1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2025-01-03 05:10:03 +02:00
FFmpeg/libswscale/utils.c
Stefano Sabatini af0e662169 Declare support for the pixel formats:
PIX_FMT_YUVJ420P
PIX_FMT_YUVJ422P
PIX_FMT_YUVJ440P
PIX_FMT_YUVJ444P

in the isSupported{In,Out} macros.

These pixel formats are not true pixel formats but hacks specific to
JPEG in libavcodec. They are deprecated and should be removed (that is
from libavcodec first and libswscale second)...  but they must be
tested by swscale-test.

See thread:
Subject: [FFmpeg-devel] [PATCH] Extend show_pix_fmts() to make it print the input/output support
Date: 2010-01-30 15:54:08 GMT

Originally committed as revision 30474 to svn://svn.mplayerhq.hu/mplayer/trunk/libswscale
2010-01-31 10:16:05 +00:00

1589 lines
56 KiB
C

/*
* Copyright (C) 2001-2003 Michael Niedermayer <michaelni@gmx.at>
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
* the C code (not assembly, mmx, ...) of this file can be used
* under the LGPL license too
*/
#define _SVID_SOURCE //needed for MAP_ANONYMOUS
#include <inttypes.h>
#include <string.h>
#include <math.h>
#include <stdio.h>
#include "config.h"
#include <assert.h>
#if HAVE_SYS_MMAN_H
#include <sys/mman.h>
#if defined(MAP_ANON) && !defined(MAP_ANONYMOUS)
#define MAP_ANONYMOUS MAP_ANON
#endif
#endif
#if HAVE_VIRTUALALLOC
#define WIN32_LEAN_AND_MEAN
#include <windows.h>
#endif
#include "swscale.h"
#include "swscale_internal.h"
#include "rgb2rgb.h"
#include "libavutil/intreadwrite.h"
#include "libavutil/x86_cpu.h"
#include "libavutil/avutil.h"
#include "libavutil/bswap.h"
#include "libavutil/pixdesc.h"
unsigned swscale_version(void)
{
return LIBSWSCALE_VERSION_INT;
}
const char *swscale_configuration(void)
{
return FFMPEG_CONFIGURATION;
}
const char *swscale_license(void)
{
#define LICENSE_PREFIX "libswscale license: "
return LICENSE_PREFIX FFMPEG_LICENSE + sizeof(LICENSE_PREFIX) - 1;
}
#define RET 0xC3 //near return opcode for x86
#define isSupportedIn(x) ( \
(x)==PIX_FMT_YUV420P \
|| (x)==PIX_FMT_YUVA420P \
|| (x)==PIX_FMT_YUYV422 \
|| (x)==PIX_FMT_UYVY422 \
|| (x)==PIX_FMT_RGB48BE \
|| (x)==PIX_FMT_RGB48LE \
|| (x)==PIX_FMT_RGB32 \
|| (x)==PIX_FMT_RGB32_1 \
|| (x)==PIX_FMT_BGR24 \
|| (x)==PIX_FMT_BGR565 \
|| (x)==PIX_FMT_BGR555 \
|| (x)==PIX_FMT_BGR32 \
|| (x)==PIX_FMT_BGR32_1 \
|| (x)==PIX_FMT_RGB24 \
|| (x)==PIX_FMT_RGB565 \
|| (x)==PIX_FMT_RGB555 \
|| (x)==PIX_FMT_GRAY8 \
|| (x)==PIX_FMT_YUV410P \
|| (x)==PIX_FMT_YUV440P \
|| (x)==PIX_FMT_NV12 \
|| (x)==PIX_FMT_NV21 \
|| (x)==PIX_FMT_GRAY16BE \
|| (x)==PIX_FMT_GRAY16LE \
|| (x)==PIX_FMT_YUV444P \
|| (x)==PIX_FMT_YUV422P \
|| (x)==PIX_FMT_YUV411P \
|| (x)==PIX_FMT_YUVJ420P \
|| (x)==PIX_FMT_YUVJ422P \
|| (x)==PIX_FMT_YUVJ440P \
|| (x)==PIX_FMT_YUVJ444P \
|| (x)==PIX_FMT_PAL8 \
|| (x)==PIX_FMT_BGR8 \
|| (x)==PIX_FMT_RGB8 \
|| (x)==PIX_FMT_BGR4_BYTE \
|| (x)==PIX_FMT_RGB4_BYTE \
|| (x)==PIX_FMT_YUV440P \
|| (x)==PIX_FMT_MONOWHITE \
|| (x)==PIX_FMT_MONOBLACK \
|| (x)==PIX_FMT_YUV420P16LE \
|| (x)==PIX_FMT_YUV422P16LE \
|| (x)==PIX_FMT_YUV444P16LE \
|| (x)==PIX_FMT_YUV420P16BE \
|| (x)==PIX_FMT_YUV422P16BE \
|| (x)==PIX_FMT_YUV444P16BE \
)
int sws_isSupportedInput(enum PixelFormat pix_fmt)
{
return isSupportedIn(pix_fmt);
}
#define isSupportedOut(x) ( \
(x)==PIX_FMT_YUV420P \
|| (x)==PIX_FMT_YUVA420P \
|| (x)==PIX_FMT_YUYV422 \
|| (x)==PIX_FMT_UYVY422 \
|| (x)==PIX_FMT_YUV444P \
|| (x)==PIX_FMT_YUV422P \
|| (x)==PIX_FMT_YUV411P \
|| (x)==PIX_FMT_YUVJ420P \
|| (x)==PIX_FMT_YUVJ422P \
|| (x)==PIX_FMT_YUVJ440P \
|| (x)==PIX_FMT_YUVJ444P \
|| isAnyRGB(x) \
|| (x)==PIX_FMT_NV12 \
|| (x)==PIX_FMT_NV21 \
|| (x)==PIX_FMT_GRAY16BE \
|| (x)==PIX_FMT_GRAY16LE \
|| (x)==PIX_FMT_GRAY8 \
|| (x)==PIX_FMT_YUV410P \
|| (x)==PIX_FMT_YUV440P \
|| (x)==PIX_FMT_YUV420P16LE \
|| (x)==PIX_FMT_YUV422P16LE \
|| (x)==PIX_FMT_YUV444P16LE \
|| (x)==PIX_FMT_YUV420P16BE \
|| (x)==PIX_FMT_YUV422P16BE \
|| (x)==PIX_FMT_YUV444P16BE \
)
int sws_isSupportedOutput(enum PixelFormat pix_fmt)
{
return isSupportedOut(pix_fmt);
}
#define usePal(x) (av_pix_fmt_descriptors[x].flags & PIX_FMT_PAL)
extern const int32_t ff_yuv2rgb_coeffs[8][4];
const char *sws_format_name(enum PixelFormat format)
{
if ((unsigned)format < PIX_FMT_NB && av_pix_fmt_descriptors[format].name)
return av_pix_fmt_descriptors[format].name;
else
return "Unknown format";
}
static double getSplineCoeff(double a, double b, double c, double d, double dist)
{
// printf("%f %f %f %f %f\n", a,b,c,d,dist);
if (dist<=1.0) return ((d*dist + c)*dist + b)*dist +a;
else return getSplineCoeff( 0.0,
b+ 2.0*c + 3.0*d,
c + 3.0*d,
-b- 3.0*c - 6.0*d,
dist-1.0);
}
static int initFilter(int16_t **outFilter, int16_t **filterPos, int *outFilterSize, int xInc,
int srcW, int dstW, int filterAlign, int one, int flags,
SwsVector *srcFilter, SwsVector *dstFilter, double param[2])
{
int i;
int filterSize;
int filter2Size;
int minFilterSize;
int64_t *filter=NULL;
int64_t *filter2=NULL;
const int64_t fone= 1LL<<54;
int ret= -1;
#if ARCH_X86
if (flags & SWS_CPU_CAPS_MMX)
__asm__ volatile("emms\n\t"::: "memory"); //FIXME this should not be required but it IS (even for non-MMX versions)
#endif
// NOTE: the +1 is for the MMX scaler which reads over the end
FF_ALLOC_OR_GOTO(NULL, *filterPos, (dstW+1)*sizeof(int16_t), fail);
if (FFABS(xInc - 0x10000) <10) { // unscaled
int i;
filterSize= 1;
FF_ALLOCZ_OR_GOTO(NULL, filter, dstW*sizeof(*filter)*filterSize, fail);
for (i=0; i<dstW; i++) {
filter[i*filterSize]= fone;
(*filterPos)[i]=i;
}
} else if (flags&SWS_POINT) { // lame looking point sampling mode
int i;
int xDstInSrc;
filterSize= 1;
FF_ALLOC_OR_GOTO(NULL, filter, dstW*sizeof(*filter)*filterSize, fail);
