You've already forked FFmpeg
							
							
				mirror of
				https://github.com/FFmpeg/FFmpeg.git
				synced 2025-10-30 23:18:11 +02:00 
			
		
		
		
	It reduces typing: Before this patch, there were 105 codecs whose long_name-definition exceeded the 80 char line length limit. Now there are only nine of them. Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
		
			
				
	
	
		
			1379 lines
		
	
	
		
			49 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1379 lines
		
	
	
		
			49 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * VC3/DNxHD encoder
 | |
|  * Copyright (c) 2007 Baptiste Coudurier <baptiste dot coudurier at smartjog dot com>
 | |
|  * Copyright (c) 2011 MirriAd Ltd
 | |
|  *
 | |
|  * VC-3 encoder funded by the British Broadcasting Corporation
 | |
|  * 10 bit support added by MirriAd Ltd, Joseph Artsimovich <joseph@mirriad.com>
 | |
|  *
 | |
|  * This file is part of FFmpeg.
 | |
|  *
 | |
|  * FFmpeg is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU Lesser General Public
 | |
|  * License as published by the Free Software Foundation; either
 | |
|  * version 2.1 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * FFmpeg is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * Lesser General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU Lesser General Public
 | |
|  * License along with FFmpeg; if not, write to the Free Software
 | |
|  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 | |
|  */
 | |
| 
 | |
| #include "libavutil/attributes.h"
 | |
| #include "libavutil/internal.h"
 | |
| #include "libavutil/mem_internal.h"
 | |
| #include "libavutil/opt.h"
 | |
| 
 | |
| #include "avcodec.h"
 | |
| #include "blockdsp.h"
 | |
| #include "codec_internal.h"
 | |
| #include "encode.h"
 | |
| #include "fdctdsp.h"
 | |
| #include "mathops.h"
 | |
| #include "mpegvideo.h"
 | |
| #include "mpegvideoenc.h"
 | |
| #include "pixblockdsp.h"
 | |
| #include "packet_internal.h"
 | |
| #include "profiles.h"
 | |
| #include "dnxhdenc.h"
 | |
| 
 | |
| // The largest value that will not lead to overflow for 10-bit samples.
 | |
| #define DNX10BIT_QMAT_SHIFT 18
 | |
| #define RC_VARIANCE 1 // use variance or ssd for fast rc
 | |
| #define LAMBDA_FRAC_BITS 10
 | |
| 
 | |
| #define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM
 | |
| static const AVOption options[] = {
 | |
|     { "nitris_compat", "encode with Avid Nitris compatibility",
 | |
|         offsetof(DNXHDEncContext, nitris_compat), AV_OPT_TYPE_BOOL, { .i64 = 0 }, 0, 1, VE },
 | |
|     { "ibias", "intra quant bias",
 | |
|         offsetof(DNXHDEncContext, intra_quant_bias), AV_OPT_TYPE_INT,
 | |
|         { .i64 = 0 }, INT_MIN, INT_MAX, VE },
 | |
|     { "profile",       NULL, offsetof(DNXHDEncContext, profile), AV_OPT_TYPE_INT,
 | |
|         { .i64 = FF_PROFILE_DNXHD },
 | |
|         FF_PROFILE_DNXHD, FF_PROFILE_DNXHR_444, VE, "profile" },
 | |
|     { "dnxhd",     NULL, 0, AV_OPT_TYPE_CONST, { .i64 = FF_PROFILE_DNXHD },
 | |
|         0, 0, VE, "profile" },
 | |
|     { "dnxhr_444", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = FF_PROFILE_DNXHR_444 },
 | |
|         0, 0, VE, "profile" },
 | |
|     { "dnxhr_hqx", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = FF_PROFILE_DNXHR_HQX },
 | |
|         0, 0, VE, "profile" },
 | |
|     { "dnxhr_hq",  NULL, 0, AV_OPT_TYPE_CONST, { .i64 = FF_PROFILE_DNXHR_HQ },
 | |
|         0, 0, VE, "profile" },
 | |
|     { "dnxhr_sq",  NULL, 0, AV_OPT_TYPE_CONST, { .i64 = FF_PROFILE_DNXHR_SQ },
 | |
|         0, 0, VE, "profile" },
 | |
|     { "dnxhr_lb",  NULL, 0, AV_OPT_TYPE_CONST, { .i64 = FF_PROFILE_DNXHR_LB },
 | |
|         0, 0, VE, "profile" },
 | |
|     { NULL }
 | |
| };
 | |
| 
 | |
| static const AVClass dnxhd_class = {
 | |
|     .class_name = "dnxhd",
 | |
|     .item_name  = av_default_item_name,
 | |
|     .option     = options,
 | |
|     .version    = LIBAVUTIL_VERSION_INT,
 | |
| };
 | |
| 
 | |
| static void dnxhd_8bit_get_pixels_8x4_sym(int16_t *av_restrict block,
 | |
|                                           const uint8_t *pixels,
 | |
|                                           ptrdiff_t line_size)
 | |
| {
 | |
|     int i;
 | |
|     for (i = 0; i < 4; i++) {
 | |
|         block[0] = pixels[0];
 | |
|         block[1] = pixels[1];
 | |
|         block[2] = pixels[2];
 | |
|         block[3] = pixels[3];
 | |
|         block[4] = pixels[4];
 | |
|         block[5] = pixels[5];
 | |
|         block[6] = pixels[6];
 | |
|         block[7] = pixels[7];
 | |
|         pixels  += line_size;
 | |
|         block   += 8;
 | |
|     }
 | |
|     memcpy(block,      block -  8, sizeof(*block) * 8);
 | |
|     memcpy(block +  8, block - 16, sizeof(*block) * 8);
 | |
|     memcpy(block + 16, block - 24, sizeof(*block) * 8);
 | |
|     memcpy(block + 24, block - 32, sizeof(*block) * 8);
 | |
| }
 | |
| 
 | |
| static av_always_inline
 | |
| void dnxhd_10bit_get_pixels_8x4_sym(int16_t *av_restrict block,
 | |
|                                     const uint8_t *pixels,
 | |
|                                     ptrdiff_t line_size)
 | |
| {
 | |
|     memcpy(block + 0 * 8, pixels + 0 * line_size, 8 * sizeof(*block));
 | |
|     memcpy(block + 7 * 8, pixels + 0 * line_size, 8 * sizeof(*block));
 | |
|     memcpy(block + 1 * 8, pixels + 1 * line_size, 8 * sizeof(*block));
 | |
|     memcpy(block + 6 * 8, pixels + 1 * line_size, 8 * sizeof(*block));
 | |
|     memcpy(block + 2 * 8, pixels + 2 * line_size, 8 * sizeof(*block));
 | |
|     memcpy(block + 5 * 8, pixels + 2 * line_size, 8 * sizeof(*block));
 | |
|     memcpy(block + 3 * 8, pixels + 3 * line_size, 8 * sizeof(*block));
 | |
|     memcpy(block + 4 * 8, pixels + 3 * line_size, 8 * sizeof(*block));
 | |
| }
 | |
| 
 | |
| static int dnxhd_10bit_dct_quantize_444(MpegEncContext *ctx, int16_t *block,
 | |
|                                         int n, int qscale, int *overflow)
 | |
| {
 | |
|     int i, j, level, last_non_zero, start_i;
 | |
|     const int *qmat;
 | |
|     const uint8_t *scantable= ctx->intra_scantable.scantable;
 | |
|     int bias;
 | |
|     int max = 0;
 | |
|     unsigned int threshold1, threshold2;
 | |
| 
 | |
|     ctx->fdsp.fdct(block);
 | |
| 
 | |
|     block[0] = (block[0] + 2) >> 2;
 | |
|     start_i = 1;
 | |
|     last_non_zero = 0;
 | |
|     qmat = n < 4 ? ctx->q_intra_matrix[qscale] : ctx->q_chroma_intra_matrix[qscale];
 | |
|     bias= ctx->intra_quant_bias * (1 << (16 - 8));
 | |
|     threshold1 = (1 << 16) - bias - 1;
 | |
|     threshold2 = (threshold1 << 1);
 | |
| 
 | |
|     for (i = 63; i >= start_i; i--) {
 | |
|         j = scantable[i];
 | |
|         level = block[j] * qmat[j];
 | |
| 
 | |
|         if (((unsigned)(level + threshold1)) > threshold2) {
 | |
|             last_non_zero = i;
 | |
|             break;
 | |
|         } else{
 | |
|             block[j]=0;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     for (i = start_i; i <= last_non_zero; i++) {
 | |
|         j = scantable[i];
 | |
|         level = block[j] * qmat[j];
 | |
| 
 | |
|         if (((unsigned)(level + threshold1)) > threshold2) {
 | |
|             if (level > 0) {
 | |
|                 level = (bias + level) >> 16;
 | |
|                 block[j] = level;
 | |
|             } else{
 | |
|                 level = (bias - level) >> 16;
 | |
|                 block[j] = -level;
 | |
|             }
 | |
|             max |= level;
