code;
int i;
for (i = 0; i < 1024; i++) {
he[i].sym = 1023 - i;
he[i].len = len[i];
}
AV_QSORT(he, 1024, HuffEntry, huff_cmp_len10);
code = 1;
for (i = 1023; i >= 0; i--) {
codes[i] = code >> (32 - he[i].len);
bits[i] = he[i].len;
syms[i] = he[i].sym;
code += 0x80000000u >> (he[i].len - 1);
}
ff_free_vlc(vlc);
return ff_init_vlc_sparse(vlc, FFMIN(he[1023].len, 12), 1024,
bits, sizeof(*bits), sizeof(*bits),
codes, sizeof(*codes), sizeof(*codes),
syms, sizeof(*syms), sizeof(*syms), 0);
}
static int huff_build(VLC *vlc, uint8_t *len)
{
HuffEntry he[256];
uint32_t codes[256];
uint8_t bits[256];
uint8_t syms[256];
uint32_t code;
int i;
for (i = 0; i < 256; i++) {
he[i].sym = 255 - i;
he[i].len = len[i];
}
AV_QSORT(he, 256, HuffEntry, huff_cmp_len);
code = 1;
for (i = 255; i >= 0; i--) {
codes[i] = code >> (32 - he[i].len);
bits[i] = he[i].len;
syms[i] = he[i].sym;
code += 0x80000000u >> (he[i].len - 1);
}
ff_free_vlc(vlc);
return ff_init_vlc_sparse(vlc, FFMIN(he[255].len, 12), 256,
bits, sizeof(*bits), sizeof(*bits),
codes, sizeof(*codes), sizeof(*codes),
syms, sizeof(*syms), sizeof(*syms), 0);
}
static void magicyuv_median_pred10(uint16_t *dst, const uint16_t *src1,
const uint16_t *diff, intptr_t w,
int *left, int *left_top)
{
int i;
uint16_t l, lt;
l = *left;
lt = *left_top;
for (i = 0; i < w; i++) {
l = mid_pred(l, src1[i], (l + src1[i] - lt)) + diff[i];
l &= 0x3FF;
lt = src1[i];
dst[i] = l;
}
*left = l;
*left_top = lt;
}
static int magy_decode_slice10(AVCodecContext *avctx, void *tdata,
int j, int threadnr)
{
MagicYUVContext *s = avctx->priv_data;
int interlaced = s->interlaced;
AVFrame *p = s->p;
int i, k, x;
GetBitContext gb;
uint16_t *dst;
for (i = 0; i < s->planes; i++) {
int left, lefttop, top;
int height = AV_CEIL_RSHIFT(FFMIN(s->slice_height, avctx->coded_height - j * s->slice_height), s->vshift[i]);
int width = AV_CEIL_RSHIFT(avctx->coded_width, s->hshift[i]);
int sheight = AV_CEIL_RSHIFT(s->slice_height, s->vshift[i]);
ptrdiff_t fake_stride = (p->linesize[i] / 2) * (1 + interlaced);
ptrdiff_t stride = p->linesize[i] / 2;
int flags, pred;
int ret = init_get_bits8(&gb, s->buf + s->slices[i][j].start,
s->slices[i][j].size);
if (ret < 0)
return ret;
flags = get_bits(&gb, 8);
pred = get_bits(&gb, 8);
dst = (uint16_t *)p->data[i] + j * sheight * stride;
if (flags & 1) {
for (k = 0; k < height; k++) {
for (x = 0; x < width; x++)
dst[x] = get_bits(&gb, 10);
dst += stride;
}
} else {
for (k = 0; k < height; k++) {
for (x = 0; x < width; x++) {
int pix;
if (get_bits_left(&gb) <= 0)
return AVERROR_INVALIDDATA;
pix = get_vlc2(&gb, s->vlc[i].table, s->vlc[i].bits, 3);
if (pix < 0)
return AVERROR_INVALIDDATA;
dst[x] = 1023 - pix;
}
dst += stride;
}
}
switch (pred) {
case LEFT:
dst = (uint16_t *)p->data[i] + j * sheight * stride;
s->llviddsp.add_hfyu_left_pred_int16(dst, dst, 1023, width, 0);
dst += stride;
if (interlaced) {
s->llviddsp.add_hfyu_left_pred_int16(dst, dst, 1023, width, 0);
dst += stride;
}
for (k = 1 + interlaced; k < height; k++) {
