mirror of
https://github.com/FFmpeg/FFmpeg.git
synced 2025-01-24 13:56:33 +02:00
df3cdf4c75
This is done generically now. Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
657 lines
23 KiB
C
657 lines
23 KiB
C
/*
|
|
* NewTek SpeedHQ codec
|
|
* Copyright 2017 Steinar H. Gunderson
|
|
*
|
|
* This file is part of FFmpeg.
|
|
*
|
|
* FFmpeg is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*
|
|
* FFmpeg is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with FFmpeg; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
|
|
/**
|
|
* @file
|
|
* NewTek SpeedHQ decoder.
|
|
*/
|
|
|
|
#define BITSTREAM_READER_LE
|
|
|
|
#include "libavutil/attributes.h"
|
|
#include "libavutil/mem_internal.h"
|
|
|
|
#include "avcodec.h"
|
|
#include "blockdsp.h"
|
|
#include "codec_internal.h"
|
|
#include "decode.h"
|
|
#include "get_bits.h"
|
|
#include "idctdsp.h"
|
|
#include "libavutil/thread.h"
|
|
#include "mathops.h"
|
|
#include "mpeg12data.h"
|
|
#include "mpeg12vlc.h"
|
|
#include "speedhq.h"
|
|
#include "thread.h"
|
|
|
|
#define MAX_INDEX (64 - 1)
|
|
|
|
/*
|
|
* 5 bits makes for very small tables, with no more than two lookups needed
|
|
* for the longest (10-bit) codes.
|
|
*/
|
|
#define ALPHA_VLC_BITS 5
|
|
|
|
typedef struct SHQContext {
|
|
BlockDSPContext bdsp;
|
|
IDCTDSPContext idsp;
|
|
uint8_t permutated_intra_scantable[64];
|
|
int quant_matrix[64];
|
|
enum { SHQ_SUBSAMPLING_420, SHQ_SUBSAMPLING_422, SHQ_SUBSAMPLING_444 }
|
|
subsampling;
|
|
enum { SHQ_NO_ALPHA, SHQ_RLE_ALPHA, SHQ_DCT_ALPHA } alpha_type;
|
|
} SHQContext;
|
|
|
|
/* NOTE: The first element is always 16, unscaled. */
|
|
static const uint8_t unscaled_quant_matrix[64] = {
|
|
16, 16, 19, 22, 26, 27, 29, 34,
|
|
16, 16, 22, 24, 27, 29, 34, 37,
|
|
19, 22, 26, 27, 29, 34, 34, 38,
|
|
22, 22, 26, 27, 29, 34, 37, 40,
|
|
22, 26, 27, 29, 32, 35, 40, 48,
|
|
26, 27, 29, 32, 35, 40, 48, 58,
|
|
26, 27, 29, 34, 38, 46, 56, 69,
|
|
27, 29, 35, 38, 46, 56, 69, 83
|
|
};
|
|
|
|
static VLCElem dc_lum_vlc_le[512];
|
|
static VLCElem dc_chroma_vlc_le[514];
|
|
static VLCElem dc_alpha_run_vlc_le[160];
|
|
static VLCElem dc_alpha_level_vlc_le[288];
|
|
|
|
static RL_VLC_ELEM speedhq_rl_vlc[674];
|
|
|
|
static inline int decode_dc_le(GetBitContext *gb, int component)
|
|
{
|
|
int code, diff;
|
|
|
|
if (component == 0 || component == 3) {
|
|
code = get_vlc2(gb, dc_lum_vlc_le, DC_VLC_BITS, 2);
|
|
} else {
|
|
code = get_vlc2(gb, dc_chroma_vlc_le, DC_VLC_BITS, 2);
|
|
}
|
|
if (!code) {
|
|
diff = 0;
|
|
} else {
|
|
diff = get_xbits_le(gb, code);
|
|
}
|
|
return diff;
|
|
}
|
|
|
|
static inline int decode_alpha_block(const SHQContext *s, GetBitContext *gb, uint8_t last_alpha[16], uint8_t *dest, int linesize)
|
|
{
|
|
uint8_t block[128];
|