 | |
|         } else {
 | |
|             block[j] = 0;
 | |
|         }
 | |
|     }
 | |
|     *overflow = ctx->max_qcoeff < max; //overflow might have happened
 | |
| 
 | |
|     /* we need this permutation so that we correct the IDCT, we only permute the !=0 elements */
 | |
|     if (ctx->idsp.perm_type != FF_IDCT_PERM_NONE)
 | |
|         ff_block_permute(block, ctx->idsp.idct_permutation,
 | |
|                          scantable, last_non_zero);
 | |
| 
 | |
|     return last_non_zero;
 | |
| }
 | |
| 
 | |
| static int dnxhd_10bit_dct_quantize(MpegEncContext *ctx, int16_t *block,
 | |
|                                     int n, int qscale, int *overflow)
 | |
| {
 | |
|     const uint8_t *scantable= ctx->intra_scantable.scantable;
 | |
|     const int *qmat = n<4 ? ctx->q_intra_matrix[qscale] : ctx->q_chroma_intra_matrix[qscale];
 | |
|     int last_non_zero = 0;
 | |
|     int i;
 | |
| 
 | |
|     ctx->fdsp.fdct(block);
 | |
| 
 | |
|     // Divide by 4 with rounding, to compensate scaling of DCT coefficients
 | |
|     block[0] = (block[0] + 2) >> 2;
 | |
| 
 | |
|     for (i = 1; i < 64; ++i) {
 | |
|         int j = scantable[i];
 | |
|         int sign = FF_SIGNBIT(block[j]);
 | |
|         int level = (block[j] ^ sign) - sign;
 | |
|         level = level * qmat[j] >> DNX10BIT_QMAT_SHIFT;
 | |
|         block[j] = (level ^ sign) - sign;
 | |
|         if (level)
 | |
|             last_non_zero = i;
 | |
|     }
 | |
| 
 | |
|     /* we need this permutation so that we correct the IDCT, we only permute the !=0 elements */
 | |
|     if (ctx->idsp.perm_type != FF_IDCT_PERM_NONE)
 | |
|         ff_block_permute(block, ctx->idsp.idct_permutation,
 | |
|                          scantable, last_non_zero);
 | |
| 
 | |
|     return last_non_zero;
 | |
| }
 | |
| 
 | |
| static av_cold int dnxhd_init_vlc(DNXHDEncContext *ctx)
 | |
| {
 | |
|     int i, j, level, run;
 | |
|     int max_level = 1 << (ctx->bit_depth + 2);
 | |
| 
 | |
|     if (!FF_ALLOCZ_TYPED_ARRAY(ctx->orig_vlc_codes, max_level * 4) ||
 | |
|         !FF_ALLOCZ_TYPED_ARRAY(ctx->orig_vlc_bits,  max_level * 4) ||
 | |
|         !(ctx->run_codes = av_mallocz(63 * 2))                     ||
 | |
|         !(ctx->run_bits  = av_mallocz(63)))
 | |
|         return AVERROR(ENOMEM);
 | |
|     ctx->vlc_codes = ctx->orig_vlc_codes + max_level * 2;
 | |
|     ctx->vlc_bits  = ctx->orig_vlc_bits + max_level * 2;
 | |
|     for (level = -max_level; level < max_level; level++) {
 | |
|         for (run = 0; run < 2; run++) {
 | |
|             int index = level * (1 << 1) | run;
 | |
|             int sign, offset = 0, alevel = level;
 | |
| 
 | |
|             MASK_ABS(sign, alevel);
 | |
|             if (alevel > 64) {
 | |
|                 offset  = (alevel - 1) >> 6;
 | |
|                 alevel -= offset << 6;
 | |
|             }
 | |
|             for (j = 0; j < 257; j++) {
 | |
|                 if (ctx->cid_table->ac_info[2*j+0] >> 1 == alevel &&
 | |
|                     (!offset || (ctx->cid_table->ac_info[2*j+1] & 1) && offset) &&
 | |
|                     (!run    || (ctx->cid_table->ac_info[2*j+1] & 2) && run)) {
 | |
|                     av_assert1(!ctx->vlc_codes[index]);
 | |
|                     if (alevel) {
 | |
|                         ctx->vlc_codes[index] =
 | |
|                             (ctx->cid_table->ac_codes[j] << 1) | (sign & 1);
 | |
|                         ctx->vlc_bits[index] = ctx->cid_table->ac_bits[j] + 1;
 | |
|                     } else {
 | |
|                         ctx->vlc_codes[index] = ctx->cid_table->ac_codes[j];
 | |
|                         ctx->vlc_bits[index]  = ctx->cid_table->ac_bits[j];
 | |
|                     }
 | |
|                     break;
 | |
|                 }
 | |
|             }
 | |
|             av_assert0(!alevel || j < 257);
 | |
|             if (offset) {
 | |
|                 ctx->vlc_codes[index] =
 | |
|                     (ctx->vlc_codes[index] << ctx->cid_table->index_bits) | offset;
 | |
|                 ctx->vlc_bits[index] += ctx->cid_table->index_bits;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     for (i = 0; i < 62; i++) {
 | |
|         int run = ctx->cid_table->run[i];
 | |
|         av_assert0(run < 63);
 | |
|         ctx->run_codes[run] = ctx->cid_table->run_codes[i];
 | |
|         ctx->run_bits[run]  = ctx->cid_table->run_bits[i];
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static av_cold int dnxhd_init_qmat(DNXHDEncContext *ctx, int lbias, int cbias)
 | |
| {
 | |
|     // init first elem to 1 to avoid div by 0 in convert_matrix
 | |
|     uint16_t weight_matrix[64] = { 1, }; // convert_matrix needs uint16_t*
 | |
|     int qscale, i;
 | |
|     const uint8_t *luma_weight_table   = ctx->cid_table->luma_weight;
 | |
|     const uint8_t *chroma_weight_table = ctx->cid_table->chroma_weight;
 | |
| 
 | |
|     if (!FF_ALLOCZ_TYPED_ARRAY(ctx->qmatrix_l,   ctx->m.avctx->qmax + 1) ||
 | |
|         !FF_ALLOCZ_TYPED_ARRAY(ctx->qmatrix_c,   ctx->m.avctx->qmax + 1) ||
 | |
|         !FF_ALLOCZ_TYPED_ARRAY(ctx->qmatrix_l16, ctx->m.avctx->qmax + 1) ||
 | |
|         !FF_ALLOCZ_TYPED_ARRAY(ctx->qmatrix_c16, ctx->m.avctx->qmax + 1))
 | |
|         return AVERROR(ENOMEM);
 | |
| 
 | |
|     if (ctx->bit_depth == 8) {
 | |
|         for (i = 1; i < 64; i++) {
 | |
|             int j = ctx->m.idsp.idct_permutation[ff_zigzag_direct[i]];
 | |
|             weight_matrix[j] = ctx->cid_table->luma_weight[i];
 | |
|         }
 | |
|         ff_convert_matrix(&ctx->m, ctx->qmatrix_l, ctx->qmatrix_l16,
 | |
|                           weight_matrix, ctx->intra_quant_bias, 1,
 | |
|                           ctx->m.avctx->qmax, 1);
 | |
|         for (i = 1; i < 64; i++) {
 | |
|             int j = ctx->m.idsp.idct_permutation[ff_zigzag_direct[i]];
 | |
|             weight_matrix[j] = ctx->cid_table->chroma_weight[i];
 | |
|         }
 | |
|         ff_convert_matrix(&ctx->m, ctx->qmatrix_c, ctx->qmatrix_c16,
 | |
|                           weight_matrix, ctx->intra_quant_bias, 1,
 | |
|                           ctx->m.avctx->qmax, 1);
 | |
| 
 | |
|         for (qscale = 1; qscale <= ctx->m.avctx->qmax; qscale++) {
 | |
|             for (i = 0; i < 64; i++) {
 | |
|                 ctx->qmatrix_l[qscale][i]      <<= 2;
 | |
|                 ctx->qmatrix_c[qscale][i]      <<= 2;
 | |
|                 ctx->qmatrix_l16[qscale][0][i] <<= 2;
 | |
|                 ctx->qmatrix_l16[qscale][1][i] <<= 2;
 | |
|                 ctx->qmatrix_c16[qscale][0][i] <<= 2;
 | |
|                 ctx->qmatrix_c16[qscale][1][i] <<= 2;
 | |
|             }
 | |
|         }
 | |
|     } else {
 | |
|         // 10-bit
 | |
|         for (qscale = 1; qscale <= ctx->m.avctx->qmax; qscale++) {
 | |
|             for (i = 1; i < 64; i++) {
 | |
|                 int j = ff_zigzag_direct[i];
 | |
| 
 | |
|                 /* The quantization formula from the VC-3 standard is:
 | |
|                  * quantized = sign(block[i]) * floor(abs(block[i]/s) * p /
 | |
|                  *             (qscale * weight_table[i]))
 | |
|                  * Where p is 32 for 8-bit samples and 8 for 10-bit ones.
 | |
|                  * The s factor compensates scaling of DCT coefficients done by
 | |
|                  * the DCT routines, and therefore is not present in standard.
 | |
|                  * It's 8 for 8-bit samples and 4 for 10-bit ones.
