1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2024-11-26 19:01:44 +02:00
FFmpeg/libavcodec/g2meet.c

1616 lines
52 KiB
C

/*
* Go2Webinar / Go2Meeting decoder
* Copyright (c) 2012 Konstantin Shishkov
* Copyright (c) 2013 Maxim Poliakovski
*
* This file is part of Libav.
*
* Libav is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* Libav is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with Libav; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* Go2Webinar / Go2Meeting decoder
*/
#include <inttypes.h>
#include <zlib.h>
#include "libavutil/intreadwrite.h"
#include "avcodec.h"
#include "blockdsp.h"
#include "bytestream.h"
#include "elsdec.h"
#include "get_bits.h"
#include "idctdsp.h"
#include "internal.h"
#include "jpegtables.h"
#include "mjpeg.h"
#define EPIC_PIX_STACK_SIZE 1024
#define EPIC_PIX_STACK_MAX (EPIC_PIX_STACK_SIZE - 1)
enum ChunkType {
DISPLAY_INFO = 0xC8,
TILE_DATA,
CURSOR_POS,
CURSOR_SHAPE,
CHUNK_CC,
CHUNK_CD
};
enum Compression {
COMPR_EPIC_J_B = 2,
COMPR_KEMPF_J_B,
};
static const uint8_t luma_quant[64] = {
8, 6, 5, 8, 12, 20, 26, 31,
6, 6, 7, 10, 13, 29, 30, 28,
7, 7, 8, 12, 20, 29, 35, 28,
7, 9, 11, 15, 26, 44, 40, 31,
9, 11, 19, 28, 34, 55, 52, 39,
12, 18, 28, 32, 41, 52, 57, 46,
25, 32, 39, 44, 52, 61, 60, 51,
36, 46, 48, 49, 56, 50, 52, 50
};
static const uint8_t chroma_quant[64] = {
9, 9, 12, 24, 50, 50, 50, 50,
9, 11, 13, 33, 50, 50, 50, 50,
12, 13, 28, 50, 50, 50, 50, 50,
24, 33, 50, 50, 50, 50, 50, 50,
50, 50, 50, 50, 50, 50, 50, 50,
50, 50, 50, 50, 50, 50, 50, 50,
50, 50, 50, 50, 50, 50, 50, 50,
50, 50, 50, 50, 50, 50, 50, 50,
};
typedef struct ePICPixListElem {
struct ePICPixListElem *next;
uint32_t pixel;
uint8_t rung;
} ePICPixListElem;
typedef struct ePICPixHashElem {
uint32_t pix_id;
struct ePICPixListElem *list;
} ePICPixHashElem;
#define EPIC_HASH_SIZE 256
typedef struct ePICPixHash {
ePICPixHashElem *bucket[EPIC_HASH_SIZE];
int bucket_size[EPIC_HASH_SIZE];
int bucket_fill[EPIC_HASH_SIZE];
} ePICPixHash;
typedef struct ePICContext {
ElsDecCtx els_ctx;
int next_run_pos;
ElsUnsignedRung unsigned_rung;
uint8_t W_flag_rung;
uint8_t N_flag_rung;
uint8_t W_ctx_rung[256];
uint8_t N_ctx_rung[512];
uint8_t nw_pred_rung[256];
uint8_t ne_pred_rung[256];
uint8_t prev_row_rung[14];
uint8_t runlen_zeroes[14];
uint8_t runlen_one;
int stack_pos;
uint32_t stack[EPIC_PIX_STACK_SIZE];
ePICPixHash hash;
} ePICContext;
typedef struct JPGContext {
BlockDSPContext bdsp;
IDCTDSPContext idsp;
ScanTable scantable;
VLC dc_vlc[2], ac_vlc[2];
int prev_dc[3];
DECLARE_ALIGNED(16, int16_t, block)[6][64];
uint8_t *buf;
} JPGContext;
typedef struct G2MContext {
ePICContext ec;
JPGContext jc;
int version;
int compression;
int width, height, bpp;
int orig_width, orig_height;
int tile_width, tile_height;
int tiles_x, tiles_y, tile_x, tile_y;
int got_header;
uint8_t *framebuf;
int framebuf_stride, old_width, old_height;
uint8_t *synth_tile, *jpeg_tile, *epic_buf, *epic_buf_base;
int tile_stride, epic_buf_stride, old_tile_w, old_tile_h;
int swapuv;
uint8_t *kempf_buf, *kempf_flags;
uint8_t *cursor;
int cursor_stride;
int cursor_fmt;
int cursor_w, cursor_h, cursor_x, cursor_y;
int cursor_hot_x, cursor_hot_y;
} G2MContext;
static av_cold int build_vlc(VLC *vlc, const uint8_t *bits_table,
const uint8_t *val_table, int nb_codes,
int is_ac)
{
uint8_t huff_size[256] = { 0 };
uint16_t huff_code[256];
uint16_t huff_sym[256];
int i;
ff_mjpeg_build_huffman_codes(huff_size, huff_code, bits_table, val_table);
for (i = 0; i < 256; i++)
huff_sym[i] = i + 16 * is_ac;
if (is_ac)
huff_sym[0] = 16 * 256;
return ff_init_vlc_sparse(vlc, 9, nb_codes, huff_size, 1, 1,
huff_code, 2, 2, huff_sym, 2, 2, 0);
}
static av_cold int jpg_init(AVCodecContext *avctx, JPGContext *c)
{
int ret;
ret = build_vlc(&c->dc_vlc[0], avpriv_mjpeg_bits_dc_luminance,
avpriv_mjpeg_val_dc, 12, 0);
if (ret)
return ret;
ret = build_vlc(&c->dc_vlc[1], avpriv_mjpeg_bits_dc_chrominance,
avpriv_mjpeg_val_dc, 12, 0);
if (ret)
return ret;
ret = build_vlc(&c->ac_vlc[0], avpriv_mjpeg_bits_ac_luminance,
avpriv_mjpeg_val_ac_luminance, 251, 1);
if (ret)
return ret;
ret = build_vlc(&c->ac_vlc[1], avpriv_mjpeg_bits_ac_chrominance,
avpriv_mjpeg_val_ac_chrominance, 251, 1);
if (ret)
return ret;
ff_blockdsp_init(&c->bdsp, avctx);
ff_idctdsp_init(&c->idsp, avctx);
ff_init_scantable(c->idsp.idct_permutation, &c->scantable,
ff_zigzag_direct);
return 0;
}
static av_cold void jpg_free_context(JPGContext *ctx)
{
int i;
for (i = 0; i < 2; i++) {
ff_free_vlc(&ctx->dc_vlc[i]);
ff_free_vlc(&ctx->ac_vlc[i]);
}
av_freep(&ctx->buf);
}
static void jpg_unescape(const uint8_t *src, int src_size,
uint8_t *dst, int *dst_size)
{
const uint8_t *src_end = src + src_size;