|
int i = 0, x, y;
|
|
|
|
memset(block, 0, sizeof(block));
|
|
|
|
{
|
|
OPEN_READER(re, gb);
|
|
|
|
for ( ;; ) {
|
|
int run, level;
|
|
|
|
UPDATE_CACHE_LE(re, gb);
|
|
GET_VLC(run, re, gb, dc_alpha_run_vlc_le, ALPHA_VLC_BITS, 2);
|
|
|
|
if (run < 0) break;
|
|
i += run;
|
|
if (i >= 128)
|
|
return AVERROR_INVALIDDATA;
|
|
|
|
UPDATE_CACHE_LE(re, gb);
|
|
GET_VLC(level, re, gb, dc_alpha_level_vlc_le, ALPHA_VLC_BITS, 2);
|
|
block[i++] = level;
|
|
}
|
|
|
|
CLOSE_READER(re, gb);
|
|
}
|
|
|
|
for (y = 0; y < 8; y++) {
|
|
for (x = 0; x < 16; x++) {
|
|
last_alpha[x] -= block[y * 16 + x];
|
|
}
|
|
memcpy(dest, last_alpha, 16);
|
|
dest += linesize;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline int decode_dct_block(const SHQContext *s, GetBitContext *gb, int last_dc[4], int component, uint8_t *dest, int linesize)
|
|
{
|
|
const int *quant_matrix = s->quant_matrix;
|
|
const uint8_t *scantable = s->permutated_intra_scantable;
|
|
LOCAL_ALIGNED_32(int16_t, block, [64]);
|
|
int dc_offset;
|
|
|
|
s->bdsp.clear_block(block);
|
|
|
|
dc_offset = decode_dc_le(gb, component);
|
|
last_dc[component] -= dc_offset; /* Note: Opposite of most codecs. */
|
|
block[scantable[0]] = last_dc[component]; /* quant_matrix[0] is always 16. */
|
|
|
|
/* Read AC coefficients. */
|
|
{
|
|
int i = 0;
|
|
OPEN_READER(re, gb);
|
|
for ( ;; ) {
|
|
int level, run;
|
|
UPDATE_CACHE_LE(re, gb);
|
|
GET_RL_VLC(level, run, re, gb, speedhq_rl_vlc,
|
|
TEX_VLC_BITS, 2, 0);
|
|
if (level == 127) {
|
|
break;
|
|
} else if (level) {
|
|
i += run;
|
|
if (i > MAX_INDEX)
|
|
return AVERROR_INVALIDDATA;
|
|
/* If next bit is 1, level = -level */
|
|
level = (level ^ SHOW_SBITS(re, gb, 1)) -
|
|
SHOW_SBITS(re, gb, 1);
|
|
LAST_SKIP_BITS(re, gb, 1);
|
|
} else {
|
|
/* Escape. */
|
|
#if MIN_CACHE_BITS < 6 + 6 + 12
|
|
#error MIN_CACHE_BITS is too small for the escape code, add UPDATE_CACHE
|
|
#endif
|
|
run = SHOW_UBITS(re, gb, 6) + 1;
|
|
SKIP_BITS(re, gb, 6);
|
|
level = SHOW_UBITS(re, gb, 12) - 2048;
|
|
LAST_SKIP_BITS(re, gb, 12);
|
|
|
|
i += run;
|
|
if (i > MAX_INDEX)
|
|
return AVERROR_INVALIDDATA;
|
|
}
|
|
|
|
block[scantable[i]] = (level * quant_matrix[i]) >> 4;
|
|
}
|
|
CLOSE_READER(re, gb);
|
|
}
|
|
|
|
s->idsp.idct_put(dest, linesize, block);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int decode_speedhq_border(const SHQContext *s, GetBitContext *gb, AVFrame *frame, int field_number, int line_stride)
|
|
{
|
|
int linesize_y = frame->linesize[0] * line_stride;
|
|
int linesize_cb = frame->linesize[1] * line_stride;
|
|
int linesize_cr = frame->linesize[2] * line_stride;
|
|
int linesize_a;
|
|
int ret;
|
|
|
|
if (s->alpha_type != SHQ_NO_ALPHA)
|
|
linesize_a = frame->linesize[3] * line_stride;
|
|
|
|
