You've already forked FFmpeg
							
							
				mirror of
				https://github.com/FFmpeg/FFmpeg.git
				synced 2025-10-30 23:18:11 +02:00 
			
		
		
		
	
		
			
				
	
	
		
			2835 lines
		
	
	
		
			94 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2835 lines
		
	
	
		
			94 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (C) 2003-2004 the ffmpeg project
 | |
|  *
 | |
|  * This library is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU Lesser General Public
 | |
|  * License as published by the Free Software Foundation; either
 | |
|  * version 2 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * This library is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * Lesser General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU Lesser General Public
 | |
|  * License along with this library; if not, write to the Free Software
 | |
|  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 | |
|  *
 | |
|  * VP3 Video Decoder by Mike Melanson (melanson@pcisys.net)
 | |
|  * For more information about the VP3 coding process, visit:
 | |
|  *   http://www.pcisys.net/~melanson/codecs/
 | |
|  *
 | |
|  * Theora decoder by Alex Beregszaszi
 | |
|  *
 | |
|  */
 | |
| 
 | |
| /**
 | |
|  * @file vp3.c
 | |
|  * On2 VP3 Video Decoder
 | |
|  */
 | |
| 
 | |
| #include <stdio.h>
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| #include <unistd.h>
 | |
| 
 | |
| #include "common.h"
 | |
| #include "avcodec.h"
 | |
| #include "dsputil.h"
 | |
| #include "mpegvideo.h"
 | |
| 
 | |
| #include "vp3data.h"
 | |
| 
 | |
| #define FRAGMENT_PIXELS 8
 | |
| 
 | |
| /* 
 | |
|  * Debugging Variables
 | |
|  * 
 | |
|  * Define one or more of the following compile-time variables to 1 to obtain
 | |
|  * elaborate information about certain aspects of the decoding process.
 | |
|  *
 | |
|  * KEYFRAMES_ONLY: set this to 1 to only see keyframes (VP3 slideshow mode)
 | |
|  * DEBUG_VP3: high-level decoding flow
 | |
|  * DEBUG_INIT: initialization parameters
 | |
|  * DEBUG_DEQUANTIZERS: display how the dequanization tables are built
 | |
|  * DEBUG_BLOCK_CODING: unpacking the superblock/macroblock/fragment coding
 | |
|  * DEBUG_MODES: unpacking the coding modes for individual fragments
 | |
|  * DEBUG_VECTORS: display the motion vectors
 | |
|  * DEBUG_TOKEN: display exhaustive information about each DCT token
 | |
|  * DEBUG_VLC: display the VLCs as they are extracted from the stream
 | |
|  * DEBUG_DC_PRED: display the process of reversing DC prediction
 | |
|  * DEBUG_IDCT: show every detail of the IDCT process
 | |
|  */
 | |
| 
 | |
| #define KEYFRAMES_ONLY 0
 | |
| 
 | |
| #define DEBUG_VP3 0
 | |
| #define DEBUG_INIT 0
 | |
| #define DEBUG_DEQUANTIZERS 0
 | |
| #define DEBUG_BLOCK_CODING 0
 | |
| #define DEBUG_MODES 0
 | |
| #define DEBUG_VECTORS 0
 | |
| #define DEBUG_TOKEN 0
 | |
| #define DEBUG_VLC 0
 | |
| #define DEBUG_DC_PRED 0
 | |
| #define DEBUG_IDCT 0
 | |
| 
 | |
| #if DEBUG_VP3
 | |
| #define debug_vp3 printf
 | |
| #else
 | |
| static inline void debug_vp3(const char *format, ...) { }
 | |
| #endif
 | |
| 
 | |
| #if DEBUG_INIT
 | |
| #define debug_init printf
 | |
| #else
 | |
| static inline void debug_init(const char *format, ...) { }
 | |
| #endif
 | |
| 
 | |
| #if DEBUG_DEQUANTIZERS
 | |
| #define debug_dequantizers printf 
 | |
| #else
 | |
| static inline void debug_dequantizers(const char *format, ...) { } 
 | |
| #endif
 | |
| 
 | |
| #if DEBUG_BLOCK_CODING
 | |
| #define debug_block_coding printf 
 | |
| #else
 | |
| static inline void debug_block_coding(const char *format, ...) { } 
 | |
| #endif
 | |
| 
 | |
| #if DEBUG_MODES
 | |
| #define debug_modes printf 
 | |
| #else
 | |
| static inline void debug_modes(const char *format, ...) { } 
 | |
| #endif
 | |
| 
 | |
| #if DEBUG_VECTORS
 | |
| #define debug_vectors printf 
 | |
| #else
 | |
| static inline void debug_vectors(const char *format, ...) { } 
 | |
| #endif
 | |
| 
 | |
| #if DEBUG_TOKEN 
 | |
| #define debug_token printf 
 | |
| #else
 | |
| static inline void debug_token(const char *format, ...) { } 
 | |
| #endif
 | |
| 
 | |
| #if DEBUG_VLC
 | |
| #define debug_vlc printf 
 | |
| #else
 | |
| static inline void debug_vlc(const char *format, ...) { } 
 | |
| #endif
 | |
| 
 | |
| #if DEBUG_DC_PRED
 | |
| #define debug_dc_pred printf 
 | |
| #else
 | |
| static inline void debug_dc_pred(const char *format, ...) { } 
 | |
| #endif
 | |
| 
 | |
| #if DEBUG_IDCT
 | |
| #define debug_idct printf 
 | |
| #else
 | |
| static inline void debug_idct(const char *format, ...) { } 
 | |
| #endif
 | |
| 
 | |
| typedef struct Vp3Fragment {
 | |
|     DCTELEM coeffs[64];
 | |
|     int coding_method;
 | |
|     int coeff_count;
 | |
|     int last_coeff;
 | |
|     int motion_x;
 | |
|     int motion_y;
 | |
|     /* address of first pixel taking into account which plane the fragment
 | |
|      * lives on as well as the plane stride */
 | |
|     int first_pixel;
 | |
|     /* this is the macroblock that the fragment belongs to */
 | |
|     int macroblock;
 | |
| } Vp3Fragment;
 | |
| 
 | |
| #define SB_NOT_CODED        0
 | |
| #define SB_PARTIALLY_CODED  1
 | |
| #define SB_FULLY_CODED      2
 | |
| 
 | |
| #define MODE_INTER_NO_MV      0
 | |
| #define MODE_INTRA            1
 | |
| #define MODE_INTER_PLUS_MV    2
 | |
| #define MODE_INTER_LAST_MV    3
 | |
| #define MODE_INTER_PRIOR_LAST 4
 | |
| #define MODE_USING_GOLDEN     5
 | |
| #define MODE_GOLDEN_MV        6
 | |
| #define MODE_INTER_FOURMV     7
 | |
| #define CODING_MODE_COUNT     8
 | |
| 
 | |
| /* special internal mode */
 | |
| #define MODE_COPY             8
 | |
| 
 | |
| /* There are 6 preset schemes, plus a free-form scheme */
 | |
| static int ModeAlphabet[7][CODING_MODE_COUNT] =
 | |
| {
 | |
|     /* this is the custom scheme */
 | |
|     { 0, 0, 0, 0, 0, 0, 0, 0 },
 | |
| 
 | |
|     /* scheme 1: Last motion vector dominates */
 | |
|     {    MODE_INTER_LAST_MV,    MODE_INTER_PRIOR_LAST,  
 | |
|          MODE_INTER_PLUS_MV,    MODE_INTER_NO_MV,
 | |
|          MODE_INTRA,            MODE_USING_GOLDEN,      
 | |
|          MODE_GOLDEN_MV,        MODE_INTER_FOURMV },
 | |
| 
 | |
|     /* scheme 2 */
 | |
|     {    MODE_INTER_LAST_MV,    MODE_INTER_PRIOR_LAST,  
 | |
|          MODE_INTER_NO_MV,      MODE_INTER_PLUS_MV,
 | |
|          MODE_INTRA,            MODE_USING_GOLDEN,      
 | |
|          MODE_GOLDEN_MV,        MODE_INTER_FOURMV },
 | |
| 
 | |
|     /* scheme 3 */
 | |
|     {    MODE_INTER_LAST_MV,    MODE_INTER_PLUS_MV,     
 | |
|          MODE_INTER_PRIOR_LAST, MODE_INTER_NO_MV,
 | |
|          MODE_INTRA,            MODE_USING_GOLDEN,      
 | |
|          MODE_GOLDEN_MV,        MODE_INTER_FOURMV },
 | |
| 
 | |
|     /* scheme 4 */
 | |
|     {    MODE_INTER_LAST_MV,    MODE_INTER_PLUS_MV,     
 | |
|          MODE_INTER_NO_MV,      MODE_INTER_PRIOR_LAST,
 | |
|          MODE_INTRA,            MODE_USING_GOLDEN,      
 | |
|          MODE_GOLDEN_MV,        MODE_INTER_FOURMV },
 | |
| 
 | |
|     /* scheme 5: No motion vector dominates */
 | |
|     {    MODE_INTER_NO_MV,      MODE_INTER_LAST_MV,     
 | |
|          MODE_INTER_PRIOR_LAST, MODE_INTER_PLUS_MV,
 | |
|          MODE_INTRA,            MODE_USING_GOLDEN,      
 | |
|          MODE_GOLDEN_MV,        MODE_INTER_FOURMV },
 | |
| 
 | |
|     /* scheme 6 */
 | |
|     {    MODE_INTER_NO_MV,      MODE_USING_GOLDEN,      
 | |
|          MODE_INTER_LAST_MV,    MODE_INTER_PRIOR_LAST,
 | |
|          MODE_INTER_PLUS_MV,    MODE_INTRA,             
 | |
|          MODE_GOLDEN_MV,        MODE_INTER_FOURMV },
 | |
| 
 | |
| };
 | |
| 
 | |
| #define MIN_DEQUANT_VAL 2
 | |
| 
 | |
| typedef struct Vp3DecodeContext {
 | |
|     AVCodecContext *avctx;
 | |
|     int theora, theora_tables;
 | |
|     int version;
 | |
|     int width, height;
 | |
|     AVFrame golden_frame;
 | |
|     AVFrame last_frame;
 | |
|     AVFrame current_frame;
 | |
|     int keyframe;
 | |
|     DSPContext dsp;
 | |
|     int flipped_image;
 | |
| 
 | |
|     int quality_index;
 | |
|     int last_quality_index;
 | |
| 
 | |
|     int superblock_count;
 | |
|     int superblock_width;
 | |
|     int superblock_height;
 | |
|     int y_superblock_width;
 | |
|     int y_superblock_height;
 | |
|     int c_superblock_width;
 | |
|     int c_superblock_height;
 | |
|     int u_superblock_start;
 | |
|     int v_superblock_start;
 | |
|     unsigned char *superblock_coding;
 | |
| 
 | |
|     int macroblock_count;
 | |
|     int macroblock_width;
 | |
|     int macroblock_height;
 | |
| 
 | |
|     int fragment_count;
 | |
|     int fragment_width;
 | |
|     int fragment_height;
 | |
| 
 | |
|     Vp3Fragment *all_fragments;
 | |
|     int u_fragment_start;
 | |
|     int v_fragment_start;
 | |
|     
 | |
|     /* tables */
 | |
|     uint16_t coded_dc_scale_factor[64];
 | |
|     uint32_t coded_ac_scale_factor[64];
 | |
|     uint16_t coded_intra_y_dequant[64];
 | |
|     uint16_t coded_intra_c_dequant[64];
 | |
|     uint16_t coded_inter_dequant[64];
 | |
| 
 | |
|     /* this is a list of indices into the all_fragments array indicating
 | |
|      * which of the fragments are coded */
 | |
|     int *coded_fragment_list;
 | |
|     int coded_fragment_list_index;
 | |
|     int pixel_addresses_inited;
 | |
| 
 | |
|     VLC dc_vlc[16];
 | |
|     VLC ac_vlc_1[16];
 | |
|     VLC ac_vlc_2[16];
 | |
|     VLC ac_vlc_3[16];
 | |
|     VLC ac_vlc_4[16];
 | |
| 
 | |
|     /* these arrays need to be on 16-byte boundaries since SSE2 operations
 | |
|      * index into them */
 | |
|     int16_t __align16 intra_y_dequant[64];
 | |
|     int16_t __align16 intra_c_dequant[64];
 | |
|     int16_t __align16 inter_dequant[64];
 | |
| 
 | |
|     /* This table contains superblock_count * 16 entries. Each set of 16
 | |
|      * numbers corresponds to the fragment indices 0..15 of the superblock.
