1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2025-01-13 21:28:01 +02:00
FFmpeg/libavfilter/vf_bilateral.c
Andreas Rheinhardt 790f793844 avutil/common: Don't auto-include mem.h
There are lots of files that don't need it: The number of object
files that actually need it went down from 2011 to 884 here.

Keep it for external users in order to not cause breakages.

Also improve the other headers a bit while just at it.

Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
2024-03-31 00:08:43 +01:00

514 lines
25 KiB
C

/*
* Copyright (c) 2017 Ming Yang
* Copyright (c) 2019 Paul B Mahol
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "libavutil/imgutils.h"
#include "libavutil/mem.h"
#include "libavutil/opt.h"
#include "libavutil/pixdesc.h"
#include "avfilter.h"
#include "internal.h"
#include "video.h"
typedef struct BilateralContext {
const AVClass *class;
float sigmaS;
float sigmaR;
int planes;
int nb_threads;
int nb_planes;
int depth;
int planewidth[4];
int planeheight[4];
float alpha;
float range_table[65536];
float *img_out_f[4];
float *img_temp[4];
float *map_factor_a[4];
float *map_factor_b[4];
float *slice_factor_a[4];
float *slice_factor_b[4];
float *line_factor_a[4];
float *line_factor_b[4];
} BilateralContext;
#define OFFSET(x) offsetof(BilateralContext, x)
#define FLAGS AV_OPT_FLAG_VIDEO_PARAM|AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_RUNTIME_PARAM
static const AVOption bilateral_options[] = {
{ "sigmaS", "set spatial sigma", OFFSET(sigmaS), AV_OPT_TYPE_FLOAT, {.dbl=0.1}, 0.0, 512, FLAGS },
{ "sigmaR", "set range sigma", OFFSET(sigmaR), AV_OPT_TYPE_FLOAT, {.dbl=0.1}, 0.0, 1, FLAGS },
{ "planes", "set planes to filter", OFFSET(planes), AV_OPT_TYPE_INT, {.i64=1}, 0, 0xF, FLAGS },
{ NULL }
};
AVFILTER_DEFINE_CLASS(bilateral);
static const enum AVPixelFormat pix_fmts[] = {
AV_PIX_FMT_YUVA444P, AV_PIX_FMT_YUV444P, AV_PIX_FMT_YUV440P,
AV_PIX_FMT_YUVJ444P, AV_PIX_FMT_YUVJ440P,
AV_PIX_FMT_YUVA422P, AV_PIX_FMT_YUV422P, AV_PIX_FMT_YUVA420P, AV_PIX_FMT_YUV420P,
AV_PIX_FMT_YUVJ422P, AV_PIX_FMT_YUVJ420P,
AV_PIX_FMT_YUVJ411P, AV_PIX_FMT_YUV411P, AV_PIX_FMT_YUV410P,
AV_PIX_FMT_YUV420P9, AV_PIX_FMT_YUV422P9, AV_PIX_FMT_YUV444P9,
AV_PIX_FMT_YUV420P10, AV_PIX_FMT_YUV422P10, AV_PIX_FMT_YUV444P10,
AV_PIX_FMT_YUV420P12, AV_PIX_FMT_YUV422P12, AV_PIX_FMT_YUV444P12, AV_PIX_FMT_YUV440P12,
AV_PIX_FMT_YUV420P14, AV_PIX_FMT_YUV422P14, AV_PIX_FMT_YUV444P14,
AV_PIX_FMT_YUV420P16, AV_PIX_FMT_YUV422P16, AV_PIX_FMT_YUV444P16,
AV_PIX_FMT_YUVA420P9, AV_PIX_FMT_YUVA422P9, AV_PIX_FMT_YUVA444P9,
AV_PIX_FMT_YUVA420P10, AV_PIX_FMT_YUVA422P10, AV_PIX_FMT_YUVA444P10,
AV_PIX_FMT_YUVA420P16, AV_PIX_FMT_YUVA422P16, AV_PIX_FMT_YUVA444P16,
AV_PIX_FMT_GBRP, AV_PIX_FMT_GBRP9, AV_PIX_FMT_GBRP10,
AV_PIX_FMT_GBRP12, AV_PIX_FMT_GBRP14, AV_PIX_FMT_GBRP16,
AV_PIX_FMT_GBRAP, AV_PIX_FMT_GBRAP10, AV_PIX_FMT_GBRAP12, AV_PIX_FMT_GBRAP16,
AV_PIX_FMT_GRAY8, AV_PIX_FMT_GRAY9, AV_PIX_FMT_GRAY10, AV_PIX_FMT_GRAY12, AV_PIX_FMT_GRAY14, AV_PIX_FMT_GRAY16,