for (int y = 0; y < frame->height; y += 16 * line_stride) {
|
|
int last_dc[4] = { 1024, 1024, 1024, 1024 };
|
|
uint8_t *dest_y, *dest_cb, *dest_cr, *dest_a;
|
|
uint8_t last_alpha[16];
|
|
int x = frame->width - 8;
|
|
|
|
dest_y = frame->data[0] + frame->linesize[0] * (y + field_number) + x;
|
|
if (s->subsampling == SHQ_SUBSAMPLING_420) {
|
|
dest_cb = frame->data[1] + frame->linesize[1] * (y/2 + field_number) + x / 2;
|
|
dest_cr = frame->data[2] + frame->linesize[2] * (y/2 + field_number) + x / 2;
|
|
} else {
|
|
av_assert2(s->subsampling == SHQ_SUBSAMPLING_422);
|
|
dest_cb = frame->data[1] + frame->linesize[1] * (y + field_number) + x / 2;
|
|
dest_cr = frame->data[2] + frame->linesize[2] * (y + field_number) + x / 2;
|
|
}
|
|
if (s->alpha_type != SHQ_NO_ALPHA) {
|
|
memset(last_alpha, 255, sizeof(last_alpha));
|
|
dest_a = frame->data[3] + frame->linesize[3] * (y + field_number) + x;
|
|
}
|
|
|
|
if ((ret = decode_dct_block(s, gb, last_dc, 0, dest_y, linesize_y)) < 0)
|
|
return ret;
|
|
if ((ret = decode_dct_block(s, gb, last_dc, 0, dest_y + 8, linesize_y)) < 0)
|
|
return ret;
|
|
if ((ret = decode_dct_block(s, gb, last_dc, 0, dest_y + 8 * linesize_y, linesize_y)) < 0)
|
|
return ret;
|
|
if ((ret = decode_dct_block(s, gb, last_dc, 0, dest_y + 8 * linesize_y + 8, linesize_y)) < 0)
|
|
return ret;
|
|
if ((ret = decode_dct_block(s, gb, last_dc, 1, dest_cb, linesize_cb)) < 0)
|
|
return ret;
|
|
if ((ret = decode_dct_block(s, gb, last_dc, 2, dest_cr, linesize_cr)) < 0)
|
|
return ret;
|
|
|
|
if (s->subsampling != SHQ_SUBSAMPLING_420) {
|
|
if ((ret = decode_dct_block(s, gb, last_dc, 1, dest_cb + 8 * linesize_cb, linesize_cb)) < 0)
|
|
return ret;
|
|
if ((ret = decode_dct_block(s, gb, last_dc, 2, dest_cr + 8 * linesize_cr, linesize_cr)) < 0)
|
|
return ret;
|
|
}
|
|
|
|
if (s->alpha_type == SHQ_RLE_ALPHA) {
|
|
/* Alpha coded using 16x8 RLE blocks. */
|
|
if ((ret = decode_alpha_block(s, gb, last_alpha, dest_a, linesize_a)) < 0)
|
|
return ret;
|
|
if ((ret = decode_alpha_block(s, gb, last_alpha, dest_a + 8 * linesize_a, linesize_a)) < 0)
|
|
return ret;
|
|
} else if (s->alpha_type == SHQ_DCT_ALPHA) {
|
|
/* Alpha encoded exactly like luma. */
|
|
if ((ret = decode_dct_block(s, gb, last_dc, 3, dest_a, linesize_a)) < 0)
|
|
return ret;
|
|
if ((ret = decode_dct_block(s, gb, last_dc, 3, dest_a + 8, linesize_a)) < 0)
|
|
return ret;
|
|
if ((ret = decode_dct_block(s, gb, last_dc, 3, dest_a + 8 * linesize_a, linesize_a)) < 0)
|
|
return ret;
|
|
if ((ret = decode_dct_block(s, gb, last_dc, 3, dest_a + 8 * linesize_a + 8, linesize_a)) < 0)
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int decode_speedhq_field(const SHQContext *s, const uint8_t *buf, int buf_size, AVFrame *frame, int field_number, int start, int end, int line_stride)