 | |
|      * An entry will be -1 to indicate that no entry corresponds to that
 | |
|      * index. */
 | |
|     int *superblock_fragments;
 | |
| 
 | |
|     /* This table contains superblock_count * 4 entries. Each set of 4
 | |
|      * numbers corresponds to the macroblock indices 0..3 of the superblock.
 | |
|      * An entry will be -1 to indicate that no entry corresponds to that
 | |
|      * index. */
 | |
|     int *superblock_macroblocks;
 | |
| 
 | |
|     /* This table contains macroblock_count * 6 entries. Each set of 6
 | |
|      * numbers corresponds to the fragment indices 0..5 which comprise
 | |
|      * the macroblock (4 Y fragments and 2 C fragments). */
 | |
|     int *macroblock_fragments;
 | |
|     /* This is an array that indicates how a particular macroblock 
 | |
|      * is coded. */
 | |
|     unsigned char *macroblock_coding;
 | |
| 
 | |
|     int first_coded_y_fragment;
 | |
|     int first_coded_c_fragment;
 | |
|     int last_coded_y_fragment;
 | |
|     int last_coded_c_fragment;
 | |
| 
 | |
|     uint8_t edge_emu_buffer[9*2048]; //FIXME dynamic alloc
 | |
|     uint8_t qscale_table[2048]; //FIXME dynamic alloc (width+15)/16
 | |
| } Vp3DecodeContext;
 | |
| 
 | |
| static int theora_decode_comments(AVCodecContext *avctx, GetBitContext gb);
 | |
| static int theora_decode_tables(AVCodecContext *avctx, GetBitContext gb);
 | |
| 
 | |
| /************************************************************************
 | |
|  * VP3 specific functions
 | |
|  ************************************************************************/
 | |
| 
 | |
| /*
 | |
|  * This function sets up all of the various blocks mappings:
 | |
|  * superblocks <-> fragments, macroblocks <-> fragments,
 | |
|  * superblocks <-> macroblocks
 | |
|  *
 | |
|  * Returns 0 is successful; returns 1 if *anything* went wrong.
 | |
|  */
 | |
| static int init_block_mapping(Vp3DecodeContext *s) 
 | |
| {
 | |
|     int i, j;
 | |
|     signed int hilbert_walk_y[16];
 | |
|     signed int hilbert_walk_c[16];
 | |
|     signed int hilbert_walk_mb[4];
 | |
| 
 | |
|     int current_fragment = 0;
 | |
|     int current_width = 0;
 | |
|     int current_height = 0;
 | |
|     int right_edge = 0;
 | |
|     int bottom_edge = 0;
 | |
|     int superblock_row_inc = 0;
 | |
|     int *hilbert = NULL;
 | |
|     int mapping_index = 0;
 | |
| 
 | |
|     int current_macroblock;
 | |
|     int c_fragment;
 | |
| 
 | |
|     signed char travel_width[16] = {
 | |
|          1,  1,  0, -1, 
 | |
|          0,  0,  1,  0,
 | |
|          1,  0,  1,  0,
 | |
|          0, -1,  0,  1
 | |
|     };
 | |
| 
 | |
|     signed char travel_height[16] = {
 | |
|          0,  0,  1,  0,
 | |
|          1,  1,  0, -1,
 | |
|          0,  1,  0, -1,
 | |
|         -1,  0, -1,  0
 | |
|     };
 | |
| 
 | |
|     signed char travel_width_mb[4] = {
 | |
|          1,  0,  1,  0
 | |
|     };
 | |
| 
 | |
|     signed char travel_height_mb[4] = {
 | |
|          0,  1,  0, -1
 | |
|     };
 | |
| 
 | |
|     debug_vp3("  vp3: initialize block mapping tables\n");
 | |
| 
 | |
|     /* figure out hilbert pattern per these frame dimensions */
 | |
|     hilbert_walk_y[0]  = 1;
 | |
|     hilbert_walk_y[1]  = 1;
 | |
|     hilbert_walk_y[2]  = s->fragment_width;
 | |
|     hilbert_walk_y[3]  = -1;
 | |
|     hilbert_walk_y[4]  = s->fragment_width;
 | |
|     hilbert_walk_y[5]  = s->fragment_width;
 | |
|     hilbert_walk_y[6]  = 1;
 | |
|     hilbert_walk_y[7]  = -s->fragment_width;
 | |
|     hilbert_walk_y[8]  = 1;
 | |
|     hilbert_walk_y[9]  = s->fragment_width;
 | |
|     hilbert_walk_y[10]  = 1;
 | |
|     hilbert_walk_y[11] = -s->fragment_width;
 | |
|     hilbert_walk_y[12] = -s->fragment_width;
 | |
|     hilbert_walk_y[13] = -1;
 | |
|     hilbert_walk_y[14] = -s->fragment_width;
 | |
|     hilbert_walk_y[15] = 1;
 | |
| 
 | |
|     hilbert_walk_c[0]  = 1;
 | |
|     hilbert_walk_c[1]  = 1;
 | |
|     hilbert_walk_c[2]  = s->fragment_width / 2;
 | |
|     hilbert_walk_c[3]  = -1;
 | |
|     hilbert_walk_c[4]  = s->fragment_width / 2;
 | |
|     hilbert_walk_c[5]  = s->fragment_width / 2;
 | |
|     hilbert_walk_c[6]  = 1;
 | |
|     hilbert_walk_c[7]  = -s->fragment_width / 2;
 | |
|     hilbert_walk_c[8]  = 1;
 | |
|     hilbert_walk_c[9]  = s->fragment_width / 2;
 | |
|     hilbert_walk_c[10]  = 1;
 | |
|     hilbert_walk_c[11] = -s->fragment_width / 2;
 | |
|     hilbert_walk_c[12] = -s->fragment_width / 2;
 | |
|     hilbert_walk_c[13] = -1;
 | |
|     hilbert_walk_c[14] = -s->fragment_width / 2;
 | |
|     hilbert_walk_c[15] = 1;
 | |
| 
 | |
|     hilbert_walk_mb[0] = 1;
 | |
|     hilbert_walk_mb[1] = s->macroblock_width;
 | |
|     hilbert_walk_mb[2] = 1;
 | |
|     hilbert_walk_mb[3] = -s->macroblock_width;
 | |
| 
 | |
|     /* iterate through each superblock (all planes) and map the fragments */
 | |
|     for (i = 0; i < s->superblock_count; i++) {
 | |
|         debug_init("    superblock %d (u starts @ %d, v starts @ %d)\n",
 | |
|             i, s->u_superblock_start, s->v_superblock_start);
 | |
| 
 | |
|         /* time to re-assign the limits? */
 | |
|         if (i == 0) {
 | |
| 
 | |
|             /* start of Y superblocks */
 | |
|             right_edge = s->fragment_width;
 | |
|             bottom_edge = s->fragment_height;
 | |
|             current_width = -1;
 | |
|             current_height = 0;
 | |
|             superblock_row_inc = 3 * s->fragment_width - 
 | |
|                 (s->y_superblock_width * 4 - s->fragment_width);
 | |
|             hilbert = hilbert_walk_y;
 | |
| 
 | |
|             /* the first operation for this variable is to advance by 1 */
 | |
|             current_fragment = -1;
 | |
| 
 | |
|         } else if (i == s->u_superblock_start) {
 | |
| 
 | |
|             /* start of U superblocks */
 | |
|             right_edge = s->fragment_width / 2;
 | |
|             bottom_edge = s->fragment_height / 2;
 | |
|             current_width = -1;
 | |
|             current_height = 0;
 | |
|             superblock_row_inc = 3 * (s->fragment_width / 2) - 
 | |
|                 (s->c_superblock_width * 4 - s->fragment_width / 2);
 | |
|             hilbert = hilbert_walk_c;
 | |
| 
 | |
|             /* the first operation for this variable is to advance by 1 */
 | |
|             current_fragment = s->u_fragment_start - 1;
 | |
| 
 | |
|         } else if (i == s->v_superblock_start) {
 | |
| 
 | |
|             /* start of V superblocks */
 | |
|             right_edge = s->fragment_width / 2;
 | |
|             bottom_edge = s->fragment_height / 2;
 | |
|             current_width = -1;
 | |
|             current_height = 0;
 | |
|             superblock_row_inc = 3 * (s->fragment_width / 2) - 
 | |
|                 (s->c_superblock_width * 4 - s->fragment_width / 2);
 | |
|             hilbert = hilbert_walk_c;
 | |
| 
 | |
|             /* the first operation for this variable is to advance by 1 */
 | |
|             current_fragment = s->v_fragment_start - 1;
 | |
| 
 | |
|         }
 | |
| 
 | |
|         if (current_width >= right_edge - 1) {
 | |
|             /* reset width and move to next superblock row */
 | |