s->llviddsp.add_hfyu_left_pred_int16(dst, dst, 1023, width, dst[-fake_stride]);
dst += stride;
}
break;
case GRADIENT:
dst = (uint16_t *)p->data[i] + j * sheight * stride;
s->llviddsp.add_hfyu_left_pred_int16(dst, dst, 1023, width, 0);
left = lefttop = 0;
dst += stride;
if (interlaced) {
s->llviddsp.add_hfyu_left_pred_int16(dst, dst, 1023, width, 0);
left = lefttop = 0;
dst += stride;
}
for (k = 1 + interlaced; k < height; k++) {
top = dst[-fake_stride];
left = top + dst[0];
dst[0] = left & 0x3FF;
for (x = 1; x < width; x++) {
top = dst[x - fake_stride];
lefttop = dst[x - (fake_stride + 1)];
left += top - lefttop + dst[x];
dst[x] = left & 0x3FF;
}
dst += stride;
}
break;
case MEDIAN:
dst = (uint16_t *)p->data[i] + j * sheight * stride;
lefttop = left = dst[0];
s->llviddsp.add_hfyu_left_pred_int16(dst, dst, 1023, width, 0);
dst += stride;
if (interlaced) {
lefttop = left = dst[0];
s->llviddsp.add_hfyu_left_pred_int16(dst, dst, 1023, width, 0);
dst += stride;
}
for (k = 1 + interlaced; k < height; k++) {
magicyuv_median_pred10(dst, dst - fake_stride, dst, width, &left, &lefttop);
lefttop = left = dst[0];
dst += stride;
}
break;
default:
avpriv_request_sample(avctx, "Unknown prediction: %d", pred);
}
}
if (s->decorrelate) {
int height = FFMIN(s->slice_height, avctx->coded_height - j * s->slice_height);
int width = avctx->coded_width;
uint16_t *r = (uint16_t *)p->data[0] + j * s->slice_height * p->linesize[0] / 2;
uint16_t *g = (uint16_t *)p->data[1] + j * s->slice_height * p->linesize[1] / 2;
uint16_t *b = (uint16_t *)p->data[2] + j * s->slice_height * p->linesize[2] / 2;
for (i = 0; i < height; i++) {
for (k = 0; k < width; k++) {
b[k] = (b[k] + g[k]) & 0x3FF;
r[k] = (r[k] + g[k]) & 0x3FF;
}
b += p->linesize[0] / 2;
g += p->linesize[1] / 2;
r += p->linesize[2] / 2;
}
}
return 0;
}
static int magy_decode_slice(AVCodecContext *avctx, void *tdata,
int j, int threadnr)
{
MagicYUVContext *s = avctx->priv_data;
int interlaced = s->interlaced;
AVFrame *p = s->p;
int i, k, x;
GetBitContext gb;
uint8_t *dst;
for (i = 0; i < s->planes; i++) {
int left, lefttop, top;
int height = AV_CEIL_RSHIFT(FFMIN(s->slice_height, avctx->coded_height - j * s->slice_height), s->vshift[i]);
int width = AV_CEIL_RSHIFT(avctx->coded_width, s->hshift[i]);
int sheight = AV_CEIL_RSHIFT(s->slice_height, s->vshift[i]);
ptrdiff_t fake_stride = p->linesize[i] * (1 + interlaced);
ptrdiff_t stride = p->linesize[i];
int flags, pred;
int ret = init_get_bits8(&gb, s->buf + s->slices[i][j].start,
s->slices[i][j].size);
if (ret < 0)
return ret;
flags = get_bits(&gb, 8);
pred = get_bits(&gb, 8);
dst = p->data[i] + j * sheight * stride;
if (flags & 1) {
for (k = 0; k < height; k++) {
for (x = 0; x < width; x++)
dst[x] = get_bits(&gb, 8);
dst += stride;
}
} else {
for (k = 0; k < height; k++) {
for (x = 0; x < width; x++) {
int pix;
if (get_bits_left(&gb) <= 0)
return AVERROR_INVALIDDATA;
pix = get_vlc2(&gb, s->vlc[i].table, s->vlc[i].bits, 3);
if (pix < 0)
return AVERROR_INVALIDDATA;
dst[x] = 255 - pix;
}