uint8_t *dst_start = dst;
while (src < src_end) {
uint8_t x = *src++;
*dst++ = x;
if (x == 0xFF && !*src)
src++;
}
*dst_size = dst - dst_start;
}
static int jpg_decode_block(JPGContext *c, GetBitContext *gb,
int plane, int16_t *block)
{
int dc, val, pos;
const int is_chroma = !!plane;
const uint8_t *qmat = is_chroma ? chroma_quant : luma_quant;
c->bdsp.clear_block(block);
dc = get_vlc2(gb, c->dc_vlc[is_chroma].table, 9, 3);
if (dc < 0)
return AVERROR_INVALIDDATA;
if (dc)
dc = get_xbits(gb, dc);
dc = dc * qmat[0] + c->prev_dc[plane];
block[0] = dc;
c->prev_dc[plane] = dc;
pos = 0;
while (pos < 63) {
val = get_vlc2(gb, c->ac_vlc[is_chroma].table, 9, 3);
if (val < 0)
return AVERROR_INVALIDDATA;
pos += val >> 4;
val &= 0xF;
if (pos > 63)
return val ? AVERROR_INVALIDDATA : 0;
if (val) {
int nbits = val;
val = get_xbits(gb, nbits);
val *= qmat[ff_zigzag_direct[pos]];
block[c->scantable.permutated[pos]] = val;
}
}
return 0;
}
static inline void yuv2rgb(uint8_t *out, int ridx, int Y, int U, int V)
{
out[ridx] = av_clip_uint8(Y + (91881 * V + 32768 >> 16));
out[1] = av_clip_uint8(Y + (-22554 * U - 46802 * V + 32768 >> 16));
out[2 - ridx] = av_clip_uint8(Y + (116130 * U + 32768 >> 16));
}
static int jpg_decode_data(JPGContext *c, int width, int height,
const uint8_t *src, int src_size,
uint8_t *dst, int dst_stride,
const uint8_t *mask, int mask_stride, int num_mbs,
int swapuv)
{
GetBitContext gb;
int mb_w, mb_h, mb_x, mb_y, i, j;
int bx, by;
int unesc_size;
int ret;
const int ridx = swapuv ? 2 : 0;
if ((ret = av_reallocp(&c->buf,
src_size + AV_INPUT_BUFFER_PADDING_SIZE)) < 0)
return ret;
jpg_unescape(src, src_size, c->buf, &unesc_size);
memset(c->buf + unesc_size, 0, AV_INPUT_BUFFER_PADDING_SIZE);
init_get_bits(&gb, c->buf, unesc_size * 8);
width = FFALIGN(width, 16);
mb_w = width >> 4;
mb_h = (height + 15) >> 4;
if (!num_mbs)
num_mbs = mb_w * mb_h * 4;
for (i = 0; i < 3; i++)
c->prev_dc[i] = 1024;
bx =
by = 0;
c->bdsp.clear_blocks(c->block[0]);
for (mb_y = 0; mb_y < mb_h; mb_y++) {
for (mb_x = 0; mb_x < mb_w; mb_x++) {
if (mask && !mask[mb_x * 2] && !mask[mb_x * 2 + 1] &&
!mask[mb_x * 2 + mask_stride] &&
!mask[mb_x * 2 + 1 + mask_stride]) {
bx += 16;
continue;
}
for (j = 0; j < 2; j++) {
for (i = 0; i < 2; i++) {
if (mask && !mask[mb_x * 2 + i + j * mask_stride])
continue;
num_mbs--;
if ((ret = jpg_decode_block(c, &gb, 0,
c->block[i + j * 2])) != 0)
return ret;
c->idsp.idct(c->block[i + j * 2]);
}
}
for (i = 1; i < 3; i++) {
if ((ret = jpg_decode_block(c, &gb, i, c->block[i + 3])) != 0)
return ret;
c->idsp.idct(c->block[i + 3]);
}
for (j = 0; j < 16; j++) {
uint8_t *out = dst + bx * 3 + (by + j) * dst_stride;
for (i = 0; i < 16; i++) {
int Y, U, V;
Y = c->block[(j >> 3) * 2 + (i >> 3)][(i & 7) + (j & 7) * 8];
U = c->block[4][(i >> 1) + (j >> 1) * 8] - 128;
V = c->block[5][(i >> 1) + (j >> 1) * 8] - 128;
yuv2rgb(out + i * 3, ridx, Y, U, V);
}
}
if (!num_mbs)
return 0;
bx += 16;
}
bx = 0;
by += 16;
if (mask)
mask += mask_stride * 2;
}
return 0;
}
#define LOAD_NEIGHBOURS(x) \
W = curr_row[(x) - 1]; \
N = above_row[(x)]; \
WW = curr_row[(x) - 2]; \
NW = above_row[(x) - 1]; \
NE = above_row[(x) + 1]; \
NN = above2_row[(x)]; \
NNW = above2_row[(x) - 1]; \
NWW = above_row[(x) - 2]; \
NNE = above2_row[(x) + 1]
#define UPDATE_NEIGHBOURS(x) \
NNW = NN; \
NN = NNE; \
NWW = NW; \
NW = N; \
N = NE; \
NE = above_row[(x) + 1]; \
NNE = above2_row[(x) + 1]
#define R_shift 16
#define G_shift 8
#define B_shift 0
/* improved djb2 hash from http://www.cse.yorku.ca/~oz/hash.html */
static int djb2_hash(uint32_t key)
{
uint32_t h = 5381;
h = (h * 33) ^ ((key >> 24) & 0xFF); // xxx: probably not needed at all
h = (h * 33) ^ ((key >> 16) & 0xFF);
h = (h * 33) ^ ((key >> 8) & 0xFF);
h = (h * 33) ^ (key & 0xFF);
return h & (EPIC_HASH_SIZE - 1);
}
static void epic_hash_init(ePICPixHash *hash)
{
memset(hash, 0, sizeof(*hash));
}
static ePICPixHashElem *epic_hash_find(const ePICPixHash *hash, uint32_t key)
{
int i, idx = djb2_hash(key);
ePICPixHashElem *bucket = hash->bucket[idx];
for (i = 0; i < hash->bucket_fill[idx]; i++)
if (bucket[i].pix_id == key)
return &bucket[i];
return NULL;
}
static ePICPixHashElem *epic_hash_add(ePICPixHash *hash, uint32_t key)
{
ePICPixHashElem *bucket, *ret;
int idx = djb2_hash(key);
if (hash->bucket_size[idx] > INT_MAX / sizeof(**hash->bucket))
return NULL;
if (!(hash->bucket_fill[idx] < hash->bucket_size[idx])) {
int new_size = hash->bucket_size[idx] + 16;
bucket = av_realloc(hash->bucket[idx], new_size * sizeof(*bucket));
if (!bucket)
return NULL;
hash->bucket[idx] = bucket;
hash->bucket_size[idx] = new_size;
}
ret = &hash->bucket[idx][hash->bucket_fill[idx]++];
memset(ret, 0, sizeof(*ret));
ret->pix_id = key;