|             current_width = -1;
 | |
|             current_height += 4;
 | |
| 
 | |
|             /* fragment is now at the start of a new superblock row */
 | |
|             current_fragment += superblock_row_inc;
 | |
|         }
 | |
| 
 | |
|         /* iterate through all 16 fragments in a superblock */
 | |
|         for (j = 0; j < 16; j++) {
 | |
|             current_fragment += hilbert[j];
 | |
|             current_width += travel_width[j];
 | |
|             current_height += travel_height[j];
 | |
| 
 | |
|             /* check if the fragment is in bounds */
 | |
|             if ((current_width < right_edge) &&
 | |
|                 (current_height < bottom_edge)) {
 | |
|                 s->superblock_fragments[mapping_index] = current_fragment;
 | |
|                 debug_init("    mapping fragment %d to superblock %d, position %d (%d/%d x %d/%d)\n", 
 | |
|                     s->superblock_fragments[mapping_index], i, j,
 | |
|                     current_width, right_edge, current_height, bottom_edge);
 | |
|             } else {
 | |
|                 s->superblock_fragments[mapping_index] = -1;
 | |
|                 debug_init("    superblock %d, position %d has no fragment (%d/%d x %d/%d)\n", 
 | |
|                     i, j,
 | |
|                     current_width, right_edge, current_height, bottom_edge);
 | |
|             }
 | |
| 
 | |
|             mapping_index++;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* initialize the superblock <-> macroblock mapping; iterate through
 | |
|      * all of the Y plane superblocks to build this mapping */
 | |
|     right_edge = s->macroblock_width;
 | |
|     bottom_edge = s->macroblock_height;
 | |
|     current_width = -1;
 | |
|     current_height = 0;
 | |
|     superblock_row_inc = s->macroblock_width -
 | |
|         (s->y_superblock_width * 2 - s->macroblock_width);;
 | |
|     hilbert = hilbert_walk_mb;
 | |
|     mapping_index = 0;
 | |
|     current_macroblock = -1;
 | |
|     for (i = 0; i < s->u_superblock_start; i++) {
 | |
| 
 | |
|         if (current_width >= right_edge - 1) {
 | |
|             /* reset width and move to next superblock row */
 | |
|             current_width = -1;
 | |
|             current_height += 2;
 | |
| 
 | |
|             /* macroblock is now at the start of a new superblock row */
 | |
|             current_macroblock += superblock_row_inc;
 | |
|         }
 | |
| 
 | |
|         /* iterate through each potential macroblock in the superblock */
 | |
|         for (j = 0; j < 4; j++) {
 | |
|             current_macroblock += hilbert_walk_mb[j];
 | |
|             current_width += travel_width_mb[j];
 | |
|             current_height += travel_height_mb[j];
 | |
| 
 | |
|             /* check if the macroblock is in bounds */
 | |
|             if ((current_width < right_edge) &&
 | |
|                 (current_height < bottom_edge)) {
 | |
|                 s->superblock_macroblocks[mapping_index] = current_macroblock;
 | |
|                 debug_init("    mapping macroblock %d to superblock %d, position %d (%d/%d x %d/%d)\n",
 | |
|                     s->superblock_macroblocks[mapping_index], i, j,
 | |
|                     current_width, right_edge, current_height, bottom_edge);
 | |
|             } else {
 | |
|                 s->superblock_macroblocks[mapping_index] = -1;
 | |
|                 debug_init("    superblock %d, position %d has no macroblock (%d/%d x %d/%d)\n",
 | |
|                     i, j,
 | |
|                     current_width, right_edge, current_height, bottom_edge);
 | |
|             }
 | |
| 
 | |
|             mapping_index++;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* initialize the macroblock <-> fragment mapping */
 | |
|     current_fragment = 0;
 | |
|     current_macroblock = 0;
 | |
|     mapping_index = 0;
 | |
|     for (i = 0; i < s->fragment_height; i += 2) {
 | |
| 
 | |
|         for (j = 0; j < s->fragment_width; j += 2) {
 | |
| 
 | |
|             debug_init("    macroblock %d contains fragments: ", current_macroblock);
 | |
|             s->all_fragments[current_fragment].macroblock = current_macroblock;
 | |
|             s->macroblock_fragments[mapping_index++] = current_fragment;
 | |
|             debug_init("%d ", current_fragment);
 | |
| 
 | |
|             if (j + 1 < s->fragment_width) {
 | |
|                 s->all_fragments[current_fragment + 1].macroblock = current_macroblock;
 | |
|                 s->macroblock_fragments[mapping_index++] = current_fragment + 1;
 | |
|                 debug_init("%d ", current_fragment + 1);
 | |
|             } else
 | |
|                 s->macroblock_fragments[mapping_index++] = -1;
 | |
| 
 | |
|             if (i + 1 < s->fragment_height) {
 | |
|                 s->all_fragments[current_fragment + s->fragment_width].macroblock = 
 | |
|                     current_macroblock;
 | |
|                 s->macroblock_fragments[mapping_index++] = 
 | |
|                     current_fragment + s->fragment_width;
 | |
|                 debug_init("%d ", current_fragment + s->fragment_width);
 | |
|             } else
 | |
|                 s->macroblock_fragments[mapping_index++] = -1;
 | |
| 
 | |
|             if ((j + 1 < s->fragment_width) && (i + 1 < s->fragment_height)) {
 | |
|                 s->all_fragments[current_fragment + s->fragment_width + 1].macroblock = 
 | |
|                     current_macroblock;
 | |
|                 s->macroblock_fragments[mapping_index++] = 
 | |
|                     current_fragment + s->fragment_width + 1;
 | |
|                 debug_init("%d ", current_fragment + s->fragment_width + 1);
 | |
|             } else
 | |
|                 s->macroblock_fragments[mapping_index++] = -1;
 | |
| 
 | |
|             /* C planes */
 | |
|             c_fragment = s->u_fragment_start + 
 | |
|                 (i * s->fragment_width / 4) + (j / 2);
 | |
|             s->all_fragments[c_fragment].macroblock = s->macroblock_count;
 | |
|             s->macroblock_fragments[mapping_index++] = c_fragment;
 | |
|             debug_init("%d ", c_fragment);
 | |
| 
 | |
|             c_fragment = s->v_fragment_start + 
 | |
|                 (i * s->fragment_width / 4) + (j / 2);
 | |
|             s->all_fragments[c_fragment].macroblock = s->macroblock_count;
 | |
|             s->macroblock_fragments[mapping_index++] = c_fragment;
 | |
|             debug_init("%d ", c_fragment);
 | |
| 
 | |
|             debug_init("\n");
 | |
| 
 | |
|             if (j + 2 <= s->fragment_width)
 | |
|                 current_fragment += 2;
 | |
|             else 
 | |
|                 current_fragment++;
 | |
|             current_macroblock++;
 | |
|         }
 | |
| 
 | |
|         current_fragment += s->fragment_width;
 | |
|     }
 | |
| 
 | |
|     return 0;  /* successful path out */
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function unpacks a single token (which should be in the range 0..31)
 | |
|  * and returns a zero run (number of zero coefficients in current DCT matrix
 | |
|  * before next non-zero coefficient), the next DCT coefficient, and the
 | |
|  * number of consecutive, non-EOB'd DCT blocks to EOB.
