1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2024-12-07 11:13:41 +02:00
FFmpeg/libavcodec/mlpdec.c
Andreas Rheinhardt a247ac640d avcodec: Constify AVCodecs
Given that the AVCodec.next pointer has now been removed, most of the
AVCodecs are not modified at all any more and can therefore be made
const (as this patch does); the only exceptions are the very few codecs
for external libraries that have a init_static_data callback.

Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@gmail.com>
Signed-off-by: James Almer <jamrial@gmail.com>
2021-04-27 10:43:15 -03:00

1359 lines
48 KiB
C

/*
* MLP decoder
* Copyright (c) 2007-2008 Ian Caulfield
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* MLP decoder
*/
#include <stdint.h>
#include "avcodec.h"
#include "libavutil/internal.h"
#include "libavutil/intreadwrite.h"
#include "libavutil/channel_layout.h"
#include "libavutil/mem_internal.h"
#include "libavutil/thread.h"
#include "get_bits.h"
#include "internal.h"
#include "libavutil/crc.h"
#include "parser.h"
#include "mlp_parse.h"
#include "mlpdsp.h"
#include "mlp.h"
#include "config.h"
/** number of bits used for VLC lookup - longest Huffman code is 9 */
#if ARCH_ARM
#define VLC_BITS 5
#define VLC_STATIC_SIZE 64
#else
#define VLC_BITS 9
#define VLC_STATIC_SIZE 512
#endif
typedef struct SubStream {
/// Set if a valid restart header has been read. Otherwise the substream cannot be decoded.
uint8_t restart_seen;
//@{
/** restart header data */
/// The type of noise to be used in the rematrix stage.
uint16_t noise_type;
/// The index of the first channel coded in this substream.
uint8_t min_channel;
/// The index of the last channel coded in this substream.
uint8_t max_channel;
/// The number of channels input into the rematrix stage.
uint8_t max_matrix_channel;
/// For each channel output by the matrix, the output channel to map it to
uint8_t ch_assign[MAX_CHANNELS];
/// The channel layout for this substream
uint64_t mask;
/// The matrix encoding mode for this substream
enum AVMatrixEncoding matrix_encoding;
/// Channel coding parameters for channels in the substream
ChannelParams channel_params[MAX_CHANNELS];
/// The left shift applied to random noise in 0x31ea substreams.
uint8_t noise_shift;
/// The current seed value for the pseudorandom noise generator(s).
uint32_t noisegen_seed;
/// Set if the substream contains extra info to check the size of VLC blocks.
uint8_t data_check_present;
/// Bitmask of which parameter sets are conveyed in a decoding parameter block.
uint8_t param_presence_flags;
#define PARAM_BLOCKSIZE (1 << 7)
#define PARAM_MATRIX (1 << 6)
#define PARAM_OUTSHIFT (1 << 5)
#define PARAM_QUANTSTEP (1 << 4)
#define PARAM_FIR (1 << 3)
#define PARAM_IIR (1 << 2)
#define PARAM_HUFFOFFSET (1 << 1)
#define PARAM_PRESENCE (1 << 0)
//@}
//@{
/** matrix data */
/// Number of matrices to be applied.
uint8_t num_primitive_matrices;
/// matrix output channel
uint8_t matrix_out_ch[MAX_MATRICES];
/// Whether the LSBs of the matrix output are encoded in the bitstream.
uint8_t lsb_bypass[MAX_MATRICES];
/// Matrix coefficients, stored as 2.14 fixed point.
DECLARE_ALIGNED(32, int32_t, matrix_coeff)[MAX_MATRICES][MAX_CHANNELS];
/// Left shift to apply to noise values in 0x31eb substreams.
uint8_t matrix_noise_shift[MAX_MATRICES];
//@}
/// Left shift to apply to Huffman-decoded residuals.
uint8_t quant_step_size[MAX_CHANNELS];
/// number of PCM samples in current audio block
uint16_t blocksize;
/// Number of PCM samples decoded so far in this frame.
uint16_t blockpos;
/// Left shift to apply to decoded PCM values to get final 24-bit output.
int8_t output_shift[MAX_CHANNELS];
/// Running XOR of all output samples.
int32_t lossless_check_data;
} SubStream;
typedef struct MLPDecodeContext {
AVCodecContext *avctx;
/// Current access unit being read has a major sync.
int is_major_sync_unit;
/// Size of the major sync unit, in bytes
int major_sync_header_size;
/// Set if a valid major sync block has been read. Otherwise no decoding is possible.
uint8_t params_valid;
/// Number of substreams contained within this stream.
uint8_t num_substreams;
/// Index of the last substream to decode - further substreams are skipped.