 | |
|                  * We want values of ctx->qtmatrix_l and ctx->qtmatrix_r to be:
 | |
|                  *     ((1 << DNX10BIT_QMAT_SHIFT) * (p / s)) /
 | |
|                  *     (qscale * weight_table[i])
 | |
|                  * For 10-bit samples, p / s == 2 */
 | |
|                 ctx->qmatrix_l[qscale][j] = (1 << (DNX10BIT_QMAT_SHIFT + 1)) /
 | |
|                                             (qscale * luma_weight_table[i]);
 | |
|                 ctx->qmatrix_c[qscale][j] = (1 << (DNX10BIT_QMAT_SHIFT + 1)) /
 | |
|                                             (qscale * chroma_weight_table[i]);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     ctx->m.q_chroma_intra_matrix16 = ctx->qmatrix_c16;
 | |
|     ctx->m.q_chroma_intra_matrix   = ctx->qmatrix_c;
 | |
|     ctx->m.q_intra_matrix16        = ctx->qmatrix_l16;
 | |
|     ctx->m.q_intra_matrix          = ctx->qmatrix_l;
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static av_cold int dnxhd_init_rc(DNXHDEncContext *ctx)
 | |
| {
 | |
|     if (!FF_ALLOCZ_TYPED_ARRAY(ctx->mb_rc, (ctx->m.avctx->qmax + 1) * ctx->m.mb_num))
 | |
|         return AVERROR(ENOMEM);
 | |
| 
 | |
|     if (ctx->m.avctx->mb_decision != FF_MB_DECISION_RD) {
 | |
|         if (!FF_ALLOCZ_TYPED_ARRAY(ctx->mb_cmp,     ctx->m.mb_num) ||
 | |
|             !FF_ALLOCZ_TYPED_ARRAY(ctx->mb_cmp_tmp, ctx->m.mb_num))
 | |
|             return AVERROR(ENOMEM);
 | |
|     }
 | |
|     ctx->frame_bits = (ctx->coding_unit_size -
 | |
|                        ctx->data_offset - 4 - ctx->min_padding) * 8;
 | |
|     ctx->qscale = 1;
 | |
|     ctx->lambda = 2 << LAMBDA_FRAC_BITS; // qscale 2
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static av_cold int dnxhd_encode_init(AVCodecContext *avctx)
 | |
| {
 | |
|     DNXHDEncContext *ctx = avctx->priv_data;
 | |
|     int i, ret;
 | |
| 
 | |
|     switch (avctx->pix_fmt) {
 | |
|     case AV_PIX_FMT_YUV422P:
 | |
|         ctx->bit_depth = 8;
 | |
|         break;
 | |
|     case AV_PIX_FMT_YUV422P10:
 | |
|     case AV_PIX_FMT_YUV444P10:
 | |
|     case AV_PIX_FMT_GBRP10:
 | |
|         ctx->bit_depth = 10;
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     if ((ctx->profile == FF_PROFILE_DNXHR_444 && (avctx->pix_fmt != AV_PIX_FMT_YUV444P10 &&
 | |
|                                                   avctx->pix_fmt != AV_PIX_FMT_GBRP10)) ||
 | |
|         (ctx->profile != FF_PROFILE_DNXHR_444 && (avctx->pix_fmt == AV_PIX_FMT_YUV444P10 ||
 | |
|                                                   avctx->pix_fmt == AV_PIX_FMT_GBRP10))) {
 | |
|         av_log(avctx, AV_LOG_ERROR,
 | |
|                "pixel format is incompatible with DNxHD profile\n");
 | |
|         return AVERROR(EINVAL);
 | |
|     }
 | |
| 
 | |
|     if (ctx->profile == FF_PROFILE_DNXHR_HQX && avctx->pix_fmt != AV_PIX_FMT_YUV422P10) {
 | |
|         av_log(avctx, AV_LOG_ERROR,
 | |
|                "pixel format is incompatible with DNxHR HQX profile\n");
 | |
|         return AVERROR(EINVAL);
 | |
|     }
 | |
| 
 | |
|     if ((ctx->profile == FF_PROFILE_DNXHR_LB ||
 | |
|          ctx->profile == FF_PROFILE_DNXHR_SQ ||
 | |
|          ctx->profile == FF_PROFILE_DNXHR_HQ) && avctx->pix_fmt != AV_PIX_FMT_YUV422P) {
 | |
|         av_log(avctx, AV_LOG_ERROR,
 | |
|                "pixel format is incompatible with DNxHR LB/SQ/HQ profile\n");
 | |
|         return AVERROR(EINVAL);
 | |
|     }
 | |
| 
 | |
|     ctx->is_444 = ctx->profile == FF_PROFILE_DNXHR_444;
 | |
|     avctx->profile = ctx->profile;
 | |
|     ctx->cid = ff_dnxhd_find_cid(avctx, ctx->bit_depth);
 | |
|     if (!ctx->cid) {
 | |
|         av_log(avctx, AV_LOG_ERROR,
 | |
|                "video parameters incompatible with DNxHD. Valid DNxHD profiles:\n");
 | |
|         ff_dnxhd_print_profiles(avctx, AV_LOG_ERROR);
 | |
|         return AVERROR(EINVAL);
 | |
|     }
 | |
|     av_log(avctx, AV_LOG_DEBUG, "cid %d\n", ctx->cid);
 | |
| 
 | |
|     if (ctx->cid >= 1270 && ctx->cid <= 1274)
 | |
|         avctx->codec_tag = MKTAG('A','V','d','h');
 | |
| 
 | |
|     if (avctx->width < 256 || avctx->height < 120) {
 | |
|         av_log(avctx, AV_LOG_ERROR,
 | |
|                "Input dimensions too small, input must be at least 256x120\n");
 | |
|         return AVERROR(EINVAL);
 | |
|     }
 | |
| 
 | |
|     ctx->cid_table = ff_dnxhd_get_cid_table(ctx->cid);
 | |
|     av_assert0(ctx->cid_table);
 | |
| 
 | |
|     ctx->m.avctx    = avctx;
 | |
|     ctx->m.mb_intra = 1;
 | |
|     ctx->m.h263_aic = 1;
 | |
| 
 | |
|     avctx->bits_per_raw_sample = ctx->bit_depth;
 | |
| 
 | |
|     ff_blockdsp_init(&ctx->bdsp, avctx);
 | |
|     ff_fdctdsp_init(&ctx->m.fdsp, avctx);
 | |
|     ff_mpv_idct_init(&ctx->m);
 | |
|     ff_mpegvideoencdsp_init(&ctx->m.mpvencdsp, avctx);
 | |
|     ff_pixblockdsp_init(&ctx->m.pdsp, avctx);
 | |
|     ff_dct_encode_init(&ctx->m);
 | |
| 
 | |
|     if (ctx->profile != FF_PROFILE_DNXHD)
 | |
|         ff_videodsp_init(&ctx->m.vdsp, ctx->bit_depth);
 | |
| 
 | |
|     if (!ctx->m.dct_quantize)
 | |
|         ctx->m.dct_quantize = ff_dct_quantize_c;
 | |
| 
 | |
|     if (ctx->is_444 || ctx->profile == FF_PROFILE_DNXHR_HQX) {
 | |
|         ctx->m.dct_quantize     = dnxhd_10bit_dct_quantize_444;
 | |
|         ctx->get_pixels_8x4_sym = dnxhd_10bit_get_pixels_8x4_sym;
 | |
|         ctx->block_width_l2     = 4;
 | |
|     } else if (ctx->bit_depth == 10) {
 | |
|         ctx->m.dct_quantize     = dnxhd_10bit_dct_quantize;
 | |
|         ctx->get_pixels_8x4_sym = dnxhd_10bit_get_pixels_8x4_sym;
 | |
|         ctx->block_width_l2     = 4;
 | |
|     } else {
 | |
|         ctx->get_pixels_8x4_sym = dnxhd_8bit_get_pixels_8x4_sym;
 | |
|         ctx->block_width_l2     = 3;
 | |
|     }
 | |
| 
 | |
| #if ARCH_X86
 | |
|     ff_dnxhdenc_init_x86(ctx);
 | |
| #endif
 | |
| 
 | |
|     ctx->m.mb_height = (avctx->height + 15) / 16;
 | |
|     ctx->m.mb_width  = (avctx->width  + 15) / 16;
 | |
| 
 | |
|     if (avctx->flags & AV_CODEC_FLAG_INTERLACED_DCT) {
 | |
|         ctx->interlaced   = 1;
 | |
|         ctx->m.mb_height /= 2;
 | |
|     }
 | |
| 
 | |
|     if (ctx->interlaced && ctx->profile != FF_PROFILE_DNXHD) {
 | |
|         av_log(avctx, AV_LOG_ERROR,
 | |
|                "Interlaced encoding is not supported for DNxHR profiles.\n");
 | |
|         return AVERROR(EINVAL);
 | |
|     }
 | |
| 
 | |
|     ctx->m.mb_num = ctx->m.mb_height * ctx->m.mb_width;
 | |
| 
 | |
|     if (ctx->cid_table->frame_size == DNXHD_VARIABLE) {
 | |
|         ctx->frame_size = ff_dnxhd_get_hr_frame_size(ctx->cid,
 | |
|                                                      avctx->width, avctx->height);
 | |
|         av_assert0(ctx->frame_size >= 0);
 | |
|         ctx->coding_unit_size = ctx->frame_size;
 | |
|     } else {
 | |
|         ctx->frame_size = ctx->cid_table->frame_size;
 | |
|         ctx->coding_unit_size = ctx->cid_table->coding_unit_size;
 | |
|     }
 | |
| 
 | |
|     if (ctx->m.mb_height > 68)
 | |
|         ctx->data_offset = 0x170 + (ctx->m.mb_height << 2);
 | |
|     else
 | |
|         ctx->data_offset = 0x280;
 | |
| 
 | |
|     // XXX tune lbias/cbias
 | |
|     if ((ret = dnxhd_init_qmat(ctx, ctx->intra_quant_bias, 0)) < 0)
 | |
|         return ret;
 | |
| 
 | |
|     /* Avid Nitris hardware decoder requires a minimum amount of padding
 | |
|      * in the coding unit payload */
 | |
|     if (ctx->nitris_compat)
 | |