 | |
|  */
 | |
| static void unpack_token(GetBitContext *gb, int token, int *zero_run,
 | |
|                          DCTELEM *coeff, int *eob_run) 
 | |
| {
 | |
|     int sign;
 | |
| 
 | |
|     *zero_run = 0;
 | |
|     *eob_run = 0;
 | |
|     *coeff = 0;
 | |
| 
 | |
|     debug_token("    vp3 token %d: ", token);
 | |
|     switch (token) {
 | |
| 
 | |
|     case 0:
 | |
|         debug_token("DCT_EOB_TOKEN, EOB next block\n");
 | |
|         *eob_run = 1;
 | |
|         break;
 | |
| 
 | |
|     case 1:
 | |
|         debug_token("DCT_EOB_PAIR_TOKEN, EOB next 2 blocks\n");
 | |
|         *eob_run = 2;
 | |
|         break;
 | |
| 
 | |
|     case 2:
 | |
|         debug_token("DCT_EOB_TRIPLE_TOKEN, EOB next 3 blocks\n");
 | |
|         *eob_run = 3;
 | |
|         break;
 | |
| 
 | |
|     case 3:
 | |
|         debug_token("DCT_REPEAT_RUN_TOKEN, ");
 | |
|         *eob_run = get_bits(gb, 2) + 4;
 | |
|         debug_token("EOB the next %d blocks\n", *eob_run);
 | |
|         break;
 | |
| 
 | |
|     case 4:
 | |
|         debug_token("DCT_REPEAT_RUN2_TOKEN, ");
 | |
|         *eob_run = get_bits(gb, 3) + 8;
 | |
|         debug_token("EOB the next %d blocks\n", *eob_run);
 | |
|         break;
 | |
| 
 | |
|     case 5:
 | |
|         debug_token("DCT_REPEAT_RUN3_TOKEN, ");
 | |
|         *eob_run = get_bits(gb, 4) + 16;
 | |
|         debug_token("EOB the next %d blocks\n", *eob_run);
 | |
|         break;
 | |
| 
 | |
|     case 6:
 | |
|         debug_token("DCT_REPEAT_RUN4_TOKEN, ");
 | |
|         *eob_run = get_bits(gb, 12);
 | |
|         debug_token("EOB the next %d blocks\n", *eob_run);
 | |
|         break;
 | |
| 
 | |
|     case 7:
 | |
|         debug_token("DCT_SHORT_ZRL_TOKEN, ");
 | |
|         /* note that this token actually indicates that (3 extra bits) + 1 0s
 | |
|          * should be output; this case specifies a run of (3 EBs) 0s and a
 | |
|          * coefficient of 0. */
 | |
|         *zero_run = get_bits(gb, 3);
 | |
|         *coeff = 0;
 | |
|         debug_token("skip the next %d positions in output matrix\n", *zero_run + 1);
 | |
|         break;
 | |
| 
 | |
|     case 8:
 | |
|         debug_token("DCT_ZRL_TOKEN, ");
 | |
|         /* note that this token actually indicates that (6 extra bits) + 1 0s
 | |
|          * should be output; this case specifies a run of (6 EBs) 0s and a
 | |
|          * coefficient of 0. */
 | |
|         *zero_run = get_bits(gb, 6);
 | |
|         *coeff = 0;
 | |
|         debug_token("skip the next %d positions in output matrix\n", *zero_run + 1);
 | |
|         break;
 | |
| 
 | |
|     case 9:
 | |
|         debug_token("ONE_TOKEN, output 1\n");
 | |
|         *coeff = 1;
 | |
|         break;
 | |
| 
 | |
|     case 10:
 | |
|         debug_token("MINUS_ONE_TOKEN, output -1\n");
 | |
|         *coeff = -1;
 | |
|         break;
 | |
| 
 | |
|     case 11:
 | |
|         debug_token("TWO_TOKEN, output 2\n");
 | |
|         *coeff = 2;
 | |
|         break;
 | |
| 
 | |
|     case 12:
 | |
|         debug_token("MINUS_TWO_TOKEN, output -2\n");
 | |
|         *coeff = -2;
 | |
|         break;
 | |
| 
 | |
|     case 13:
 | |
|     case 14:
 | |
|     case 15:
 | |
|     case 16:
 | |
|         debug_token("LOW_VAL_TOKENS, ");
 | |
|         if (get_bits(gb, 1))
 | |
|             *coeff = -(3 + (token - 13));
 | |
|         else
 | |
|             *coeff = 3 + (token - 13);
 | |
|         debug_token("output %d\n", *coeff);
 | |
|         break;
 | |
| 
 | |
|     case 17:
 | |
|         debug_token("DCT_VAL_CATEGORY3, ");
 | |
|         sign = get_bits(gb, 1);
 | |
|         *coeff = 7 + get_bits(gb, 1);
 | |
|         if (sign)
 | |
|             *coeff = -(*coeff);
 | |
|         debug_token("output %d\n", *coeff);
 | |
|         break;
 | |
| 
 | |
|     case 18:
 | |
|         debug_token("DCT_VAL_CATEGORY4, ");
 | |
|         sign = get_bits(gb, 1);
 | |
|         *coeff = 9 + get_bits(gb, 2);
 | |
|         if (sign)
 | |
|             *coeff = -(*coeff);
 | |
|         debug_token("output %d\n", *coeff);
 | |
|         break;
 | |
| 
 | |
|     case 19:
 | |
|         debug_token("DCT_VAL_CATEGORY5, ");
 | |
|         sign = get_bits(gb, 1);
 | |
|         *coeff = 13 + get_bits(gb, 3);
 | |
|         if (sign)
 | |
|             *coeff = -(*coeff);
 | |
|         debug_token("output %d\n", *coeff);
 | |
|         break;
 | |
| 
 | |
|     case 20:
 | |
|         debug_token("DCT_VAL_CATEGORY6, ");
 | |
|         sign = get_bits(gb, 1);
 | |
|         *coeff = 21 + get_bits(gb, 4);
 | |
|         if (sign)
 | |
|             *coeff = -(*coeff);
 | |
|         debug_token("output %d\n", *coeff);
 | |
|         break;
 | |
| 
 | |
|     case 21:
 | |
|         debug_token("DCT_VAL_CATEGORY7, ");
 | |
|         sign = get_bits(gb, 1);
 | |
|         *coeff = 37 + get_bits(gb, 5);
 | |
|         if (sign)
 | |
|             *coeff = -(*coeff);
 | |
|         debug_token("output %d\n", *coeff);
 | |
|         break;
 | |
| 
 | |
|     case 22:
 | |
|         debug_token("DCT_VAL_CATEGORY8, ");
 | |
|         sign = get_bits(gb, 1);
 | |
|         *coeff = 69 + get_bits(gb, 9);
 | |
|         if (sign)
 | |
|             *coeff = -(*coeff);
 | |
|         debug_token("output %d\n", *coeff);
 | |
|         break;
 | |
| 
 | |
|     case 23:
 | |
|     case 24:
 | |
|     case 25:
 | |
|     case 26:
 | |
|     case 27:
 | |
|         debug_token("DCT_RUN_CATEGORY1, ");
 | |
|         *zero_run = token - 22;
 | |
|         if (get_bits(gb, 1))
 | |
|             *coeff = -1;
 | |
|         else
 | |
|             *coeff = 1;
 | |
|         debug_token("output %d 0s, then %d\n", *zero_run, *coeff);
 | |
|         break;
 | |
| 
 | |
|     case 28:
 | |
|         debug_token("DCT_RUN_CATEGORY1B, ");
 | |
|         if (get_bits(gb, 1))
 | |
|             *coeff = -1;
 | |
|         else
 | |
|             *coeff = 1;
 | |
|         *zero_run = 6 + get_bits(gb, 2);
 | |
|         debug_token("output %d 0s, then %d\n", *zero_run, *coeff);
 | |
|         break;
 | |
| 
 | |
|     case 29:
 | |
|         debug_token("DCT_RUN_CATEGORY1C, ");
 | |
|         if (get_bits(gb, 1))
 | |
|             *coeff = -1;
 | |
|         else
 | |
|             *coeff = 1;
 | |
|         *zero_run = 10 + get_bits(gb, 3);
 | |
|         debug_token("output %d 0s, then %d\n", *zero_run, *coeff);
 | |
|         break;
 | |
| 
 | |
|     case 30:
 | |
|         debug_token("DCT_RUN_CATEGORY2, ");
 | |
|         sign = get_bits(gb, 1);
 | |
|         *coeff = 2 + get_bits(gb, 1);
 | |
|         if (sign)
 | |
|             *coeff = -(*coeff);
 | |
|         *zero_run = 1;
 | |
|         debug_token("output %d 0s, then %d\n", *zero_run, *coeff);
 | |
|         break;
 | |
| 
 | |
|     case 31:
 | |
|         debug_token("DCT_RUN_CATEGORY2, ");
 | |
|         sign = get_bits(gb, 1);
 | |
|         *coeff = 2 + get_bits(gb, 1);
 | |
|         if (sign)
 | |
|             *coeff = -(*coeff);
 | |
|         *zero_run = 2 + get_bits(gb, 1);
 | |
|         debug_token("output %d 0s, then %d\n", *zero_run, *coeff);
 | |
|         break;
 | |
| 
 | |
|     default:
 | |
|         av_log(NULL, AV_LOG_ERROR, "  vp3: help! Got a bad token: %d > 31\n", token);
 | |
|         break;
 | |
| 
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function wipes out all of the fragment data.
 | |
|  */
 | |
| static void init_frame(Vp3DecodeContext *s, GetBitContext *gb)
 | |
| {
 | |
|     int i;
 | |
| 
 | |
|     /* zero out all of the fragment information */
 | |
|     s->coded_fragment_list_index = 0;
 | |
|     for (i = 0; i < s->fragment_count; i++) {
 | |
|         memset(s->all_fragments[i].coeffs, 0, 64 * sizeof(DCTELEM));
 | |
|         s->all_fragments[i].coeff_count = 0;
 | |
|         s->all_fragments[i].last_coeff = 0;
 | |
| s->all_fragments[i].motion_x = 0xbeef;
 | |
| s->all_fragments[i].motion_y = 0xbeef;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function sets of the dequantization tables used for a particular
 | |
|  * frame.
 | |
|  */
 | |
| static void init_dequantizer(Vp3DecodeContext *s)
 | |
| {
 | |
| 
 | |
|     int ac_scale_factor = s->coded_ac_scale_factor[s->quality_index];
 | |
|     int dc_scale_factor = s->coded_dc_scale_factor[s->quality_index];
 | |
|     int i, j;
 | |
| 
 | |
|     debug_vp3("  vp3: initializing dequantization tables\n");
 | |
| 
 | |
|     /* 
 | |
|      * Scale dequantizers:
 | |
|      *
 | |
|      *   quantizer * sf
 | |
|      *   --------------
 | |
|      *        100
 | |
|      *
 | |
|      * where sf = dc_scale_factor for DC quantizer
 | |
|      *         or ac_scale_factor for AC quantizer
 | |
|      *
 | |
|      * Then, saturate the result to a lower limit of MIN_DEQUANT_VAL.