uint8_t max_decoded_substream;
/// Stream needs channel reordering to comply with FFmpeg's channel order
uint8_t needs_reordering;
/// number of PCM samples contained in each frame
int access_unit_size;
/// next power of two above the number of samples in each frame
int access_unit_size_pow2;
SubStream substream[MAX_SUBSTREAMS];
int matrix_changed;
int filter_changed[MAX_CHANNELS][NUM_FILTERS];
int8_t noise_buffer[MAX_BLOCKSIZE_POW2];
int8_t bypassed_lsbs[MAX_BLOCKSIZE][MAX_CHANNELS];
DECLARE_ALIGNED(32, int32_t, sample_buffer)[MAX_BLOCKSIZE][MAX_CHANNELS];
MLPDSPContext dsp;
} MLPDecodeContext;
static const uint64_t thd_channel_order[] = {
AV_CH_FRONT_LEFT, AV_CH_FRONT_RIGHT, // LR
AV_CH_FRONT_CENTER, // C
AV_CH_LOW_FREQUENCY, // LFE
AV_CH_SIDE_LEFT, AV_CH_SIDE_RIGHT, // LRs
AV_CH_TOP_FRONT_LEFT, AV_CH_TOP_FRONT_RIGHT, // LRvh
AV_CH_FRONT_LEFT_OF_CENTER, AV_CH_FRONT_RIGHT_OF_CENTER, // LRc
AV_CH_BACK_LEFT, AV_CH_BACK_RIGHT, // LRrs
AV_CH_BACK_CENTER, // Cs
AV_CH_TOP_CENTER, // Ts
AV_CH_SURROUND_DIRECT_LEFT, AV_CH_SURROUND_DIRECT_RIGHT, // LRsd
AV_CH_WIDE_LEFT, AV_CH_WIDE_RIGHT, // LRw
AV_CH_TOP_FRONT_CENTER, // Cvh
AV_CH_LOW_FREQUENCY_2, // LFE2
};
static int mlp_channel_layout_subset(uint64_t channel_layout, uint64_t mask)
{
return channel_layout && ((channel_layout & mask) == channel_layout);
}
static uint64_t thd_channel_layout_extract_channel(uint64_t channel_layout,
int index)
{
int i;
if (av_get_channel_layout_nb_channels(channel_layout) <= index)
return 0;
for (i = 0; i < FF_ARRAY_ELEMS(thd_channel_order); i++)
if (channel_layout & thd_channel_order[i] && !index--)
return thd_channel_order[i];
return 0;
}
static VLC huff_vlc[3];
/** Initialize static data, constant between all invocations of the codec. */
static av_cold void init_static(void)
{
for (int i = 0; i < 3; i++) {
static VLC_TYPE vlc_buf[3 * VLC_STATIC_SIZE][2];
huff_vlc[i].table = &vlc_buf[i * VLC_STATIC_SIZE];
huff_vlc[i].table_allocated = VLC_STATIC_SIZE;
init_vlc(&huff_vlc[i], VLC_BITS, 18,
&ff_mlp_huffman_tables[i][0][1], 2, 1,
&ff_mlp_huffman_tables[i][0][0], 2, 1, INIT_VLC_USE_NEW_STATIC);
}
ff_mlp_init_crc();
}
static inline int32_t calculate_sign_huff(MLPDecodeContext *m,
unsigned int substr, unsigned int ch)
{
SubStream *s = &m->substream[substr];
ChannelParams *cp = &s->channel_params[ch];
int lsb_bits = cp->huff_lsbs - s->quant_step_size[ch];
int sign_shift = lsb_bits + (cp->codebook ? 2 - cp->codebook : -1);
int32_t sign_huff_offset = cp->huff_offset;
if (cp->codebook > 0)
sign_huff_offset -= 7 << lsb_bits;
if (sign_shift >= 0)
sign_huff_offset -= 1 << sign_shift;
return sign_huff_offset;
}
/** Read a sample, consisting of either, both or neither of entropy-coded MSBs
* and plain LSBs. */
static inline int read_huff_channels(MLPDecodeContext *m, GetBitContext *gbp,
unsigned int substr, unsigned int pos)
{
SubStream *s = &m->substream[substr];
unsigned int mat, channel;
for (mat = 0; mat < s->num_primitive_matrices; mat++)
if (s->lsb_bypass[mat])
m->bypassed_lsbs[pos + s->blockpos][mat] = get_bits1(gbp);
for (channel = s->min_channel; channel <= s->max_channel; channel++) {
ChannelParams *cp = &s->channel_params[channel];
int codebook = cp->codebook;
int quant_step_size = s->quant_step_size[channel];
int lsb_bits = cp->huff_lsbs - quant_step_size;
int result = 0;
if (codebook > 0)
result = get_vlc2(gbp, huff_vlc[codebook-1].table,
VLC_BITS, (9 + VLC_BITS - 1) / VLC_BITS);
if (result < 0)
return AVERROR_INVALIDDATA;
if (lsb_bits > 0)
result = (result << lsb_bits) + get_bits_long(gbp, lsb_bits);
result += cp->sign_huff_offset;
result *= 1 << quant_step_size;
m->sample_buffer[pos + s->blockpos][channel] = result;
}
return 0;
}
static av_cold int mlp_decode_init(AVCodecContext *avctx)
{
static AVOnce init_static_once = AV_ONCE_INIT;
MLPDecodeContext *m = avctx->priv_data;
int substr;
m->avctx = avctx;
for (substr = 0; substr < MAX_SUBSTREAMS; substr++)
m->substream[substr].lossless_check_data = 0xffffffff;
ff_mlpdsp_init(&m->dsp);
ff_thread_once(&init_static_once, init_static);
return 0;
}
/** Read a major sync info header - contains high level information about
* the stream - sample rate, channel arrangement etc. Most of this
* information is not actually necessary for decoding, only for playback.
*/
static int read_major_sync(MLPDecodeContext *m, GetBitContext *gb)
{
MLPHeaderInfo mh;
int substr, ret;
if ((ret = ff_mlp_read_major_sync(m->avctx, &mh, gb)) != 0)
return ret;
if (mh.group1_bits == 0) {
av_log(m->avctx, AV_LOG_ERROR, "invalid/unknown bits per sample\n");
return AVERROR_INVALIDDATA;
}
if (mh.group2_bits > mh.group1_bits) {
av_log(m->avctx, AV_LOG_ERROR,
"Channel group 2 cannot have more bits per sample than group 1.\n");
return AVERROR_INVALIDDATA;
}
if (mh.group2_samplerate && mh.group2_samplerate != mh.group1_samplerate) {
av_log(m->avctx, AV_LOG_ERROR,
"Channel groups with differing sample rates are not currently supported.\n");
return AVERROR_INVALIDDATA;
}
if (mh.group1_samplerate == 0) {
av_log(m->avctx, AV_LOG_ERROR, "invalid/unknown sampling rate\n");
return AVERROR_INVALIDDATA;
}
if (mh.group1_samplerate > MAX_SAMPLERATE) {
av_log(m->avctx, AV_LOG_ERROR,