|
|
{
|
|
int ret, slice_number, slice_offsets[5];
|
|
int linesize_y = frame->linesize[0] * line_stride;
|
|
int linesize_cb = frame->linesize[1] * line_stride;
|
|
int linesize_cr = frame->linesize[2] * line_stride;
|
|
int linesize_a;
|
|
GetBitContext gb;
|
|
|
|
if (s->alpha_type != SHQ_NO_ALPHA)
|
|
linesize_a = frame->linesize[3] * line_stride;
|
|
|
|
if (end < start || end - start < 3 || end > buf_size)
|
|
return AVERROR_INVALIDDATA;
|
|
|
|
slice_offsets[0] = start;
|
|
slice_offsets[4] = end;
|
|
for (slice_number = 1; slice_number < 4; slice_number++) {
|
|
uint32_t last_offset, slice_len;
|
|
|
|
last_offset = slice_offsets[slice_number - 1];
|
|
slice_len = AV_RL24(buf + last_offset);
|
|
slice_offsets[slice_number] = last_offset + slice_len;
|
|
|
|
if (slice_len < 3 || slice_offsets[slice_number] > end - 3)
|
|
return AVERROR_INVALIDDATA;
|
|
}
|
|
|
|
for (slice_number = 0; slice_number < 4; slice_number++) {
|
|
uint32_t slice_begin, slice_end;
|
|
int x, y;
|
|
|
|
slice_begin = slice_offsets[slice_number];
|
|
slice_end = slice_offsets[slice_number + 1];
|
|
|
|
if ((ret = init_get_bits8(&gb, buf + slice_begin + 3, slice_end - slice_begin - 3)) < 0)
|
|
return ret;
|
|
|
|
for (y = slice_number * 16 * line_stride; y < frame->height; y += line_stride * 64) {
|
|
uint8_t *dest_y, *dest_cb, *dest_cr, *dest_a;
|
|
int last_dc[4] = { 1024, 1024, 1024, 1024 };
|
|
uint8_t last_alpha[16];
|
|
|
|
memset(last_alpha, 255, sizeof(last_alpha));
|
|
|
|
dest_y = frame->data[0] + frame->linesize[0] * (y + field_number);
|
|
if (s->subsampling == SHQ_SUBSAMPLING_420) {
|
|
dest_cb = frame->data[1] + frame->linesize[1] * (y/2 + field_number);
|
|
dest_cr = frame->data[2] + frame->linesize[2] * (y/2 + field_number);
|
|
} else {
|
|
dest_cb = frame->data[1] + frame->linesize[1] * (y + field_number);
|
|
dest_cr = frame->data[2] + frame->linesize[2] * (y + field_number);
|
|
}
|
|
if (s->alpha_type != SHQ_NO_ALPHA) {
|
|
dest_a = frame->data[3] + frame->linesize[3] * (y + field_number);
|
|
}
|
|
|
|
for (x = 0; x < frame->width - 8 * (s->subsampling != SHQ_SUBSAMPLING_444); x += 16) {
|
|
/* Decode the four luma blocks. */
|
|
if ((ret = decode_dct_block(s, &gb, last_dc, 0, dest_y, linesize_y)) < 0)
|
|
return ret;
|
|
if ((ret = decode_dct_block(s, &gb, last_dc, 0, dest_y + 8, linesize_y)) < 0)
|
|
return ret;
|
|
if ((ret = decode_dct_block(s, &gb, last_dc, 0, dest_y + 8 * linesize_y, linesize_y)) < 0)
|
|
return ret;
|
|
if ((ret = decode_dct_block(s, &gb, last_dc, 0, dest_y + 8 * linesize_y + 8, linesize_y)) < 0)
|
|
return ret;
|
|
|
|
/*
|
|
* Decode the first chroma block. For 4:2:0, this is the only one;
|
|
* for 4:2:2, it's the top block; for 4:4:4, it's the top-left block.