 | |
|      */
 | |
| #define SCALER 4
 | |
| 
 | |
|     /* scale DC quantizers */
 | |
|     s->intra_y_dequant[0] = s->coded_intra_y_dequant[0] * dc_scale_factor / 100;
 | |
|     if (s->intra_y_dequant[0] < MIN_DEQUANT_VAL * 2)
 | |
|         s->intra_y_dequant[0] = MIN_DEQUANT_VAL * 2;
 | |
|     s->intra_y_dequant[0] *= SCALER;
 | |
| 
 | |
|     s->intra_c_dequant[0] = s->coded_intra_c_dequant[0] * dc_scale_factor / 100;
 | |
|     if (s->intra_c_dequant[0] < MIN_DEQUANT_VAL * 2)
 | |
|         s->intra_c_dequant[0] = MIN_DEQUANT_VAL * 2;
 | |
|     s->intra_c_dequant[0] *= SCALER;
 | |
| 
 | |
|     s->inter_dequant[0] = s->coded_inter_dequant[0] * dc_scale_factor / 100;
 | |
|     if (s->inter_dequant[0] < MIN_DEQUANT_VAL * 4)
 | |
|         s->inter_dequant[0] = MIN_DEQUANT_VAL * 4;
 | |
|     s->inter_dequant[0] *= SCALER;
 | |
| 
 | |
|     /* scale AC quantizers, zigzag at the same time in preparation for
 | |
|      * the dequantization phase */
 | |
|     for (i = 1; i < 64; i++) {
 | |
| 
 | |
|         j = zigzag_index[i];
 | |
| 
 | |
|         s->intra_y_dequant[j] = s->coded_intra_y_dequant[i] * ac_scale_factor / 100;
 | |
|         if (s->intra_y_dequant[j] < MIN_DEQUANT_VAL)
 | |
|             s->intra_y_dequant[j] = MIN_DEQUANT_VAL;
 | |
|         s->intra_y_dequant[j] *= SCALER;
 | |
| 
 | |
|         s->intra_c_dequant[j] = s->coded_intra_c_dequant[i] * ac_scale_factor / 100;
 | |
|         if (s->intra_c_dequant[j] < MIN_DEQUANT_VAL)
 | |
|             s->intra_c_dequant[j] = MIN_DEQUANT_VAL;
 | |
|         s->intra_c_dequant[j] *= SCALER;
 | |
| 
 | |
|         s->inter_dequant[j] = s->coded_inter_dequant[i] * ac_scale_factor / 100;
 | |
|         if (s->inter_dequant[j] < MIN_DEQUANT_VAL * 2)
 | |
|             s->inter_dequant[j] = MIN_DEQUANT_VAL * 2;
 | |
|         s->inter_dequant[j] *= SCALER;
 | |
|     }
 | |
|     
 | |
|     memset(s->qscale_table, (FFMAX(s->intra_y_dequant[1], s->intra_c_dequant[1])+8)/16, 512); //FIXME finetune
 | |
| 
 | |
|     /* print debug information as requested */
 | |
|     debug_dequantizers("intra Y dequantizers:\n");
 | |
|     for (i = 0; i < 8; i++) {
 | |
|       for (j = i * 8; j < i * 8 + 8; j++) {
 | |
|         debug_dequantizers(" %4d,", s->intra_y_dequant[j]);
 | |
|       }
 | |
|       debug_dequantizers("\n");
 | |
|     }
 | |
|     debug_dequantizers("\n");
 | |
| 
 | |
|     debug_dequantizers("intra C dequantizers:\n");
 | |
|     for (i = 0; i < 8; i++) {
 | |
|       for (j = i * 8; j < i * 8 + 8; j++) {
 | |
|         debug_dequantizers(" %4d,", s->intra_c_dequant[j]);
 | |
|       }
 | |
|       debug_dequantizers("\n");
 | |
|     }
 | |
|     debug_dequantizers("\n");
 | |
| 
 | |
|     debug_dequantizers("interframe dequantizers:\n");
 | |
|     for (i = 0; i < 8; i++) {
 | |
|       for (j = i * 8; j < i * 8 + 8; j++) {
 | |
|         debug_dequantizers(" %4d,", s->inter_dequant[j]);
 | |
|       }
 | |
|       debug_dequantizers("\n");
 | |
|     }
 | |
|     debug_dequantizers("\n");
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function is used to fetch runs of 1s or 0s from the bitstream for
 | |
|  * use in determining which superblocks are fully and partially coded.
 | |
|  *
 | |
|  *  Codeword                RunLength
 | |
|  *  0                       1
 | |
|  *  10x                     2-3
 | |
|  *  110x                    4-5
 | |
|  *  1110xx                  6-9
 | |
|  *  11110xxx                10-17
 | |
|  *  111110xxxx              18-33
 | |
|  *  111111xxxxxxxxxxxx      34-4129
 | |
|  */
 | |
| static int get_superblock_run_length(GetBitContext *gb)
 | |
| {
 | |
| 
 | |
|     if (get_bits(gb, 1) == 0)
 | |
|         return 1;
 | |
| 
 | |
|     else if (get_bits(gb, 1) == 0)
 | |
|         return (2 + get_bits(gb, 1));
 | |
| 
 | |
|     else if (get_bits(gb, 1) == 0)
 | |
|         return (4 + get_bits(gb, 1));
 | |
| 
 | |
|     else if (get_bits(gb, 1) == 0)
 | |
|         return (6 + get_bits(gb, 2));
 | |
| 
 | |
|     else if (get_bits(gb, 1) == 0)
 | |
|         return (10 + get_bits(gb, 3));
 | |
| 
 | |
|     else if (get_bits(gb, 1) == 0)
 | |
|         return (18 + get_bits(gb, 4));
 | |
| 
 | |
|     else
 | |
|         return (34 + get_bits(gb, 12));
 | |
| 
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function is used to fetch runs of 1s or 0s from the bitstream for
 | |
|  * use in determining which particular fragments are coded.
 | |
|  *
 | |
|  * Codeword                RunLength
 | |
|  * 0x                      1-2
 | |
|  * 10x                     3-4
 | |
|  * 110x                    5-6
 | |
|  * 1110xx                  7-10
 | |
|  * 11110xx                 11-14
 | |
|  * 11111xxxx               15-30
 | |
|  */
 | |
| static int get_fragment_run_length(GetBitContext *gb)
 | |
| {
 | |
| 
 | |
|     if (get_bits(gb, 1) == 0)
 | |
|         return (1 + get_bits(gb, 1));
 | |
| 
 | |
|     else if (get_bits(gb, 1) == 0)
 | |
|         return (3 + get_bits(gb, 1));
 | |
| 
 | |
|     else if (get_bits(gb, 1) == 0)
 | |
|         return (5 + get_bits(gb, 1));
 | |
| 
 | |
|     else if (get_bits(gb, 1) == 0)
 | |
|         return (7 + get_bits(gb, 2));
 | |
| 
 | |
|     else if (get_bits(gb, 1) == 0)
 | |
|         return (11 + get_bits(gb, 2));
 | |
| 
 | |
|     else
 | |
|         return (15 + get_bits(gb, 4));
 | |
| 
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function decodes a VLC from the bitstream and returns a number
 | |
|  * that ranges from 0..7. The number indicates which of the 8 coding
 | |
|  * modes to use.
 | |
|  *
 | |
|  *  VLC       Number
 | |
|  *  0            0
 | |
|  *  10           1
 | |
|  *  110          2
 | |
|  *  1110         3
 | |
|  *  11110        4
 | |
|  *  111110       5
 | |
|  *  1111110      6
 | |
|  *  1111111      7
 | |
|  *
 | |
|  */
 | |
| static int get_mode_code(GetBitContext *gb)
 | |
| {
 | |
| 
 | |
|     if (get_bits(gb, 1) == 0)
 | |
|         return 0;
 | |
| 
 | |
|     else if (get_bits(gb, 1) == 0)
 | |
|         return 1;
 | |
| 
 | |
|     else if (get_bits(gb, 1) == 0)
 | |
|         return 2;
 | |
| 
 | |
|     else if (get_bits(gb, 1) == 0)
 | |
|         return 3;
 | |
| 
 | |
|     else if (get_bits(gb, 1) == 0)
 | |
|         return 4;
 | |
| 
 | |
|     else if (get_bits(gb, 1) == 0)
 | |
|         return 5;
 | |
| 
 | |
|     else if (get_bits(gb, 1) == 0)
 | |
|         return 6;
 | |
| 
 | |
|     else
 | |
|         return 7;
 | |
| 
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function extracts a motion vector from the bitstream using a VLC
 | |
|  * scheme. 3 bits are fetched from the bitstream and 1 of 8 actions is
 | |
|  * taken depending on the value on those 3 bits:
 | |
|  *
 | |
|  *  0: return 0
 | |
|  *  1: return 1
 | |
|  *  2: return -1
 | |
|  *  3: if (next bit is 1) return -2, else return 2
 | |
|  *  4: if (next bit is 1) return -3, else return 3
 | |
|  *  5: return 4 + (next 2 bits), next bit is sign
 | |
|  *  6: return 8 + (next 3 bits), next bit is sign
 | |
|  *  7: return 16 + (next 4 bits), next bit is sign
 | |
|  */
 | |
| static int get_motion_vector_vlc(GetBitContext *gb)
 | |
| {
 | |
|     int bits;
 | |
| 
 | |
|     bits = get_bits(gb, 3);
 | |
| 
 | |
|     switch(bits) {
 | |
| 
 | |
|     case 0:
 | |
|         bits = 0;
 | |
|         break;
 | |
| 
 | |
|     case 1:
 | |
|         bits = 1;
 | |
|         break;
 | |
| 
 | |
|     case 2:
 | |
|         bits = -1;
 | |
|         break;
 | |
| 
 | |
|     case 3:
 | |
|         if (get_bits(gb, 1) == 0)
 | |
|             bits = 2;
 | |
|         else
 | |
|             bits = -2;
 | |
|         break;
 | |
| 
 | |
|     case 4:
 | |
|         if (get_bits(gb, 1) == 0)
 | |
|             bits = 3;
 | |
|         else
 | |
|             bits = -3;
 | |
|         break;
 | |
| 
 | |
|     case 5:
 | |
|         bits = 4 + get_bits(gb, 2);
 | |
|         if (get_bits(gb, 1) == 1)
 | |
|             bits = -bits;
 | |
|         break;
 | |
| 
 | |
|     case 6:
 | |
|         bits = 8 + get_bits(gb, 3);
 | |
|         if (get_bits(gb, 1) == 1)
 | |
|             bits = -bits;
 | |
|         break;
 | |
| 
 | |
|     case 7:
 | |
|         bits = 16 + get_bits(gb, 4);
 | |
|         if (get_bits(gb, 1) == 1)
 | |
|             bits = -bits;
 | |
|         break;
 | |
| 
 | |
|     }
 | |
| 
 | |
|     return bits;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function fetches a 5-bit number from the stream followed by
 | |
|  * a sign and calls it a motion vector.
 | |
|  */
 | |
| static int get_motion_vector_fixed(GetBitContext *gb)
 | |
| {
 | |
| 
 | |
|     int bits;
 | |
| 
 | |
|     bits = get_bits(gb, 5);
 | |
| 
 | |
|     if (get_bits(gb, 1) == 1)
 | |
|         bits = -bits;
 | |
| 
 | |
|     return bits;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function unpacks all of the superblock/macroblock/fragment coding 
 | |
|  * information from the bitstream.