xDstInSrc= xInc/2 - 0x8000;
for (i=0; i<dstW; i++) {
int xx= (xDstInSrc - ((filterSize-1)<<15) + (1<<15))>>16;
(*filterPos)[i]= xx;
filter[i]= fone;
xDstInSrc+= xInc;
}
} else if ((xInc <= (1<<16) && (flags&SWS_AREA)) || (flags&SWS_FAST_BILINEAR)) { // bilinear upscale
int i;
int xDstInSrc;
filterSize= 2;
FF_ALLOC_OR_GOTO(NULL, filter, dstW*sizeof(*filter)*filterSize, fail);
xDstInSrc= xInc/2 - 0x8000;
for (i=0; i<dstW; i++) {
int xx= (xDstInSrc - ((filterSize-1)<<15) + (1<<15))>>16;
int j;
(*filterPos)[i]= xx;
//bilinear upscale / linear interpolate / area averaging
for (j=0; j<filterSize; j++) {
int64_t coeff= fone - FFABS((xx<<16) - xDstInSrc)*(fone>>16);
if (coeff<0) coeff=0;
filter[i*filterSize + j]= coeff;
xx++;
}
xDstInSrc+= xInc;
}
} else {
int xDstInSrc;
int sizeFactor;
if (flags&SWS_BICUBIC) sizeFactor= 4;
else if (flags&SWS_X) sizeFactor= 8;
else if (flags&SWS_AREA) sizeFactor= 1; //downscale only, for upscale it is bilinear
else if (flags&SWS_GAUSS) sizeFactor= 8; // infinite ;)
else if (flags&SWS_LANCZOS) sizeFactor= param[0] != SWS_PARAM_DEFAULT ? ceil(2*param[0]) : 6;
else if (flags&SWS_SINC) sizeFactor= 20; // infinite ;)
else if (flags&SWS_SPLINE) sizeFactor= 20; // infinite ;)
else if (flags&SWS_BILINEAR) sizeFactor= 2;
else {
sizeFactor= 0; //GCC warning killer
assert(0);
}
if (xInc <= 1<<16) filterSize= 1 + sizeFactor; // upscale
else filterSize= 1 + (sizeFactor*srcW + dstW - 1)/ dstW;
if (filterSize > srcW-2) filterSize=srcW-2;
FF_ALLOC_OR_GOTO(NULL, filter, dstW*sizeof(*filter)*filterSize, fail);
xDstInSrc= xInc - 0x10000;
for (i=0; i<dstW; i++) {
int xx= (xDstInSrc - ((filterSize-2)<<16)) / (1<<17);
int j;
(*filterPos)[i]= xx;
for (j=0; j<filterSize; j++) {
int64_t d= ((int64_t)FFABS((xx<<17) - xDstInSrc))<<13;
double floatd;
int64_t coeff;
if (xInc > 1<<16)
d= d*dstW/srcW;
floatd= d * (1.0/(1<<30));
if (flags & SWS_BICUBIC) {
int64_t B= (param[0] != SWS_PARAM_DEFAULT ? param[0] : 0) * (1<<24);
int64_t C= (param[1] != SWS_PARAM_DEFAULT ? param[1] : 0.6) * (1<<24);
int64_t dd = ( d*d)>>30;
int64_t ddd= (dd*d)>>30;
if (d < 1LL<<30)
coeff = (12*(1<<24)-9*B-6*C)*ddd + (-18*(1<<24)+12*B+6*C)*dd + (6*(1<<24)-2*B)*(1<<30);
else if (d < 1LL<<31)
coeff = (-B-6*C)*ddd + (6*B+30*C)*dd + (-12*B-48*C)*d + (8*B+24*C)*(1<<30);
else
coeff=0.0;
coeff *= fone>>(30+24);
}
/* else if (flags & SWS_X) {
double p= param ? param*0.01 : 0.3;
coeff = d ? sin(d*PI)/(d*PI) : 1.0;
coeff*= pow(2.0, - p*d*d);
}*/
else if (flags & SWS_X) {
double A= param[0] != SWS_PARAM_DEFAULT ? param[0] : 1.0;
double c;
if (floatd<1.0)
c = cos(floatd*M_PI);
else
c=-1.0;
if (c<0.0) c= -pow(-c, A);
else c= pow( c, A);
coeff= (c*0.5 + 0.5)*fone;
} else if (flags & SWS_AREA) {
int64_t d2= d - (1<<29);
if (d2*xInc < -(1LL<<(29+16))) coeff= 1.0 * (1LL<<(30+16));
else if (d2*xInc < (1LL<<(29+16))) coeff= -d2*xInc + (1LL<<(29+16));
else coeff=0.0;
coeff *= fone>>(30+16);
} else if (flags & SWS_GAUSS) {
double p= param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
coeff = (pow(2.0, - p*floatd*floatd))*fone;
} else if (flags & SWS_SINC) {
coeff = (d ? sin(floatd*M_PI)/(floatd*M_PI) : 1.0)*fone;
} else if (flags & SWS_LANCZOS) {
double p= param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
coeff = (d ? sin(floatd*M_PI)*sin(floatd*M_PI/p)/(floatd*floatd*M_PI*M_PI/p) : 1.0)*fone;
if (floatd>p) coeff=0;
} else if (flags & SWS_BILINEAR) {
coeff= (1<<30) - d;
if (coeff<0) coeff=0;
coeff *= fone >> 30;
} else if (flags & SWS_SPLINE) {
double p=-2.196152422706632;
coeff = getSplineCoeff(1.0, 0.0, p, -p-1.0, floatd) * fone;
} else {
coeff= 0.0; //GCC warning killer
assert(0);
}
filter[i*filterSize + j]= coeff;
xx++;
}
xDstInSrc+= 2*xInc;
}
}
/* apply src & dst Filter to filter -> filter2
av_free(filter);
*/
assert(filterSize>0);
filter2Size= filterSize;
if (srcFilter) filter2Size+= srcFilter->length - 1;
if (dstFilter) filter2Size+= dstFilter->length - 1;
assert(filter2Size>0);
FF_ALLOCZ_OR_GOTO(NULL, filter2, filter2Size*dstW*sizeof(*filter2), fail);
for (i=0; i<dstW; i++) {
int j, k;
if(srcFilter) {
for (k=0; k<srcFilter->length; k++) {
for (j=0; j<filterSize; j++)
filter2[i*filter2Size + k + j] += srcFilter->coeff[k]*filter[i*filterSize + j];
}
} else {
for (j=0; j<filterSize; j++)
filter2[i*filter2Size + j]= filter[i*filterSize + j];
}
//FIXME dstFilter
(*filterPos)[i]+= (filterSize-1)/2 - (filter2Size-1)/2;
}
av_freep(&filter);
/* try to reduce the filter-size (step1 find size and shift left) */
// Assume it is near normalized (*0.5 or *2.0 is OK but * 0.001 is not).
minFilterSize= 0;
for (i=dstW-1; i>=0; i--) {
int min= filter2Size;
int j;
int64_t cutOff=0.0;
/* get rid of near zero elements on the left by shifting left */
for (j=0; j<filter2Size; j++) {
int k;
cutOff += FFABS(filter2[i*filter2Size]);
if (cutOff > SWS_MAX_REDUCE_CUTOFF*fone) break;
/* preserve monotonicity because the core can't handle the filter otherwise */
if (i<dstW-1 && (*filterPos)[i] >= (*filterPos)[i+1]) break;
// move filter coefficients left
for (k=1; k<filter2Size; k++)
filter2[i*filter2Size + k - 1]= filter2[i*filter2Size + k];
filter2[i*filter2Size + k - 1]= 0;
(*filterPos)[i]++;
}
cutOff=0;
/* count near zeros on the right */
for (j=filter2Size-1; j>0; j--) {
cutOff += FFABS(filter2[i*filter2Size + j]);
if (cutOff > SWS_MAX_REDUCE_CUTOFF*fone) break;
min--;
}
if (min>minFilterSize) minFilterSize= min;
}
if (flags & SWS_CPU_CAPS_ALTIVEC) {
// we can handle the special case 4,
// so we don't want to go to the full 8
if (minFilterSize < 5)
filterAlign = 4;
// We really don't want to waste our time
// doing useless computation, so fall back on
// the scalar C code for very small filters.