AV_PIX_FMT_NONE
};
static int config_params(AVFilterContext *ctx)
{
BilateralContext *s = ctx->priv;
float inv_sigma_range;
inv_sigma_range = 1.0f / (s->sigmaR * ((1 << s->depth) - 1));
s->alpha = expf(-sqrtf(2.f) / s->sigmaS);
//compute a lookup table
for (int i = 0; i < (1 << s->depth); i++)
s->range_table[i] = s->alpha * expf(-i * inv_sigma_range);
return 0;
}
typedef struct ThreadData {
AVFrame *in, *out;
} ThreadData;
static int config_input(AVFilterLink *inlink)
{
AVFilterContext *ctx = inlink->dst;
BilateralContext *s = ctx->priv;
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(inlink->format);
s->depth = desc->comp[0].depth;
config_params(ctx);
s->planewidth[1] = s->planewidth[2] = AV_CEIL_RSHIFT(inlink->w, desc->log2_chroma_w);
s->planewidth[0] = s->planewidth[3] = inlink->w;
s->planeheight[1] = s->planeheight[2] = AV_CEIL_RSHIFT(inlink->h, desc->log2_chroma_h);
s->planeheight[0] = s->planeheight[3] = inlink->h;
s->nb_planes = av_pix_fmt_count_planes(inlink->format);
s->nb_threads = ff_filter_get_nb_threads(ctx);
for (int p = 0; p < s->nb_planes; p++) {
const int w = s->planewidth[p];
const int h = s->planeheight[p];
s->img_out_f[p] = av_calloc(w * h, sizeof(float));
s->img_temp[p] = av_calloc(w * h, sizeof(float));
s->map_factor_a[p] = av_calloc(w * h, sizeof(float));
s->map_factor_b[p] = av_calloc(w * h, sizeof(float));
s->slice_factor_a[p] = av_calloc(w, sizeof(float));
s->slice_factor_b[p] = av_calloc(w, sizeof(float));
s->line_factor_a[p] = av_calloc(w, sizeof(float));
s->line_factor_b[p] = av_calloc(w, sizeof(float));
if (!s->img_out_f[p] ||
!s->img_temp[p] ||
!s->map_factor_a[p] ||
!s->map_factor_b[p] ||
!s->slice_factor_a[p] ||
!s->slice_factor_a[p] ||
!s->line_factor_a[p] ||
!s->line_factor_a[p])
return AVERROR(ENOMEM);
}
return 0;
}
#define BILATERAL_H(type, name) \
static void bilateralh_##name(BilateralContext *s, AVFrame *out, AVFrame *in, \
int jobnr, int nb_jobs, int plane) \
{ \
const int width = s->planewidth[plane]; \
const int height = s->planeheight[plane]; \
const int slice_start = (height * jobnr) / nb_jobs; \
const int slice_end = (height * (jobnr+1)) / nb_jobs; \
const int src_linesize = in->linesize[plane] / sizeof(type); \
const type *src = (const type *)in->data[plane]; \
float *img_temp = s->img_temp[plane]; \
float *map_factor_a = s->map_factor_a[plane]; \
const float *const range_table = s->range_table; \
const float alpha = s->alpha; \
float ypr, ycr, fp, fc; \
const float inv_alpha_ = 1.f - alpha; \
\
for (int y = slice_start; y < slice_end; y++) { \
float *temp_factor_x, *temp_x = &img_temp[y * width]; \
const type *in_x = &src[y * src_linesize]; \
const type *texture_x = &src[y * src_linesize]; \
type tpr; \
\
*temp_x++ = ypr = *in_x++; \
tpr = *texture_x++; \
\
temp_factor_x = &map_factor_a[y * width]; \
*temp_factor_x++ = fp = 1; \
\
for (int x = 1; x < width; x++) { \