return ret;
}
static int epic_add_pixel_to_cache(ePICPixHash *hash, uint32_t key, uint32_t pix)
{
ePICPixListElem *new_elem;
ePICPixHashElem *hash_elem = epic_hash_find(hash, key);
if (!hash_elem) {
if (!(hash_elem = epic_hash_add(hash, key)))
return AVERROR(ENOMEM);
}
new_elem = av_mallocz(sizeof(*new_elem));
if (!new_elem)
return AVERROR(ENOMEM);
new_elem->pixel = pix;
new_elem->next = hash_elem->list;
hash_elem->list = new_elem;
return 0;
}
static inline int epic_cache_entries_for_pixel(const ePICPixHash *hash,
uint32_t pix)
{
ePICPixHashElem *hash_elem = epic_hash_find(hash, pix);
if (hash_elem != NULL && hash_elem->list != NULL)
return 1;
return 0;
}
static void epic_free_pixel_cache(ePICPixHash *hash)
{
int i, j;
for (i = 0; i < EPIC_HASH_SIZE; i++) {
for (j = 0; j < hash->bucket_fill[i]; j++) {
ePICPixListElem *list_elem = hash->bucket[i][j].list;
while (list_elem) {
ePICPixListElem *tmp = list_elem->next;
av_free(list_elem);
list_elem = tmp;
}
}
av_freep(&hash->bucket[i]);
hash->bucket_size[i] =
hash->bucket_fill[i] = 0;
}
}
static inline int is_pixel_on_stack(const ePICContext *dc, uint32_t pix)
{
int i;
for (i = 0; i < dc->stack_pos; i++)
if (dc->stack[i] == pix)
break;
return i != dc->stack_pos;
}
#define TOSIGNED(val) (((val) >> 1) ^ -((val) & 1))
static inline int epic_decode_component_pred(ePICContext *dc,
int N, int W, int NW)
{
unsigned delta = ff_els_decode_unsigned(&dc->els_ctx, &dc->unsigned_rung);
return mid_pred(N, N + W - NW, W) - TOSIGNED(delta);
}
static uint32_t epic_decode_pixel_pred(ePICContext *dc, int x, int y,
const uint32_t *curr_row,
const uint32_t *above_row)
{
uint32_t N, W, NW, pred;
unsigned delta;
int GN, GW, GNW, R, G, B;
if (x && y) {
W = curr_row[x - 1];
N = above_row[x];
NW = above_row[x - 1];
GN = (N >> G_shift) & 0xFF;
GW = (W >> G_shift) & 0xFF;
GNW = (NW >> G_shift) & 0xFF;
G = epic_decode_component_pred(dc, GN, GW, GNW);
R = G + epic_decode_component_pred(dc,
((N >> R_shift) & 0xFF) - GN,
((W >> R_shift) & 0xFF) - GW,
((NW >> R_shift) & 0xFF) - GNW);
B = G + epic_decode_component_pred(dc,
((N >> B_shift) & 0xFF) - GN,
((W >> B_shift) & 0xFF) - GW,
((NW >> B_shift) & 0xFF) - GNW);
} else {
if (x)
pred = curr_row[x - 1];
else
pred = above_row[x];
delta = ff_els_decode_unsigned(&dc->els_ctx, &dc->unsigned_rung);
R = ((pred >> R_shift) & 0xFF) - TOSIGNED(delta);
delta = ff_els_decode_unsigned(&dc->els_ctx, &dc->unsigned_rung);
G = ((pred >> G_shift) & 0xFF) - TOSIGNED(delta);
delta = ff_els_decode_unsigned(&dc->els_ctx, &dc->unsigned_rung);
B = ((pred >> B_shift) & 0xFF) - TOSIGNED(delta);
}
return (R << R_shift) | (G << G_shift) | (B << B_shift);
}
static int epic_predict_pixel(ePICContext *dc, uint8_t *rung,
uint32_t *pPix, uint32_t pix)
{
if (!ff_els_decode_bit(&dc->els_ctx, rung)) {
*pPix = pix;
return 1;
}
dc->stack[dc->stack_pos++ & EPIC_PIX_STACK_MAX] = pix;
return 0;
}
static int epic_handle_edges(ePICContext *dc, int x, int y,
const uint32_t *curr_row,
const uint32_t *above_row, uint32_t *pPix)
{
uint32_t pix;
if (!x && !y) { /* special case: top-left pixel */
/* the top-left pixel is coded independently with 3 unsigned numbers */
*pPix = (ff_els_decode_unsigned(&dc->els_ctx, &dc->unsigned_rung) << R_shift) |
(ff_els_decode_unsigned(&dc->els_ctx, &dc->unsigned_rung) << G_shift) |
(ff_els_decode_unsigned(&dc->els_ctx, &dc->unsigned_rung) << B_shift);
return 1;
}
if (x) { /* predict from W first */
pix = curr_row[x - 1];
if (epic_predict_pixel(dc, &dc->W_flag_rung, pPix, pix))
return 1;
}
if (y) { /* then try to predict from N */
pix = above_row[x];
if (!dc->stack_pos || dc->stack[0] != pix) {
if (epic_predict_pixel(dc, &dc->N_flag_rung, pPix, pix))
return 1;
}
}
return 0;
}
static int epic_decode_run_length(ePICContext *dc, int x, int y, int tile_width,
const uint32_t *curr_row,
const uint32_t *above_row,
const uint32_t *above2_row,
uint32_t *pPix, int *pRun)
{
int idx, got_pixel = 0, WWneW, old_WWneW = 0;
uint32_t W, WW, N, NN, NW, NE, NWW, NNW, NNE;
*pRun = 0;
LOAD_NEIGHBOURS(x);
if (dc->next_run_pos == x) {
/* can't reuse W for the new pixel in this case */
WWneW = 1;
} else {
idx = (WW != W) << 7 |
(NW != W) << 6 |
(N != NE) << 5 |
(NW != N) << 4 |
(NWW != NW) << 3 |
(NNE != NE) << 2 |
(NN != N) << 1 |
(NNW != NW);
WWneW = ff_els_decode_bit(&dc->els_ctx, &dc->W_ctx_rung[idx]);
}
if (WWneW)
dc->stack[dc->stack_pos++ & EPIC_PIX_STACK_MAX] = W;
else {
*pPix = W;
got_pixel = 1;
}
do {
int NWneW = 1;
if (got_pixel) // pixel value already known (derived from either W or N)
NWneW = *pPix != N;
else { // pixel value is unknown and will be decoded later
NWneW = *pRun ? NWneW : NW != W;
/* TODO: RFC this mess! */
switch (((NW != N) << 2) | (NWneW << 1) | WWneW) {