dst += stride;
}
}
switch (pred) {
case LEFT:
dst = p->data[i] + j * sheight * stride;
s->hdsp.add_hfyu_left_pred(dst, dst, width, 0);
dst += stride;
if (interlaced) {
s->hdsp.add_hfyu_left_pred(dst, dst, width, 0);
dst += stride;
}
for (k = 1 + interlaced; k < height; k++) {
s->hdsp.add_hfyu_left_pred(dst, dst, width, dst[-fake_stride]);
dst += stride;
}
break;
case GRADIENT:
dst = p->data[i] + j * sheight * stride;
s->hdsp.add_hfyu_left_pred(dst, dst, width, 0);
left = lefttop = 0;
dst += stride;
if (interlaced) {
s->hdsp.add_hfyu_left_pred(dst, dst, width, 0);
left = lefttop = 0;
dst += stride;
}
for (k = 1 + interlaced; k < height; k++) {
top = dst[-fake_stride];
left = top + dst[0];
dst[0] = left;
for (x = 1; x < width; x++) {
top = dst[x - fake_stride];
lefttop = dst[x - (fake_stride + 1)];
left += top - lefttop + dst[x];
dst[x] = left;
}
dst += stride;
}
break;
case MEDIAN:
dst = p->data[i] + j * sheight * stride;
lefttop = left = dst[0];
s->hdsp.add_hfyu_left_pred(dst, dst, width, 0);
dst += stride;
if (interlaced) {
lefttop = left = dst[0];
s->hdsp.add_hfyu_left_pred(dst, dst, width, 0);
dst += stride;
}
for (k = 1 + interlaced; k < height; k++) {
s->hdsp.add_hfyu_median_pred(dst, dst - fake_stride,
dst, width, &left, &lefttop);
lefttop = left = dst[0];
dst += stride;
}
break;
default:
avpriv_request_sample(avctx, "Unknown prediction: %d", pred);
}
}
if (s->decorrelate) {
int height = FFMIN(s->slice_height, avctx->coded_height - j * s->slice_height);
int width = avctx->coded_width;
uint8_t *b = p->data[0] + j * s->slice_height * p->linesize[0];
uint8_t *g = p->data[1] + j * s->slice_height * p->linesize[1];
uint8_t *r = p->data[2] + j * s->slice_height * p->linesize[2];
for (i = 0; i < height; i++) {
s->hdsp.add_bytes(b, g, width);
s->hdsp.add_bytes(r, g, width);
b += p->linesize[0];
g += p->linesize[1];
r += p->linesize[2];
}
}
return 0;
}
static int build_huffman(AVCodecContext *avctx, GetBitContext *gbit, int max)
{
MagicYUVContext *s = avctx->priv_data;
int i = 0, j = 0, k;
memset(s->len, 0, sizeof(s->len));
while (get_bits_left(gbit) >= 8) {
int b = get_bits(gbit, 4);
int x = get_bits(gbit, 4);
int l = get_bitsz(gbit, b) + 1;
for (k = 0; k < l; k++)
if (j + k < max)
s->len[i][j + k] = x;
j += l;
if (j == max) {
j = 0;
if (s->huff_build(&s->vlc[i], s->len[i])) {
av_log(avctx, AV_LOG_ERROR, "Cannot build Huffman codes\n");
return AVERROR_INVALIDDATA;
}
i++;
if (i == s->planes) {
break;
}
} else if (j > max) {
return AVERROR_INVALIDDATA;
}
}
if (i != s->planes) {
av_log(avctx, AV_LOG_ERROR, "Huffman tables too short\n");
return AVERROR_INVALIDDATA;
}
return 0;
}
static int magy_decode_frame(AVCodecContext *avctx, void *data,
int *got_frame, AVPacket *avpkt)
{
MagicYUVContext *s = avctx->priv_data;
ThreadFrame frame = { .f = data };
AVFrame *p = data;
GetByteContext gbyte;
GetBitContext gbit;
uint32_t first_offset, offset, next_offset, header_size, slice_width;
int width, height, format, version, table_size;
int ret, i, j;