// Vectorizing is worth it only if you have a
// decent-sized vector.
if (minFilterSize < 3)
filterAlign = 1;
}
if (flags & SWS_CPU_CAPS_MMX) {
// special case for unscaled vertical filtering
if (minFilterSize == 1 && filterAlign == 2)
filterAlign= 1;
}
assert(minFilterSize > 0);
filterSize= (minFilterSize +(filterAlign-1)) & (~(filterAlign-1));
assert(filterSize > 0);
filter= av_malloc(filterSize*dstW*sizeof(*filter));
if (filterSize >= MAX_FILTER_SIZE*16/((flags&SWS_ACCURATE_RND) ? APCK_SIZE : 16) || !filter)
goto fail;
*outFilterSize= filterSize;
if (flags&SWS_PRINT_INFO)
av_log(NULL, AV_LOG_VERBOSE, "SwScaler: reducing / aligning filtersize %d -> %d\n", filter2Size, filterSize);
/* try to reduce the filter-size (step2 reduce it) */
for (i=0; i<dstW; i++) {
int j;
for (j=0; j<filterSize; j++) {
if (j>=filter2Size) filter[i*filterSize + j]= 0;
else filter[i*filterSize + j]= filter2[i*filter2Size + j];
if((flags & SWS_BITEXACT) && j>=minFilterSize)
filter[i*filterSize + j]= 0;
}
}
//FIXME try to align filterPos if possible
//fix borders
for (i=0; i<dstW; i++) {
int j;
if ((*filterPos)[i] < 0) {
// move filter coefficients left to compensate for filterPos
for (j=1; j<filterSize; j++) {
int left= FFMAX(j + (*filterPos)[i], 0);
filter[i*filterSize + left] += filter[i*filterSize + j];
filter[i*filterSize + j]=0;
}
(*filterPos)[i]= 0;
}
if ((*filterPos)[i] + filterSize > srcW) {
int shift= (*filterPos)[i] + filterSize - srcW;
// move filter coefficients right to compensate for filterPos
for (j=filterSize-2; j>=0; j--) {
int right= FFMIN(j + shift, filterSize-1);
filter[i*filterSize +right] += filter[i*filterSize +j];
filter[i*filterSize +j]=0;
}
(*filterPos)[i]= srcW - filterSize;
}
}
// Note the +1 is for the MMX scaler which reads over the end
/* align at 16 for AltiVec (needed by hScale_altivec_real) */
FF_ALLOCZ_OR_GOTO(NULL, *outFilter, *outFilterSize*(dstW+1)*sizeof(int16_t), fail);
/* normalize & store in outFilter */
for (i=0; i<dstW; i++) {
int j;
int64_t error=0;
int64_t sum=0;
for (j=0; j<filterSize; j++) {
sum+= filter[i*filterSize + j];
}
sum= (sum + one/2)/ one;
for (j=0; j<*outFilterSize; j++) {
int64_t v= filter[i*filterSize + j] + error;
int intV= ROUNDED_DIV(v, sum);
(*outFilter)[i*(*outFilterSize) + j]= intV;
error= v - intV*sum;
}
}
(*filterPos)[dstW]= (*filterPos)[dstW-1]; // the MMX scaler will read over the end
for (i=0; i<*outFilterSize; i++) {
int j= dstW*(*outFilterSize);
(*outFilter)[j + i]= (*outFilter)[j + i - (*outFilterSize)];
}
ret=0;
fail:
av_free(filter);
av_free(filter2);
return ret;
}
#if ARCH_X86 && (HAVE_MMX2 || CONFIG_RUNTIME_CPUDETECT) && CONFIG_GPL
static int initMMX2HScaler(int dstW, int xInc, uint8_t *filterCode, int16_t *filter, int32_t *filterPos, int numSplits)
{
uint8_t *fragmentA;
x86_reg imm8OfPShufW1A;
x86_reg imm8OfPShufW2A;
x86_reg fragmentLengthA;
uint8_t *fragmentB;
x86_reg imm8OfPShufW1B;
x86_reg imm8OfPShufW2B;
x86_reg fragmentLengthB;
int fragmentPos;
int xpos, i;
// create an optimized horizontal scaling routine
/* This scaler is made of runtime-generated MMX2 code using specially
* tuned pshufw instructions. For every four output pixels, if four
* input pixels are enough for the fast bilinear scaling, then a chunk
* of fragmentB is used. If five input pixels are needed, then a chunk
* of fragmentA is used.
*/
//code fragment
__asm__ volatile(
"jmp 9f \n\t"
// Begin
"0: \n\t"
"movq (%%"REG_d", %%"REG_a"), %%mm3 \n\t"
"movd (%%"REG_c", %%"REG_S"), %%mm0 \n\t"
"movd 1(%%"REG_c", %%"REG_S"), %%mm1 \n\t"
"punpcklbw %%mm7, %%mm1 \n\t"
"punpcklbw %%mm7, %%mm0 \n\t"
"pshufw $0xFF, %%mm1, %%mm1 \n\t"
"1: \n\t"
"pshufw $0xFF, %%mm0, %%mm0 \n\t"
"2: \n\t"
"psubw %%mm1, %%mm0 \n\t"
"movl 8(%%"REG_b", %%"REG_a"), %%esi \n\t"
"pmullw %%mm3, %%mm0 \n\t"
"psllw $7, %%mm1 \n\t"
"paddw %%mm1, %%mm0 \n\t"
"movq %%mm0, (%%"REG_D", %%"REG_a") \n\t"
"add $8, %%"REG_a" \n\t"
// End
"9: \n\t"
// "int $3 \n\t"
"lea " LOCAL_MANGLE(0b) ", %0 \n\t"
"lea " LOCAL_MANGLE(1b) ", %1 \n\t"
"lea " LOCAL_MANGLE(2b) ", %2 \n\t"
"dec %1 \n\t"
"dec %2 \n\t"
"sub %0, %1 \n\t"
"sub %0, %2 \n\t"
"lea " LOCAL_MANGLE(9b) ", %3 \n\t"
"sub %0, %3 \n\t"
:"=r" (fragmentA), "=r" (imm8OfPShufW1A), "=r" (imm8OfPShufW2A),
"=r" (fragmentLengthA)
);
__asm__ volatile(
"jmp 9f \n\t"
// Begin
"0: \n\t"
"movq (%%"REG_d", %%"REG_a"), %%mm3 \n\t"
"movd (%%"REG_c", %%"REG_S"), %%mm0 \n\t"
"punpcklbw %%mm7, %%mm0 \n\t"
"pshufw $0xFF, %%mm0, %%mm1 \n\t"
"1: \n\t"
"pshufw $0xFF, %%mm0, %%mm0 \n\t"
"2: \n\t"
"psubw %%mm1, %%mm0 \n\t"
"movl 8(%%"REG_b", %%"REG_a"), %%esi \n\t"
"pmullw %%mm3, %%mm0 \n\t"
"psllw $7, %%mm1 \n\t"
"paddw %%mm1, %%mm0 \n\t"
"movq %%mm0, (%%"REG_D", %%"REG_a") \n\t"
"add $8, %%"REG_a" \n\t"
// End
"9: \n\t"
// "int $3 \n\t"
"lea " LOCAL_MANGLE(0b) ", %0 \n\t"
"lea " LOCAL_MANGLE(1b) ", %1 \n\t"
"lea " LOCAL_MANGLE(2b) ", %2 \n\t"
"dec %1 \n\t"
"dec %2 \n\t"
"sub %0, %1 \n\t"
"sub %0, %2 \n\t"
"lea " LOCAL_MANGLE(9b) ", %3 \n\t"
"sub %0, %3 \n\t"
:"=r" (fragmentB), "=r" (imm8OfPShufW1B), "=r" (imm8OfPShufW2B),
"=r" (fragmentLengthB)
);
xpos= 0; //lumXInc/2 - 0x8000; // difference between pixel centers
fragmentPos=0;
for (i=0; i<dstW/numSplits; i++) {
int xx=xpos>>16;
if ((i&3) == 0) {
int a=0;
int b=((xpos+xInc)>>16) - xx;
int c=((xpos+xInc*2)>>16) - xx;
int d=((xpos+xInc*3)>>16) - xx;