"Sampling rate %d is greater than the supported maximum (%d).\n",
mh.group1_samplerate, MAX_SAMPLERATE);
return AVERROR_INVALIDDATA;
}
if (mh.access_unit_size > MAX_BLOCKSIZE) {
av_log(m->avctx, AV_LOG_ERROR,
"Block size %d is greater than the supported maximum (%d).\n",
mh.access_unit_size, MAX_BLOCKSIZE);
return AVERROR_INVALIDDATA;
}
if (mh.access_unit_size_pow2 > MAX_BLOCKSIZE_POW2) {
av_log(m->avctx, AV_LOG_ERROR,
"Block size pow2 %d is greater than the supported maximum (%d).\n",
mh.access_unit_size_pow2, MAX_BLOCKSIZE_POW2);
return AVERROR_INVALIDDATA;
}
if (mh.num_substreams == 0)
return AVERROR_INVALIDDATA;
if (m->avctx->codec_id == AV_CODEC_ID_MLP && mh.num_substreams > 2) {
av_log(m->avctx, AV_LOG_ERROR, "MLP only supports up to 2 substreams.\n");
return AVERROR_INVALIDDATA;
}
if (mh.num_substreams > MAX_SUBSTREAMS) {
avpriv_request_sample(m->avctx,
"%d substreams (more than the "
"maximum supported by the decoder)",
mh.num_substreams);
return AVERROR_PATCHWELCOME;
}
m->major_sync_header_size = mh.header_size;
m->access_unit_size = mh.access_unit_size;
m->access_unit_size_pow2 = mh.access_unit_size_pow2;
m->num_substreams = mh.num_substreams;
/* limit to decoding 3 substreams, as the 4th is used by Dolby Atmos for non-audio data */
m->max_decoded_substream = FFMIN(m->num_substreams - 1, 2);
m->avctx->sample_rate = mh.group1_samplerate;
m->avctx->frame_size = mh.access_unit_size;
m->avctx->bits_per_raw_sample = mh.group1_bits;
if (mh.group1_bits > 16)
m->avctx->sample_fmt = AV_SAMPLE_FMT_S32;
else
m->avctx->sample_fmt = AV_SAMPLE_FMT_S16;
m->dsp.mlp_pack_output = m->dsp.mlp_select_pack_output(m->substream[m->max_decoded_substream].ch_assign,
m->substream[m->max_decoded_substream].output_shift,
m->substream[m->max_decoded_substream].max_matrix_channel,
m->avctx->sample_fmt == AV_SAMPLE_FMT_S32);
m->params_valid = 1;
for (substr = 0; substr < MAX_SUBSTREAMS; substr++)
m->substream[substr].restart_seen = 0;
/* Set the layout for each substream. When there's more than one, the first
* substream is Stereo. Subsequent substreams' layouts are indicated in the
* major sync. */
if (m->avctx->codec_id == AV_CODEC_ID_MLP) {
if (mh.stream_type != 0xbb) {
avpriv_request_sample(m->avctx,
"unexpected stream_type %X in MLP",
mh.stream_type);
return AVERROR_PATCHWELCOME;
}
if ((substr = (mh.num_substreams > 1)))
m->substream[0].mask = AV_CH_LAYOUT_STEREO;
m->substream[substr].mask = mh.channel_layout_mlp;
} else {
if (mh.stream_type != 0xba) {
avpriv_request_sample(m->avctx,
"unexpected stream_type %X in !MLP",
mh.stream_type);
return AVERROR_PATCHWELCOME;
}
if ((substr = (mh.num_substreams > 1)))
m->substream[0].mask = AV_CH_LAYOUT_STEREO;
if (mh.num_substreams > 2)
if (mh.channel_layout_thd_stream2)
m->substream[2].mask = mh.channel_layout_thd_stream2;
else
m->substream[2].mask = mh.channel_layout_thd_stream1;
m->substream[substr].mask = mh.channel_layout_thd_stream1;
if (m->avctx->channels<=2 && m->substream[substr].mask == AV_CH_LAYOUT_MONO && m->max_decoded_substream == 1) {
av_log(m->avctx, AV_LOG_DEBUG, "Mono stream with 2 substreams, ignoring 2nd\n");
m->max_decoded_substream = 0;
if (m->avctx->channels==2)
m->avctx->channel_layout = AV_CH_LAYOUT_STEREO;
}
}
m->needs_reordering = mh.channel_arrangement >= 18 && mh.channel_arrangement <= 20;
/* Parse the TrueHD decoder channel modifiers and set each substream's
* AVMatrixEncoding accordingly.
*
* The meaning of the modifiers depends on the channel layout:
*
* - THD_CH_MODIFIER_LTRT, THD_CH_MODIFIER_LBINRBIN only apply to 2-channel
*
* - THD_CH_MODIFIER_MONO applies to 1-channel or 2-channel (dual mono)
*
* - THD_CH_MODIFIER_SURROUNDEX, THD_CH_MODIFIER_NOTSURROUNDEX only apply to
* layouts with an Ls/Rs channel pair
*/
for (substr = 0; substr < MAX_SUBSTREAMS; substr++)
m->substream[substr].matrix_encoding = AV_MATRIX_ENCODING_NONE;
if (m->avctx->codec_id == AV_CODEC_ID_TRUEHD) {
if (mh.num_substreams > 2 &&
mh.channel_layout_thd_stream2 & AV_CH_SIDE_LEFT &&
mh.channel_layout_thd_stream2 & AV_CH_SIDE_RIGHT &&
mh.channel_modifier_thd_stream2 == THD_CH_MODIFIER_SURROUNDEX)
m->substream[2].matrix_encoding = AV_MATRIX_ENCODING_DOLBYEX;
if (mh.num_substreams > 1 &&
mh.channel_layout_thd_stream1 & AV_CH_SIDE_LEFT &&
mh.channel_layout_thd_stream1 & AV_CH_SIDE_RIGHT &&
mh.channel_modifier_thd_stream1 == THD_CH_MODIFIER_SURROUNDEX)
m->substream[1].matrix_encoding = AV_MATRIX_ENCODING_DOLBYEX;
if (mh.num_substreams > 0)
switch (mh.channel_modifier_thd_stream0) {
case THD_CH_MODIFIER_LTRT:
m->substream[0].matrix_encoding = AV_MATRIX_ENCODING_DOLBY;
break;
case THD_CH_MODIFIER_LBINRBIN:
m->substream[0].matrix_encoding = AV_MATRIX_ENCODING_DOLBYHEADPHONE;
break;
default:
break;
}
}
return 0;
}
/** Read a restart header from a block in a substream. This contains parameters
* required to decode the audio that do not change very often. Generally
* (always) present only in blocks following a major sync. */
static int read_restart_header(MLPDecodeContext *m, GetBitContext *gbp,
const uint8_t *buf, unsigned int substr)
{
SubStream *s = &m->substream[substr];
unsigned int ch;
int sync_word, tmp;