 | |
|  */
 | |
| static int unpack_superblocks(Vp3DecodeContext *s, GetBitContext *gb)
 | |
| {
 | |
|     int bit = 0;
 | |
|     int current_superblock = 0;
 | |
|     int current_run = 0;
 | |
|     int decode_fully_flags = 0;
 | |
|     int decode_partial_blocks = 0;
 | |
|     int first_c_fragment_seen;
 | |
| 
 | |
|     int i, j;
 | |
|     int current_fragment;
 | |
| 
 | |
|     debug_vp3("  vp3: unpacking superblock coding\n");
 | |
| 
 | |
|     if (s->keyframe) {
 | |
| 
 | |
|         debug_vp3("    keyframe-- all superblocks are fully coded\n");
 | |
|         memset(s->superblock_coding, SB_FULLY_CODED, s->superblock_count);
 | |
| 
 | |
|     } else {
 | |
| 
 | |
|         /* unpack the list of partially-coded superblocks */
 | |
|         bit = get_bits(gb, 1);
 | |
|         /* toggle the bit because as soon as the first run length is 
 | |
|          * fetched the bit will be toggled again */
 | |
|         bit ^= 1;
 | |
|         while (current_superblock < s->superblock_count) {
 | |
|             if (current_run == 0) {
 | |
|                 bit ^= 1;
 | |
|                 current_run = get_superblock_run_length(gb);
 | |
|                 debug_block_coding("      setting superblocks %d..%d to %s\n",
 | |
|                     current_superblock,
 | |
|                     current_superblock + current_run - 1,
 | |
|                     (bit) ? "partially coded" : "not coded");
 | |
| 
 | |
|                 /* if any of the superblocks are not partially coded, flag
 | |
|                  * a boolean to decode the list of fully-coded superblocks */
 | |
|                 if (bit == 0) {
 | |
|                     decode_fully_flags = 1;
 | |
|                 } else {
 | |
| 
 | |
|                     /* make a note of the fact that there are partially coded
 | |
|                      * superblocks */
 | |
|                     decode_partial_blocks = 1;
 | |
|                 }
 | |
|             }
 | |
|             s->superblock_coding[current_superblock++] = 
 | |
|                 (bit) ? SB_PARTIALLY_CODED : SB_NOT_CODED;
 | |
|             current_run--;
 | |
|         }
 | |
| 
 | |
|         /* unpack the list of fully coded superblocks if any of the blocks were
 | |
|          * not marked as partially coded in the previous step */
 | |
|         if (decode_fully_flags) {
 | |
| 
 | |
|             current_superblock = 0;
 | |
|             current_run = 0;
 | |
|             bit = get_bits(gb, 1);
 | |
|             /* toggle the bit because as soon as the first run length is 
 | |
|              * fetched the bit will be toggled again */
 | |
|             bit ^= 1;
 | |
|             while (current_superblock < s->superblock_count) {
 | |
| 
 | |
|                 /* skip any superblocks already marked as partially coded */
 | |
|                 if (s->superblock_coding[current_superblock] == SB_NOT_CODED) {
 | |
| 
 | |
|                     if (current_run == 0) {
 | |
|                         bit ^= 1;
 | |
|                         current_run = get_superblock_run_length(gb);
 | |
|                     }
 | |
| 
 | |
|                     debug_block_coding("      setting superblock %d to %s\n",
 | |
|                         current_superblock,
 | |
|                         (bit) ? "fully coded" : "not coded");
 | |
|                     s->superblock_coding[current_superblock] = 
 | |
|                         (bit) ? SB_FULLY_CODED : SB_NOT_CODED;
 | |
|                     current_run--;
 | |
|                 }
 | |
|                 current_superblock++;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         /* if there were partial blocks, initialize bitstream for
 | |
|          * unpacking fragment codings */
 | |
|         if (decode_partial_blocks) {
 | |
| 
 | |
|             current_run = 0;
 | |
|             bit = get_bits(gb, 1);
 | |
|             /* toggle the bit because as soon as the first run length is 
 | |
|              * fetched the bit will be toggled again */
 | |
|             bit ^= 1;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* figure out which fragments are coded; iterate through each
 | |
|      * superblock (all planes) */
 | |
|     s->coded_fragment_list_index = 0;
 | |
|     s->first_coded_y_fragment = s->first_coded_c_fragment = 0;
 | |
|     s->last_coded_y_fragment = s->last_coded_c_fragment = -1;
 | |
|     first_c_fragment_seen = 0;
 | |
|     memset(s->macroblock_coding, MODE_COPY, s->macroblock_count);
 | |
|     for (i = 0; i < s->superblock_count; i++) {
 | |
| 
 | |
|         /* iterate through all 16 fragments in a superblock */
 | |
|         for (j = 0; j < 16; j++) {
 | |
| 
 | |
|             /* if the fragment is in bounds, check its coding status */
 | |
|             current_fragment = s->superblock_fragments[i * 16 + j];
 | |
|             if (current_fragment >= s->fragment_count) {
 | |
|                 av_log(s->avctx, AV_LOG_ERROR, "  vp3:unpack_superblocks(): bad fragment number (%d >= %d)\n",
 | |
|                     current_fragment, s->fragment_count);
 | |
|                 return 1;
 | |
|             }
 | |
|             if (current_fragment != -1) {
 | |
|                 if (s->superblock_coding[i] == SB_NOT_CODED) {
 | |
| 
 | |
|                     /* copy all the fragments from the prior frame */
 | |
|                     s->all_fragments[current_fragment].coding_method = 
 | |
|                         MODE_COPY;
 | |
| 
 | |
|                 } else if (s->superblock_coding[i] == SB_PARTIALLY_CODED) {
 | |
| 
 | |
|                     /* fragment may or may not be coded; this is the case
 | |
|                      * that cares about the fragment coding runs */
 | |
|                     if (current_run == 0) {
 | |
|                         bit ^= 1;
 | |
|                         current_run = get_fragment_run_length(gb);
 | |
|                     }
 | |
| 
 | |
|                     if (bit) {
 | |
|                         /* default mode; actual mode will be decoded in 
 | |
|                          * the next phase */
 | |
|                         s->all_fragments[current_fragment].coding_method = 
 | |
|                             MODE_INTER_NO_MV;
 | |
|                         s->coded_fragment_list[s->coded_fragment_list_index] = 
 | |
|                             current_fragment;
 | |
|                         if ((current_fragment >= s->u_fragment_start) &&
 | |
|                             (s->last_coded_y_fragment == -1) &&
 | |
|                             (!first_c_fragment_seen)) {
 | |
|                             s->first_coded_c_fragment = s->coded_fragment_list_index;
 | |
|                             s->last_coded_y_fragment = s->first_coded_c_fragment - 1;
 | |
|                             first_c_fragment_seen = 1;
 | |
|                         }
 | |
|                         s->coded_fragment_list_index++;
 | |
|                         s->macroblock_coding[s->all_fragments[current_fragment].macroblock] = MODE_INTER_NO_MV;
 | |
|                         debug_block_coding("      superblock %d is partially coded, fragment %d is coded\n",
 | |
|                             i, current_fragment);
 | |
|                     } else {
 | |
|                         /* not coded; copy this fragment from the prior frame */
 | |
|                         s->all_fragments[current_fragment].coding_method =
 | |
|                             MODE_COPY;
 | |
|                         debug_block_coding("      superblock %d is partially coded, fragment %d is not coded\n",
 | |
|                             i, current_fragment);
 | |
|                     }
 | |
| 
 | |
|                     current_run--;
 | |
| 
 | |
|                 } else {
 | |
| 
 | |
|                     /* fragments are fully coded in this superblock; actual
 | |
|                      * coding will be determined in next step */
 | |
|                     s->all_fragments[current_fragment].coding_method = 
 | |
|                         MODE_INTER_NO_MV;
 | |
|                     s->coded_fragment_list[s->coded_fragment_list_index] = 
 | |
|                         current_fragment;
 | |
|                     if ((current_fragment >= s->u_fragment_start) &&
 | |
|                         (s->last_coded_y_fragment == -1) &&
 | |
|                         (!first_c_fragment_seen)) {
 | |
|                         s->first_coded_c_fragment = s->coded_fragment_list_index;
 | |
|                         s->last_coded_y_fragment = s->first_coded_c_fragment - 1;
 | |
|                         first_c_fragment_seen = 1;
 | |
|                     }
 | |
|                     s->coded_fragment_list_index++;
 | |
|                     s->macroblock_coding[s->all_fragments[current_fragment].macroblock] = MODE_INTER_NO_MV;
 | |
|                     debug_block_coding("      superblock %d is fully coded, fragment %d is coded\n",
 | |
|                         i, current_fragment);
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (!first_c_fragment_seen)
 | |
|         /* only Y fragments coded in this frame */
 | |
|         s->last_coded_y_fragment = s->coded_fragment_list_index - 1;
 | |
|     else 
 | |
|         /* end the list of coded C fragments */
 | |
|         s->last_coded_c_fragment = s->coded_fragment_list_index - 1;
 | |
| 
 | |
|     debug_block_coding("    %d total coded fragments, y: %d -> %d, c: %d -> %d\n",
 | |
|         s->coded_fragment_list_index,
 | |
|         s->first_coded_y_fragment,
 | |
|         s->last_coded_y_fragment,
 | |
|         s->first_coded_c_fragment,
 | |
|         s->last_coded_c_fragment);
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function unpacks all the coding mode data for individual macroblocks
 | |
|  * from the bitstream.