|
|
*/
|
|
if ((ret = decode_dct_block(s, &gb, last_dc, 1, dest_cb, linesize_cb)) < 0)
|
|
return ret;
|
|
if ((ret = decode_dct_block(s, &gb, last_dc, 2, dest_cr, linesize_cr)) < 0)
|
|
return ret;
|
|
|
|
if (s->subsampling != SHQ_SUBSAMPLING_420) {
|
|
/* For 4:2:2, this is the bottom block; for 4:4:4, it's the bottom-left block. */
|
|
if ((ret = decode_dct_block(s, &gb, last_dc, 1, dest_cb + 8 * linesize_cb, linesize_cb)) < 0)
|
|
return ret;
|
|
if ((ret = decode_dct_block(s, &gb, last_dc, 2, dest_cr + 8 * linesize_cr, linesize_cr)) < 0)
|
|
return ret;
|
|
|
|
if (s->subsampling == SHQ_SUBSAMPLING_444) {
|
|
/* Top-right and bottom-right blocks. */
|
|
if ((ret = decode_dct_block(s, &gb, last_dc, 1, dest_cb + 8, linesize_cb)) < 0)
|
|
return ret;
|
|
if ((ret = decode_dct_block(s, &gb, last_dc, 2, dest_cr + 8, linesize_cr)) < 0)
|
|
return ret;
|
|
if ((ret = decode_dct_block(s, &gb, last_dc, 1, dest_cb + 8 * linesize_cb + 8, linesize_cb)) < 0)
|
|
return ret;
|
|
if ((ret = decode_dct_block(s, &gb, last_dc, 2, dest_cr + 8 * linesize_cr + 8, linesize_cr)) < 0)
|
|
return ret;
|
|
|
|
dest_cb += 8;
|
|
dest_cr += 8;
|
|
}
|
|
}
|
|
dest_y += 16;
|
|
dest_cb += 8;
|
|
dest_cr += 8;
|
|
|
|
if (s->alpha_type == SHQ_RLE_ALPHA) {
|
|
/* Alpha coded using 16x8 RLE blocks. */
|
|
if ((ret = decode_alpha_block(s, &gb, last_alpha, dest_a, linesize_a)) < 0)
|
|
return ret;
|
|
if ((ret = decode_alpha_block(s, &gb, last_alpha, dest_a + 8 * linesize_a, linesize_a)) < 0)
|
|
return ret;
|
|
dest_a += 16;
|
|
} else if (s->alpha_type == SHQ_DCT_ALPHA) {
|
|
/* Alpha encoded exactly like luma. */
|
|
if ((ret = decode_dct_block(s, &gb, last_dc, 3, dest_a, linesize_a)) < 0)
|
|
return ret;
|
|
if ((ret = decode_dct_block(s, &gb, last_dc, 3, dest_a + 8, linesize_a)) < 0)
|
|
return ret;
|
|
if ((ret = decode_dct_block(s, &gb, last_dc, 3, dest_a + 8 * linesize_a, linesize_a)) < 0)
|
|
return ret;
|
|
if ((ret = decode_dct_block(s, &gb, last_dc, 3, dest_a + 8 * linesize_a + 8, linesize_a)) < 0)
|
|
return ret;
|
|
dest_a += 16;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (s->subsampling != SHQ_SUBSAMPLING_444 && (frame->width & 15))
|
|
return decode_speedhq_border(s, &gb, frame, field_number, line_stride);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void compute_quant_matrix(int *output, int qscale)
|
|
{
|
|
int i;
|
|
for (i = 0; i < 64; i++) output[i] = unscaled_quant_matrix[ff_zigzag_direct[i]] * qscale;
|
|
}
|
|
|
|
static int speedhq_decode_frame(AVCodecContext *avctx, AVFrame *frame,
|
|