uint8_t checksum;
uint8_t lossless_check;
int start_count = get_bits_count(gbp);
int min_channel, max_channel, max_matrix_channel, noise_type;
const int std_max_matrix_channel = m->avctx->codec_id == AV_CODEC_ID_MLP
? MAX_MATRIX_CHANNEL_MLP
: MAX_MATRIX_CHANNEL_TRUEHD;
sync_word = get_bits(gbp, 13);
if (sync_word != 0x31ea >> 1) {
av_log(m->avctx, AV_LOG_ERROR,
"restart header sync incorrect (got 0x%04x)\n", sync_word);
return AVERROR_INVALIDDATA;
}
noise_type = get_bits1(gbp);
if (m->avctx->codec_id == AV_CODEC_ID_MLP && noise_type) {
av_log(m->avctx, AV_LOG_ERROR, "MLP must have 0x31ea sync word.\n");
return AVERROR_INVALIDDATA;
}
skip_bits(gbp, 16); /* Output timestamp */
min_channel = get_bits(gbp, 4);
max_channel = get_bits(gbp, 4);
max_matrix_channel = get_bits(gbp, 4);
if (max_matrix_channel > std_max_matrix_channel) {
av_log(m->avctx, AV_LOG_ERROR,
"Max matrix channel cannot be greater than %d.\n",
std_max_matrix_channel);
return AVERROR_INVALIDDATA;
}
if (max_channel != max_matrix_channel) {
av_log(m->avctx, AV_LOG_ERROR,
"Max channel must be equal max matrix channel.\n");
return AVERROR_INVALIDDATA;
}
/* This should happen for TrueHD streams with >6 channels and MLP's noise
* type. It is not yet known if this is allowed. */
if (max_channel > MAX_MATRIX_CHANNEL_MLP && !noise_type) {
avpriv_request_sample(m->avctx,
"%d channels (more than the "
"maximum supported by the decoder)",
max_channel + 2);
return AVERROR_PATCHWELCOME;
}
if (min_channel > max_channel) {
av_log(m->avctx, AV_LOG_ERROR,
"Substream min channel cannot be greater than max channel.\n");
return AVERROR_INVALIDDATA;
}
s->min_channel = min_channel;
s->max_channel = max_channel;
s->max_matrix_channel = max_matrix_channel;
s->noise_type = noise_type;
if (mlp_channel_layout_subset(m->avctx->request_channel_layout, s->mask) &&
m->max_decoded_substream > substr) {
av_log(m->avctx, AV_LOG_DEBUG,
"Extracting %d-channel downmix (0x%"PRIx64") from substream %d. "
"Further substreams will be skipped.\n",
s->max_channel + 1, s->mask, substr);
m->max_decoded_substream = substr;
}
s->noise_shift = get_bits(gbp, 4);
s->noisegen_seed = get_bits(gbp, 23);
skip_bits(gbp, 19);
s->data_check_present = get_bits1(gbp);
lossless_check = get_bits(gbp, 8);
if (substr == m->max_decoded_substream
&& s->lossless_check_data != 0xffffffff) {
tmp = xor_32_to_8(s->lossless_check_data);
if (tmp != lossless_check)
av_log(m->avctx, AV_LOG_WARNING,
"Lossless check failed - expected %02x, calculated %02x.\n",
lossless_check, tmp);
}
skip_bits(gbp, 16);
memset(s->ch_assign, 0, sizeof(s->ch_assign));
for (ch = 0; ch <= s->max_matrix_channel; ch++) {
int ch_assign = get_bits(gbp, 6);
if (m->avctx->codec_id == AV_CODEC_ID_TRUEHD) {
uint64_t channel = thd_channel_layout_extract_channel(s->mask,
ch_assign);
ch_assign = av_get_channel_layout_channel_index(s->mask,
channel);
}
if (ch_assign < 0 || ch_assign > s->max_matrix_channel) {
avpriv_request_sample(m->avctx,
"Assignment of matrix channel %d to invalid output channel %d",
ch, ch_assign);
return AVERROR_PATCHWELCOME;
}
s->ch_assign[ch_assign] = ch;
}
checksum = ff_mlp_restart_checksum(buf, get_bits_count(gbp) - start_count);
if (checksum != get_bits(gbp, 8))
av_log(m->avctx, AV_LOG_ERROR, "restart header checksum error\n");
/* Set default decoding parameters. */
s->param_presence_flags = 0xff;
s->num_primitive_matrices = 0;
s->blocksize = 8;
s->lossless_check_data = 0;
memset(s->output_shift , 0, sizeof(s->output_shift ));
memset(s->quant_step_size, 0, sizeof(s->quant_step_size));
for (ch = s->min_channel; ch <= s->max_channel; ch++) {
ChannelParams *cp = &s->channel_params[ch];
cp->filter_params[FIR].order = 0;
cp->filter_params[IIR].order = 0;
cp->filter_params[FIR].shift = 0;
cp->filter_params[IIR].shift = 0;
/* Default audio coding is 24-bit raw PCM. */
cp->huff_offset = 0;
cp->sign_huff_offset = -(1 << 23);
cp->codebook = 0;
cp->huff_lsbs = 24;
}
if (substr == m->max_decoded_substream) {
m->avctx->channels = s->max_matrix_channel + 1;
m->avctx->channel_layout = s->mask;
m->dsp.mlp_pack_output = m->dsp.mlp_select_pack_output(s->ch_assign,
s->output_shift,
s->max_matrix_channel,
m->avctx->sample_fmt == AV_SAMPLE_FMT_S32);
if (m->avctx->codec_id == AV_CODEC_ID_MLP && m->needs_reordering) {
if (m->avctx->channel_layout == (AV_CH_LAYOUT_QUAD|AV_CH_LOW_FREQUENCY) ||
m->avctx->channel_layout == AV_CH_LAYOUT_5POINT0_BACK) {
int i = s->ch_assign[4];
s->ch_assign[4] = s->ch_assign[3];
s->ch_assign[3] = s->ch_assign[2];
s->ch_assign[2] = i;
} else if (m->avctx->channel_layout == AV_CH_LAYOUT_5POINT1_BACK) {
FFSWAP(int, s->ch_assign[2], s->ch_assign[4]);
FFSWAP(int, s->ch_assign[3], s->ch_assign[5]);
}
}
}
return 0;
}
/** Read parameters for one of the prediction filters. */
static int read_filter_params(MLPDecodeContext *m, GetBitContext *gbp,
unsigned int substr, unsigned int channel,
unsigned int filter)
{
SubStream *s = &m->substream[substr];
FilterParams *fp = &s->channel_params[channel].filter_params[filter];
const int max_order = filter ? MAX_IIR_ORDER : MAX_FIR_ORDER;
const char fchar = filter ? 'I' : 'F';
int i, order;
// Filter is 0 for FIR, 1 for IIR.
