mirror of
https://github.com/FFmpeg/FFmpeg.git
synced 2024-11-26 19:01:44 +02:00
aebf07075f
The DCA core decoder converts integer coefficients read from the bitstream to floats just after reading them (along with dequantization). All the other steps of the audio reconstruction are done with floats which makes the output for the DTS lossless extension (XLL) actually lossy. This patch changes the DCA core to work with integer coefficients until QMF. At this point the integer coefficients are converted to floats. The coefficients for the LFE channel (lfe_data) are not touched. This is the first step for the really lossless XLL decoding.
154 lines
4.9 KiB
C
154 lines
4.9 KiB
C
/*
|
|
* Copyright (c) 2004 Gildas Bazin
|
|
* Copyright (c) 2010 Mans Rullgard <mans@mansr.com>
|
|
*
|
|
* This file is part of Libav.
|
|
*
|
|
* Libav is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*
|
|
* Libav is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with Libav; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
|
|
#include "config.h"
|
|
|
|
#include "libavutil/attributes.h"
|
|
#include "libavutil/intreadwrite.h"
|
|
|
|
#include "dcadsp.h"
|
|
#include "dcamath.h"
|
|
|
|
static void decode_hf_c(float dst[DCA_SUBBANDS][8],
|
|
const int32_t vq_num[DCA_SUBBANDS],
|
|
const int8_t hf_vq[1024][32], intptr_t vq_offset,
|
|
int32_t scale[DCA_SUBBANDS][2],
|
|
intptr_t start, intptr_t end)
|
|
{
|
|
int i, l;
|
|
|
|
for (l = start; l < end; l++) {
|
|
/* 1 vector -> 32 samples but we only need the 8 samples
|
|
* for this subsubframe. */
|
|
const int8_t *ptr = &hf_vq[vq_num[l]][vq_offset];
|
|
float fscale = scale[l][0] * (1 / 16.0);
|
|
for (i = 0; i < 8; i++)
|
|
dst[l][i] = ptr[i] * fscale;
|
|
}
|
|
}
|
|
|
|
static void decode_hf_int_c(int32_t dst[DCA_SUBBANDS][8],
|
|
const int32_t vq_num[DCA_SUBBANDS],
|
|
const int8_t hf_vq[1024][32], intptr_t vq_offset,
|
|
int32_t scale[DCA_SUBBANDS][2],
|
|
intptr_t start, intptr_t end)
|
|
{
|
|
int i, j;
|
|
|
|
for (j = start; j < end; j++) {
|
|
const int8_t *ptr = &hf_vq[vq_num[j]][vq_offset];
|
|
for (i = 0; i < 8; i++)
|
|
dst[j][i] = ptr[i] * scale[j][0] + 8 >> 4;
|
|
}
|
|
}
|
|
|
|
static inline void dca_lfe_fir(float *out, const float *in, const float *coefs,
|
|
int decifactor)
|
|
{
|
|
float *out2 = out + 2 * decifactor - 1;
|
|
int num_coeffs = 256 / decifactor;
|
|
int j, k;
|
|
|
|
/* One decimated sample generates 2*decifactor interpolated ones */
|
|
for (k = 0; k < decifactor; k++) {
|
|
float v0 = 0.0;
|
|
float v1 = 0.0;
|
|
for (j = 0; j < num_coeffs; j++, coefs++) {
|
|
v0 += in[-j] * *coefs;
|
|
v1 += in[j + 1 - num_coeffs] * *coefs;
|
|
}
|
|
*out++ = v0;
|
|
*out2-- = v1;
|
|
}
|
|
}
|
|
|
|
static void dca_qmf_32_subbands(float samples_in[32][8], int sb_act,
|
|
SynthFilterContext *synth, FFTContext *imdct,
|
|
float synth_buf_ptr[512],
|
|
int *synth_buf_offset, float synth_buf2[32],
|
|
const float window[512], float *samples_out,
|
|
float raXin[32], float scale)
|
|
{
|
|
int i;
|
|
int subindex;
|
|
|
|
for (i = sb_act; i < 32; i++)
|
|
raXin[i] = 0.0;
|
|
|
|
/* Reconstructed channel sample index */
|
|
for (subindex = 0; subindex < 8; subindex++) {
|
|
/* Load in one sample from each subband and clear inactive subbands */
|
|
for (i = 0; i < sb_act; i++) {
|
|
unsigned sign = (i - 1) & 2;
|
|
uint32_t v = AV_RN32A(&samples_in[i][subindex]) ^ sign << 30;
|
|
AV_WN32A(&raXin[i], v);
|
|
}
|
|
|
|
synth->synth_filter_float(imdct, synth_buf_ptr, synth_buf_offset,
|
|
synth_buf2, window, samples_out, raXin,
|
|
scale);
|
|
samples_out += 32;
|
|
}
|
|
}
|
|
|
|
static void dequantize_c(int32_t *samples, uint32_t step_size, uint32_t scale)
|
|
{
|
|
int64_t step = (int64_t)step_size * scale;
|
|
int shift, i;
|
|
int32_t step_scale;
|
|
|
|
if (step > (1 << 23))
|
|
shift = av_log2(step >> 23) + 1;
|
|
else
|
|
shift = 0;
|
|
step_scale = (int32_t)(step >> shift);
|
|
|
|
for (i = 0; i < 8; i++)
|
|
samples[i] = dca_clip23(dca_norm((int64_t)samples[i] * step_scale, 22 - shift));
|
|
}
|
|
|
|
static void dca_lfe_fir0_c(float *out, const float *in, const float *coefs)
|
|
{
|
|
dca_lfe_fir(out, in, coefs, 32);
|
|
}
|
|
|
|
static void dca_lfe_fir1_c(float *out, const float *in, const float *coefs)
|
|
{
|
|
dca_lfe_fir(out, in, coefs, 64);
|
|
}
|
|
|
|
av_cold void ff_dcadsp_init(DCADSPContext *s)
|
|
{
|
|
s->lfe_fir[0] = dca_lfe_fir0_c;
|
|
s->lfe_fir[1] = dca_lfe_fir1_c;
|
|
s->qmf_32_subbands = dca_qmf_32_subbands;
|
|
s->decode_hf = decode_hf_c;
|
|
s->decode_hf_int = decode_hf_int_c;
|
|
s->dequantize = dequantize_c;
|
|
|
|
if (ARCH_AARCH64)
|
|
ff_dcadsp_init_aarch64(s);
|
|
if (ARCH_ARM)
|
|
ff_dcadsp_init_arm(s);
|
|
if (ARCH_X86)
|
|
ff_dcadsp_init_x86(s);
|
|
}
|