bytestream2_init(&gbyte, avpkt->data, avpkt->size);
if (bytestream2_get_le32(&gbyte) != MKTAG('M', 'A', 'G', 'Y'))
return AVERROR_INVALIDDATA;
header_size = bytestream2_get_le32(&gbyte);
if (header_size < 32 || header_size >= avpkt->size) {
av_log(avctx, AV_LOG_ERROR,
"header or packet too small %"PRIu32"\n", header_size);
return AVERROR_INVALIDDATA;
}
version = bytestream2_get_byte(&gbyte);
if (version != 7) {
avpriv_request_sample(avctx, "Version %d", version);
return AVERROR_PATCHWELCOME;
}
s->hshift[1] =
s->vshift[1] =
s->hshift[2] =
s->vshift[2] = 0;
s->decorrelate = 0;
s->max = 256;
s->huff_build = huff_build;
s->magy_decode_slice = magy_decode_slice;
format = bytestream2_get_byte(&gbyte);
switch (format) {
case 0x65:
avctx->pix_fmt = AV_PIX_FMT_GBRP;
s->decorrelate = 1;
break;
case 0x66:
avctx->pix_fmt = AV_PIX_FMT_GBRAP;
s->decorrelate = 1;
break;
case 0x67:
avctx->pix_fmt = AV_PIX_FMT_YUV444P;
break;
case 0x68:
avctx->pix_fmt = AV_PIX_FMT_YUV422P;
s->hshift[1] =
s->hshift[2] = 1;
break;
case 0x69:
avctx->pix_fmt = AV_PIX_FMT_YUV420P;
s->hshift[1] =
s->vshift[1] =
s->hshift[2] =
s->vshift[2] = 1;
break;
case 0x6a:
avctx->pix_fmt = AV_PIX_FMT_YUVA444P;
break;
case 0x6b:
avctx->pix_fmt = AV_PIX_FMT_GRAY8;
break;
case 0x6c:
avctx->pix_fmt = AV_PIX_FMT_YUV422P10;
s->hshift[1] =
s->hshift[2] = 1;
s->max = 1024;
s->huff_build = huff_build10;
s->magy_decode_slice = magy_decode_slice10;
break;
case 0x6d:
avctx->pix_fmt = AV_PIX_FMT_GBRP10;
s->decorrelate = 1;
s->max = 1024;
s->huff_build = huff_build10;
s->magy_decode_slice = magy_decode_slice10;
break;
case 0x6e:
avctx->pix_fmt = AV_PIX_FMT_GBRAP10;
s->decorrelate = 1;
s->max = 1024;
s->huff_build = huff_build10;
s->magy_decode_slice = magy_decode_slice10;
break;
case 0x73:
avctx->pix_fmt = AV_PIX_FMT_GRAY10;
s->max = 1024;
s->huff_build = huff_build10;
s->magy_decode_slice = magy_decode_slice10;
break;
default:
avpriv_request_sample(avctx, "Format 0x%X", format);
return AVERROR_PATCHWELCOME;
}
s->planes = av_pix_fmt_count_planes(avctx->pix_fmt);
bytestream2_skip(&gbyte, 1);
s->color_matrix = bytestream2_get_byte(&gbyte);
s->flags = bytestream2_get_byte(&gbyte);
s->interlaced = !!(s->flags & 2);
bytestream2_skip(&gbyte, 3);
width = bytestream2_get_le32(&gbyte);
height = bytestream2_get_le32(&gbyte);
ret = ff_set_dimensions(avctx, width, height);
if (ret < 0)
return ret;
slice_width = bytestream2_get_le32(&gbyte);
if (slice_width != avctx->coded_width) {
avpriv_request_sample(avctx, "Slice width %"PRIu32, slice_width);
return AVERROR_PATCHWELCOME;
}
s->slice_height = bytestream2_get_le32(&gbyte);
if (s->slice_height <= 0 || s->slice_height > INT_MAX - avctx->coded_height) {
av_log(avctx, AV_LOG_ERROR,
"invalid slice height: %d\n", s->slice_height);
return AVERROR_INVALIDDATA;
}
bytestream2_skip(&gbyte, 4);
s->nb_slices = (avctx->coded_height + s->slice_height - 1) / s->slice_height;
if (s->nb_slices > INT_MAX / sizeof(Slice)) {
av_log(avctx, AV_LOG_ERROR,
"invalid number of slices: %d\n", s->nb_slices);
return AVERROR_INVALIDDATA;