|         ctx->min_padding = 1600;
 | |
| 
 | |
|     if ((ret = dnxhd_init_vlc(ctx)) < 0)
 | |
|         return ret;
 | |
|     if ((ret = dnxhd_init_rc(ctx)) < 0)
 | |
|         return ret;
 | |
| 
 | |
|     if (!FF_ALLOCZ_TYPED_ARRAY(ctx->slice_size, ctx->m.mb_height) ||
 | |
|         !FF_ALLOCZ_TYPED_ARRAY(ctx->slice_offs, ctx->m.mb_height) ||
 | |
|         !FF_ALLOCZ_TYPED_ARRAY(ctx->mb_bits,    ctx->m.mb_num)    ||
 | |
|         !FF_ALLOCZ_TYPED_ARRAY(ctx->mb_qscale,  ctx->m.mb_num))
 | |
|         return AVERROR(ENOMEM);
 | |
| 
 | |
|     if (avctx->active_thread_type == FF_THREAD_SLICE) {
 | |
|         if (avctx->thread_count > MAX_THREADS) {
 | |
|             av_log(avctx, AV_LOG_ERROR, "too many threads\n");
 | |
|             return AVERROR(EINVAL);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (avctx->qmax <= 1) {
 | |
|         av_log(avctx, AV_LOG_ERROR, "qmax must be at least 2\n");
 | |
|         return AVERROR(EINVAL);
 | |
|     }
 | |
| 
 | |
|     ctx->thread[0] = ctx;
 | |
|     if (avctx->active_thread_type == FF_THREAD_SLICE) {
 | |
|         for (i = 1; i < avctx->thread_count; i++) {
 | |
|             ctx->thread[i] = av_memdup(ctx, sizeof(DNXHDEncContext));
 | |
|             if (!ctx->thread[i])
 | |
|                 return AVERROR(ENOMEM);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int dnxhd_write_header(AVCodecContext *avctx, uint8_t *buf)
 | |
| {
 | |
|     DNXHDEncContext *ctx = avctx->priv_data;
 | |
| 
 | |
|     memset(buf, 0, ctx->data_offset);
 | |
| 
 | |
|     // * write prefix */
 | |
|     AV_WB16(buf + 0x02, ctx->data_offset);
 | |
|     if (ctx->cid >= 1270 && ctx->cid <= 1274)
 | |
|         buf[4] = 0x03;
 | |
|     else
 | |
|         buf[4] = 0x01;
 | |
| 
 | |
|     buf[5] = ctx->interlaced ? ctx->cur_field + 2 : 0x01;
 | |
|     buf[6] = 0x80; // crc flag off
 | |
|     buf[7] = 0xa0; // reserved
 | |
|     AV_WB16(buf + 0x18, avctx->height >> ctx->interlaced); // ALPF
 | |
|     AV_WB16(buf + 0x1a, avctx->width);  // SPL
 | |
|     AV_WB16(buf + 0x1d, avctx->height >> ctx->interlaced); // NAL
 | |
| 
 | |
|     buf[0x21] = ctx->bit_depth == 10 ? 0x58 : 0x38;
 | |
|     buf[0x22] = 0x88 + (ctx->interlaced << 2);
 | |
|     AV_WB32(buf + 0x28, ctx->cid); // CID
 | |
|     buf[0x2c] = (!ctx->interlaced << 7) | (ctx->is_444 << 6) | (avctx->pix_fmt == AV_PIX_FMT_YUV444P10);
 | |
| 
 | |
|     buf[0x5f] = 0x01; // UDL
 | |
| 
 | |
|     buf[0x167] = 0x02; // reserved
 | |
|     AV_WB16(buf + 0x16a, ctx->m.mb_height * 4 + 4); // MSIPS
 | |
|     AV_WB16(buf + 0x16c, ctx->m.mb_height); // Ns
 | |
|     buf[0x16f] = 0x10; // reserved
 | |
| 
 | |
|     ctx->msip = buf + 0x170;
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static av_always_inline void dnxhd_encode_dc(DNXHDEncContext *ctx, int diff)
 | |
| {
 | |
|     int nbits;
 | |
|     if (diff < 0) {
 | |
|         nbits = av_log2_16bit(-2 * diff);
 | |
|         diff--;
 | |
|     } else {
 | |
|         nbits = av_log2_16bit(2 * diff);
 | |
|     }
 | |
|     put_bits(&ctx->m.pb, ctx->cid_table->dc_bits[nbits] + nbits,
 | |
|              (ctx->cid_table->dc_codes[nbits] << nbits) +
 | |
|              av_mod_uintp2(diff, nbits));
 | |
| }
 | |
| 
 | |
| static av_always_inline
 | |
| void dnxhd_encode_block(DNXHDEncContext *ctx, int16_t *block,
 | |
|                         int last_index, int n)
 | |
| {
 | |
|     int last_non_zero = 0;
 | |
|     int slevel, i, j;
 | |
| 
 | |
|     dnxhd_encode_dc(ctx, block[0] - ctx->m.last_dc[n]);
 | |
|     ctx->m.last_dc[n] = block[0];
 | |
| 
 | |
|     for (i = 1; i <= last_index; i++) {
 | |
|         j = ctx->m.intra_scantable.permutated[i];
 | |
|         slevel = block[j];
 | |
|         if (slevel) {
 | |
|             int run_level = i - last_non_zero - 1;
 | |
|             int rlevel = slevel * (1 << 1) | !!run_level;
 | |
|             put_bits(&ctx->m.pb, ctx->vlc_bits[rlevel], ctx->vlc_codes[rlevel]);
 | |
|             if (run_level)
 | |
|                 put_bits(&ctx->m.pb, ctx->run_bits[run_level],
 | |
|                          ctx->run_codes[run_level]);
 | |
|             last_non_zero = i;
 | |
|         }
 | |
|     }
 | |
|     put_bits(&ctx->m.pb, ctx->vlc_bits[0], ctx->vlc_codes[0]); // EOB
 | |
| }
 | |
| 
 | |
| static av_always_inline
 | |
| void dnxhd_unquantize_c(DNXHDEncContext *ctx, int16_t *block, int n,
 | |
|                         int qscale, int last_index)
 | |
| {
 | |
|     const uint8_t *weight_matrix;
 | |
|     int level;
 | |
|     int i;
 | |
| 
 | |
|     if (ctx->is_444) {
 | |
|         weight_matrix = ((n % 6) < 2) ? ctx->cid_table->luma_weight
 | |
|                                       : ctx->cid_table->chroma_weight;
 | |
|     } else {
 | |
|         weight_matrix = (n & 2) ? ctx->cid_table->chroma_weight
 | |
|                                 : ctx->cid_table->luma_weight;
 | |
|     }
 | |
| 
 | |
|     for (i = 1; i <= last_index; i++) {
 | |
|         int j = ctx->m.intra_scantable.permutated[i];
 | |
|         level = block[j];
 | |
|         if (level) {
 | |
|             if (level < 0) {
 | |
|                 level = (1 - 2 * level) * qscale * weight_matrix[i];
 | |
|                 if (ctx->bit_depth == 10) {
 | |
|                     if (weight_matrix[i] != 8)
 | |
|                         level += 8;
 | |
|                     level >>= 4;
 | |
|                 } else {
 | |
|                     if (weight_matrix[i] != 32)
 | |
|                         level += 32;
 | |
|                     level >>= 6;
 | |
|                 }
 | |
|                 level = -level;
 | |
|             } else {
 | |
|                 level = (2 * level + 1) * qscale * weight_matrix[i];
 | |
|                 if (ctx->bit_depth == 10) {
 | |
|                     if (weight_matrix[i] != 8)
 | |
|                         level += 8;
 | |
|                     level >>= 4;
 | |
|                 } else {
 | |
|                     if (weight_matrix[i] != 32)
 | |
|                         level += 32;
 | |
|                     level >>= 6;
 | |
|                 }
 | |
|             }
 | |
|             block[j] = level;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static av_always_inline int dnxhd_ssd_block(int16_t *qblock, int16_t *block)
 | |
| {
 | |
|     int score = 0;
 | |
|     int i;
 | |
|     for (i = 0; i < 64; i++)
 | |
|         score += (block[i] - qblock[i]) * (block[i] - qblock[i]);
 | |
|     return score;
 | |
| }
 | |
| 
 | |
| static av_always_inline
 | |
| int dnxhd_calc_ac_bits(DNXHDEncContext *ctx, int16_t *block, int last_index)
 | |
| {
 | |
|     int last_non_zero = 0;
 | |
|     int bits = 0;
 | |
|     int i, j, level;
 | |
|     for (i = 1; i <= last_index; i++) {
 | |
|         j = ctx->m.intra_scantable.permutated[i];
 | |
|         level = block[j];
 | |
|         if (level) {
 | |
|             int run_level = i - last_non_zero - 1;
 | |
|             bits += ctx->vlc_bits[level * (1 << 1) |
 | |
|                     !!run_level] + ctx->run_bits[run_level];
 | |
|             last_non_zero = i;
 | |
|         }
 | |
|     }
 | |
|     return bits;
 | |
| }
 | |
| 
 | |
| static av_always_inline
 | |
| void dnxhd_get_blocks(DNXHDEncContext *ctx, int mb_x, int mb_y)
 | |
| {
 | |
|     const int bs = ctx->block_width_l2;
 | |
|     const int bw = 1 << bs;
 | |
|     int dct_y_offset = ctx->dct_y_offset;
 | |