float alpha_; \
int range_dist; \
type tcr = *texture_x++; \
type dr = abs(tcr - tpr); \
\
range_dist = dr; \
alpha_ = range_table[range_dist]; \
*temp_x++ = ycr = inv_alpha_*(*in_x++) + alpha_*ypr; \
tpr = tcr; \
ypr = ycr; \
*temp_factor_x++ = fc = inv_alpha_ + alpha_ * fp; \
fp = fc; \
} \
--temp_x; *temp_x = ((*temp_x) + (*--in_x)); \
tpr = *--texture_x; \
ypr = *in_x; \
\
--temp_factor_x; *temp_factor_x = ((*temp_factor_x) + 1); \
fp = 1; \
\
for (int x = width - 2; x >= 0; x--) { \
type tcr = *--texture_x; \
type dr = abs(tcr - tpr); \
int range_dist = dr; \
float alpha_ = range_table[range_dist]; \
\
ycr = inv_alpha_ * (*--in_x) + alpha_ * ypr; \
--temp_x; *temp_x = ((*temp_x) + ycr); \
tpr = tcr; \
ypr = ycr; \
\
fc = inv_alpha_ + alpha_*fp; \
--temp_factor_x; \
*temp_factor_x = ((*temp_factor_x) + fc); \
fp = fc; \
} \
} \
}
BILATERAL_H(uint8_t, byte)
BILATERAL_H(uint16_t, word)
#define BILATERAL_V(type, name) \
static void bilateralv_##name(BilateralContext *s, AVFrame *out, AVFrame *in, \
int jobnr, int nb_jobs, int plane) \
{ \
const int width = s->planewidth[plane]; \
const int height = s->planeheight[plane]; \
const int slice_start = (width * jobnr) / nb_jobs; \
const int slice_end = (width * (jobnr+1)) / nb_jobs; \
const int src_linesize = in->linesize[plane] / sizeof(type); \
const type *src = (const type *)in->data[plane] + slice_start; \
float *img_out_f = s->img_out_f[plane] + slice_start; \
float *img_temp = s->img_temp[plane] + slice_start; \
float *map_factor_a = s->map_factor_a[plane] + slice_start; \
float *map_factor_b = s->map_factor_b[plane] + slice_start; \
float *slice_factor_a = s->slice_factor_a[plane] + slice_start; \
float *slice_factor_b = s->slice_factor_b[plane] + slice_start; \
float *line_factor_a = s->line_factor_a[plane] + slice_start; \
float *line_factor_b = s->line_factor_b[plane] + slice_start; \
const float *const range_table = s->range_table; \
const float alpha = s->alpha; \
float *ycy, *ypy, *xcy; \
const float inv_alpha_ = 1.f - alpha; \
float *ycf, *ypf, *xcf, *in_factor; \
const type *tcy, *tpy; \
int h1; \
\
memcpy(img_out_f, img_temp, sizeof(float) * (slice_end - slice_start)); \
\
in_factor = map_factor_a; \
memcpy(map_factor_b, in_factor, sizeof(float) * (slice_end - slice_start)); \
for (int y = 1; y < height; y++) { \
tpy = &src[(y - 1) * src_linesize]; \
tcy = &src[y * src_linesize]; \
xcy = &img_temp[y * width]; \
ypy = &img_out_f[(y - 1) * width]; \
ycy = &img_out_f[y * width]; \
\
xcf = &in_factor[y * width]; \
ypf = &map_factor_b[(y - 1) * width]; \
ycf = &map_factor_b[y * width]; \
for (int x = 0; x < slice_end - slice_start; x++) { \
type dr = abs((*tcy++) - (*tpy++)); \
int range_dist = dr; \
float alpha_ = range_table[range_dist]; \
\
*ycy++ = inv_alpha_*(*xcy++) + alpha_*(*ypy++); \
*ycf++ = inv_alpha_*(*xcf++) + alpha_*(*ypf++); \
} \
} \
h1 = height - 1; \
ycf = line_factor_a; \
ypf = line_factor_b; \