av_assert0(filter < 2);
if (m->filter_changed[channel][filter]++ > 1) {
av_log(m->avctx, AV_LOG_ERROR, "Filters may change only once per access unit.\n");
return AVERROR_INVALIDDATA;
}
order = get_bits(gbp, 4);
if (order > max_order) {
av_log(m->avctx, AV_LOG_ERROR,
"%cIR filter order %d is greater than maximum %d.\n",
fchar, order, max_order);
return AVERROR_INVALIDDATA;
}
fp->order = order;
if (order > 0) {
int32_t *fcoeff = s->channel_params[channel].coeff[filter];
int coeff_bits, coeff_shift;
fp->shift = get_bits(gbp, 4);
coeff_bits = get_bits(gbp, 5);
coeff_shift = get_bits(gbp, 3);
if (coeff_bits < 1 || coeff_bits > 16) {
av_log(m->avctx, AV_LOG_ERROR,
"%cIR filter coeff_bits must be between 1 and 16.\n",
fchar);
return AVERROR_INVALIDDATA;
}
if (coeff_bits + coeff_shift > 16) {
av_log(m->avctx, AV_LOG_ERROR,
"Sum of coeff_bits and coeff_shift for %cIR filter must be 16 or less.\n",
fchar);
return AVERROR_INVALIDDATA;
}
for (i = 0; i < order; i++)
fcoeff[i] = get_sbits(gbp, coeff_bits) * (1 << coeff_shift);
if (get_bits1(gbp)) {
int state_bits, state_shift;
if (filter == FIR) {
av_log(m->avctx, AV_LOG_ERROR,
"FIR filter has state data specified.\n");
return AVERROR_INVALIDDATA;
}
state_bits = get_bits(gbp, 4);
state_shift = get_bits(gbp, 4);
/* TODO: Check validity of state data. */
for (i = 0; i < order; i++)
fp->state[i] = state_bits ? get_sbits(gbp, state_bits) * (1 << state_shift) : 0;
}
}
return 0;
}
/** Read parameters for primitive matrices. */
static int read_matrix_params(MLPDecodeContext *m, unsigned int substr, GetBitContext *gbp)
{
SubStream *s = &m->substream[substr];
unsigned int mat, ch;
const int max_primitive_matrices = m->avctx->codec_id == AV_CODEC_ID_MLP
? MAX_MATRICES_MLP
: MAX_MATRICES_TRUEHD;
if (m->matrix_changed++ > 1) {
av_log(m->avctx, AV_LOG_ERROR, "Matrices may change only once per access unit.\n");
return AVERROR_INVALIDDATA;
}
s->num_primitive_matrices = get_bits(gbp, 4);
if (s->num_primitive_matrices > max_primitive_matrices) {
av_log(m->avctx, AV_LOG_ERROR,
"Number of primitive matrices cannot be greater than %d.\n",
max_primitive_matrices);
goto error;
}
for (mat = 0; mat < s->num_primitive_matrices; mat++) {
int frac_bits, max_chan;
s->matrix_out_ch[mat] = get_bits(gbp, 4);
frac_bits = get_bits(gbp, 4);
s->lsb_bypass [mat] = get_bits1(gbp);
if (s->matrix_out_ch[mat] > s->max_matrix_channel) {
av_log(m->avctx, AV_LOG_ERROR,
"Invalid channel %d specified as output from matrix.\n",
s->matrix_out_ch[mat]);
goto error;
}
if (frac_bits > 14) {
av_log(m->avctx, AV_LOG_ERROR,
"Too many fractional bits specified.\n");
goto error;
}
max_chan = s->max_matrix_channel;
if (!s->noise_type)
max_chan+=2;
for (ch = 0; ch <= max_chan; ch++) {
int coeff_val = 0;
if (get_bits1(gbp))
coeff_val = get_sbits(gbp, frac_bits + 2);
s->matrix_coeff[mat][ch] = coeff_val * (1 << (14 - frac_bits));
}
if (s->noise_type)
s->matrix_noise_shift[mat] = get_bits(gbp, 4);
else
s->matrix_noise_shift[mat] = 0;
}
return 0;
error:
s->num_primitive_matrices = 0;
memset(s->matrix_out_ch, 0, sizeof(s->matrix_out_ch));
return AVERROR_INVALIDDATA;
}
/** Read channel parameters. */
static int read_channel_params(MLPDecodeContext *m, unsigned int substr,
GetBitContext *gbp, unsigned int ch)
{
SubStream *s = &m->substream[substr];
ChannelParams *cp = &s->channel_params[ch];
FilterParams *fir = &cp->filter_params[FIR];
FilterParams *iir = &cp->filter_params[IIR];
int ret;
if (s->param_presence_flags & PARAM_FIR)
if (get_bits1(gbp))
if ((ret = read_filter_params(m, gbp, substr, ch, FIR)) < 0)
return ret;
if (s->param_presence_flags & PARAM_IIR)
if (get_bits1(gbp))
if ((ret = read_filter_params(m, gbp, substr, ch, IIR)) < 0)
return ret;
if (fir->order + iir->order > 8) {
av_log(m->avctx, AV_LOG_ERROR, "Total filter orders too high.\n");
return AVERROR_INVALIDDATA;
}
if (fir->order && iir->order &&
fir->shift != iir->shift) {
av_log(m->avctx, AV_LOG_ERROR,
"FIR and IIR filters must use the same precision.\n");
return AVERROR_INVALIDDATA;
}
/* The FIR and IIR filters must have the same precision.