case 0:
break; // do nothing here
case 3:
case 5:
case 6:
case 7:
if (!is_pixel_on_stack(dc, N)) {
idx = WWneW << 8 |
(*pRun ? old_WWneW : WW != W) << 7 |
NWneW << 6 |
(N != NE) << 5 |
(NW != N) << 4 |
(NWW != NW) << 3 |
(NNE != NE) << 2 |
(NN != N) << 1 |
(NNW != NW);
if (!ff_els_decode_bit(&dc->els_ctx, &dc->N_ctx_rung[idx])) {
NWneW = 0;
*pPix = N;
got_pixel = 1;
break;
}
}
/* fall through */
default:
NWneW = 1;
old_WWneW = WWneW;
if (!is_pixel_on_stack(dc, N))
dc->stack[dc->stack_pos++ & EPIC_PIX_STACK_MAX] = N;
}
}
(*pRun)++;
if (x + *pRun >= tile_width - 1)
break;
UPDATE_NEIGHBOURS(x + *pRun);
if (!NWneW && NW == N && N == NE) {
int pos, run, rle;
int start_pos = x + *pRun;
/* scan for a run of pix in the line above */
uint32_t pix = above_row[start_pos + 1];
for (pos = start_pos + 2; pos < tile_width; pos++)
if (!(above_row[pos] == pix))
break;
run = pos - start_pos - 1;
idx = av_ceil_log2(run);
if (ff_els_decode_bit(&dc->els_ctx, &dc->prev_row_rung[idx]))
*pRun += run;
else {
int flag;
/* run-length is coded as plain binary number of idx - 1 bits */
for (pos = idx - 1, rle = 0, flag = 0; pos >= 0; pos--) {
if ((1 << pos) + rle < run &&
ff_els_decode_bit(&dc->els_ctx,
flag ? &dc->runlen_one
: &dc->runlen_zeroes[pos])) {
flag = 1;
rle |= 1 << pos;
}
}
*pRun += rle;
break; // return immediately
}
if (x + *pRun >= tile_width - 1)
break;
LOAD_NEIGHBOURS(x + *pRun);
WWneW = 0;
NWneW = 0;
}
idx = WWneW << 7 |
NWneW << 6 |
(N != NE) << 5 |
(NW != N) << 4 |
(NWW != NW) << 3 |
(NNE != NE) << 2 |
(NN != N) << 1 |
(NNW != NW);
WWneW = ff_els_decode_bit(&dc->els_ctx, &dc->W_ctx_rung[idx]);
} while (!WWneW);
dc->next_run_pos = x + *pRun;
return got_pixel;
}
static int epic_predict_pixel2(ePICContext *dc, uint8_t *rung,
uint32_t *pPix, uint32_t pix)
{
if (ff_els_decode_bit(&dc->els_ctx, rung)) {
*pPix = pix;
return 1;
}
dc->stack[dc->stack_pos++ & EPIC_PIX_STACK_MAX] = pix;
return 0;
}
static int epic_predict_from_NW_NE(ePICContext *dc, int x, int y, int run,
int tile_width, const uint32_t *curr_row,
const uint32_t *above_row, uint32_t *pPix)
{
int pos;
/* try to reuse the NW pixel first */
if (x && y) {
uint32_t NW = above_row[x - 1];
if (NW != curr_row[x - 1] && NW != above_row[x] && !is_pixel_on_stack(dc, NW)) {
if (epic_predict_pixel2(dc, &dc->nw_pred_rung[NW & 0xFF], pPix, NW))
return 1;
}
}
/* try to reuse the NE[x + run, y] pixel */
pos = x + run - 1;
if (pos < tile_width - 1 && y) {
uint32_t NE = above_row[pos + 1];
if (NE != above_row[pos] && !is_pixel_on_stack(dc, NE)) {
if (epic_predict_pixel2(dc, &dc->ne_pred_rung[NE & 0xFF], pPix, NE))
return 1;
}
}
return 0;
}
static int epic_decode_from_cache(ePICContext *dc, uint32_t W, uint32_t *pPix)
{
ePICPixListElem *list, *prev = NULL;
ePICPixHashElem *hash_elem = epic_hash_find(&dc->hash, W);
if (!hash_elem || !hash_elem->list)
return 0;
list = hash_elem->list;
while (list) {
if (!is_pixel_on_stack(dc, list->pixel)) {
if (ff_els_decode_bit(&dc->els_ctx, &list->rung)) {
*pPix = list->pixel;
if (list != hash_elem->list) {
prev->next = list->next;
list->next = hash_elem->list;
hash_elem->list = list;
}
return 1;
}
dc->stack[dc->stack_pos++ & EPIC_PIX_STACK_MAX] = list->pixel;
}
prev = list;
list = list->next;
}
return 0;
}
static int epic_decode_tile(ePICContext *dc, uint8_t *out, int tile_height,
int tile_width, int stride)
{
int x, y;
uint32_t pix;
uint32_t *curr_row = NULL, *above_row = NULL, *above2_row;
for (y = 0; y < tile_height; y++, out += stride) {
above2_row = above_row;
above_row = curr_row;
curr_row = (uint32_t *) out;
for (x = 0, dc->next_run_pos = 0; x < tile_width;) {
if (dc->els_ctx.err)
return AVERROR_INVALIDDATA; // bail out in the case of ELS overflow
pix = curr_row[x - 1]; // get W pixel
if (y >= 1 && x >= 2 &&
pix != curr_row[x - 2] && pix != above_row[x - 1] &&
pix != above_row[x - 2] && pix != above_row[x] &&
!epic_cache_entries_for_pixel(&dc->hash, pix)) {
curr_row[x] = epic_decode_pixel_pred(dc, x, y, curr_row, above_row);
x++;
} else {
int got_pixel, run;
dc->stack_pos = 0; // empty stack
if (y < 2 || x < 2 || x == tile_width - 1) {
run = 1;
got_pixel = epic_handle_edges(dc, x, y, curr_row, above_row, &pix);
} else
got_pixel = epic_decode_run_length(dc, x, y, tile_width,
curr_row, above_row,
above2_row, &pix, &run);
if (!got_pixel && !epic_predict_from_NW_NE(dc, x, y, run,
tile_width, curr_row,
above_row, &pix)) {
uint32_t ref_pix = curr_row[x - 1];
if (!x || !epic_decode_from_cache(dc, ref_pix, &pix)) {
pix = epic_decode_pixel_pred(dc, x, y, curr_row, above_row);
if (x) {
int ret = epic_add_pixel_to_cache(&dc->hash,
ref_pix,
pix);
if (ret)
return ret;
}
}
}
for (; run > 0; x++, run--)
curr_row[x] = pix;
}
}
}
return 0;
}