int *got_frame, AVPacket *avpkt)
|
|
{
|
|
SHQContext * const s = avctx->priv_data;
|
|
const uint8_t *buf = avpkt->data;
|
|
int buf_size = avpkt->size;
|
|
uint8_t quality;
|
|
uint32_t second_field_offset;
|
|
int ret;
|
|
|
|
if (buf_size < 4 || avctx->width < 8 || avctx->width % 8 != 0)
|
|
return AVERROR_INVALIDDATA;
|
|
if (buf_size < avctx->width*avctx->height / 64 / 4)
|
|
return AVERROR_INVALIDDATA;
|
|
|
|
quality = buf[0];
|
|
if (quality >= 100) {
|
|
return AVERROR_INVALIDDATA;
|
|
}
|
|
|
|
if (avctx->skip_frame >= AVDISCARD_ALL)
|
|
return avpkt->size;
|
|
|
|
compute_quant_matrix(s->quant_matrix, 100 - quality);
|
|
|
|
second_field_offset = AV_RL24(buf + 1);
|
|
if (second_field_offset >= buf_size - 3) {
|
|
return AVERROR_INVALIDDATA;
|
|
}
|
|
|
|
avctx->coded_width = FFALIGN(avctx->width, 16);
|
|
avctx->coded_height = FFALIGN(avctx->height, 16);
|
|
|
|
if ((ret = ff_thread_get_buffer(avctx, frame, 0)) < 0) {
|
|
return ret;
|
|
}
|
|
|
|
if (second_field_offset == 4 || second_field_offset == (buf_size-4)) {
|
|
/*
|
|
* Overlapping first and second fields is used to signal
|
|
* encoding only a single field. In this case, "height"
|
|
* is ambiguous; it could mean either the height of the
|
|
* frame as a whole, or of the field. The former would make
|
|
* more sense for compatibility with legacy decoders,
|
|
* but this matches the convention used in NDI, which is
|
|
* the primary user of this trick.
|
|
*/
|
|
if ((ret = decode_speedhq_field(s, buf, buf_size, frame, 0, 4, buf_size, 1)) < 0)
|
|
return ret;
|
|
} else {
|
|
if ((ret = decode_speedhq_field(s, buf, buf_size, frame, 0, 4, second_field_offset, 2)) < 0)
|
|
return ret;
|
|
if ((ret = decode_speedhq_field(s, buf, buf_size, frame, 1, second_field_offset, buf_size, 2)) < 0)
|
|
return ret;
|
|
}
|
|
|
|
*got_frame = 1;
|
|
return buf_size;
|
|
}
|
|
|
|
/*
|
|
* Alpha VLC. Run and level are independently coded, and would be
|
|
* outside the default limits for MAX_RUN/MAX_LEVEL, so we don't
|
|
* bother with combining them into one table.
|
|
*/
|
|
static av_cold void compute_alpha_vlcs(void)
|
|
{
|
|
uint16_t run_code[134], level_code[266];
|
|
uint8_t run_bits[134], level_bits[266];
|
|
int16_t run_symbols[134], level_symbols[266];
|
|
int entry, i, sign;
|
|
|
|
/* Initialize VLC for alpha run. */
|
|
entry = 0;
|
|
|
|
/* 0 -> 0. */
|
|
run_code[entry] = 0;
|
|
run_bits[entry] = 1;
|
|
run_symbols[entry] = 0;
|
|
++entry;
|
|
|
|
/* 10xx -> xx plus 1. */
|
|
for (i = 0; i < 4; ++i) {
|
|
run_code[entry] = (i << 2) | 1;