* To simplify the filtering code, only the precision of the
* FIR filter is considered. If only the IIR filter is employed,
* the FIR filter precision is set to that of the IIR filter, so
* that the filtering code can use it. */
if (!fir->order && iir->order)
fir->shift = iir->shift;
if (s->param_presence_flags & PARAM_HUFFOFFSET)
if (get_bits1(gbp))
cp->huff_offset = get_sbits(gbp, 15);
cp->codebook = get_bits(gbp, 2);
cp->huff_lsbs = get_bits(gbp, 5);
if (cp->codebook > 0 && cp->huff_lsbs > 24) {
av_log(m->avctx, AV_LOG_ERROR, "Invalid huff_lsbs.\n");
cp->huff_lsbs = 0;
return AVERROR_INVALIDDATA;
}
return 0;
}
/** Read decoding parameters that change more often than those in the restart
* header. */
static int read_decoding_params(MLPDecodeContext *m, GetBitContext *gbp,
unsigned int substr)
{
SubStream *s = &m->substream[substr];
unsigned int ch;
int ret = 0;
unsigned recompute_sho = 0;
if (s->param_presence_flags & PARAM_PRESENCE)
if (get_bits1(gbp))
s->param_presence_flags = get_bits(gbp, 8);
if (s->param_presence_flags & PARAM_BLOCKSIZE)
if (get_bits1(gbp)) {
s->blocksize = get_bits(gbp, 9);
if (s->blocksize < 8 || s->blocksize > m->access_unit_size) {
av_log(m->avctx, AV_LOG_ERROR, "Invalid blocksize.\n");
s->blocksize = 0;
return AVERROR_INVALIDDATA;
}
}
if (s->param_presence_flags & PARAM_MATRIX)
if (get_bits1(gbp))
if ((ret = read_matrix_params(m, substr, gbp)) < 0)
return ret;
if (s->param_presence_flags & PARAM_OUTSHIFT)
if (get_bits1(gbp)) {
for (ch = 0; ch <= s->max_matrix_channel; ch++) {
s->output_shift[ch] = get_sbits(gbp, 4);
if (s->output_shift[ch] < 0) {
avpriv_request_sample(m->avctx, "Negative output_shift");
s->output_shift[ch] = 0;
}
}
if (substr == m->max_decoded_substream)
m->dsp.mlp_pack_output = m->dsp.mlp_select_pack_output(s->ch_assign,
s->output_shift,
s->max_matrix_channel,
m->avctx->sample_fmt == AV_SAMPLE_FMT_S32);
}
if (s->param_presence_flags & PARAM_QUANTSTEP)
if (get_bits1(gbp))
for (ch = 0; ch <= s->max_channel; ch++) {
s->quant_step_size[ch] = get_bits(gbp, 4);
recompute_sho |= 1<<ch;
}
for (ch = s->min_channel; ch <= s->max_channel; ch++)
if (get_bits1(gbp)) {
recompute_sho |= 1<<ch;
if ((ret = read_channel_params(m, substr, gbp, ch)) < 0)
goto fail;
}
fail:
for (ch = 0; ch <= s->max_channel; ch++) {
if (recompute_sho & (1<<ch)) {
ChannelParams *cp = &s->channel_params[ch];
if (cp->codebook > 0 && cp->huff_lsbs < s->quant_step_size[ch]) {
if (ret >= 0) {
av_log(m->avctx, AV_LOG_ERROR, "quant_step_size larger than huff_lsbs\n");
ret = AVERROR_INVALIDDATA;
}
s->quant_step_size[ch] = 0;
}
cp->sign_huff_offset = calculate_sign_huff(m, substr, ch);
}
}
return ret;
}
#define MSB_MASK(bits) (-1u << (bits))
/** Generate PCM samples using the prediction filters and residual values
* read from the data stream, and update the filter state. */
static void filter_channel(MLPDecodeContext *m, unsigned int substr,
unsigned int channel)
{
SubStream *s = &m->substream[substr];
const int32_t *fircoeff = s->channel_params[channel].coeff[FIR];
int32_t state_buffer[NUM_FILTERS][MAX_BLOCKSIZE + MAX_FIR_ORDER];
int32_t *firbuf = state_buffer[FIR] + MAX_BLOCKSIZE;
int32_t *iirbuf = state_buffer[IIR] + MAX_BLOCKSIZE;
FilterParams *fir = &s->channel_params[channel].filter_params[FIR];
FilterParams *iir = &s->channel_params[channel].filter_params[IIR];
unsigned int filter_shift = fir->shift;
int32_t mask = MSB_MASK(s->quant_step_size[channel]);
memcpy(firbuf, fir->state, MAX_FIR_ORDER * sizeof(int32_t));
memcpy(iirbuf, iir->state, MAX_IIR_ORDER * sizeof(int32_t));
m->dsp.mlp_filter_channel(firbuf, fircoeff,
fir->order, iir->order,
filter_shift, mask, s->blocksize,
&m->sample_buffer[s->blockpos][channel]);
memcpy(fir->state, firbuf - s->blocksize, MAX_FIR_ORDER * sizeof(int32_t));
memcpy(iir->state, iirbuf - s->blocksize, MAX_IIR_ORDER * sizeof(int32_t));
}
/** Read a block of PCM residual data (or actual if no filtering active). */
static int read_block_data(MLPDecodeContext *m, GetBitContext *gbp,
unsigned int substr)
{
SubStream *s = &m->substream[substr];
unsigned int i, ch, expected_stream_pos = 0;
int ret;
if (s->data_check_present) {
expected_stream_pos = get_bits_count(gbp);
expected_stream_pos += get_bits(gbp, 16);
avpriv_request_sample(m->avctx,
"Substreams with VLC block size check info");
}
if (s->blockpos + s->blocksize > m->access_unit_size) {
av_log(m->avctx, AV_LOG_ERROR, "too many audio samples in frame\n");
return AVERROR_INVALIDDATA;
}
memset(&m->bypassed_lsbs[s->blockpos][0], 0,
s->blocksize * sizeof(m->bypassed_lsbs[0]));
for (i = 0; i < s->blocksize; i++)
if ((ret = read_huff_channels(m, gbp, substr, i)) < 0)
return ret;
for (ch = s->min_channel; ch <= s->max_channel; ch++)
filter_channel(m, substr, ch);
s->blockpos += s->blocksize;
if (s->data_check_present) {
if (get_bits_count(gbp) != expected_stream_pos)
av_log(m->avctx, AV_LOG_ERROR, "block data length mismatch\n");
skip_bits(gbp, 8);
}
return 0;
}
/** Data table used for TrueHD noise generation function. */
static const int8_t noise_table[256] = {
30, 51, 22, 54, 3, 7, -4, 38, 14, 55, 46, 81, 22, 58, -3, 2,
52, 31, -7, 51, 15, 44, 74, 30, 85, -17, 10, 33, 18, 80, 28, 62,
10, 32, 23, 69, 72, 26, 35, 17, 73, 60, 8, 56, 2, 6, -2, -5,
51, 4, 11, 50, 66, 76, 21, 44, 33, 47, 1, 26, 64, 48, 57, 40,
38, 16, -10, -28, 92, 22, -18, 29, -10, 5, -13, 49, 19, 24, 70, 34,
61, 48, 30, 14, -6, 25, 58, 33, 42, 60, 67, 17, 54, 17, 22, 30,
67, 44, -9, 50, -11, 43, 40, 32, 59, 82, 13, 49, -14, 55, 60, 36,
48, 49, 31, 47, 15, 12, 4, 65, 1, 23, 29, 39, 45, -2, 84, 69,
0, 72, 37, 57, 27, 41, -15, -16, 35, 31, 14, 61, 24, 0, 27, 24,
16, 41, 55, 34, 53, 9, 56, 12, 25, 29, 53, 5, 20, -20, -8, 20,
13, 28, -3, 78, 38, 16, 11, 62, 46, 29, 21, 24, 46, 65, 43, -23,
89, 18, 74, 21, 38, -12, 19, 12, -19, 8, 15, 33, 4, 57, 9, -8,
36, 35, 26, 28, 7, 83, 63, 79, 75, 11, 3, 87, 37, 47, 34, 40,
39, 19, 20, 42, 27, 34, 39, 77, 13, 42, 59, 64, 45, -1, 32, 37,
45, -5, 53, -6, 7, 36, 50, 23, 6, 32, 9, -21, 18, 71, 27, 52,
-25, 31, 35, 42, -1, 68, 63, 52, 26, 43, 66, 37, 41, 25, 40, 70,
};
/** Noise generation functions.