static int epic_jb_decode_tile(G2MContext *c, int tile_x, int tile_y,
const uint8_t *src, size_t src_size,
AVCodecContext *avctx)
{
uint8_t prefix, mask = 0x80;
int extrabytes, tile_width, tile_height, awidth, aheight;
size_t els_dsize;
uint8_t *dst;
if (!src_size)
return 0;
/* get data size of the ELS partition as unsigned variable-length integer */
prefix = *src++;
src_size--;
for (extrabytes = 0; (prefix & mask) && (extrabytes < 7); extrabytes++)
mask >>= 1;
if (extrabytes > 3 || src_size < extrabytes) {
av_log(avctx, AV_LOG_ERROR, "ePIC: invalid data size VLI\n");
return AVERROR_INVALIDDATA;
}
els_dsize = prefix & ((0x80 >> extrabytes) - 1); // mask out the length prefix
while (extrabytes-- > 0) {
els_dsize = (els_dsize << 8) | *src++;
src_size--;
}
if (src_size < els_dsize) {
av_log(avctx, AV_LOG_ERROR, "ePIC: data too short, needed %zu, got %zu\n",
els_dsize, src_size);
return AVERROR_INVALIDDATA;
}
tile_width = FFMIN(c->width - tile_x * c->tile_width, c->tile_width);
tile_height = FFMIN(c->height - tile_y * c->tile_height, c->tile_height);
awidth = FFALIGN(tile_width, 16);
aheight = FFALIGN(tile_height, 16);
if (els_dsize) {
int ret, i, j, k;
uint8_t tr_r, tr_g, tr_b, *buf;
uint32_t *in;
/* ELS decoder initializations */
memset(&c->ec, 0, sizeof(c->ec));
ff_els_decoder_init(&c->ec.els_ctx, src, els_dsize);
epic_hash_init(&c->ec.hash);
/* decode transparent pixel value */
tr_r = ff_els_decode_unsigned(&c->ec.els_ctx, &c->ec.unsigned_rung);
tr_g = ff_els_decode_unsigned(&c->ec.els_ctx, &c->ec.unsigned_rung);
tr_b = ff_els_decode_unsigned(&c->ec.els_ctx, &c->ec.unsigned_rung);
if (c->ec.els_ctx.err != 0) {
av_log(avctx, AV_LOG_ERROR,
"ePIC: couldn't decode transparency pixel!\n");
return AVERROR_INVALIDDATA;
}
ret = epic_decode_tile(&c->ec, c->epic_buf, tile_height, tile_width,
c->epic_buf_stride);
epic_free_pixel_cache(&c->ec.hash);
ff_els_decoder_uninit(&c->ec.unsigned_rung);
if (ret) {
av_log(avctx, AV_LOG_ERROR,
"ePIC: tile decoding failed, frame=%d, tile_x=%d, tile_y=%d\n",
avctx->frame_number, tile_x, tile_y);
return AVERROR_INVALIDDATA;
}
buf = c->epic_buf;
dst = c->framebuf + tile_x * c->tile_width * 3 +
tile_y * c->tile_height * c->framebuf_stride;
for (j = 0; j < tile_height; j++) {
uint8_t *out = dst;
in = (uint32_t *) buf;
for (i = 0; i < tile_width; i++) {
out[0] = (in[i] >> R_shift) & 0xFF;
out[1] = (in[i] >> G_shift) & 0xFF;
out[2] = (in[i] >> B_shift) & 0xFF;
out += 3;
}
buf += c->epic_buf_stride;
dst += c->framebuf_stride;
}
if (src_size > els_dsize) {
uint8_t *jpg;
uint32_t tr;
int bstride = FFALIGN(tile_width, 16) >> 3;
int nblocks = 0;
int estride = c->epic_buf_stride >> 2;
src += els_dsize;
src_size -= els_dsize;
in = (uint32_t *) c->epic_buf;
tr = (tr_r << R_shift) | (tr_g << G_shift) | (tr_b << B_shift);
memset(c->kempf_flags, 0,
(aheight >> 3) * bstride * sizeof(*c->kempf_flags));
for (j = 0; j < tile_height; j += 8) {
for (i = 0; i < tile_width; i += 8) {
c->kempf_flags[(i >> 3) + (j >> 3) * bstride] = 0;
for (k = 0; k < 8 * 8; k++) {
if (in[i + (k & 7) + (k >> 3) * estride] == tr) {
c->kempf_flags[(i >> 3) + (j >> 3) * bstride] = 1;
nblocks++;
break;
}
}
}
in += 8 * estride;
}
memset(c->jpeg_tile, 0, c->tile_stride * aheight);
jpg_decode_data(&c->jc, awidth, aheight, src, src_size,
c->jpeg_tile, c->tile_stride,
c->kempf_flags, bstride, nblocks, c->swapuv);
in = (uint32_t *) c->epic_buf;
dst = c->framebuf + tile_x * c->tile_width * 3 +
tile_y * c->tile_height * c->framebuf_stride;
jpg = c->jpeg_tile;
for (j = 0; j < tile_height; j++) {
for (i = 0; i < tile_width; i++)
if (in[i] == tr)
memcpy(dst + i * 3, jpg + i * 3, 3);
in += c->epic_buf_stride >> 2;
dst += c->framebuf_stride;
jpg += c->tile_stride;
}
}
} else {
dst = c->framebuf + tile_x * c->tile_width * 3 +
tile_y * c->tile_height * c->framebuf_stride;
return jpg_decode_data(&c->jc, tile_width, tile_height, src, src_size,
dst, c->framebuf_stride, NULL, 0, 0, c->swapuv);
}
return 0;
}
static void kempf_restore_buf(const uint8_t *src, int len,
uint8_t *dst, int stride,
const uint8_t *jpeg_tile, int tile_stride,
int width, int height,
const uint8_t *pal, int npal, int tidx)
{
GetBitContext gb;
int i, j, nb, col;
int align_width = FFALIGN(width, 16);
init_get_bits(&gb, src, len * 8);
if (npal <= 2) nb = 1;
else if (npal <= 4) nb = 2;
else if (npal <= 16) nb = 4;
else nb = 8;
for (j = 0; j < height; j++, dst += stride, jpeg_tile += tile_stride) {
if (get_bits(&gb, 8))
continue;
for (i = 0; i < width; i++) {
col = get_bits(&gb, nb);
if (col != tidx)
memcpy(dst + i * 3, pal + col * 3, 3);
else
memcpy(dst + i * 3, jpeg_tile + i * 3, 3);
}
skip_bits_long(&gb, nb * (align_width - width));
}
}
static int kempf_decode_tile(G2MContext *c, int tile_x, int tile_y,