|     int dct_uv_offset = ctx->dct_uv_offset;
 | |
|     int linesize = ctx->m.linesize;
 | |
|     int uvlinesize = ctx->m.uvlinesize;
 | |
|     const uint8_t *ptr_y = ctx->thread[0]->src[0] +
 | |
|                            ((mb_y << 4) * ctx->m.linesize) + (mb_x << bs + 1);
 | |
|     const uint8_t *ptr_u = ctx->thread[0]->src[1] +
 | |
|                            ((mb_y << 4) * ctx->m.uvlinesize) + (mb_x << bs + ctx->is_444);
 | |
|     const uint8_t *ptr_v = ctx->thread[0]->src[2] +
 | |
|                            ((mb_y << 4) * ctx->m.uvlinesize) + (mb_x << bs + ctx->is_444);
 | |
|     PixblockDSPContext *pdsp = &ctx->m.pdsp;
 | |
|     VideoDSPContext *vdsp = &ctx->m.vdsp;
 | |
| 
 | |
|     if (ctx->bit_depth != 10 && vdsp->emulated_edge_mc && ((mb_x << 4) + 16 > ctx->m.avctx->width ||
 | |
|                                                            (mb_y << 4) + 16 > ctx->m.avctx->height)) {
 | |
|         int y_w = ctx->m.avctx->width  - (mb_x << 4);
 | |
|         int y_h = ctx->m.avctx->height - (mb_y << 4);
 | |
|         int uv_w = (y_w + 1) / 2;
 | |
|         int uv_h = y_h;
 | |
|         linesize = 16;
 | |
|         uvlinesize = 8;
 | |
| 
 | |
|         vdsp->emulated_edge_mc(&ctx->edge_buf_y[0], ptr_y,
 | |
|                                linesize, ctx->m.linesize,
 | |
|                                linesize, 16,
 | |
|                                0, 0, y_w, y_h);
 | |
|         vdsp->emulated_edge_mc(&ctx->edge_buf_uv[0][0], ptr_u,
 | |
|                                uvlinesize, ctx->m.uvlinesize,
 | |
|                                uvlinesize, 16,
 | |
|                                0, 0, uv_w, uv_h);
 | |
|         vdsp->emulated_edge_mc(&ctx->edge_buf_uv[1][0], ptr_v,
 | |
|                                uvlinesize, ctx->m.uvlinesize,
 | |
|                                uvlinesize, 16,
 | |
|                                0, 0, uv_w, uv_h);
 | |
| 
 | |
|         dct_y_offset =  bw * linesize;
 | |
|         dct_uv_offset = bw * uvlinesize;
 | |
|         ptr_y = &ctx->edge_buf_y[0];
 | |
|         ptr_u = &ctx->edge_buf_uv[0][0];
 | |
|         ptr_v = &ctx->edge_buf_uv[1][0];
 | |
|     } else if (ctx->bit_depth == 10 && vdsp->emulated_edge_mc && ((mb_x << 4) + 16 > ctx->m.avctx->width ||
 | |
|                                                                   (mb_y << 4) + 16 > ctx->m.avctx->height)) {
 | |
|         int y_w = ctx->m.avctx->width  - (mb_x << 4);
 | |
|         int y_h = ctx->m.avctx->height - (mb_y << 4);
 | |
|         int uv_w = ctx->is_444 ? y_w : (y_w + 1) / 2;
 | |
|         int uv_h = y_h;
 | |
|         linesize = 32;
 | |
|         uvlinesize = 16 + 16 * ctx->is_444;
 | |
| 
 | |
|         vdsp->emulated_edge_mc(&ctx->edge_buf_y[0], ptr_y,
 | |
|                                linesize, ctx->m.linesize,
 | |
|                                linesize / 2, 16,
 | |
|                                0, 0, y_w, y_h);
 | |
|         vdsp->emulated_edge_mc(&ctx->edge_buf_uv[0][0], ptr_u,
 | |
|                                uvlinesize, ctx->m.uvlinesize,
 | |
|                                uvlinesize / 2, 16,
 | |
|                                0, 0, uv_w, uv_h);
 | |
|         vdsp->emulated_edge_mc(&ctx->edge_buf_uv[1][0], ptr_v,
 | |
|                                uvlinesize, ctx->m.uvlinesize,
 | |
|                                uvlinesize / 2, 16,
 | |
|                                0, 0, uv_w, uv_h);
 | |
| 
 | |
|         dct_y_offset =  bw * linesize / 2;
 | |
|         dct_uv_offset = bw * uvlinesize / 2;
 | |
|         ptr_y = &ctx->edge_buf_y[0];
 | |
|         ptr_u = &ctx->edge_buf_uv[0][0];
 | |
|         ptr_v = &ctx->edge_buf_uv[1][0];
 | |
|     }
 | |
| 
 | |
|     if (!ctx->is_444) {
 | |
|         pdsp->get_pixels(ctx->blocks[0], ptr_y,      linesize);
 | |
|         pdsp->get_pixels(ctx->blocks[1], ptr_y + bw, linesize);
 | |
|         pdsp->get_pixels(ctx->blocks[2], ptr_u,      uvlinesize);
 | |
|         pdsp->get_pixels(ctx->blocks[3], ptr_v,      uvlinesize);
 | |
| 
 | |
|         if (mb_y + 1 == ctx->m.mb_height && ctx->m.avctx->height == 1080) {
 | |
|             if (ctx->interlaced) {
 | |
|                 ctx->get_pixels_8x4_sym(ctx->blocks[4],
 | |
|                                         ptr_y + dct_y_offset,
 | |
|                                         linesize);
 | |
|                 ctx->get_pixels_8x4_sym(ctx->blocks[5],
 | |
|                                         ptr_y + dct_y_offset + bw,
 | |
|                                         linesize);
 | |
|                 ctx->get_pixels_8x4_sym(ctx->blocks[6],
 | |
|                                         ptr_u + dct_uv_offset,
 | |
|                                         uvlinesize);
 | |
|                 ctx->get_pixels_8x4_sym(ctx->blocks[7],
 | |
|                                         ptr_v + dct_uv_offset,
 | |
|                                         uvlinesize);
 | |
|             } else {
 | |
|                 ctx->bdsp.clear_block(ctx->blocks[4]);
 | |
|                 ctx->bdsp.clear_block(ctx->blocks[5]);
 | |
|                 ctx->bdsp.clear_block(ctx->blocks[6]);
 | |
|                 ctx->bdsp.clear_block(ctx->blocks[7]);
 | |
|             }
 | |
|         } else {
 | |
|             pdsp->get_pixels(ctx->blocks[4],
 | |
|                              ptr_y + dct_y_offset, linesize);
 | |
|             pdsp->get_pixels(ctx->blocks[5],
 | |
|                              ptr_y + dct_y_offset + bw, linesize);
 | |
|             pdsp->get_pixels(ctx->blocks[6],
 | |
|                              ptr_u + dct_uv_offset, uvlinesize);
 | |
|             pdsp->get_pixels(ctx->blocks[7],
 | |
|                              ptr_v + dct_uv_offset, uvlinesize);
 | |
|         }
 | |
|     } else {
 | |
|         pdsp->get_pixels(ctx->blocks[0], ptr_y,      linesize);
 | |
|         pdsp->get_pixels(ctx->blocks[1], ptr_y + bw, linesize);
 | |
|         pdsp->get_pixels(ctx->blocks[6], ptr_y + dct_y_offset, linesize);
 | |
|         pdsp->get_pixels(ctx->blocks[7], ptr_y + dct_y_offset + bw, linesize);
 | |
| 
 | |
|         pdsp->get_pixels(ctx->blocks[2], ptr_u,      uvlinesize);
 | |
|         pdsp->get_pixels(ctx->blocks[3], ptr_u + bw, uvlinesize);
 | |
|         pdsp->get_pixels(ctx->blocks[8], ptr_u + dct_uv_offset, uvlinesize);
 | |
|         pdsp->get_pixels(ctx->blocks[9], ptr_u + dct_uv_offset + bw, uvlinesize);
 | |
| 
 | |
|         pdsp->get_pixels(ctx->blocks[4], ptr_v,      uvlinesize);
 | |
|         pdsp->get_pixels(ctx->blocks[5], ptr_v + bw, uvlinesize);
 | |
|         pdsp->get_pixels(ctx->blocks[10], ptr_v + dct_uv_offset, uvlinesize);
 | |
|         pdsp->get_pixels(ctx->blocks[11], ptr_v + dct_uv_offset + bw, uvlinesize);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static av_always_inline
 | |
| int dnxhd_switch_matrix(DNXHDEncContext *ctx, int i)
 | |
| {
 | |
|     int x;
 | |
| 
 | |
|     if (ctx->is_444) {
 | |
|         x = (i >> 1) % 3;
 | |
|     } else {
 | |
|         const static uint8_t component[8]={0,0,1,2,0,0,1,2};
 | |
|         x = component[i];
 | |
|     }
 | |
|     return x;
 | |
| }
 | |
| 
 | |
| static int dnxhd_calc_bits_thread(AVCodecContext *avctx, void *arg,
 | |
|                                   int jobnr, int threadnr)
 | |
| {
 | |
|     DNXHDEncContext *ctx = avctx->priv_data;
 | |
|     int mb_y = jobnr, mb_x;
 | |
|     int qscale = ctx->qscale;
 | |