int inc = (d+1<4);
uint8_t *fragment = (d+1<4) ? fragmentB : fragmentA;
x86_reg imm8OfPShufW1 = (d+1<4) ? imm8OfPShufW1B : imm8OfPShufW1A;
x86_reg imm8OfPShufW2 = (d+1<4) ? imm8OfPShufW2B : imm8OfPShufW2A;
x86_reg fragmentLength = (d+1<4) ? fragmentLengthB : fragmentLengthA;
int maxShift= 3-(d+inc);
int shift=0;
if (filterCode) {
filter[i ] = (( xpos & 0xFFFF) ^ 0xFFFF)>>9;
filter[i+1] = (((xpos+xInc ) & 0xFFFF) ^ 0xFFFF)>>9;
filter[i+2] = (((xpos+xInc*2) & 0xFFFF) ^ 0xFFFF)>>9;
filter[i+3] = (((xpos+xInc*3) & 0xFFFF) ^ 0xFFFF)>>9;
filterPos[i/2]= xx;
memcpy(filterCode + fragmentPos, fragment, fragmentLength);
filterCode[fragmentPos + imm8OfPShufW1]=
(a+inc) | ((b+inc)<<2) | ((c+inc)<<4) | ((d+inc)<<6);
filterCode[fragmentPos + imm8OfPShufW2]=
a | (b<<2) | (c<<4) | (d<<6);
if (i+4-inc>=dstW) shift=maxShift; //avoid overread
else if ((filterPos[i/2]&3) <= maxShift) shift=filterPos[i/2]&3; //Align
if (shift && i>=shift) {
filterCode[fragmentPos + imm8OfPShufW1]+= 0x55*shift;
filterCode[fragmentPos + imm8OfPShufW2]+= 0x55*shift;
filterPos[i/2]-=shift;
}
}
fragmentPos+= fragmentLength;
if (filterCode)
filterCode[fragmentPos]= RET;
}
xpos+=xInc;
}
if (filterCode)
filterPos[((i/2)+1)&(~1)]= xpos>>16; // needed to jump to the next part
return fragmentPos + 1;
}
#endif /* ARCH_X86 && (HAVE_MMX2 || CONFIG_RUNTIME_CPUDETECT) && CONFIG_GPL */
static void getSubSampleFactors(int *h, int *v, enum PixelFormat format)
{
*h = av_pix_fmt_descriptors[format].log2_chroma_w;
*v = av_pix_fmt_descriptors[format].log2_chroma_h;
}
static uint16_t roundToInt16(int64_t f)
{
int r= (f + (1<<15))>>16;
if (r<-0x7FFF) return 0x8000;
else if (r> 0x7FFF) return 0x7FFF;
else return r;
}
int sws_setColorspaceDetails(SwsContext *c, const int inv_table[4], int srcRange, const int table[4], int dstRange, int brightness, int contrast, int saturation)
{
int64_t crv = inv_table[0];
int64_t cbu = inv_table[1];
int64_t cgu = -inv_table[2];
int64_t cgv = -inv_table[3];
int64_t cy = 1<<16;
int64_t oy = 0;
memcpy(c->srcColorspaceTable, inv_table, sizeof(int)*4);
memcpy(c->dstColorspaceTable, table, sizeof(int)*4);
c->brightness= brightness;
c->contrast = contrast;
c->saturation= saturation;
c->srcRange = srcRange;
c->dstRange = dstRange;
if (isYUV(c->dstFormat) || isGray(c->dstFormat)) return -1;
c->uOffset= 0x0400040004000400LL;
c->vOffset= 0x0400040004000400LL;
if (!srcRange) {
cy= (cy*255) / 219;
oy= 16<<16;
} else {
crv= (crv*224) / 255;
cbu= (cbu*224) / 255;
cgu= (cgu*224) / 255;
cgv= (cgv*224) / 255;
}
cy = (cy *contrast )>>16;
crv= (crv*contrast * saturation)>>32;
cbu= (cbu*contrast * saturation)>>32;
cgu= (cgu*contrast * saturation)>>32;
cgv= (cgv*contrast * saturation)>>32;
oy -= 256*brightness;
c->yCoeff= roundToInt16(cy *8192) * 0x0001000100010001ULL;
c->vrCoeff= roundToInt16(crv*8192) * 0x0001000100010001ULL;
c->ubCoeff= roundToInt16(cbu*8192) * 0x0001000100010001ULL;
c->vgCoeff= roundToInt16(cgv*8192) * 0x0001000100010001ULL;
c->ugCoeff= roundToInt16(cgu*8192) * 0x0001000100010001ULL;
c->yOffset= roundToInt16(oy * 8) * 0x0001000100010001ULL;
c->yuv2rgb_y_coeff = (int16_t)roundToInt16(cy <<13);
c->yuv2rgb_y_offset = (int16_t)roundToInt16(oy << 9);
c->yuv2rgb_v2r_coeff= (int16_t)roundToInt16(crv<<13);
c->yuv2rgb_v2g_coeff= (int16_t)roundToInt16(cgv<<13);
c->yuv2rgb_u2g_coeff= (int16_t)roundToInt16(cgu<<13);
c->yuv2rgb_u2b_coeff= (int16_t)roundToInt16(cbu<<13);
ff_yuv2rgb_c_init_tables(c, inv_table, srcRange, brightness, contrast, saturation);
//FIXME factorize
#if ARCH_PPC && (HAVE_ALTIVEC || CONFIG_RUNTIME_CPUDETECT)
if (c->flags & SWS_CPU_CAPS_ALTIVEC)
ff_yuv2rgb_init_tables_altivec(c, inv_table, brightness, contrast, saturation);
#endif
return 0;
}
int sws_getColorspaceDetails(SwsContext *c, int **inv_table, int *srcRange, int **table, int *dstRange, int *brightness, int *contrast, int *saturation)
{
if (isYUV(c->dstFormat) || isGray(c->dstFormat)) return -1;
*inv_table = c->srcColorspaceTable;
*table = c->dstColorspaceTable;
*srcRange = c->srcRange;
*dstRange = c->dstRange;
*brightness= c->brightness;
*contrast = c->contrast;
*saturation= c->saturation;
return 0;
}
static int handle_jpeg(enum PixelFormat *format)
{
switch (*format) {
case PIX_FMT_YUVJ420P:
*format = PIX_FMT_YUV420P;
return 1;
case PIX_FMT_YUVJ422P:
*format = PIX_FMT_YUV422P;
return 1;
case PIX_FMT_YUVJ444P:
*format = PIX_FMT_YUV444P;
return 1;
case PIX_FMT_YUVJ440P:
*format = PIX_FMT_YUV440P;
return 1;
default:
return 0;
}
}
SwsContext *sws_getContext(int srcW, int srcH, enum PixelFormat srcFormat,
int dstW, int dstH, enum PixelFormat dstFormat, int flags,
SwsFilter *srcFilter, SwsFilter *dstFilter, const double *param)
{
SwsContext *c;
int i;
int usesVFilter, usesHFilter;
int unscaled;
int srcRange, dstRange;
SwsFilter dummyFilter= {NULL, NULL, NULL, NULL};
#if ARCH_X86
if (flags & SWS_CPU_CAPS_MMX)
__asm__ volatile("emms\n\t"::: "memory");
#endif
#if !CONFIG_RUNTIME_CPUDETECT //ensure that the flags match the compiled variant if cpudetect is off
flags &= ~(SWS_CPU_CAPS_MMX|SWS_CPU_CAPS_MMX2|SWS_CPU_CAPS_3DNOW|SWS_CPU_CAPS_ALTIVEC|SWS_CPU_CAPS_BFIN);
flags |= ff_hardcodedcpuflags();
#endif /* CONFIG_RUNTIME_CPUDETECT */
if (!rgb15to16) sws_rgb2rgb_init(flags);
unscaled = (srcW == dstW && srcH == dstH);
srcRange = handle_jpeg(&srcFormat);
dstRange = handle_jpeg(&dstFormat);