const uint8_t *src, int src_size)
{
int width, height;
int hdr, zsize, npal, tidx = -1, ret;
int i, j;
const uint8_t *src_end = src + src_size;
uint8_t pal[768], transp[3];
uLongf dlen = (c->tile_width + 1) * c->tile_height;
int sub_type;
int nblocks, cblocks, bstride;
int bits, bitbuf, coded;
uint8_t *dst = c->framebuf + tile_x * c->tile_width * 3 +
tile_y * c->tile_height * c->framebuf_stride;
if (src_size < 2)
return AVERROR_INVALIDDATA;
width = FFMIN(c->width - tile_x * c->tile_width, c->tile_width);
height = FFMIN(c->height - tile_y * c->tile_height, c->tile_height);
hdr = *src++;
sub_type = hdr >> 5;
if (sub_type == 0) {
int j;
memcpy(transp, src, 3);
src += 3;
for (j = 0; j < height; j++, dst += c->framebuf_stride)
for (i = 0; i < width; i++)
memcpy(dst + i * 3, transp, 3);
return 0;
} else if (sub_type == 1) {
return jpg_decode_data(&c->jc, width, height, src, src_end - src,
dst, c->framebuf_stride, NULL, 0, 0, 0);
}
if (sub_type != 2) {
memcpy(transp, src, 3);
src += 3;
}
npal = *src++ + 1;
memcpy(pal, src, npal * 3);
src += npal * 3;
if (sub_type != 2) {
for (i = 0; i < npal; i++) {
if (!memcmp(pal + i * 3, transp, 3)) {
tidx = i;
break;
}
}
}
if (src_end - src < 2)
return 0;
zsize = (src[0] << 8) | src[1];
src += 2;
if (src_end - src < zsize)
return AVERROR_INVALIDDATA;
ret = uncompress(c->kempf_buf, &dlen, src, zsize);
if (ret)
return AVERROR_INVALIDDATA;
src += zsize;
if (sub_type == 2) {
kempf_restore_buf(c->kempf_buf, dlen, dst, c->framebuf_stride,
NULL, 0, width, height, pal, npal, tidx);
return 0;
}
nblocks = *src++ + 1;
cblocks = 0;
bstride = FFALIGN(width, 16) >> 3;
// blocks are coded LSB and we need normal bitreader for JPEG data
bits = 0;
for (i = 0; i < (FFALIGN(height, 16) >> 4); i++) {
for (j = 0; j < (FFALIGN(width, 16) >> 4); j++) {
if (!bits) {
bitbuf = *src++;
bits = 8;
}
coded = bitbuf & 1;
bits--;
bitbuf >>= 1;
cblocks += coded;
if (cblocks > nblocks)
return AVERROR_INVALIDDATA;
c->kempf_flags[j * 2 + i * 2 * bstride] =
c->kempf_flags[j * 2 + 1 + i * 2 * bstride] =
c->kempf_flags[j * 2 + (i * 2 + 1) * bstride] =
c->kempf_flags[j * 2 + 1 + (i * 2 + 1) * bstride] = coded;
}
}
memset(c->jpeg_tile, 0, c->tile_stride * height);
jpg_decode_data(&c->jc, width, height, src, src_end - src,
c->jpeg_tile, c->tile_stride,
c->kempf_flags, bstride, nblocks * 4, 0);
kempf_restore_buf(c->kempf_buf, dlen, dst, c->framebuf_stride,
c->jpeg_tile, c->tile_stride,
width, height, pal, npal, tidx);
return 0;
}
static int g2m_init_buffers(G2MContext *c)
{
int aligned_height;
if (!c->framebuf || c->old_width < c->width || c->old_height < c->height) {
c->framebuf_stride = FFALIGN(c->width * 3, 16);
aligned_height = FFALIGN(c->height, 16);
av_free(c->framebuf);
c->framebuf = av_mallocz(c->framebuf_stride * aligned_height);
if (!c->framebuf)
return AVERROR(ENOMEM);
}
if (!c->synth_tile || !c->jpeg_tile ||
(c->compression == 2 && !c->epic_buf_base) ||
c->old_tile_w < c->tile_width ||
c->old_tile_h < c->tile_height) {
c->tile_stride = FFALIGN(c->tile_width * 3, 16);
c->epic_buf_stride = FFALIGN(c->tile_width * 4, 16);
aligned_height = FFALIGN(c->tile_height, 16);
av_free(c->synth_tile);
av_free(c->jpeg_tile);
av_free(c->kempf_buf);
av_free(c->kempf_flags);
av_free(c->epic_buf_base);
c->synth_tile = av_mallocz(c->tile_stride * aligned_height);
c->jpeg_tile = av_mallocz(c->tile_stride * aligned_height);
c->kempf_buf = av_mallocz((c->tile_width + 1) * aligned_height +
AV_INPUT_BUFFER_PADDING_SIZE);
c->kempf_flags = av_mallocz(c->tile_width * aligned_height);
if (!c->synth_tile || !c->jpeg_tile ||
!c->kempf_buf || !c->kempf_flags)
return AVERROR(ENOMEM);
if (c->compression == 2) {
c->epic_buf_base = av_mallocz(c->epic_buf_stride * aligned_height + 4);
if (!c->epic_buf_base)
return AVERROR(ENOMEM);
c->epic_buf = c->epic_buf_base + 4;
}
}
return 0;
}
static int g2m_load_cursor(AVCodecContext *avctx, G2MContext *c,
GetByteContext *gb)
{
int i, j, k;
uint8_t *dst;
uint32_t bits;
uint32_t cur_size, cursor_w, cursor_h, cursor_stride;
uint32_t cursor_hot_x, cursor_hot_y;
int cursor_fmt, err;
cur_size = bytestream2_get_be32(gb);
cursor_w = bytestream2_get_byte(gb);
cursor_h = bytestream2_get_byte(gb);
cursor_hot_x = bytestream2_get_byte(gb);
cursor_hot_y = bytestream2_get_byte(gb);
cursor_fmt = bytestream2_get_byte(gb);
cursor_stride = FFALIGN(cursor_w, 32) * 4;
if (cursor_w < 1 || cursor_w > 256 ||
cursor_h < 1 || cursor_h > 256) {
av_log(avctx, AV_LOG_ERROR, "Invalid cursor dimensions %"PRIu32"x%"PRIu32"\n",
cursor_w, cursor_h);
return AVERROR_INVALIDDATA;
}
if (cursor_hot_x > cursor_w || cursor_hot_y > cursor_h) {
av_log(avctx, AV_LOG_WARNING, "Invalid hotspot position %"PRIu32",%"PRIu32"\n",