 | |
|  */
 | |
| static int unpack_modes(Vp3DecodeContext *s, GetBitContext *gb)
 | |
| {
 | |
|     int i, j, k;
 | |
|     int scheme;
 | |
|     int current_macroblock;
 | |
|     int current_fragment;
 | |
|     int coding_mode;
 | |
| 
 | |
|     debug_vp3("  vp3: unpacking encoding modes\n");
 | |
| 
 | |
|     if (s->keyframe) {
 | |
|         debug_vp3("    keyframe-- all blocks are coded as INTRA\n");
 | |
| 
 | |
|         for (i = 0; i < s->fragment_count; i++)
 | |
|             s->all_fragments[i].coding_method = MODE_INTRA;
 | |
| 
 | |
|     } else {
 | |
| 
 | |
|         /* fetch the mode coding scheme for this frame */
 | |
|         scheme = get_bits(gb, 3);
 | |
|         debug_modes("    using mode alphabet %d\n", scheme);
 | |
| 
 | |
|         /* is it a custom coding scheme? */
 | |
|         if (scheme == 0) {
 | |
|             debug_modes("    custom mode alphabet ahead:\n");
 | |
|             for (i = 0; i < 8; i++)
 | |
|                 ModeAlphabet[scheme][get_bits(gb, 3)] = i;
 | |
|         }
 | |
| 
 | |
|         for (i = 0; i < 8; i++)
 | |
|             debug_modes("      mode[%d][%d] = %d\n", scheme, i, 
 | |
|                 ModeAlphabet[scheme][i]);
 | |
| 
 | |
|         /* iterate through all of the macroblocks that contain 1 or more
 | |
|          * coded fragments */
 | |
|         for (i = 0; i < s->u_superblock_start; i++) {
 | |
| 
 | |
|             for (j = 0; j < 4; j++) {
 | |
|                 current_macroblock = s->superblock_macroblocks[i * 4 + j];
 | |
|                 if ((current_macroblock == -1) ||
 | |
|                     (s->macroblock_coding[current_macroblock] == MODE_COPY))
 | |
|                     continue;
 | |
|                 if (current_macroblock >= s->macroblock_count) {
 | |
|                     av_log(s->avctx, AV_LOG_ERROR, "  vp3:unpack_modes(): bad macroblock number (%d >= %d)\n",
 | |
|                         current_macroblock, s->macroblock_count);
 | |
|                     return 1;
 | |
|                 }
 | |
| 
 | |
|                 /* mode 7 means get 3 bits for each coding mode */
 | |
|                 if (scheme == 7)
 | |
|                     coding_mode = get_bits(gb, 3);
 | |
|                 else
 | |
|                     coding_mode = ModeAlphabet[scheme][get_mode_code(gb)];
 | |
| 
 | |
|                 s->macroblock_coding[current_macroblock] = coding_mode;
 | |
|                 for (k = 0; k < 6; k++) {
 | |
|                     current_fragment = 
 | |
|                         s->macroblock_fragments[current_macroblock * 6 + k];
 | |
|                     if (current_fragment == -1)
 | |
|                         continue;
 | |
|                     if (current_fragment >= s->fragment_count) {
 | |
|                         av_log(s->avctx, AV_LOG_ERROR, "  vp3:unpack_modes(): bad fragment number (%d >= %d)\n",
 | |
|                             current_fragment, s->fragment_count);
 | |
|                         return 1;
 | |
|                     }
 | |
|                     if (s->all_fragments[current_fragment].coding_method != 
 | |
|                         MODE_COPY)
 | |
|                         s->all_fragments[current_fragment].coding_method =
 | |
|                             coding_mode;
 | |
|                 }
 | |
| 
 | |
|                 debug_modes("    coding method for macroblock starting @ fragment %d = %d\n",
 | |
|                     s->macroblock_fragments[current_macroblock * 6], coding_mode);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function unpacks all the motion vectors for the individual
 | |
|  * macroblocks from the bitstream.
 | |
|  */
 | |
| static int unpack_vectors(Vp3DecodeContext *s, GetBitContext *gb)
 | |
| {
 | |
|     int i, j, k;
 | |
|     int coding_mode;
 | |
|     int motion_x[6];
 | |
|     int motion_y[6];
 | |
|     int last_motion_x = 0;
 | |
|     int last_motion_y = 0;
 | |
|     int prior_last_motion_x = 0;
 | |
|     int prior_last_motion_y = 0;
 | |
|     int current_macroblock;
 | |
|     int current_fragment;
 | |
| 
 | |
|     debug_vp3("  vp3: unpacking motion vectors\n");
 | |
|     if (s->keyframe) {
 | |
| 
 | |
|         debug_vp3("    keyframe-- there are no motion vectors\n");
 | |
| 
 | |
|     } else {
 | |
| 
 | |
|         memset(motion_x, 0, 6 * sizeof(int));
 | |
|         memset(motion_y, 0, 6 * sizeof(int));
 | |
| 
 | |
|         /* coding mode 0 is the VLC scheme; 1 is the fixed code scheme */
 | |
|         coding_mode = get_bits(gb, 1);
 | |
|         debug_vectors("    using %s scheme for unpacking motion vectors\n",
 | |
|             (coding_mode == 0) ? "VLC" : "fixed-length");
 | |
| 
 | |
|         /* iterate through all of the macroblocks that contain 1 or more
 | |
|          * coded fragments */
 | |
|         for (i = 0; i < s->u_superblock_start; i++) {
 | |
| 
 | |
|             for (j = 0; j < 4; j++) {
 | |
|                 current_macroblock = s->superblock_macroblocks[i * 4 + j];
 | |
|                 if ((current_macroblock == -1) ||
 | |
|                     (s->macroblock_coding[current_macroblock] == MODE_COPY))
 | |
|                     continue;
 | |
|                 if (current_macroblock >= s->macroblock_count) {
 | |
|                     av_log(s->avctx, AV_LOG_ERROR, "  vp3:unpack_vectors(): bad macroblock number (%d >= %d)\n",
 | |
|                         current_macroblock, s->macroblock_count);
 | |
|                     return 1;
 | |
|                 }
 | |
| 
 | |
|                 current_fragment = s->macroblock_fragments[current_macroblock * 6];
 | |
|                 if (current_fragment >= s->fragment_count) {
 | |
|                     av_log(s->avctx, AV_LOG_ERROR, "  vp3:unpack_vectors(): bad fragment number (%d >= %d\n",
 | |
|                         current_fragment, s->fragment_count);
 | |
|                     return 1;
 | |
|                 }
 | |
|                 switch (s->macroblock_coding[current_macroblock]) {
 | |
| 
 | |
|                 case MODE_INTER_PLUS_MV:
 | |
|                 case MODE_GOLDEN_MV:
 | |
|                     /* all 6 fragments use the same motion vector */
 | |
|                     if (coding_mode == 0) {
 | |
|                         motion_x[0] = get_motion_vector_vlc(gb);
 | |
|                         motion_y[0] = get_motion_vector_vlc(gb);
 | |
|                     } else {
 | |
|                         motion_x[0] = get_motion_vector_fixed(gb);
 | |
|                         motion_y[0] = get_motion_vector_fixed(gb);
 | |
|                     }
 | |
|                     for (k = 1; k < 6; k++) {
 | |
|                         motion_x[k] = motion_x[0];
 | |
|                         motion_y[k] = motion_y[0];
 | |
|                     }
 | |
| 
 | |
|                     /* vector maintenance, only on MODE_INTER_PLUS_MV */
 | |
|                     if (s->macroblock_coding[current_macroblock] ==
 | |
|                         MODE_INTER_PLUS_MV) {
 | |
|                         prior_last_motion_x = last_motion_x;
 | |
|                         prior_last_motion_y = last_motion_y;
 | |
|                         last_motion_x = motion_x[0];
 | |
|                         last_motion_y = motion_y[0];
 | |
|                     }
 | |
|                     break;
 | |
| 
 | |
|                 case MODE_INTER_FOURMV:
 | |
|                     /* fetch 4 vectors from the bitstream, one for each
 | |
|                      * Y fragment, then average for the C fragment vectors */
 | |
|                     motion_x[4] = motion_y[4] = 0;
 | |
|                     for (k = 0; k < 4; k++) {
 | |
|                         if (coding_mode == 0) {
 | |
|                             motion_x[k] = get_motion_vector_vlc(gb);
 | |
|                             motion_y[k] = get_motion_vector_vlc(gb);
 | |
|                         } else {
 | |
|                             motion_x[k] = get_motion_vector_fixed(gb);
 | |
|                             motion_y[k] = get_motion_vector_fixed(gb);
 | |
|                         }
 | |
|                         motion_x[4] += motion_x[k];
 | |
|                         motion_y[4] += motion_y[k];
 | |
|                     }
 | |
| 
 | |
|                     if (motion_x[4] >= 0) 
 | |
|                         motion_x[4] = (motion_x[4] + 2) / 4;
 | |
|                     else
 | |
|                         motion_x[4] = (motion_x[4] - 2) / 4;
 | |
|                     motion_x[5] = motion_x[4];
 | |
| 
 | |
|                     if (motion_y[4] >= 0) 
 | |
|                         motion_y[4] = (motion_y[4] + 2) / 4;
 | |
|                     else
 | |
|                         motion_y[4] = (motion_y[4] - 2) / 4;
 | |
|                     motion_y[5] = motion_y[4];
 | |
| 
 | |
|                     /* vector maintenance; vector[3] is treated as the
 | |
|                      * last vector in this case */
 | |
|                     prior_last_motion_x = last_motion_x;
 | |
|                     prior_last_motion_y = last_motion_y;
 | |
|                     last_motion_x = motion_x[3];
 | |
|                     last_motion_y = motion_y[3];
 | |
|                     break;
 | |
| 
 | |
|                 case MODE_INTER_LAST_MV:
 | |
|                     /* all 6 fragments use the last motion vector */
 | |
|                     motion_x[0] = last_motion_x;
 | |
|                     motion_y[0] = last_motion_y;
 | |
|                     for (k = 1; k < 6; k++) {
 | |
|                         motion_x[k] = motion_x[0];
 | |
|                         motion_y[k] = motion_y[0];
 | |
|                     }
 | |
| 
 | |
|                     /* no vector maintenance (last vector remains the
 | |
|                      * last vector) */
 | |
|                     break;
 | |
| 
 | |
|                 case MODE_INTER_PRIOR_LAST:
 | |
|                     /* all 6 fragments use the motion vector prior to the
 | |
|                      * last motion vector */
 | |
|                     motion_x[0] = prior_last_motion_x;
 | |
|                     motion_y[0] = prior_last_motion_y;
 | |
|                     for (k = 1; k < 6; k++) {
 | |
|                         motion_x[k] = motion_x[0];
 | |
|                         motion_y[k] = motion_y[0];
 | |
|                     }
 | |
| 
 | |
|                     /* vector maintenance */
 | |
|                     prior_last_motion_x = last_motion_x;
 | |
|                     prior_last_motion_y = last_motion_y;
 | |
|                     last_motion_x = motion_x[0];
 | |
|                     last_motion_y = motion_y[0];
 | |
|                     break;
 | |
| 
 | |
|                 default:
 | |
|                     /* covers intra, inter without MV, golden without MV */
 | |
|                     memset(motion_x, 0, 6 * sizeof(int));
 | |
|                     memset(motion_y, 0, 6 * sizeof(int));
 | |
| 
 | |
|                     /* no vector maintenance */
 | |
|                     break;
 | |
|                 }
 | |
| 
 | |
|                 /* assign the motion vectors to the correct fragments */
 | |
|                 debug_vectors("    vectors for macroblock starting @ fragment %d (coding method %d):\n",
 | |
|                     current_fragment,
 | |
|                     s->macroblock_coding[current_macroblock]);
 | |
|                 for (k = 0; k < 6; k++) {
 | |
|                     current_fragment = 
 | |
|                         s->macroblock_fragments[current_macroblock * 6 + k];
 | |
|                     if (current_fragment == -1)
 | |
|                         continue;
 | |
|                     if (current_fragment >= s->fragment_count) {
 | |
|                         av_log(s->avctx, AV_LOG_ERROR, "  vp3:unpack_vectors(): bad fragment number (%d >= %d)\n",
 | |
|                             current_fragment, s->fragment_count);
 | |
|                         return 1;
 | |
|                     }
 | |
|                     s->all_fragments[current_fragment].motion_x = motion_x[k];
 | |
|                     s->all_fragments[current_fragment].motion_y = motion_y[k];
 | |
|                     debug_vectors("    vector %d: fragment %d = (%d, %d)\n",
 | |
|                         k, current_fragment, motion_x[k], motion_y[k]);
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /* 
 | |
|  * This function is called by unpack_dct_coeffs() to extract the VLCs from
 | |
|  * the bitstream. The VLCs encode tokens which are used to unpack DCT
 | |
|  * data. This function unpacks all the VLCs for either the Y plane or both
 | |
|  * C planes, and is called for DC coefficients or different AC coefficient
 | |
|  * levels (since different coefficient types require different VLC tables.