|
|
run_bits[entry] = 4;
|
|
run_symbols[entry] = i + 1;
|
|
++entry;
|
|
}
|
|
|
|
/* 111xxxxxxx -> xxxxxxx. */
|
|
for (i = 0; i < 128; ++i) {
|
|
run_code[entry] = (i << 3) | 7;
|
|
run_bits[entry] = 10;
|
|
run_symbols[entry] = i;
|
|
++entry;
|
|
}
|
|
|
|
/* 110 -> EOB. */
|
|
run_code[entry] = 3;
|
|
run_bits[entry] = 3;
|
|
run_symbols[entry] = -1;
|
|
++entry;
|
|
|
|
av_assert0(entry == FF_ARRAY_ELEMS(run_code));
|
|
|
|
VLC_INIT_STATIC_SPARSE_TABLE(dc_alpha_run_vlc_le, ALPHA_VLC_BITS,
|
|
FF_ARRAY_ELEMS(run_code),
|
|
run_bits, 1, 1,
|
|
run_code, 2, 2,
|
|
run_symbols, 2, 2, VLC_INIT_LE);
|
|
|
|
/* Initialize VLC for alpha level. */
|
|
entry = 0;
|
|
|
|
for (sign = 0; sign <= 1; ++sign) {
|
|
/* 1s -> -1 or +1 (depending on sign bit). */
|
|
level_code[entry] = (sign << 1) | 1;
|
|
level_bits[entry] = 2;
|
|
level_symbols[entry] = sign ? -1 : 1;
|
|
++entry;
|
|
|
|
/* 01sxx -> xx plus 2 (2..5 or -2..-5, depending on sign bit). */
|
|
for (i = 0; i < 4; ++i) {
|
|
level_code[entry] = (i << 3) | (sign << 2) | 2;
|
|
level_bits[entry] = 5;
|
|
level_symbols[entry] = sign ? -(i + 2) : (i + 2);
|
|
++entry;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* 00xxxxxxxx -> xxxxxxxx, in two's complement. There are many codes
|
|
* here that would better be encoded in other ways (e.g. 0 would be
|
|
* encoded by increasing run, and +/- 1 would be encoded with a
|
|
* shorter code), but it doesn't hurt to allow everything.
|
|
*/
|
|
for (i = 0; i < 256; ++i) {
|
|
level_code[entry] = i << 2;
|
|
level_bits[entry] = 10;
|
|
level_symbols[entry] = i;
|
|
++entry;
|
|
}
|
|
|
|
av_assert0(entry == FF_ARRAY_ELEMS(level_code));
|
|
|
|
VLC_INIT_STATIC_SPARSE_TABLE(dc_alpha_level_vlc_le, ALPHA_VLC_BITS,
|
|
FF_ARRAY_ELEMS(level_code),
|
|
level_bits, 1, 1,
|
|
level_code, 2, 2,
|
|
level_symbols, 2, 2, VLC_INIT_LE);
|
|
}
|
|
|
|
static av_cold void speedhq_static_init(void)
|
|
{
|
|
/* Exactly the same as MPEG-2, except for a little-endian reader. */
|
|
VLC_INIT_STATIC_TABLE(dc_lum_vlc_le, DC_VLC_BITS, 12,
|
|
ff_mpeg12_vlc_dc_lum_bits, 1, 1,
|
|
ff_mpeg12_vlc_dc_lum_code, 2, 2,
|
|
VLC_INIT_OUTPUT_LE);
|
|
VLC_INIT_STATIC_TABLE(dc_chroma_vlc_le, DC_VLC_BITS, 12,
|
|
ff_mpeg12_vlc_dc_chroma_bits, 1, 1,
|
|
ff_mpeg12_vlc_dc_chroma_code, 2, 2,
|
|
VLC_INIT_OUTPUT_LE);
|
|
|
|
ff_init_2d_vlc_rl(ff_speedhq_vlc_table, speedhq_rl_vlc, ff_speedhq_run,
|
|
ff_speedhq_level, SPEEDHQ_RL_NB_ELEMS,
|
|
FF_ARRAY_ELEMS(speedhq_rl_vlc), VLC_INIT_LE);
|
|
|
|
compute_alpha_vlcs();
|
|
}
|
|
|
|