|     LOCAL_ALIGNED_16(int16_t, block, [64]);
 | |
|     ctx = ctx->thread[threadnr];
 | |
| 
 | |
|     ctx->m.last_dc[0] =
 | |
|     ctx->m.last_dc[1] =
 | |
|     ctx->m.last_dc[2] = 1 << (ctx->bit_depth + 2);
 | |
| 
 | |
|     for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) {
 | |
|         unsigned mb = mb_y * ctx->m.mb_width + mb_x;
 | |
|         int ssd     = 0;
 | |
|         int ac_bits = 0;
 | |
|         int dc_bits = 0;
 | |
|         int i;
 | |
| 
 | |
|         dnxhd_get_blocks(ctx, mb_x, mb_y);
 | |
| 
 | |
|         for (i = 0; i < 8 + 4 * ctx->is_444; i++) {
 | |
|             int16_t *src_block = ctx->blocks[i];
 | |
|             int overflow, nbits, diff, last_index;
 | |
|             int n = dnxhd_switch_matrix(ctx, i);
 | |
| 
 | |
|             memcpy(block, src_block, 64 * sizeof(*block));
 | |
|             last_index = ctx->m.dct_quantize(&ctx->m, block,
 | |
|                                              ctx->is_444 ? 4 * (n > 0): 4 & (2*i),
 | |
|                                              qscale, &overflow);
 | |
|             ac_bits   += dnxhd_calc_ac_bits(ctx, block, last_index);
 | |
| 
 | |
|             diff = block[0] - ctx->m.last_dc[n];
 | |
|             if (diff < 0)
 | |
|                 nbits = av_log2_16bit(-2 * diff);
 | |
|             else
 | |
|                 nbits = av_log2_16bit(2 * diff);
 | |
| 
 | |
|             av_assert1(nbits < ctx->bit_depth + 4);
 | |
|             dc_bits += ctx->cid_table->dc_bits[nbits] + nbits;
 | |
| 
 | |
|             ctx->m.last_dc[n] = block[0];
 | |
| 
 | |
|             if (avctx->mb_decision == FF_MB_DECISION_RD || !RC_VARIANCE) {
 | |
|                 dnxhd_unquantize_c(ctx, block, i, qscale, last_index);
 | |
|                 ctx->m.idsp.idct(block);
 | |
|                 ssd += dnxhd_ssd_block(block, src_block);
 | |
|             }
 | |
|         }
 | |
|         ctx->mb_rc[(qscale * ctx->m.mb_num) + mb].ssd  = ssd;
 | |
|         ctx->mb_rc[(qscale * ctx->m.mb_num) + mb].bits = ac_bits + dc_bits + 12 +
 | |
|                                      (1 + ctx->is_444) * 8 * ctx->vlc_bits[0];
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int dnxhd_encode_thread(AVCodecContext *avctx, void *arg,
 | |
|                                int jobnr, int threadnr)
 | |
| {
 | |
|     DNXHDEncContext *ctx = avctx->priv_data;
 | |
|     int mb_y = jobnr, mb_x;
 | |
|     ctx = ctx->thread[threadnr];
 | |
|     init_put_bits(&ctx->m.pb, (uint8_t *)arg + ctx->data_offset + ctx->slice_offs[jobnr],
 | |
|                   ctx->slice_size[jobnr]);
 | |
| 
 | |
|     ctx->m.last_dc[0] =
 | |
|     ctx->m.last_dc[1] =
 | |
|     ctx->m.last_dc[2] = 1 << (ctx->bit_depth + 2);
 | |
|     for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) {
 | |
|         unsigned mb = mb_y * ctx->m.mb_width + mb_x;
 | |
|         int qscale = ctx->mb_qscale[mb];
 | |
|         int i;
 | |
| 
 | |
|         put_bits(&ctx->m.pb, 11, qscale);
 | |
|         put_bits(&ctx->m.pb, 1, avctx->pix_fmt == AV_PIX_FMT_YUV444P10);
 | |
| 
 | |
|         dnxhd_get_blocks(ctx, mb_x, mb_y);
 | |
| 
 | |
|         for (i = 0; i < 8 + 4 * ctx->is_444; i++) {
 | |
|             int16_t *block = ctx->blocks[i];
 | |
|             int overflow, n = dnxhd_switch_matrix(ctx, i);
 | |
|             int last_index = ctx->m.dct_quantize(&ctx->m, block,
 | |
|                                                  ctx->is_444 ? (((i >> 1) % 3) < 1 ? 0 : 4): 4 & (2*i),
 | |
|                                                  qscale, &overflow);
 | |
| 
 | |
|             dnxhd_encode_block(ctx, block, last_index, n);
 | |
|         }
 | |
|     }
 | |
|     if (put_bits_count(&ctx->m.pb) & 31)
 | |
|         put_bits(&ctx->m.pb, 32 - (put_bits_count(&ctx->m.pb) & 31), 0);
 | |
|     flush_put_bits(&ctx->m.pb);
 | |
|     memset(put_bits_ptr(&ctx->m.pb), 0, put_bytes_left(&ctx->m.pb, 0));
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static void dnxhd_setup_threads_slices(DNXHDEncContext *ctx)
 | |
| {
 | |
|     int mb_y, mb_x;
 | |
|     int offset = 0;
 | |
|     for (mb_y = 0; mb_y < ctx->m.mb_height; mb_y++) {
 | |
|         int thread_size;
 | |
|         ctx->slice_offs[mb_y] = offset;
 | |
|         ctx->slice_size[mb_y] = 0;
 | |
|         for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) {
 | |
|             unsigned mb = mb_y * ctx->m.mb_width + mb_x;
 | |
|             ctx->slice_size[mb_y] += ctx->mb_bits[mb];
 | |
|         }
 | |
|         ctx->slice_size[mb_y]   = (ctx->slice_size[mb_y] + 31U) & ~31U;
 | |
|         ctx->slice_size[mb_y] >>= 3;
 | |
|         thread_size = ctx->slice_size[mb_y];
 | |
|         offset += thread_size;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static int dnxhd_mb_var_thread(AVCodecContext *avctx, void *arg,
 | |
|                                int jobnr, int threadnr)
 | |
| {
 | |
|     DNXHDEncContext *ctx = avctx->priv_data;
 | |
|     int mb_y = jobnr, mb_x, x, y;
 | |
|     int partial_last_row = (mb_y == ctx->m.mb_height - 1) &&
 | |
|                            ((avctx->height >> ctx->interlaced) & 0xF);
 | |
| 
 | |
|     ctx = ctx->thread[threadnr];
 | |
|     if (ctx->bit_depth == 8) {
 | |
|         const uint8_t *pix = ctx->thread[0]->src[0] + ((mb_y << 4) * ctx->m.linesize);
 | |
|         for (mb_x = 0; mb_x < ctx->m.mb_width; ++mb_x, pix += 16) {
 | |
|             unsigned mb = mb_y * ctx->m.mb_width + mb_x;
 | |
|             int sum;
 | |
|             int varc;
 | |
| 
 | |
|             if (!partial_last_row && mb_x * 16 <= avctx->width - 16 && (avctx->width % 16) == 0) {
 | |
|                 sum  = ctx->m.mpvencdsp.pix_sum(pix, ctx->m.linesize);
 | |
|                 varc = ctx->m.mpvencdsp.pix_norm1(pix, ctx->m.linesize);
 | |
|             } else {
 | |
|                 int bw = FFMIN(avctx->width - 16 * mb_x, 16);
 | |
|                 int bh = FFMIN((avctx->height >> ctx->interlaced) - 16 * mb_y, 16);
 | |
|                 sum = varc = 0;
 | |
|                 for (y = 0; y < bh; y++) {
 | |
|                     for (x = 0; x < bw; x++) {
 | |
|                         uint8_t val = pix[x + y * ctx->m.linesize];
 | |
|                         sum  += val;
 | |
|                         varc += val * val;
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|             varc = (varc - (((unsigned) sum * sum) >> 8) + 128) >> 8;
 | |
| 
 | |
|             ctx->mb_cmp[mb].value = varc;
 | |
|             ctx->mb_cmp[mb].mb    = mb;
 | |
|         }
 | |
|     } else { // 10-bit
 | |
|         const int linesize = ctx->m.linesize >> 1;
 | |
|         for (mb_x = 0; mb_x < ctx->m.mb_width; ++mb_x) {
 | |
|             const uint16_t *pix = (const uint16_t *)ctx->thread[0]->src[0] +
 | |
|                                      ((mb_y << 4) * linesize) + (mb_x << 4);
 | |
|             unsigned mb  = mb_y * ctx->m.mb_width + mb_x;
 | |
|             int sum = 0;
 | |
|             int sqsum = 0;
 | |
|             int bw = FFMIN(avctx->width - 16 * mb_x, 16);
 | |
|             int bh = FFMIN((avctx->height >> ctx->interlaced) - 16 * mb_y, 16);
 | |
|             int mean, sqmean;
 | |
|             int i, j;
 | |
|             // Macroblocks are 16x16 pixels, unlike DCT blocks which are 8x8.
 | |
|             for (i = 0; i < bh; ++i) {
 | |
|                 for (j = 0; j < bw; ++j) {
 | |
|                     // Turn 16-bit pixels into 10-bit ones.