memcpy(ypf, &in_factor[h1 * width], sizeof(float) * (slice_end - slice_start)); \
for (int x = 0, k = 0; x < slice_end - slice_start; x++) \
map_factor_b[h1 * width + x] = (map_factor_b[h1 * width + x] + ypf[k++]); \
\
ycy = slice_factor_a; \
ypy = slice_factor_b; \
memcpy(ypy, &img_temp[h1 * width], sizeof(float) * (slice_end - slice_start)); \
for (int x = 0, k = 0; x < slice_end - slice_start; x++) { \
int idx = h1 * width + x; \
img_out_f[idx] = (img_out_f[idx] + ypy[k++]) / map_factor_b[h1 * width + x]; \
} \
\
for (int y = h1 - 1; y >= 0; y--) { \
float *ycf_, *ypf_, *factor_; \
float *ycy_, *ypy_, *out_; \
\
tpy = &src[(y + 1) * src_linesize]; \
tcy = &src[y * src_linesize]; \
xcy = &img_temp[y * width]; \
ycy_ = ycy; \
ypy_ = ypy; \
out_ = &img_out_f[y * width]; \
\
xcf = &in_factor[y * width]; \
ycf_ = ycf; \
ypf_ = ypf; \
factor_ = &map_factor_b[y * width]; \
for (int x = 0; x < slice_end - slice_start; x++) { \
type dr = abs((*tcy++) - (*tpy++)); \
int range_dist = dr; \
float alpha_ = range_table[range_dist]; \
float ycc, fcc = inv_alpha_*(*xcf++) + alpha_*(*ypf_++); \
\
*ycf_++ = fcc; \
*factor_ = (*factor_ + fcc); \
\
ycc = inv_alpha_*(*xcy++) + alpha_*(*ypy_++); \
*ycy_++ = ycc; \
*out_ = (*out_ + ycc) / (*factor_); \
out_++; \
factor_++; \
} \
\
ypy = ycy; \
ypf = ycf; \
} \
}
BILATERAL_V(uint8_t, byte)
BILATERAL_V(uint16_t, word)
#define BILATERAL_O(type, name) \
static void bilateralo_##name(BilateralContext *s, AVFrame *out, AVFrame *in, \
int jobnr, int nb_jobs, int plane) \
{ \
const int width = s->planewidth[plane]; \
const int height = s->planeheight[plane]; \
const int slice_start = (height * jobnr) / nb_jobs; \
const int slice_end = (height * (jobnr+1)) / nb_jobs; \
const int dst_linesize = out->linesize[plane] / sizeof(type); \
\
for (int i = slice_start; i < slice_end; i++) { \
type *dst = (type *)out->data[plane] + i * dst_linesize; \
const float *const img_out_f = s->img_out_f[plane] + i * width; \
for (int j = 0; j < width; j++) \
dst[j] = lrintf(img_out_f[j]); \
} \
}
BILATERAL_O(uint8_t, byte)
BILATERAL_O(uint16_t, word)
static int bilateralh_planes(AVFilterContext *ctx, void *arg,
int jobnr, int nb_jobs)
{
BilateralContext *s = ctx->priv;
ThreadData *td = arg;
AVFrame *out = td->out;
AVFrame *in = td->in;
for (int plane = 0; plane < s->nb_planes; plane++) {
if (!(s->planes & (1 << plane)))
continue;
if (s->depth <= 8)
bilateralh_byte(s, out, in, jobnr, nb_jobs, plane);
else
bilateralh_word(s, out, in, jobnr, nb_jobs, plane);
}
return 0;
}
static int bilateralv_planes(AVFilterContext *ctx, void *arg,
int jobnr, int nb_jobs)
{
BilateralContext *s = ctx->priv;
ThreadData *td = arg;
AVFrame *out = td->out;
AVFrame *in = td->in;
for (int plane = 0; plane < s->nb_planes; plane++) {
if (!(s->planes & (1 << plane)))
continue;
if (s->depth <= 8)
bilateralv_byte(s, out, in, jobnr, nb_jobs, plane);
else
bilateralv_word(s, out, in, jobnr, nb_jobs, plane);
}