static av_cold int speedhq_decode_init(AVCodecContext *avctx)
|
|
{
|
|
int ret;
|
|
static AVOnce init_once = AV_ONCE_INIT;
|
|
SHQContext * const s = avctx->priv_data;
|
|
|
|
ret = ff_thread_once(&init_once, speedhq_static_init);
|
|
if (ret)
|
|
return AVERROR_UNKNOWN;
|
|
|
|
ff_blockdsp_init(&s->bdsp);
|
|
ff_idctdsp_init(&s->idsp, avctx);
|
|
ff_permute_scantable(s->permutated_intra_scantable, ff_zigzag_direct,
|
|
s->idsp.idct_permutation);
|
|
|
|
switch (avctx->codec_tag) {
|
|
case MKTAG('S', 'H', 'Q', '0'):
|
|
s->subsampling = SHQ_SUBSAMPLING_420;
|
|
s->alpha_type = SHQ_NO_ALPHA;
|
|
avctx->pix_fmt = AV_PIX_FMT_YUV420P;
|
|
break;
|
|
case MKTAG('S', 'H', 'Q', '1'):
|
|
s->subsampling = SHQ_SUBSAMPLING_420;
|
|
s->alpha_type = SHQ_RLE_ALPHA;
|
|
avctx->pix_fmt = AV_PIX_FMT_YUVA420P;
|
|
break;
|
|
case MKTAG('S', 'H', 'Q', '2'):
|
|
s->subsampling = SHQ_SUBSAMPLING_422;
|
|
s->alpha_type = SHQ_NO_ALPHA;
|
|
avctx->pix_fmt = AV_PIX_FMT_YUV422P;
|
|
break;
|
|
case MKTAG('S', 'H', 'Q', '3'):
|
|
s->subsampling = SHQ_SUBSAMPLING_422;
|
|
s->alpha_type = SHQ_RLE_ALPHA;
|
|
avctx->pix_fmt = AV_PIX_FMT_YUVA422P;
|
|
break;
|
|
case MKTAG('S', 'H', 'Q', '4'):
|
|
s->subsampling = SHQ_SUBSAMPLING_444;
|
|
s->alpha_type = SHQ_NO_ALPHA;
|
|
avctx->pix_fmt = AV_PIX_FMT_YUV444P;
|
|
break;
|
|
case MKTAG('S', 'H', 'Q', '5'):
|
|
s->subsampling = SHQ_SUBSAMPLING_444;
|
|
s->alpha_type = SHQ_RLE_ALPHA;
|
|
avctx->pix_fmt = AV_PIX_FMT_YUVA444P;
|
|
break;
|
|
case MKTAG('S', 'H', 'Q', '7'):
|
|
s->subsampling = SHQ_SUBSAMPLING_422;
|
|
s->alpha_type = SHQ_DCT_ALPHA;
|
|
avctx->pix_fmt = AV_PIX_FMT_YUVA422P;
|
|
break;
|
|
case MKTAG('S', 'H', 'Q', '9'):
|
|
s->subsampling = SHQ_SUBSAMPLING_444;
|
|
s->alpha_type = SHQ_DCT_ALPHA;
|
|
avctx->pix_fmt = AV_PIX_FMT_YUVA444P;
|
|
break;
|
|
default:
|
|
av_log(avctx, AV_LOG_ERROR, "Unknown NewTek SpeedHQ FOURCC provided (%08X)\n",
|
|
avctx->codec_tag);
|
|
return AVERROR_INVALIDDATA;
|
|
}
|
|
|
|
/* This matches what NDI's RGB -> Y'CbCr 4:2:2 converter uses. */
|
|
avctx->colorspace = AVCOL_SPC_BT470BG;
|
|
avctx->chroma_sample_location = AVCHROMA_LOC_CENTER;
|
|
|
|
return 0;
|
|
}
|
|
|
|
const FFCodec ff_speedhq_decoder = {
|
|
.p.name = "speedhq",
|
|
CODEC_LONG_NAME("NewTek SpeedHQ"),
|
|
.p.type = AVMEDIA_TYPE_VIDEO,
|
|
.p.id = AV_CODEC_ID_SPEEDHQ,
|
|
.priv_data_size = sizeof(SHQContext),
|
|
.init = speedhq_decode_init,
|
|
FF_CODEC_DECODE_CB(speedhq_decode_frame),
|
|
.p.capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_FRAME_THREADS,
|
|
};
|