 | |
|                     const int sample = (unsigned) pix[j] >> 6;
 | |
|                     sum   += sample;
 | |
|                     sqsum += sample * sample;
 | |
|                     // 2^10 * 2^10 * 16 * 16 = 2^28, which is less than INT_MAX
 | |
|                 }
 | |
|                 pix += linesize;
 | |
|             }
 | |
|             mean = sum >> 8; // 16*16 == 2^8
 | |
|             sqmean = sqsum >> 8;
 | |
|             ctx->mb_cmp[mb].value = sqmean - mean * mean;
 | |
|             ctx->mb_cmp[mb].mb    = mb;
 | |
|         }
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int dnxhd_encode_rdo(AVCodecContext *avctx, DNXHDEncContext *ctx)
 | |
| {
 | |
|     int lambda, up_step, down_step;
 | |
|     int last_lower = INT_MAX, last_higher = 0;
 | |
|     int x, y, q;
 | |
| 
 | |
|     for (q = 1; q < avctx->qmax; q++) {
 | |
|         ctx->qscale = q;
 | |
|         avctx->execute2(avctx, dnxhd_calc_bits_thread,
 | |
|                         NULL, NULL, ctx->m.mb_height);
 | |
|     }
 | |
|     up_step = down_step = 2 << LAMBDA_FRAC_BITS;
 | |
|     lambda  = ctx->lambda;
 | |
| 
 | |
|     for (;;) {
 | |
|         int bits = 0;
 | |
|         int end  = 0;
 | |
|         if (lambda == last_higher) {
 | |
|             lambda++;
 | |
|             end = 1; // need to set final qscales/bits
 | |
|         }
 | |
|         for (y = 0; y < ctx->m.mb_height; y++) {
 | |
|             for (x = 0; x < ctx->m.mb_width; x++) {
 | |
|                 unsigned min = UINT_MAX;
 | |
|                 int qscale = 1;
 | |
|                 int mb     = y * ctx->m.mb_width + x;
 | |
|                 int rc = 0;
 | |
|                 for (q = 1; q < avctx->qmax; q++) {
 | |
|                     int i = (q*ctx->m.mb_num) + mb;
 | |
|                     unsigned score = ctx->mb_rc[i].bits * lambda +
 | |
|                                      ((unsigned) ctx->mb_rc[i].ssd << LAMBDA_FRAC_BITS);
 | |
|                     if (score < min) {
 | |
|                         min    = score;
 | |
|                         qscale = q;
 | |
|                         rc = i;
 | |
|                     }
 | |
|                 }
 | |
|                 bits += ctx->mb_rc[rc].bits;
 | |
|                 ctx->mb_qscale[mb] = qscale;
 | |
|                 ctx->mb_bits[mb]   = ctx->mb_rc[rc].bits;
 | |
|             }
 | |
|             bits = (bits + 31) & ~31; // padding
 | |
|             if (bits > ctx->frame_bits)
 | |
|                 break;
 | |
|         }
 | |
|         if (end) {
 | |
|             if (bits > ctx->frame_bits)
 | |
|                 return AVERROR(EINVAL);
 | |
|             break;
 | |
|         }
 | |
|         if (bits < ctx->frame_bits) {
 | |
|             last_lower = FFMIN(lambda, last_lower);
 | |
|             if (last_higher != 0)
 | |
|                 lambda = (lambda+last_higher)>>1;
 | |
|             else
 | |
|                 lambda -= down_step;
 | |
|             down_step = FFMIN((int64_t)down_step*5, INT_MAX);
 | |
|             up_step = 1<<LAMBDA_FRAC_BITS;
 | |
|             lambda = FFMAX(1, lambda);
 | |
|             if (lambda == last_lower)
 | |
|                 break;
 | |
|         } else {
 | |
|             last_higher = FFMAX(lambda, last_higher);
 | |
|             if (last_lower != INT_MAX)
 | |
|                 lambda = (lambda+last_lower)>>1;
 | |
|             else if ((int64_t)lambda + up_step > INT_MAX)
 | |
|                 return AVERROR(EINVAL);
 | |
|             else
 | |
|                 lambda += up_step;
 | |
|             up_step = FFMIN((int64_t)up_step*5, INT_MAX);
 | |
|             down_step = 1<<LAMBDA_FRAC_BITS;
 | |
|         }
 | |
|     }
 | |
|     ctx->lambda = lambda;
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int dnxhd_find_qscale(DNXHDEncContext *ctx)
 | |
| {
 | |
|     int bits = 0;
 | |
|     int up_step = 1;
 | |
|     int down_step = 1;
 | |
|     int last_higher = 0;
 | |
|     int last_lower = INT_MAX;
 | |
|     int qscale;
 | |
|     int x, y;
 | |
| 
 | |
|     qscale = ctx->qscale;
 | |
|     for (;;) {
 | |
|         bits = 0;
 | |
|         ctx->qscale = qscale;
 | |
|         // XXX avoid recalculating bits
 | |
|         ctx->m.avctx->execute2(ctx->m.avctx, dnxhd_calc_bits_thread,
 | |
|                                NULL, NULL, ctx->m.mb_height);
 | |
|         for (y = 0; y < ctx->m.mb_height; y++) {
 | |
|             for (x = 0; x < ctx->m.mb_width; x++)
 | |
|                 bits += ctx->mb_rc[(qscale*ctx->m.mb_num) + (y*ctx->m.mb_width+x)].bits;
 | |
|             bits = (bits+31)&~31; // padding
 | |
|             if (bits > ctx->frame_bits)
 | |
|                 break;
 | |
|         }
 | |
|         if (bits < ctx->frame_bits) {
 | |
|             if (qscale == 1)
 | |
|                 return 1;
 | |
|             if (last_higher == qscale - 1) {
 | |
|                 qscale = last_higher;
 | |
|                 break;
 | |
|             }
 | |
|             last_lower = FFMIN(qscale, last_lower);
 | |
|             if (last_higher != 0)
 | |
|                 qscale = (qscale + last_higher) >> 1;
 | |
|             else
 | |
|                 qscale -= down_step++;
 | |
|             if (qscale < 1)
 | |
|                 qscale = 1;
 | |
|             up_step = 1;
 | |
|         } else {
 | |
|             if (last_lower == qscale + 1)
 | |
|                 break;
 | |
|             last_higher = FFMAX(qscale, last_higher);
 | |
|             if (last_lower != INT_MAX)
 | |
|                 qscale = (qscale + last_lower) >> 1;
 | |
|             else
 | |
|                 qscale += up_step++;
 | |
|             down_step = 1;
 | |
|             if (qscale >= ctx->m.avctx->qmax)
 | |
|                 return AVERROR(EINVAL);
 | |
|         }
 | |
|     }
 | |
|     ctx->qscale = qscale;
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| #define BUCKET_BITS 8
 | |
| #define RADIX_PASSES 4
 | |
| #define NBUCKETS (1 << BUCKET_BITS)
 | |
| 
 | |
| static inline int get_bucket(int value, int shift)
 | |
| {
 | |
|     value >>= shift;
 | |
|     value  &= NBUCKETS - 1;
 | |
|     return NBUCKETS - 1 - value;
 | |
| }
 | |
| 
 | |
| static void radix_count(const RCCMPEntry *data, int size,
 | |
|                         int buckets[RADIX_PASSES][NBUCKETS])
 | |
| {
 | |
|     int i, j;
 | |
|     memset(buckets, 0, sizeof(buckets[0][0]) * RADIX_PASSES * NBUCKETS);
 | |
|     for (i = 0; i < size; i++) {
 | |
|         int v = data[i].value;
 | |
|         for (j = 0; j < RADIX_PASSES; j++) {
 | |
|             buckets[j][get_bucket(v, 0)]++;
 | |
|             v >>= BUCKET_BITS;
 | |
|         }
 | |
|         av_assert1(!v);
 | |
|     }
 | |
|     for (j = 0; j < RADIX_PASSES; j++) {
 | |
|         int offset = size;
 | |
|         for (i = NBUCKETS - 1; i >= 0; i--)
 | |
|             buckets[j][i] = offset -= buckets[j][i];
 | |
|         av_assert1(!buckets[j][0]);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void radix_sort_pass(RCCMPEntry *dst, const RCCMPEntry *data,
 | |
|                             int size, int buckets[NBUCKETS], int pass)
 | |
| {
 | |
|     int shift = pass * BUCKET_BITS;
 | |
|     int i;
 | |
|     for (i = 0; i < size; i++) {
 | |
|         int v   = get_bucket(data[i].value, shift);
 | |
|         int pos = buckets[v]++;
 | |
|         dst[pos] = data[i];
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void radix_sort(RCCMPEntry *data, RCCMPEntry *tmp, int size)
 | |
| {
 | |
|     int buckets[RADIX_PASSES][NBUCKETS];
 | |
|     radix_count(data, size, buckets);
 | |