cursor_hot_x, cursor_hot_y);
cursor_hot_x = FFMIN(cursor_hot_x, cursor_w - 1);
cursor_hot_y = FFMIN(cursor_hot_y, cursor_h - 1);
}
if (cur_size - 9 > bytestream2_get_bytes_left(gb) ||
c->cursor_w * c->cursor_h / 4 > cur_size) {
av_log(avctx, AV_LOG_ERROR, "Invalid cursor data size %"PRIu32"/%u\n",
cur_size, bytestream2_get_bytes_left(gb));
return AVERROR_INVALIDDATA;
}
if (cursor_fmt != 1 && cursor_fmt != 32) {
avpriv_report_missing_feature(avctx, "Cursor format %d",
cursor_fmt);
return AVERROR_PATCHWELCOME;
}
if ((err = av_reallocp(&c->cursor, cursor_stride * cursor_h)) < 0) {
av_log(avctx, AV_LOG_ERROR, "Cannot allocate cursor buffer\n");
return err;
}
c->cursor_w = cursor_w;
c->cursor_h = cursor_h;
c->cursor_hot_x = cursor_hot_x;
c->cursor_hot_y = cursor_hot_y;
c->cursor_fmt = cursor_fmt;
c->cursor_stride = cursor_stride;
dst = c->cursor;
switch (c->cursor_fmt) {
case 1: // old monochrome
for (j = 0; j < c->cursor_h; j++) {
for (i = 0; i < c->cursor_w; i += 32) {
bits = bytestream2_get_be32(gb);
for (k = 0; k < 32; k++) {
dst[0] = !!(bits & 0x80000000);
dst += 4;
bits <<= 1;
}
}
dst += c->cursor_stride - c->cursor_w * 4;
}
dst = c->cursor;
for (j = 0; j < c->cursor_h; j++) {
for (i = 0; i < c->cursor_w; i += 32) {
bits = bytestream2_get_be32(gb);
for (k = 0; k < 32; k++) {
int mask_bit = !!(bits & 0x80000000);
switch (dst[0] * 2 + mask_bit) {
case 0:
dst[0] = 0xFF;
dst[1] = 0x00;
dst[2] = 0x00;
dst[3] = 0x00;
break;
case 1:
dst[0] = 0xFF;
dst[1] = 0xFF;
dst[2] = 0xFF;
dst[3] = 0xFF;
break;
default:
dst[0] = 0x00;
dst[1] = 0x00;
dst[2] = 0x00;
dst[3] = 0x00;
}
dst += 4;
bits <<= 1;
}
}
dst += c->cursor_stride - c->cursor_w * 4;
}
break;
case 32: // full colour
/* skip monochrome version of the cursor and decode RGBA instead */
bytestream2_skip(gb, c->cursor_h * (FFALIGN(c->cursor_w, 32) >> 3));
for (j = 0; j < c->cursor_h; j++) {
for (i = 0; i < c->cursor_w; i++) {
int val = bytestream2_get_be32(gb);
*dst++ = val >> 0;
*dst++ = val >> 8;
*dst++ = val >> 16;
*dst++ = val >> 24;
}
dst += c->cursor_stride - c->cursor_w * 4;
}
break;
default:
return AVERROR_PATCHWELCOME;
}
return 0;
}
#define APPLY_ALPHA(src, new, alpha) \
src = (src * (256 - alpha) + new * alpha) >> 8
static void g2m_paint_cursor(G2MContext *c, uint8_t *dst, int stride)
{
int i, j;
int x, y, w, h;
const uint8_t *cursor;
if (!c->cursor)
return;
x = c->cursor_x - c->cursor_hot_x;
y = c->cursor_y - c->cursor_hot_y;
cursor = c->cursor;
w = c->cursor_w;
h = c->cursor_h;
if (x + w > c->width)
w = c->width - x;
if (y + h > c->height)
h = c->height - y;
if (x < 0) {
w += x;
cursor += -x * 4;
} else {
dst += x * 3;
}
if (y < 0) {
h += y;
cursor += -y * c->cursor_stride;
} else {
dst += y * stride;
}
if (w < 0 || h < 0)
return;
for (j = 0; j < h; j++) {
for (i = 0; i < w; i++) {
uint8_t alpha = cursor[i * 4];
APPLY_ALPHA(dst[i * 3 + 0], cursor[i * 4 + 1], alpha);
APPLY_ALPHA(dst[i * 3 + 1], cursor[i * 4 + 2], alpha);
APPLY_ALPHA(dst[i * 3 + 2], cursor[i * 4 + 3], alpha);
}
dst += stride;
cursor += c->cursor_stride;
}
}
static int g2m_decode_frame(AVCodecContext *avctx, void *data,
int *got_picture_ptr, AVPacket *avpkt)
{
const uint8_t *buf = avpkt->data;
int buf_size = avpkt->size;
G2MContext *c = avctx->priv_data;
AVFrame *pic = data;
GetByteContext bc, tbc;
int magic;
int got_header = 0;
uint32_t chunk_size, r_mask, g_mask, b_mask;
int chunk_type, chunk_start;
int i;
int ret;
if (buf_size < 12) {
av_log(avctx, AV_LOG_ERROR,
"Frame should have at least 12 bytes, got %d instead\n",
buf_size);
return AVERROR_INVALIDDATA;
}
bytestream2_init(&bc, buf, buf_size);
magic = bytestream2_get_be32(&bc);
if ((magic & ~0xF) != MKBETAG('G', '2', 'M', '0') ||
(magic & 0xF) < 2 || (magic & 0xF) > 5) {
av_log(avctx, AV_LOG_ERROR, "Wrong magic %08X\n", magic);
return AVERROR_INVALIDDATA;
}
c->swapuv = magic == MKBETAG('G', '2', 'M', '2');
while (bytestream2_get_bytes_left(&bc) > 5) {
chunk_size = bytestream2_get_le32(&bc) - 1;
chunk_type = bytestream2_get_byte(&bc);
chunk_start = bytestream2_tell(&bc);
if (chunk_size > bytestream2_get_bytes_left(&bc)) {
av_log(avctx, AV_LOG_ERROR, "Invalid chunk size %"PRIu32" type %02X\n",
chunk_size, chunk_type);
break;
}
switch (chunk_type) {
case DISPLAY_INFO:
c->got_header = 0;
if (chunk_size < 21) {
av_log(avctx, AV_LOG_ERROR, "Invalid display info size %"PRIu32"\n",
chunk_size);
break;
}
c->width = bytestream2_get_be32(&bc);
c->height = bytestream2_get_be32(&bc);
if (c->width < 16 || c->height < 16) {
av_log(avctx, AV_LOG_ERROR,
"Invalid frame dimensions %dx%d\n",
c->width, c->height);
ret = AVERROR_INVALIDDATA;
goto header_fail;
}
if (c->width != avctx->width || c->height != avctx->height) {