if (!isSupportedIn(srcFormat)) {
av_log(NULL, AV_LOG_ERROR, "swScaler: %s is not supported as input pixel format\n", sws_format_name(srcFormat));
return NULL;
}
if (!isSupportedOut(dstFormat)) {
av_log(NULL, AV_LOG_ERROR, "swScaler: %s is not supported as output pixel format\n", sws_format_name(dstFormat));
return NULL;
}
i= flags & ( SWS_POINT
|SWS_AREA
|SWS_BILINEAR
|SWS_FAST_BILINEAR
|SWS_BICUBIC
|SWS_X
|SWS_GAUSS
|SWS_LANCZOS
|SWS_SINC
|SWS_SPLINE
|SWS_BICUBLIN);
if(!i || (i & (i-1))) {
av_log(NULL, AV_LOG_ERROR, "swScaler: Exactly one scaler algorithm must be chosen\n");
return NULL;
}
/* sanity check */
if (srcW<4 || srcH<1 || dstW<8 || dstH<1) { //FIXME check if these are enough and try to lowwer them after fixing the relevant parts of the code
av_log(NULL, AV_LOG_ERROR, "swScaler: %dx%d -> %dx%d is invalid scaling dimension\n",
srcW, srcH, dstW, dstH);
return NULL;
}
if(srcW > VOFW || dstW > VOFW) {
av_log(NULL, AV_LOG_ERROR, "swScaler: Compile-time maximum width is "AV_STRINGIFY(VOFW)" change VOF/VOFW and recompile\n");
return NULL;
}
if (!dstFilter) dstFilter= &dummyFilter;
if (!srcFilter) srcFilter= &dummyFilter;
FF_ALLOCZ_OR_GOTO(NULL, c, sizeof(SwsContext), fail);
c->av_class = &sws_context_class;
c->srcW= srcW;
c->srcH= srcH;
c->dstW= dstW;
c->dstH= dstH;
c->lumXInc= ((srcW<<16) + (dstW>>1))/dstW;
c->lumYInc= ((srcH<<16) + (dstH>>1))/dstH;
c->flags= flags;
c->dstFormat= dstFormat;
c->srcFormat= srcFormat;
c->dstFormatBpp = av_get_bits_per_pixel(&av_pix_fmt_descriptors[dstFormat]);
c->srcFormatBpp = av_get_bits_per_pixel(&av_pix_fmt_descriptors[srcFormat]);
c->vRounder= 4* 0x0001000100010001ULL;
usesHFilter= usesVFilter= 0;
if (dstFilter->lumV && dstFilter->lumV->length>1) usesVFilter=1;
if (dstFilter->lumH && dstFilter->lumH->length>1) usesHFilter=1;
if (dstFilter->chrV && dstFilter->chrV->length>1) usesVFilter=1;
if (dstFilter->chrH && dstFilter->chrH->length>1) usesHFilter=1;
if (srcFilter->lumV && srcFilter->lumV->length>1) usesVFilter=1;
if (srcFilter->lumH && srcFilter->lumH->length>1) usesHFilter=1;
if (srcFilter->chrV && srcFilter->chrV->length>1) usesVFilter=1;
if (srcFilter->chrH && srcFilter->chrH->length>1) usesHFilter=1;
getSubSampleFactors(&c->chrSrcHSubSample, &c->chrSrcVSubSample, srcFormat);
getSubSampleFactors(&c->chrDstHSubSample, &c->chrDstVSubSample, dstFormat);
// reuse chroma for 2 pixels RGB/BGR unless user wants full chroma interpolation
if (isAnyRGB(dstFormat) && !(flags&SWS_FULL_CHR_H_INT)) c->chrDstHSubSample=1;
// drop some chroma lines if the user wants it
c->vChrDrop= (flags&SWS_SRC_V_CHR_DROP_MASK)>>SWS_SRC_V_CHR_DROP_SHIFT;
c->chrSrcVSubSample+= c->vChrDrop;
// drop every other pixel for chroma calculation unless user wants full chroma
if (isAnyRGB(srcFormat) && !(flags&SWS_FULL_CHR_H_INP)
&& srcFormat!=PIX_FMT_RGB8 && srcFormat!=PIX_FMT_BGR8
&& srcFormat!=PIX_FMT_RGB4 && srcFormat!=PIX_FMT_BGR4
&& srcFormat!=PIX_FMT_RGB4_BYTE && srcFormat!=PIX_FMT_BGR4_BYTE
&& ((dstW>>c->chrDstHSubSample) <= (srcW>>1) || (flags&(SWS_FAST_BILINEAR|SWS_POINT))))
c->chrSrcHSubSample=1;
if (param) {
c->param[0] = param[0];
c->param[1] = param[1];
} else {
c->param[0] =
c->param[1] = SWS_PARAM_DEFAULT;
}
// Note the -((-x)>>y) is so that we always round toward +inf.
c->chrSrcW= -((-srcW) >> c->chrSrcHSubSample);
c->chrSrcH= -((-srcH) >> c->chrSrcVSubSample);
c->chrDstW= -((-dstW) >> c->chrDstHSubSample);
c->chrDstH= -((-dstH) >> c->chrDstVSubSample);
sws_setColorspaceDetails(c, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT], srcRange, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT] /* FIXME*/, dstRange, 0, 1<<16, 1<<16);
/* unscaled special cases */
if (unscaled && !usesHFilter && !usesVFilter && (srcRange == dstRange || isAnyRGB(dstFormat))) {
ff_get_unscaled_swscale(c);
if (c->swScale) {
if (flags&SWS_PRINT_INFO)
av_log(c, AV_LOG_INFO, "using unscaled %s -> %s special converter\n",
sws_format_name(srcFormat), sws_format_name(dstFormat));
return c;
}
}
if (flags & SWS_CPU_CAPS_MMX2) {
c->canMMX2BeUsed= (dstW >=srcW && (dstW&31)==0 && (srcW&15)==0) ? 1 : 0;
if (!c->canMMX2BeUsed && dstW >=srcW && (srcW&15)==0 && (flags&SWS_FAST_BILINEAR)) {
if (flags&SWS_PRINT_INFO)
av_log(c, AV_LOG_INFO, "output width is not a multiple of 32 -> no MMX2 scaler\n");
}
if (usesHFilter) c->canMMX2BeUsed=0;
}
else
c->canMMX2BeUsed=0;
c->chrXInc= ((c->chrSrcW<<16) + (c->chrDstW>>1))/c->chrDstW;
c->chrYInc= ((c->chrSrcH<<16) + (c->chrDstH>>1))/c->chrDstH;
// match pixel 0 of the src to pixel 0 of dst and match pixel n-2 of src to pixel n-2 of dst
// but only for the FAST_BILINEAR mode otherwise do correct scaling
// n-2 is the last chrominance sample available
// this is not perfect, but no one should notice the difference, the more correct variant
// would be like the vertical one, but that would require some special code for the
// first and last pixel
if (flags&SWS_FAST_BILINEAR) {
if (c->canMMX2BeUsed) {
c->lumXInc+= 20;
c->chrXInc+= 20;
}
//we don't use the x86 asm scaler if MMX is available
else if (flags & SWS_CPU_CAPS_MMX) {
c->lumXInc = ((srcW-2)<<16)/(dstW-2) - 20;
c->chrXInc = ((c->chrSrcW-2)<<16)/(c->chrDstW-2) - 20;
}
}
/* precalculate horizontal scaler filter coefficients */
{
#if ARCH_X86 && (HAVE_MMX2 || CONFIG_RUNTIME_CPUDETECT) && CONFIG_GPL
// can't downscale !!!