* I'm not sure what these are for - they seem to be some kind of pseudorandom
* sequence generators, used to generate noise data which is used when the
* channels are rematrixed. I'm not sure if they provide a practical benefit
* to compression, or just obfuscate the decoder. Are they for some kind of
* dithering? */
/** Generate two channels of noise, used in the matrix when
* restart sync word == 0x31ea. */
static void generate_2_noise_channels(MLPDecodeContext *m, unsigned int substr)
{
SubStream *s = &m->substream[substr];
unsigned int i;
uint32_t seed = s->noisegen_seed;
unsigned int maxchan = s->max_matrix_channel;
for (i = 0; i < s->blockpos; i++) {
uint16_t seed_shr7 = seed >> 7;
m->sample_buffer[i][maxchan+1] = ((int8_t)(seed >> 15)) * (1 << s->noise_shift);
m->sample_buffer[i][maxchan+2] = ((int8_t) seed_shr7) * (1 << s->noise_shift);
seed = (seed << 16) ^ seed_shr7 ^ (seed_shr7 << 5);
}
s->noisegen_seed = seed;
}
/** Generate a block of noise, used when restart sync word == 0x31eb. */
static void fill_noise_buffer(MLPDecodeContext *m, unsigned int substr)
{
SubStream *s = &m->substream[substr];
unsigned int i;
uint32_t seed = s->noisegen_seed;
for (i = 0; i < m->access_unit_size_pow2; i++) {
uint8_t seed_shr15 = seed >> 15;
m->noise_buffer[i] = noise_table[seed_shr15];
seed = (seed << 8) ^ seed_shr15 ^ (seed_shr15 << 5);
}
s->noisegen_seed = seed;
}
/** Write the audio data into the output buffer. */
static int output_data(MLPDecodeContext *m, unsigned int substr,
AVFrame *frame, int *got_frame_ptr)
{
AVCodecContext *avctx = m->avctx;
SubStream *s = &m->substream[substr];
unsigned int mat;
unsigned int maxchan;
int ret;
int is32 = (m->avctx->sample_fmt == AV_SAMPLE_FMT_S32);
if (m->avctx->channels != s->max_matrix_channel + 1) {
av_log(m->avctx, AV_LOG_ERROR, "channel count mismatch\n");
return AVERROR_INVALIDDATA;
}
if (!s->blockpos) {
av_log(avctx, AV_LOG_ERROR, "No samples to output.\n");
return AVERROR_INVALIDDATA;
}
maxchan = s->max_matrix_channel;
if (!s->noise_type) {
generate_2_noise_channels(m, substr);
maxchan += 2;
} else {
fill_noise_buffer(m, substr);
}
/* Apply the channel matrices in turn to reconstruct the original audio
* samples. */
for (mat = 0; mat < s->num_primitive_matrices; mat++) {
unsigned int dest_ch = s->matrix_out_ch[mat];
m->dsp.mlp_rematrix_channel(&m->sample_buffer[0][0],
s->matrix_coeff[mat],
&m->bypassed_lsbs[0][mat],
m->noise_buffer,
s->num_primitive_matrices - mat,
dest_ch,
s->blockpos,
maxchan,
s->matrix_noise_shift[mat],
m->access_unit_size_pow2,
MSB_MASK(s->quant_step_size[dest_ch]));
}
/* get output buffer */
frame->nb_samples = s->blockpos;
if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
return ret;
s->lossless_check_data = m->dsp.mlp_pack_output(s->lossless_check_data,
s->blockpos,
m->sample_buffer,
frame->data[0],
s->ch_assign,
s->output_shift,
s->max_matrix_channel,
is32);
/* Update matrix encoding side data */
if ((ret = ff_side_data_update_matrix_encoding(frame, s->matrix_encoding)) < 0)
return ret;
*got_frame_ptr = 1;
return 0;
}
/** Read an access unit from the stream.