return 0;
}
static int bilateralo_planes(AVFilterContext *ctx, void *arg,
int jobnr, int nb_jobs)
{
BilateralContext *s = ctx->priv;
ThreadData *td = arg;
AVFrame *out = td->out;
AVFrame *in = td->in;
for (int plane = 0; plane < s->nb_planes; plane++) {
if (!(s->planes & (1 << plane))) {
if (out != in) {
const int height = s->planeheight[plane];
const int slice_start = (height * jobnr) / nb_jobs;
const int slice_end = (height * (jobnr+1)) / nb_jobs;
const int width = s->planewidth[plane];
const int linesize = in->linesize[plane];
const int dst_linesize = out->linesize[plane];
const uint8_t *src = in->data[plane];
uint8_t *dst = out->data[plane];
av_image_copy_plane(dst + slice_start * dst_linesize,
dst_linesize,
src + slice_start * linesize,
linesize,
width * ((s->depth + 7) / 8),
slice_end - slice_start);
}
continue;
}
if (s->depth <= 8)
bilateralo_byte(s, out, in, jobnr, nb_jobs, plane);
else
bilateralo_word(s, out, in, jobnr, nb_jobs, plane);
}
return 0;
}
static int filter_frame(AVFilterLink *inlink, AVFrame *in)
{
AVFilterContext *ctx = inlink->dst;
BilateralContext *s = ctx->priv;
AVFilterLink *outlink = ctx->outputs[0];
ThreadData td;
AVFrame *out;
if (av_frame_is_writable(in)) {
out = in;
} else {
out = ff_get_video_buffer(outlink, outlink->w, outlink->h);
if (!out) {
av_frame_free(&in);
return AVERROR(ENOMEM);
}
av_frame_copy_props(out, in);
}
td.in = in;
td.out = out;
ff_filter_execute(ctx, bilateralh_planes, &td, NULL, s->nb_threads);
ff_filter_execute(ctx, bilateralv_planes, &td, NULL, s->nb_threads);
ff_filter_execute(ctx, bilateralo_planes, &td, NULL, s->nb_threads);
if (out != in)
av_frame_free(&in);
return ff_filter_frame(outlink, out);
}
static av_cold void uninit(AVFilterContext *ctx)
{
BilateralContext *s = ctx->priv;
for (int p = 0; p < s->nb_planes; p++) {
av_freep(&s->img_out_f[p]);
av_freep(&s->img_temp[p]);
av_freep(&s->map_factor_a[p]);
av_freep(&s->map_factor_b[p]);
av_freep(&s->slice_factor_a[p]);
av_freep(&s->slice_factor_b[p]);
av_freep(&s->line_factor_a[p]);
av_freep(&s->line_factor_b[p]);
}
}
static int process_command(AVFilterContext *ctx,
const char *cmd,
const char *arg,
char *res,
int res_len,
int flags)
{
int ret = ff_filter_process_command(ctx, cmd, arg, res, res_len, flags);
if (ret < 0)
return ret;
return config_params(ctx);
}
static const AVFilterPad bilateral_inputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_VIDEO,
.config_props = config_input,
.filter_frame = filter_frame,
},
};
const AVFilter ff_vf_bilateral = {
.name = "bilateral",
.description = NULL_IF_CONFIG_SMALL("Apply Bilateral filter."),
.priv_size = sizeof(BilateralContext),
.priv_class = &bilateral_class,
.uninit = uninit,
FILTER_INPUTS(bilateral_inputs),
FILTER_OUTPUTS(ff_video_default_filterpad),
FILTER_PIXFMTS_ARRAY(pix_fmts),
.flags = AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC |
AVFILTER_FLAG_SLICE_THREADS,
.process_command = process_command,
};