if (c->canMMX2BeUsed && (flags & SWS_FAST_BILINEAR)) {
c->lumMmx2FilterCodeSize = initMMX2HScaler( dstW, c->lumXInc, NULL, NULL, NULL, 8);
c->chrMmx2FilterCodeSize = initMMX2HScaler(c->chrDstW, c->chrXInc, NULL, NULL, NULL, 4);
#ifdef MAP_ANONYMOUS
c->lumMmx2FilterCode = mmap(NULL, c->lumMmx2FilterCodeSize, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, 0, 0);
c->chrMmx2FilterCode = mmap(NULL, c->chrMmx2FilterCodeSize, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, 0, 0);
#elif HAVE_VIRTUALALLOC
c->lumMmx2FilterCode = VirtualAlloc(NULL, c->lumMmx2FilterCodeSize, MEM_COMMIT, PAGE_EXECUTE_READWRITE);
c->chrMmx2FilterCode = VirtualAlloc(NULL, c->chrMmx2FilterCodeSize, MEM_COMMIT, PAGE_EXECUTE_READWRITE);
#else
c->lumMmx2FilterCode = av_malloc(c->lumMmx2FilterCodeSize);
c->chrMmx2FilterCode = av_malloc(c->chrMmx2FilterCodeSize);
#endif
FF_ALLOCZ_OR_GOTO(c, c->hLumFilter , (dstW /8+8)*sizeof(int16_t), fail);
FF_ALLOCZ_OR_GOTO(c, c->hChrFilter , (c->chrDstW /4+8)*sizeof(int16_t), fail);
FF_ALLOCZ_OR_GOTO(c, c->hLumFilterPos, (dstW /2/8+8)*sizeof(int32_t), fail);
FF_ALLOCZ_OR_GOTO(c, c->hChrFilterPos, (c->chrDstW/2/4+8)*sizeof(int32_t), fail);
initMMX2HScaler( dstW, c->lumXInc, c->lumMmx2FilterCode, c->hLumFilter, c->hLumFilterPos, 8);
initMMX2HScaler(c->chrDstW, c->chrXInc, c->chrMmx2FilterCode, c->hChrFilter, c->hChrFilterPos, 4);
#ifdef MAP_ANONYMOUS
mprotect(c->lumMmx2FilterCode, c->lumMmx2FilterCodeSize, PROT_EXEC | PROT_READ);
mprotect(c->chrMmx2FilterCode, c->chrMmx2FilterCodeSize, PROT_EXEC | PROT_READ);
#endif
} else
#endif /* ARCH_X86 && (HAVE_MMX2 || CONFIG_RUNTIME_CPUDETECT) && CONFIG_GPL */
{
const int filterAlign=
(flags & SWS_CPU_CAPS_MMX) ? 4 :
(flags & SWS_CPU_CAPS_ALTIVEC) ? 8 :
1;
if (initFilter(&c->hLumFilter, &c->hLumFilterPos, &c->hLumFilterSize, c->lumXInc,
srcW , dstW, filterAlign, 1<<14,
(flags&SWS_BICUBLIN) ? (flags|SWS_BICUBIC) : flags,
srcFilter->lumH, dstFilter->lumH, c->param) < 0)
goto fail;
if (initFilter(&c->hChrFilter, &c->hChrFilterPos, &c->hChrFilterSize, c->chrXInc,
c->chrSrcW, c->chrDstW, filterAlign, 1<<14,
(flags&SWS_BICUBLIN) ? (flags|SWS_BILINEAR) : flags,
srcFilter->chrH, dstFilter->chrH, c->param) < 0)
goto fail;
}
} // initialize horizontal stuff
/* precalculate vertical scaler filter coefficients */
{
const int filterAlign=
(flags & SWS_CPU_CAPS_MMX) && (flags & SWS_ACCURATE_RND) ? 2 :
(flags & SWS_CPU_CAPS_ALTIVEC) ? 8 :
1;
if (initFilter(&c->vLumFilter, &c->vLumFilterPos, &c->vLumFilterSize, c->lumYInc,
srcH , dstH, filterAlign, (1<<12),
(flags&SWS_BICUBLIN) ? (flags|SWS_BICUBIC) : flags,
srcFilter->lumV, dstFilter->lumV, c->param) < 0)
goto fail;
if (initFilter(&c->vChrFilter, &c->vChrFilterPos, &c->vChrFilterSize, c->chrYInc,
c->chrSrcH, c->chrDstH, filterAlign, (1<<12),
(flags&SWS_BICUBLIN) ? (flags|SWS_BILINEAR) : flags,
srcFilter->chrV, dstFilter->chrV, c->param) < 0)
goto fail;
#if ARCH_PPC && (HAVE_ALTIVEC || CONFIG_RUNTIME_CPUDETECT)
FF_ALLOC_OR_GOTO(c, c->vYCoeffsBank, sizeof (vector signed short)*c->vLumFilterSize*c->dstH, fail);
FF_ALLOC_OR_GOTO(c, c->vCCoeffsBank, sizeof (vector signed short)*c->vChrFilterSize*c->chrDstH, fail);
for (i=0;i<c->vLumFilterSize*c->dstH;i++) {
int j;
short *p = (short *)&c->vYCoeffsBank[i];
for (j=0;j<8;j++)
p[j] = c->vLumFilter[i];
}
for (i=0;i<c->vChrFilterSize*c->chrDstH;i++) {
int j;
short *p = (short *)&c->vCCoeffsBank[i];
for (j=0;j<8;j++)
p[j] = c->vChrFilter[i];
}
#endif
}
// calculate buffer sizes so that they won't run out while handling these damn slices
c->vLumBufSize= c->vLumFilterSize;
c->vChrBufSize= c->vChrFilterSize;
for (i=0; i<dstH; i++) {
int chrI= i*c->chrDstH / dstH;
int nextSlice= FFMAX(c->vLumFilterPos[i ] + c->vLumFilterSize - 1,
((c->vChrFilterPos[chrI] + c->vChrFilterSize - 1)<<c->chrSrcVSubSample));
nextSlice>>= c->chrSrcVSubSample;
nextSlice<<= c->chrSrcVSubSample;
if (c->vLumFilterPos[i ] + c->vLumBufSize < nextSlice)
c->vLumBufSize= nextSlice - c->vLumFilterPos[i];
if (c->vChrFilterPos[chrI] + c->vChrBufSize < (nextSlice>>c->chrSrcVSubSample))
c->vChrBufSize= (nextSlice>>c->chrSrcVSubSample) - c->vChrFilterPos[chrI];
}
// allocate pixbufs (we use dynamic allocation because otherwise we would need to
// allocate several megabytes to handle all possible cases)
FF_ALLOC_OR_GOTO(c, c->lumPixBuf, c->vLumBufSize*2*sizeof(int16_t*), fail);
FF_ALLOC_OR_GOTO(c, c->chrPixBuf, c->vChrBufSize*2*sizeof(int16_t*), fail);
if (CONFIG_SWSCALE_ALPHA && isALPHA(c->srcFormat) && isALPHA(c->dstFormat))
FF_ALLOCZ_OR_GOTO(c, c->alpPixBuf, c->vLumBufSize*2*sizeof(int16_t*), fail);
//Note we need at least one pixel more at the end because of the MMX code (just in case someone wanna replace the 4000/8000)
/* align at 16 bytes for AltiVec */
for (i=0; i<c->vLumBufSize; i++) {
FF_ALLOCZ_OR_GOTO(c, c->lumPixBuf[i+c->vLumBufSize], VOF+1, fail);
c->lumPixBuf[i] = c->lumPixBuf[i+c->vLumBufSize];
}
for (i=0; i<c->vChrBufSize; i++) {
FF_ALLOC_OR_GOTO(c, c->chrPixBuf[i+c->vChrBufSize], (VOF+1)*2, fail);
c->chrPixBuf[i] = c->chrPixBuf[i+c->vChrBufSize];
}
if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf)
for (i=0; i<c->vLumBufSize; i++) {
FF_ALLOCZ_OR_GOTO(c, c->alpPixBuf[i+c->vLumBufSize], VOF+1, fail);
c->alpPixBuf[i] = c->alpPixBuf[i+c->vLumBufSize];
}
//try to avoid drawing green stuff between the right end and the stride end
for (i=0; i<c->vChrBufSize; i++) memset(c->chrPixBuf[i], 64, (VOF+1)*2);
assert(2*VOFW == VOF);
assert(c->chrDstH <= dstH);
if (flags&SWS_PRINT_INFO) {
if (flags&SWS_FAST_BILINEAR)
av_log(c, AV_LOG_INFO, "FAST_BILINEAR scaler, ");
else if (flags&SWS_BILINEAR)
av_log(c, AV_LOG_INFO, "BILINEAR scaler, ");
else if (flags&SWS_BICUBIC)
av_log(c, AV_LOG_INFO, "BICUBIC scaler, ");
else if (flags&SWS_X)
av_log(c, AV_LOG_INFO, "Experimental scaler, ");
else if (flags&SWS_POINT)
av_log(c, AV_LOG_INFO, "Nearest Neighbor / POINT scaler, ");
else if (flags&SWS_AREA)
av_log(c, AV_LOG_INFO, "Area Averaging scaler, ");
else if (flags&SWS_BICUBLIN)
av_log(c, AV_LOG_INFO, "luma BICUBIC / chroma BILINEAR scaler, ");
else if (flags&SWS_GAUSS)
av_log(c, AV_LOG_INFO, "Gaussian scaler, ");