}
for (i = 0; i < s->planes; i++) {
av_fast_malloc(&s->slices[i], &s->slices_size[i], s->nb_slices * sizeof(Slice));
if (!s->slices[i])
return AVERROR(ENOMEM);
offset = bytestream2_get_le32(&gbyte);
if (offset >= avpkt->size - header_size)
return AVERROR_INVALIDDATA;
if (i == 0)
first_offset = offset;
for (j = 0; j < s->nb_slices - 1; j++) {
s->slices[i][j].start = offset + header_size;
next_offset = bytestream2_get_le32(&gbyte);
if (next_offset <= offset || next_offset >= avpkt->size - header_size)
return AVERROR_INVALIDDATA;
s->slices[i][j].size = next_offset - offset;
offset = next_offset;
}
s->slices[i][j].start = offset + header_size;
s->slices[i][j].size = avpkt->size - s->slices[i][j].start;
}
if (bytestream2_get_byte(&gbyte) != s->planes)
return AVERROR_INVALIDDATA;
bytestream2_skip(&gbyte, s->nb_slices * s->planes);
table_size = header_size + first_offset - bytestream2_tell(&gbyte);
if (table_size < 2)
return AVERROR_INVALIDDATA;
ret = init_get_bits8(&gbit, avpkt->data + bytestream2_tell(&gbyte), table_size);
if (ret < 0)
return ret;
ret = build_huffman(avctx, &gbit, s->max);
if (ret < 0)
return ret;
p->pict_type = AV_PICTURE_TYPE_I;
p->key_frame = 1;
if ((ret = ff_thread_get_buffer(avctx, &frame, 0)) < 0)
return ret;
s->buf = avpkt->data;
s->p = p;
avctx->execute2(avctx, s->magy_decode_slice, NULL, NULL, s->nb_slices);
if (avctx->pix_fmt == AV_PIX_FMT_GBRP ||
avctx->pix_fmt == AV_PIX_FMT_GBRAP ||
avctx->pix_fmt == AV_PIX_FMT_GBRP10 ||
avctx->pix_fmt == AV_PIX_FMT_GBRAP10) {
FFSWAP(uint8_t*, p->data[0], p->data[1]);
FFSWAP(int, p->linesize[0], p->linesize[1]);
} else {
switch (s->color_matrix) {
case 1:
p->colorspace = AVCOL_SPC_BT470BG;
break;
case 2:
p->colorspace = AVCOL_SPC_BT709;
break;
}
p->color_range = (s->flags & 4) ? AVCOL_RANGE_JPEG : AVCOL_RANGE_MPEG;
}
*got_frame = 1;
return avpkt->size;
}
#if HAVE_THREADS
static int magy_init_thread_copy(AVCodecContext *avctx)
{
MagicYUVContext *s = avctx->priv_data;
int i;
for (i = 0; i < FF_ARRAY_ELEMS(s->slices); i++) {
s->slices[i] = NULL;
s->slices_size[i] = 0;
}
return 0;
}
#endif
static av_cold int magy_decode_init(AVCodecContext *avctx)
{
MagicYUVContext *s = avctx->priv_data;
ff_huffyuvdsp_init(&s->hdsp);
ff_llviddsp_init(&s->llviddsp, avctx);
return 0;
}
static av_cold int magy_decode_end(AVCodecContext *avctx)
{
MagicYUVContext * const s = avctx->priv_data;
int i;
for (i = 0; i < FF_ARRAY_ELEMS(s->slices); i++) {
av_freep(&s->slices[i]);
s->slices_size[i] = 0;
ff_free_vlc(&s->vlc[i]);
}
return 0;
}
AVCodec ff_magicyuv_decoder = {
.name = "magicyuv",
.long_name = NULL_IF_CONFIG_SMALL("MagicYUV video"),
.type = AVMEDIA_TYPE_VIDEO,
.id = AV_CODEC_ID_MAGICYUV,
.priv_data_size = sizeof(MagicYUVContext),
.init = magy_decode_init,
.init_thread_copy = ONLY_IF_THREADS_ENABLED(magy_init_thread_copy),
.close = magy_decode_end,
.decode = magy_decode_frame,
.capabilities = AV_CODEC_CAP_DR1 |
AV_CODEC_CAP_FRAME_THREADS |
AV_CODEC_CAP_SLICE_THREADS,
.caps_internal = FF_CODEC_CAP_INIT_THREADSAFE,
};