* @return negative on error, 0 if not enough data is present in the input stream,
* otherwise the number of bytes consumed. */
static int read_access_unit(AVCodecContext *avctx, void* data,
int *got_frame_ptr, AVPacket *avpkt)
{
const uint8_t *buf = avpkt->data;
int buf_size = avpkt->size;
MLPDecodeContext *m = avctx->priv_data;
GetBitContext gb;
unsigned int length, substr;
unsigned int substream_start;
unsigned int header_size = 4;
unsigned int substr_header_size = 0;
uint8_t substream_parity_present[MAX_SUBSTREAMS];
uint16_t substream_data_len[MAX_SUBSTREAMS];
uint8_t parity_bits;
int ret;
if (buf_size < 4)
return AVERROR_INVALIDDATA;
length = (AV_RB16(buf) & 0xfff) * 2;
if (length < 4 || length > buf_size)
return AVERROR_INVALIDDATA;
init_get_bits(&gb, (buf + 4), (length - 4) * 8);
m->is_major_sync_unit = 0;
if (show_bits_long(&gb, 31) == (0xf8726fba >> 1)) {
if (read_major_sync(m, &gb) < 0)
goto error;
m->is_major_sync_unit = 1;
header_size += m->major_sync_header_size;
}
if (!m->params_valid) {
av_log(m->avctx, AV_LOG_WARNING,
"Stream parameters not seen; skipping frame.\n");
*got_frame_ptr = 0;
return length;
}
substream_start = 0;
for (substr = 0; substr < m->num_substreams; substr++) {
int extraword_present, checkdata_present, end, nonrestart_substr;
extraword_present = get_bits1(&gb);
nonrestart_substr = get_bits1(&gb);
checkdata_present = get_bits1(&gb);
skip_bits1(&gb);
end = get_bits(&gb, 12) * 2;
substr_header_size += 2;
if (extraword_present) {
if (m->avctx->codec_id == AV_CODEC_ID_MLP) {
av_log(m->avctx, AV_LOG_ERROR, "There must be no extraword for MLP.\n");
goto error;
}
skip_bits(&gb, 16);
substr_header_size += 2;
}
if (length < header_size + substr_header_size) {
av_log(m->avctx, AV_LOG_ERROR, "Insufficient data for headers\n");
goto error;
}
if (!(nonrestart_substr ^ m->is_major_sync_unit)) {
av_log(m->avctx, AV_LOG_ERROR, "Invalid nonrestart_substr.\n");
goto error;
}
if (end + header_size + substr_header_size > length) {
av_log(m->avctx, AV_LOG_ERROR,
"Indicated length of substream %d data goes off end of "
"packet.\n", substr);
end = length - header_size - substr_header_size;
}
if (end < substream_start) {
av_log(avctx, AV_LOG_ERROR,
"Indicated end offset of substream %d data "
"is smaller than calculated start offset.\n",
substr);
goto error;
}
if (substr > m->max_decoded_substream)
continue;
substream_parity_present[substr] = checkdata_present;
substream_data_len[substr] = end - substream_start;
substream_start = end;
}
parity_bits = ff_mlp_calculate_parity(buf, 4);
parity_bits ^= ff_mlp_calculate_parity(buf + header_size, substr_header_size);
if ((((parity_bits >> 4) ^ parity_bits) & 0xF) != 0xF) {
av_log(avctx, AV_LOG_ERROR, "Parity check failed.\n");
goto error;
}
buf += header_size + substr_header_size;
for (substr = 0; substr <= m->max_decoded_substream; substr++) {
SubStream *s = &m->substream[substr];
init_get_bits(&gb, buf, substream_data_len[substr] * 8);
m->matrix_changed = 0;
memset(m->filter_changed, 0, sizeof(m->filter_changed));
s->blockpos = 0;
do {
if (get_bits1(&gb)) {
if (get_bits1(&gb)) {
/* A restart header should be present. */
if (read_restart_header(m, &gb, buf, substr) < 0)
goto next_substr;
s->restart_seen = 1;
}
if (!s->restart_seen)
goto next_substr;
if (read_decoding_params(m, &gb, substr) < 0)
goto next_substr;
}
if (!s->restart_seen)
goto next_substr;
if ((ret = read_block_data(m, &gb, substr)) < 0)
return ret;
if (get_bits_count(&gb) >= substream_data_len[substr] * 8)
goto substream_length_mismatch;
} while (!get_bits1(&gb));
skip_bits(&gb, (-get_bits_count(&gb)) & 15);
if (substream_data_len[substr] * 8 - get_bits_count(&gb) >= 32) {
int shorten_by;
if (get_bits(&gb, 16) != 0xD234)
return AVERROR_INVALIDDATA;
shorten_by = get_bits(&gb, 16);
if (m->avctx->codec_id == AV_CODEC_ID_TRUEHD && shorten_by & 0x2000)
s->blockpos -= FFMIN(shorten_by & 0x1FFF, s->blockpos);
else if (m->avctx->codec_id == AV_CODEC_ID_MLP && shorten_by != 0xD234)
return AVERROR_INVALIDDATA;
if (substr == m->max_decoded_substream)
av_log(m->avctx, AV_LOG_INFO, "End of stream indicated.\n");
}
if (substream_parity_present[substr]) {
uint8_t parity, checksum;
if (substream_data_len[substr] * 8 - get_bits_count(&gb) != 16)
goto substream_length_mismatch;
parity = ff_mlp_calculate_parity(buf, substream_data_len[substr] - 2);
checksum = ff_mlp_checksum8 (buf, substream_data_len[substr] - 2);
if ((get_bits(&gb, 8) ^ parity) != 0xa9 )
av_log(m->avctx, AV_LOG_ERROR, "Substream %d parity check failed.\n", substr);
if ( get_bits(&gb, 8) != checksum)
av_log(m->avctx, AV_LOG_ERROR, "Substream %d checksum failed.\n" , substr);
}
if (substream_data_len[substr] * 8 != get_bits_count(&gb))
goto substream_length_mismatch;
next_substr:
if (!s->restart_seen)
av_log(m->avctx, AV_LOG_ERROR,
"No restart header present in substream %d.\n", substr);
buf += substream_data_len[substr];
}
if ((ret = output_data(m, m->max_decoded_substream, data, got_frame_ptr)) < 0)
return ret;
return length;
substream_length_mismatch:
av_log(m->avctx, AV_LOG_ERROR, "substream %d length mismatch\n", substr);
return AVERROR_INVALIDDATA;
error:
m->params_valid = 0;
return AVERROR_INVALIDDATA;
}
#if CONFIG_MLP_DECODER
const AVCodec ff_mlp_decoder = {
.name = "mlp",
.long_name = NULL_IF_CONFIG_SMALL("MLP (Meridian Lossless Packing)"),
.type = AVMEDIA_TYPE_AUDIO,
.id = AV_CODEC_ID_MLP,
.priv_data_size = sizeof(MLPDecodeContext),
.init = mlp_decode_init,
.decode = read_access_unit,
.capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_CHANNEL_CONF,
.caps_internal = FF_CODEC_CAP_INIT_THREADSAFE,
};
#endif
#if CONFIG_TRUEHD_DECODER
const AVCodec ff_truehd_decoder = {
.name = "truehd",
.long_name = NULL_IF_CONFIG_SMALL("TrueHD"),
.type = AVMEDIA_TYPE_AUDIO,
.id = AV_CODEC_ID_TRUEHD,
.priv_data_size = sizeof(MLPDecodeContext),
.init = mlp_decode_init,
.decode = read_access_unit,
.capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_CHANNEL_CONF,
.caps_internal = FF_CODEC_CAP_INIT_THREADSAFE,
};
#endif /* CONFIG_TRUEHD_DECODER */