else if (flags&SWS_SINC)
av_log(c, AV_LOG_INFO, "Sinc scaler, ");
else if (flags&SWS_LANCZOS)
av_log(c, AV_LOG_INFO, "Lanczos scaler, ");
else if (flags&SWS_SPLINE)
av_log(c, AV_LOG_INFO, "Bicubic spline scaler, ");
else
av_log(c, AV_LOG_INFO, "ehh flags invalid?! ");
av_log(c, AV_LOG_INFO, "from %s to %s%s ",
sws_format_name(srcFormat),
#ifdef DITHER1XBPP
dstFormat == PIX_FMT_BGR555 || dstFormat == PIX_FMT_BGR565 ? "dithered " : "",
#else
"",
#endif
sws_format_name(dstFormat));
if (flags & SWS_CPU_CAPS_MMX2)
av_log(c, AV_LOG_INFO, "using MMX2\n");
else if (flags & SWS_CPU_CAPS_3DNOW)
av_log(c, AV_LOG_INFO, "using 3DNOW\n");
else if (flags & SWS_CPU_CAPS_MMX)
av_log(c, AV_LOG_INFO, "using MMX\n");
else if (flags & SWS_CPU_CAPS_ALTIVEC)
av_log(c, AV_LOG_INFO, "using AltiVec\n");
else
av_log(c, AV_LOG_INFO, "using C\n");
if (flags & SWS_CPU_CAPS_MMX) {
if (c->canMMX2BeUsed && (flags&SWS_FAST_BILINEAR))
av_log(c, AV_LOG_VERBOSE, "using FAST_BILINEAR MMX2 scaler for horizontal scaling\n");
else {
if (c->hLumFilterSize==4)
av_log(c, AV_LOG_VERBOSE, "using 4-tap MMX scaler for horizontal luminance scaling\n");
else if (c->hLumFilterSize==8)
av_log(c, AV_LOG_VERBOSE, "using 8-tap MMX scaler for horizontal luminance scaling\n");
else
av_log(c, AV_LOG_VERBOSE, "using n-tap MMX scaler for horizontal luminance scaling\n");
if (c->hChrFilterSize==4)
av_log(c, AV_LOG_VERBOSE, "using 4-tap MMX scaler for horizontal chrominance scaling\n");
else if (c->hChrFilterSize==8)
av_log(c, AV_LOG_VERBOSE, "using 8-tap MMX scaler for horizontal chrominance scaling\n");
else
av_log(c, AV_LOG_VERBOSE, "using n-tap MMX scaler for horizontal chrominance scaling\n");
}
} else {
#if ARCH_X86
av_log(c, AV_LOG_VERBOSE, "using x86 asm scaler for horizontal scaling\n");
#else
if (flags & SWS_FAST_BILINEAR)
av_log(c, AV_LOG_VERBOSE, "using FAST_BILINEAR C scaler for horizontal scaling\n");
else
av_log(c, AV_LOG_VERBOSE, "using C scaler for horizontal scaling\n");
#endif
}
if (isPlanarYUV(dstFormat)) {
if (c->vLumFilterSize==1)
av_log(c, AV_LOG_VERBOSE, "using 1-tap %s \"scaler\" for vertical scaling (YV12 like)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
else
av_log(c, AV_LOG_VERBOSE, "using n-tap %s scaler for vertical scaling (YV12 like)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
} else {
if (c->vLumFilterSize==1 && c->vChrFilterSize==2)
av_log(c, AV_LOG_VERBOSE, "using 1-tap %s \"scaler\" for vertical luminance scaling (BGR)\n"
" 2-tap scaler for vertical chrominance scaling (BGR)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
else if (c->vLumFilterSize==2 && c->vChrFilterSize==2)
av_log(c, AV_LOG_VERBOSE, "using 2-tap linear %s scaler for vertical scaling (BGR)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
else
av_log(c, AV_LOG_VERBOSE, "using n-tap %s scaler for vertical scaling (BGR)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
}
if (dstFormat==PIX_FMT_BGR24)
av_log(c, AV_LOG_VERBOSE, "using %s YV12->BGR24 converter\n",
(flags & SWS_CPU_CAPS_MMX2) ? "MMX2" : ((flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C"));
else if (dstFormat==PIX_FMT_RGB32)
av_log(c, AV_LOG_VERBOSE, "using %s YV12->BGR32 converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
else if (dstFormat==PIX_FMT_BGR565)
av_log(c, AV_LOG_VERBOSE, "using %s YV12->BGR16 converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
else if (dstFormat==PIX_FMT_BGR555)
av_log(c, AV_LOG_VERBOSE, "using %s YV12->BGR15 converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
av_log(c, AV_LOG_VERBOSE, "%dx%d -> %dx%d\n", srcW, srcH, dstW, dstH);
av_log(c, AV_LOG_DEBUG, "lum srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
c->srcW, c->srcH, c->dstW, c->dstH, c->lumXInc, c->lumYInc);
av_log(c, AV_LOG_DEBUG, "chr srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
c->chrSrcW, c->chrSrcH, c->chrDstW, c->chrDstH, c->chrXInc, c->chrYInc);
}
c->swScale= ff_getSwsFunc(c);
return c;
fail:
sws_freeContext(c);
return NULL;
}
SwsFilter *sws_getDefaultFilter(float lumaGBlur, float chromaGBlur,
float lumaSharpen, float chromaSharpen,
float chromaHShift, float chromaVShift,
int verbose)
{
SwsFilter *filter= av_malloc(sizeof(SwsFilter));
if (!filter)
return NULL;
if (lumaGBlur!=0.0) {
filter->lumH= sws_getGaussianVec(lumaGBlur, 3.0);
filter->lumV= sws_getGaussianVec(lumaGBlur, 3.0);
} else {
filter->lumH= sws_getIdentityVec();
filter->lumV= sws_getIdentityVec();
}
if (chromaGBlur!=0.0) {
filter->chrH= sws_getGaussianVec(chromaGBlur, 3.0);
filter->chrV= sws_getGaussianVec(chromaGBlur, 3.0);
} else {
filter->chrH= sws_getIdentityVec();
filter->chrV= sws_getIdentityVec();
}
if (chromaSharpen!=0.0) {
SwsVector *id= sws_getIdentityVec();
sws_scaleVec(filter->chrH, -chromaSharpen);
sws_scaleVec(filter->chrV, -chromaSharpen);
sws_addVec(filter->chrH, id);
sws_addVec(filter->chrV, id);
sws_freeVec(id);
}
if (lumaSharpen!=0.0) {
SwsVector *id= sws_getIdentityVec();
sws_scaleVec(filter->lumH, -lumaSharpen);
sws_scaleVec(filter->lumV, -lumaSharpen);
sws_addVec(filter->lumH, id);
sws_addVec(filter->lumV, id);
sws_freeVec(id);
}
if (chromaHShift != 0.0)
sws_shiftVec(filter->chrH, (int)(chromaHShift+0.5));
if (chromaVShift != 0.0)
sws_shiftVec(filter->chrV, (int)(chromaVShift+0.5));
sws_normalizeVec(filter->chrH, 1.0);
sws_normalizeVec(filter->chrV, 1.0);
sws_normalizeVec(filter->lumH, 1.0);
sws_normalizeVec(filter->lumV, 1.0);
if (verbose) sws_printVec2(filter->chrH, NULL, AV_LOG_DEBUG);
if (verbose) sws_printVec2(filter->lumH, NULL, AV_LOG_DEBUG);
return filter;
}
SwsVector *sws_allocVec(int length)
{
SwsVector *vec = av_malloc(sizeof(SwsVector));
if (!vec)
return NULL;
vec->length = length;
vec->coeff = av_malloc(sizeof(double) * length);
if (!vec->coeff)
av_freep(&vec);
return vec;
}
SwsVector *sws_getGaussianVec(double variance, double quality)
{
const int length= (int)(variance*quality + 0.5) | 1;
int i;
double middle= (length-1)*0.5;
SwsVector *vec= sws_allocVec(length);
if (!vec)
return NULL;
for (i=0; i<length; i++) {
double dist= i-middle;
vec->coeff[i]= exp(-dist*dist/(2*variance*variance)) / sqrt(2*variance*M_PI);