|     radix_sort_pass(tmp, data, size, buckets[0], 0);
 | |
|     radix_sort_pass(data, tmp, size, buckets[1], 1);
 | |
|     if (buckets[2][NBUCKETS - 1] || buckets[3][NBUCKETS - 1]) {
 | |
|         radix_sort_pass(tmp, data, size, buckets[2], 2);
 | |
|         radix_sort_pass(data, tmp, size, buckets[3], 3);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static int dnxhd_encode_fast(AVCodecContext *avctx, DNXHDEncContext *ctx)
 | |
| {
 | |
|     int max_bits = 0;
 | |
|     int ret, x, y;
 | |
|     if ((ret = dnxhd_find_qscale(ctx)) < 0)
 | |
|         return ret;
 | |
|     for (y = 0; y < ctx->m.mb_height; y++) {
 | |
|         for (x = 0; x < ctx->m.mb_width; x++) {
 | |
|             int mb = y * ctx->m.mb_width + x;
 | |
|             int rc = (ctx->qscale * ctx->m.mb_num ) + mb;
 | |
|             int delta_bits;
 | |
|             ctx->mb_qscale[mb] = ctx->qscale;
 | |
|             ctx->mb_bits[mb] = ctx->mb_rc[rc].bits;
 | |
|             max_bits += ctx->mb_rc[rc].bits;
 | |
|             if (!RC_VARIANCE) {
 | |
|                 delta_bits = ctx->mb_rc[rc].bits -
 | |
|                              ctx->mb_rc[rc + ctx->m.mb_num].bits;
 | |
|                 ctx->mb_cmp[mb].mb = mb;
 | |
|                 ctx->mb_cmp[mb].value =
 | |
|                     delta_bits ? ((ctx->mb_rc[rc].ssd -
 | |
|                                    ctx->mb_rc[rc + ctx->m.mb_num].ssd) * 100) /
 | |
|                                   delta_bits
 | |
|                                : INT_MIN; // avoid increasing qscale
 | |
|             }
 | |
|         }
 | |
|         max_bits += 31; // worst padding
 | |
|     }
 | |
|     if (!ret) {
 | |
|         if (RC_VARIANCE)
 | |
|             avctx->execute2(avctx, dnxhd_mb_var_thread,
 | |
|                             NULL, NULL, ctx->m.mb_height);
 | |
|         radix_sort(ctx->mb_cmp, ctx->mb_cmp_tmp, ctx->m.mb_num);
 | |
| retry:
 | |
|         for (x = 0; x < ctx->m.mb_num && max_bits > ctx->frame_bits; x++) {
 | |
|             int mb = ctx->mb_cmp[x].mb;
 | |
|             int rc = (ctx->qscale * ctx->m.mb_num ) + mb;
 | |
|             max_bits -= ctx->mb_rc[rc].bits -
 | |
|                         ctx->mb_rc[rc + ctx->m.mb_num].bits;
 | |
|             if (ctx->mb_qscale[mb] < 255)
 | |
|                 ctx->mb_qscale[mb]++;
 | |
|             ctx->mb_bits[mb]   = ctx->mb_rc[rc + ctx->m.mb_num].bits;
 | |
|         }
 | |
| 
 | |
|         if (max_bits > ctx->frame_bits)
 | |
|             goto retry;
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static void dnxhd_load_picture(DNXHDEncContext *ctx, const AVFrame *frame)
 | |
| {
 | |
|     int i;
 | |
| 
 | |
|     for (i = 0; i < ctx->m.avctx->thread_count; i++) {
 | |
|         ctx->thread[i]->m.linesize    = frame->linesize[0] << ctx->interlaced;
 | |
|         ctx->thread[i]->m.uvlinesize  = frame->linesize[1] << ctx->interlaced;
 | |
|         ctx->thread[i]->dct_y_offset  = ctx->m.linesize  *8;
 | |
|         ctx->thread[i]->dct_uv_offset = ctx->m.uvlinesize*8;
 | |
|     }
 | |
| 
 | |
|     ctx->cur_field = frame->interlaced_frame && !frame->top_field_first;
 | |
| }
 | |
| 
 | |
| static int dnxhd_encode_picture(AVCodecContext *avctx, AVPacket *pkt,
 | |
|                                 const AVFrame *frame, int *got_packet)
 | |
| {
 | |
|     DNXHDEncContext *ctx = avctx->priv_data;
 | |
|     int first_field = 1;
 | |
|     int offset, i, ret;
 | |
|     uint8_t *buf;
 | |
| 
 | |
|     if ((ret = ff_get_encode_buffer(avctx, pkt, ctx->frame_size, 0)) < 0)
 | |
|         return ret;
 | |
|     buf = pkt->data;
 | |
| 
 | |
|     dnxhd_load_picture(ctx, frame);
 | |
| 
 | |
| encode_coding_unit:
 | |
|     for (i = 0; i < 3; i++) {
 | |
|         ctx->src[i] = frame->data[i];
 | |
|         if (ctx->interlaced && ctx->cur_field)
 | |
|             ctx->src[i] += frame->linesize[i];
 | |
|     }
 | |
| 
 | |
|     dnxhd_write_header(avctx, buf);
 | |
| 
 | |
|     if (avctx->mb_decision == FF_MB_DECISION_RD)
 | |
|         ret = dnxhd_encode_rdo(avctx, ctx);
 | |
|     else
 | |
|         ret = dnxhd_encode_fast(avctx, ctx);
 | |
|     if (ret < 0) {
 | |
|         av_log(avctx, AV_LOG_ERROR,
 | |
|                "picture could not fit ratecontrol constraints, increase qmax\n");
 | |
|         return ret;
 | |
|     }
 | |
| 
 | |
|     dnxhd_setup_threads_slices(ctx);
 | |
| 
 | |
|     offset = 0;
 | |
|     for (i = 0; i < ctx->m.mb_height; i++) {
 | |
|         AV_WB32(ctx->msip + i * 4, offset);
 | |
|         offset += ctx->slice_size[i];
 | |
|         av_assert1(!(ctx->slice_size[i] & 3));
 | |
|     }
 | |
| 
 | |
|     avctx->execute2(avctx, dnxhd_encode_thread, buf, NULL, ctx->m.mb_height);
 | |
| 
 | |
|     av_assert1(ctx->data_offset + offset + 4 <= ctx->coding_unit_size);
 | |
|     memset(buf + ctx->data_offset + offset, 0,
 | |
|            ctx->coding_unit_size - 4 - offset - ctx->data_offset);
 | |
| 
 | |
|     AV_WB32(buf + ctx->coding_unit_size - 4, 0x600DC0DE); // EOF
 | |
| 
 | |
|     if (ctx->interlaced && first_field) {
 | |
|         first_field     = 0;
 | |
|         ctx->cur_field ^= 1;
 | |
|         buf            += ctx->coding_unit_size;
 | |
|         goto encode_coding_unit;
 | |
|     }
 | |
| 
 | |
|     ff_side_data_set_encoder_stats(pkt, ctx->qscale * FF_QP2LAMBDA, NULL, 0, AV_PICTURE_TYPE_I);
 | |
| 
 | |
|     *got_packet = 1;
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static av_cold int dnxhd_encode_end(AVCodecContext *avctx)
 | |
| {
 | |
|     DNXHDEncContext *ctx = avctx->priv_data;
 | |
|     int i;
 | |
| 
 | |
|     av_freep(&ctx->orig_vlc_codes);
 | |
|     av_freep(&ctx->orig_vlc_bits);
 | |
|     av_freep(&ctx->run_codes);
 | |
|     av_freep(&ctx->run_bits);
 | |
| 
 | |
|     av_freep(&ctx->mb_bits);
 | |
|     av_freep(&ctx->mb_qscale);
 | |
|     av_freep(&ctx->mb_rc);
 | |
|     av_freep(&ctx->mb_cmp);
 | |
|     av_freep(&ctx->mb_cmp_tmp);
 | |
|     av_freep(&ctx->slice_size);
 | |
|     av_freep(&ctx->slice_offs);
 | |
| 
 | |
|     av_freep(&ctx->qmatrix_c);
 | |
|     av_freep(&ctx->qmatrix_l);
 | |
|     av_freep(&ctx->qmatrix_c16);
 | |
|     av_freep(&ctx->qmatrix_l16);
 | |
| 
 | |
|     if (ctx->thread[1]) {
 | |
|         for (i = 1; i < avctx->thread_count; i++)
 | |
|             av_freep(&ctx->thread[i]);
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static const FFCodecDefault dnxhd_defaults[] = {
 | |
|     { "qmax", "1024" }, /* Maximum quantization scale factor allowed for VC-3 */
 | |
|     { NULL },
 | |
| };
 | |
| 
 | |
| const FFCodec ff_dnxhd_encoder = {
 | |
|     .p.name         = "dnxhd",
 | |
|     CODEC_LONG_NAME("VC3/DNxHD"),
 | |
|     .p.type         = AVMEDIA_TYPE_VIDEO,
 | |
|     .p.id           = AV_CODEC_ID_DNXHD,
 | |
|     .p.capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_FRAME_THREADS |
 | |
|                       AV_CODEC_CAP_SLICE_THREADS,
 | |
|     .priv_data_size = sizeof(DNXHDEncContext),
 | |
|     .init           = dnxhd_encode_init,
 | |
|     FF_CODEC_ENCODE_CB(dnxhd_encode_picture),
 | |
|     .close          = dnxhd_encode_end,
 | |
|     .p.pix_fmts     = (const enum AVPixelFormat[]) {
 | |
|         AV_PIX_FMT_YUV422P,
 | |
|         AV_PIX_FMT_YUV422P10,
 | |
|         AV_PIX_FMT_YUV444P10,
 | |
|         AV_PIX_FMT_GBRP10,
 | |
|         AV_PIX_FMT_NONE
 | |
|     },
 | |
|     .p.priv_class   = &dnxhd_class,
 | |
|     .defaults       = dnxhd_defaults,
 | |
|     .p.profiles     = NULL_IF_CONFIG_SMALL(ff_dnxhd_profiles),
 | |
|     .caps_internal  = FF_CODEC_CAP_INIT_CLEANUP,
 | |
| };
 |