ret = ff_set_dimensions(avctx, c->width, c->height);
if (ret < 0)
return ret;
}
c->compression = bytestream2_get_be32(&bc);
if (c->compression != 2 && c->compression != 3) {
avpriv_report_missing_feature(avctx, "Compression method %d",
c->compression);
return AVERROR_PATCHWELCOME;
}
c->tile_width = bytestream2_get_be32(&bc);
c->tile_height = bytestream2_get_be32(&bc);
if (!c->tile_width || !c->tile_height ||
((c->tile_width | c->tile_height) & 0xF)) {
av_log(avctx, AV_LOG_ERROR,
"Invalid tile dimensions %dx%d\n",
c->tile_width, c->tile_height);
ret = AVERROR_INVALIDDATA;
goto header_fail;
}
c->tiles_x = (c->width + c->tile_width - 1) / c->tile_width;
c->tiles_y = (c->height + c->tile_height - 1) / c->tile_height;
c->bpp = bytestream2_get_byte(&bc);
if (c->bpp == 32) {
if (bytestream2_get_bytes_left(&bc) < 16 ||
(chunk_size - 21) < 16) {
av_log(avctx, AV_LOG_ERROR,
"Display info: missing bitmasks!\n");
return AVERROR_INVALIDDATA;
}
r_mask = bytestream2_get_be32(&bc);
g_mask = bytestream2_get_be32(&bc);
b_mask = bytestream2_get_be32(&bc);
if (r_mask != 0xFF0000 || g_mask != 0xFF00 || b_mask != 0xFF) {
avpriv_report_missing_feature(avctx,
"Bitmasks: R=%"PRIX32", G=%"PRIX32", B=%"PRIX32,
r_mask, g_mask, b_mask);
return AVERROR_PATCHWELCOME;
}
} else {
avpriv_request_sample(avctx, "bpp=%d", c->bpp);
return AVERROR_PATCHWELCOME;
}
if (g2m_init_buffers(c)) {
ret = AVERROR(ENOMEM);
goto header_fail;
}
got_header = 1;
break;
case TILE_DATA:
if (!c->tiles_x || !c->tiles_y) {
av_log(avctx, AV_LOG_WARNING,
"No display info - skipping tile\n");
break;
}
if (chunk_size < 2) {
av_log(avctx, AV_LOG_ERROR, "Invalid tile data size %"PRIu32"\n",
chunk_size);
break;
}
c->tile_x = bytestream2_get_byte(&bc);
c->tile_y = bytestream2_get_byte(&bc);
if (c->tile_x >= c->tiles_x || c->tile_y >= c->tiles_y) {
av_log(avctx, AV_LOG_ERROR,
"Invalid tile pos %d,%d (in %dx%d grid)\n",
c->tile_x, c->tile_y, c->tiles_x, c->tiles_y);
break;
}
ret = 0;
switch (c->compression) {
case COMPR_EPIC_J_B:
ret = epic_jb_decode_tile(c, c->tile_x, c->tile_y,
buf + bytestream2_tell(&bc),
chunk_size - 2, avctx);
break;
case COMPR_KEMPF_J_B:
ret = kempf_decode_tile(c, c->tile_x, c->tile_y,
buf + bytestream2_tell(&bc),
chunk_size - 2);
break;
}
if (ret && c->framebuf)
av_log(avctx, AV_LOG_ERROR, "Error decoding tile %d,%d\n",
c->tile_x, c->tile_y);
break;
case CURSOR_POS:
if (chunk_size < 5) {
av_log(avctx, AV_LOG_ERROR, "Invalid cursor pos size %"PRIu32"\n",
chunk_size);
break;
}
c->cursor_x = bytestream2_get_be16(&bc);
c->cursor_y = bytestream2_get_be16(&bc);
break;
case CURSOR_SHAPE:
if (chunk_size < 8) {
av_log(avctx, AV_LOG_ERROR, "Invalid cursor data size %"PRIu32"\n",
chunk_size);
break;
}
bytestream2_init(&tbc, buf + bytestream2_tell(&bc),
chunk_size - 4);
g2m_load_cursor(avctx, c, &tbc);
break;
case CHUNK_CC:
case CHUNK_CD:
break;
default:
av_log(avctx, AV_LOG_WARNING, "Skipping chunk type %02d\n",
chunk_type);
}
/* navigate to next chunk */
bytestream2_skip(&bc, chunk_start + chunk_size - bytestream2_tell(&bc));
}
if (got_header)
c->got_header = 1;
if (c->width && c->height) {
if ((ret = ff_get_buffer(avctx, pic, 0)) < 0) {
av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
return ret;
}
pic->key_frame = got_header;
pic->pict_type = got_header ? AV_PICTURE_TYPE_I : AV_PICTURE_TYPE_P;
for (i = 0; i < avctx->height; i++)
memcpy(pic->data[0] + i * pic->linesize[0],
c->framebuf + i * c->framebuf_stride,
c->width * 3);
g2m_paint_cursor(c, pic->data[0], pic->linesize[0]);
*got_picture_ptr = 1;
}
return buf_size;
header_fail:
c->width =
c->height = 0;
c->tiles_x =
c->tiles_y = 0;
return ret;
}
static av_cold int g2m_decode_init(AVCodecContext *avctx)
{
G2MContext *const c = avctx->priv_data;
int ret;
if ((ret = jpg_init(avctx, &c->jc)) != 0) {
av_log(avctx, AV_LOG_ERROR, "Cannot initialise VLCs\n");
jpg_free_context(&c->jc);
return AVERROR(ENOMEM);
}
avctx->pix_fmt = AV_PIX_FMT_RGB24;
// store original sizes and check against those if resize happens
c->orig_width = avctx->width;
c->orig_height = avctx->height;
return 0;
}
static av_cold int g2m_decode_end(AVCodecContext *avctx)
{
G2MContext *const c = avctx->priv_data;
jpg_free_context(&c->jc);
av_freep(&c->epic_buf_base);
av_freep(&c->kempf_buf);
av_freep(&c->kempf_flags);
av_freep(&c->synth_tile);
av_freep(&c->jpeg_tile);
av_freep(&c->cursor);
av_freep(&c->framebuf);
return 0;
}
AVCodec ff_g2m_decoder = {
.name = "g2m",
.long_name = NULL_IF_CONFIG_SMALL("Go2Meeting"),
.type = AVMEDIA_TYPE_VIDEO,
.id = AV_CODEC_ID_G2M,
.priv_data_size = sizeof(G2MContext),
.init = g2m_decode_init,
.close = g2m_decode_end,
.decode = g2m_decode_frame,
.capabilities = AV_CODEC_CAP_DR1,
.caps_internal = FF_CODEC_CAP_INIT_THREADSAFE,
};