}
sws_normalizeVec(vec, 1.0);
return vec;
}
SwsVector *sws_getConstVec(double c, int length)
{
int i;
SwsVector *vec= sws_allocVec(length);
if (!vec)
return NULL;
for (i=0; i<length; i++)
vec->coeff[i]= c;
return vec;
}
SwsVector *sws_getIdentityVec(void)
{
return sws_getConstVec(1.0, 1);
}
double sws_dcVec(SwsVector *a)
{
int i;
double sum=0;
for (i=0; i<a->length; i++)
sum+= a->coeff[i];
return sum;
}
void sws_scaleVec(SwsVector *a, double scalar)
{
int i;
for (i=0; i<a->length; i++)
a->coeff[i]*= scalar;
}
void sws_normalizeVec(SwsVector *a, double height)
{
sws_scaleVec(a, height/sws_dcVec(a));
}
static SwsVector *sws_getConvVec(SwsVector *a, SwsVector *b)
{
int length= a->length + b->length - 1;
int i, j;
SwsVector *vec= sws_getConstVec(0.0, length);
if (!vec)
return NULL;
for (i=0; i<a->length; i++) {
for (j=0; j<b->length; j++) {
vec->coeff[i+j]+= a->coeff[i]*b->coeff[j];
}
}
return vec;
}
static SwsVector *sws_sumVec(SwsVector *a, SwsVector *b)
{
int length= FFMAX(a->length, b->length);
int i;
SwsVector *vec= sws_getConstVec(0.0, length);
if (!vec)
return NULL;
for (i=0; i<a->length; i++) vec->coeff[i + (length-1)/2 - (a->length-1)/2]+= a->coeff[i];
for (i=0; i<b->length; i++) vec->coeff[i + (length-1)/2 - (b->length-1)/2]+= b->coeff[i];
return vec;
}
static SwsVector *sws_diffVec(SwsVector *a, SwsVector *b)
{
int length= FFMAX(a->length, b->length);
int i;
SwsVector *vec= sws_getConstVec(0.0, length);
if (!vec)
return NULL;
for (i=0; i<a->length; i++) vec->coeff[i + (length-1)/2 - (a->length-1)/2]+= a->coeff[i];
for (i=0; i<b->length; i++) vec->coeff[i + (length-1)/2 - (b->length-1)/2]-= b->coeff[i];
return vec;
}
/* shift left / or right if "shift" is negative */
static SwsVector *sws_getShiftedVec(SwsVector *a, int shift)
{
int length= a->length + FFABS(shift)*2;
int i;
SwsVector *vec= sws_getConstVec(0.0, length);
if (!vec)
return NULL;
for (i=0; i<a->length; i++) {
vec->coeff[i + (length-1)/2 - (a->length-1)/2 - shift]= a->coeff[i];
}
return vec;
}
void sws_shiftVec(SwsVector *a, int shift)
{
SwsVector *shifted= sws_getShiftedVec(a, shift);
av_free(a->coeff);
a->coeff= shifted->coeff;
a->length= shifted->length;
av_free(shifted);
}
void sws_addVec(SwsVector *a, SwsVector *b)
{
SwsVector *sum= sws_sumVec(a, b);
av_free(a->coeff);
a->coeff= sum->coeff;
a->length= sum->length;
av_free(sum);
}
void sws_subVec(SwsVector *a, SwsVector *b)
{
SwsVector *diff= sws_diffVec(a, b);
av_free(a->coeff);
a->coeff= diff->coeff;
a->length= diff->length;
av_free(diff);
}
void sws_convVec(SwsVector *a, SwsVector *b)
{
SwsVector *conv= sws_getConvVec(a, b);
av_free(a->coeff);
a->coeff= conv->coeff;
a->length= conv->length;
av_free(conv);
}
SwsVector *sws_cloneVec(SwsVector *a)
{
int i;
SwsVector *vec= sws_allocVec(a->length);
if (!vec)
return NULL;
for (i=0; i<a->length; i++) vec->coeff[i]= a->coeff[i];
return vec;
}
void sws_printVec2(SwsVector *a, AVClass *log_ctx, int log_level)
{
int i;
double max=0;
double min=0;
double range;
for (i=0; i<a->length; i++)
if (a->coeff[i]>max) max= a->coeff[i];
for (i=0; i<a->length; i++)
if (a->coeff[i]<min) min= a->coeff[i];
range= max - min;
for (i=0; i<a->length; i++) {
int x= (int)((a->coeff[i]-min)*60.0/range +0.5);
av_log(log_ctx, log_level, "%1.3f ", a->coeff[i]);
for (;x>0; x--) av_log(log_ctx, log_level, " ");
av_log(log_ctx, log_level, "|\n");
}
}
#if LIBSWSCALE_VERSION_MAJOR < 1
void sws_printVec(SwsVector *a)
{
sws_printVec2(a, NULL, AV_LOG_DEBUG);
}
#endif
void sws_freeVec(SwsVector *a)
{
if (!a) return;
av_freep(&a->coeff);
a->length=0;
av_free(a);
}
void sws_freeFilter(SwsFilter *filter)
{
if (!filter) return;
if (filter->lumH) sws_freeVec(filter->lumH);
if (filter->lumV) sws_freeVec(filter->lumV);
if (filter->chrH) sws_freeVec(filter->chrH);
if (filter->chrV) sws_freeVec(filter->chrV);
av_free(filter);
}
void sws_freeContext(SwsContext *c)
{
int i;
if (!c) return;
if (c->lumPixBuf) {
for (i=0; i<c->vLumBufSize; i++)
av_freep(&c->lumPixBuf[i]);
av_freep(&c->lumPixBuf);
}
if (c->chrPixBuf) {
for (i=0; i<c->vChrBufSize; i++)
av_freep(&c->chrPixBuf[i]);
av_freep(&c->chrPixBuf);
}
if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf) {
for (i=0; i<c->vLumBufSize; i++)
av_freep(&c->alpPixBuf[i]);
av_freep(&c->alpPixBuf);
}
av_freep(&c->vLumFilter);
av_freep(&c->vChrFilter);
av_freep(&c->hLumFilter);
av_freep(&c->hChrFilter);
#if ARCH_PPC && (HAVE_ALTIVEC || CONFIG_RUNTIME_CPUDETECT)
av_freep(&c->vYCoeffsBank);
av_freep(&c->vCCoeffsBank);
#endif
av_freep(&c->vLumFilterPos);
av_freep(&c->vChrFilterPos);
av_freep(&c->hLumFilterPos);
av_freep(&c->hChrFilterPos);
#if ARCH_X86 && CONFIG_GPL
#ifdef MAP_ANONYMOUS
if (c->lumMmx2FilterCode) munmap(c->lumMmx2FilterCode, c->lumMmx2FilterCodeSize);
if (c->chrMmx2FilterCode) munmap(c->chrMmx2FilterCode, c->chrMmx2FilterCodeSize);
#elif HAVE_VIRTUALALLOC
if (c->lumMmx2FilterCode) VirtualFree(c->lumMmx2FilterCode, c->lumMmx2FilterCodeSize, MEM_RELEASE);
if (c->chrMmx2FilterCode) VirtualFree(c->chrMmx2FilterCode, c->chrMmx2FilterCodeSize, MEM_RELEASE);
#else
av_free(c->lumMmx2FilterCode);
av_free(c->chrMmx2FilterCode);
#endif
c->lumMmx2FilterCode=NULL;
c->chrMmx2FilterCode=NULL;
#endif /* ARCH_X86 && CONFIG_GPL */
av_freep(&c->yuvTable);
av_free(c);
}
struct SwsContext *sws_getCachedContext(struct SwsContext *context,
int srcW, int srcH, enum PixelFormat srcFormat,
int dstW, int dstH, enum PixelFormat dstFormat, int flags,
SwsFilter *srcFilter, SwsFilter *dstFilter, const double *param)
{
static const double default_param[2] = {SWS_PARAM_DEFAULT, SWS_PARAM_DEFAULT};
if (!param)
param = default_param;
if (context) {
if (context->srcW != srcW || context->srcH != srcH ||
context->srcFormat != srcFormat ||
context->dstW != dstW || context->dstH != dstH ||
context->dstFormat != dstFormat || context->flags != flags ||
context->param[0] != param[0] || context->param[1] != param[1])
{
sws_freeContext(context);
context = NULL;
}
}
if (!context) {
return sws_getContext(srcW, srcH, srcFormat,
dstW, dstH, dstFormat, flags,
srcFilter, dstFilter, param);
}
return context;
}