 | |
|  *
 | |
|  * This function returns a residual eob run. E.g, if a particular token gave
 | |
|  * instructions to EOB the next 5 fragments and there were only 2 fragments
 | |
|  * left in the current fragment range, 3 would be returned so that it could
 | |
|  * be passed into the next call to this same function.
 | |
|  */
 | |
| static int unpack_vlcs(Vp3DecodeContext *s, GetBitContext *gb,
 | |
|                         VLC *table, int coeff_index,
 | |
|                         int first_fragment, int last_fragment,
 | |
|                         int eob_run)
 | |
| {
 | |
|     int i;
 | |
|     int token;
 | |
|     int zero_run;
 | |
|     DCTELEM coeff;
 | |
|     Vp3Fragment *fragment;
 | |
| 
 | |
|     if ((first_fragment >= s->fragment_count) ||
 | |
|         (last_fragment >= s->fragment_count)) {
 | |
| 
 | |
|         av_log(s->avctx, AV_LOG_ERROR, "  vp3:unpack_vlcs(): bad fragment number (%d -> %d ?)\n",
 | |
|             first_fragment, last_fragment);
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     for (i = first_fragment; i <= last_fragment; i++) {
 | |
| 
 | |
|         fragment = &s->all_fragments[s->coded_fragment_list[i]];
 | |
|         if (fragment->coeff_count > coeff_index)
 | |
|             continue;
 | |
| 
 | |
|         if (!eob_run) {
 | |
|             /* decode a VLC into a token */
 | |
|             token = get_vlc2(gb, table->table, 5, 3);
 | |
|             debug_vlc(" token = %2d, ", token);
 | |
|             /* use the token to get a zero run, a coefficient, and an eob run */
 | |
|             unpack_token(gb, token, &zero_run, &coeff, &eob_run);
 | |
|         }
 | |
| 
 | |
|         if (!eob_run) {
 | |
|             fragment->coeff_count += zero_run;
 | |
|             if (fragment->coeff_count < 64)
 | |
|                 fragment->coeffs[fragment->coeff_count++] = coeff;
 | |
|             debug_vlc(" fragment %d coeff = %d\n",
 | |
|                 s->coded_fragment_list[i], fragment->coeffs[coeff_index]);
 | |
|         } else {
 | |
|             fragment->last_coeff = fragment->coeff_count;
 | |
|             fragment->coeff_count = 64;
 | |
|             debug_vlc(" fragment %d eob with %d coefficients\n", 
 | |
|                 s->coded_fragment_list[i], fragment->last_coeff);
 | |
|             eob_run--;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return eob_run;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function unpacks all of the DCT coefficient data from the
 | |
|  * bitstream.
 | |
|  */
 | |
| static int unpack_dct_coeffs(Vp3DecodeContext *s, GetBitContext *gb)
 | |
| {
 | |
|     int i;
 | |
|     int dc_y_table;
 | |
|     int dc_c_table;
 | |
|     int ac_y_table;
 | |
|     int ac_c_table;
 | |
|     int residual_eob_run = 0;
 | |
| 
 | |
|     /* fetch the DC table indices */
 | |
|     dc_y_table = get_bits(gb, 4);
 | |
|     dc_c_table = get_bits(gb, 4);
 | |
| 
 | |
|     /* unpack the Y plane DC coefficients */
 | |
|     debug_vp3("  vp3: unpacking Y plane DC coefficients using table %d\n",
 | |
|         dc_y_table);
 | |
|     residual_eob_run = unpack_vlcs(s, gb, &s->dc_vlc[dc_y_table], 0, 
 | |
|         s->first_coded_y_fragment, s->last_coded_y_fragment, residual_eob_run);
 | |
| 
 | |
|     /* unpack the C plane DC coefficients */
 | |
|     debug_vp3("  vp3: unpacking C plane DC coefficients using table %d\n",
 | |
|         dc_c_table);
 | |
|     residual_eob_run = unpack_vlcs(s, gb, &s->dc_vlc[dc_c_table], 0,
 | |
|         s->first_coded_c_fragment, s->last_coded_c_fragment, residual_eob_run);
 | |
| 
 | |
|     /* fetch the AC table indices */
 | |
|     ac_y_table = get_bits(gb, 4);
 | |
|     ac_c_table = get_bits(gb, 4);
 | |
| 
 | |
|     /* unpack the group 1 AC coefficients (coeffs 1-5) */
 | |
|     for (i = 1; i <= 5; i++) {
 | |
| 
 | |
|         debug_vp3("  vp3: unpacking level %d Y plane AC coefficients using table %d\n",
 | |
|             i, ac_y_table);
 | |
|         residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_1[ac_y_table], i, 
 | |
|             s->first_coded_y_fragment, s->last_coded_y_fragment, residual_eob_run);
 | |
| 
 | |
|         debug_vp3("  vp3: unpacking level %d C plane AC coefficients using table %d\n",
 | |
|             i, ac_c_table);
 | |
|         residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_1[ac_c_table], i, 
 | |
|             s->first_coded_c_fragment, s->last_coded_c_fragment, residual_eob_run);
 | |
|     }
 | |
| 
 | |
|     /* unpack the group 2 AC coefficients (coeffs 6-14) */
 | |
|     for (i = 6; i <= 14; i++) {
 | |
| 
 | |
|         debug_vp3("  vp3: unpacking level %d Y plane AC coefficients using table %d\n",
 | |
|             i, ac_y_table);
 | |
|         residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_2[ac_y_table], i, 
 | |
|             s->first_coded_y_fragment, s->last_coded_y_fragment, residual_eob_run);
 | |
| 
 | |
|         debug_vp3("  vp3: unpacking level %d C plane AC coefficients using table %d\n",
 | |
|             i, ac_c_table);
 | |
|         residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_2[ac_c_table], i, 
 | |
|             s->first_coded_c_fragment, s->last_coded_c_fragment, residual_eob_run);
 | |
|     }
 | |
| 
 | |
|     /* unpack the group 3 AC coefficients (coeffs 15-27) */
 | |
|     for (i = 15; i <= 27; i++) {
 | |
| 
 | |
|         debug_vp3("  vp3: unpacking level %d Y plane AC coefficients using table %d\n",
 | |
|             i, ac_y_table);
 | |
|         residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_3[ac_y_table], i, 
 | |
|             s->first_coded_y_fragment, s->last_coded_y_fragment, residual_eob_run);
 | |
| 
 | |
|         debug_vp3("  vp3: unpacking level %d C plane AC coefficients using table %d\n",
 | |
|             i, ac_c_table);
 | |
|         residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_3[ac_c_table], i, 
 | |
|             s->first_coded_c_fragment, s->last_coded_c_fragment, residual_eob_run);
 | |
|     }
 | |
| 
 | |
|     /* unpack the group 4 AC coefficients (coeffs 28-63) */
 | |
|     for (i = 28; i <= 63; i++) {
 | |
| 
 | |
|         debug_vp3("  vp3: unpacking level %d Y plane AC coefficients using table %d\n",
 | |
|             i, ac_y_table);
 | |
|         residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_4[ac_y_table], i, 
 | |
|             s->first_coded_y_fragment, s->last_coded_y_fragment, residual_eob_run);
 | |
| 
 | |
|         debug_vp3("  vp3: unpacking level %d C plane AC coefficients using table %d\n",
 | |
|             i, ac_c_table);
 | |
|         residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_4[ac_c_table], i, 
 | |
|             s->first_coded_c_fragment, s->last_coded_c_fragment, residual_eob_run);
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function reverses the DC prediction for each coded fragment in
 | |
|  * the frame. Much of this function is adapted directly from the original 
 | |
|  * VP3 source code.
 | |
|  */
 | |
| #define COMPATIBLE_FRAME(x) \
 | |
|   (compatible_frame[s->all_fragments[x].coding_method] == current_frame_type)
 | |
| #define FRAME_CODED(x) (s->all_fragments[x].coding_method != MODE_COPY)
 | |
| static inline int iabs (int x) { return ((x < 0) ? -x : x); }
 | |
| 
 | |
| static void reverse_dc_prediction(Vp3DecodeContext *s,
 | |
|                                   int first_fragment,
 | |
|                                   int fragment_width,
 | |
|                                   int fragment_height) 
 | |
| {
 | |
| 
 | |
| #define PUL 8
 | |
| #define PU 4
 | |
| #define PUR 2
 | |
| #define PL 1
 | |
| 
 | |
|     int x, y;
 | |
|     int i = first_fragment;
 | |
| 
 | |
|     /*
 | |
|      * Fragment prediction groups:
 | |
|      *
 | |
|      * 32222222226
 | |
|      * 10000000004
 | |
|      * 10000000004
 | |
|      * 10000000004
 | |
|      * 10000000004
 | |
|      *
 | |
|      * Note: Groups 5 and 7 do not exist as it would mean that the 
 | |
|      * fragment's x coordinate is both 0 and (width - 1) at the same time.
 | |
|      */
 | |
|     int predictor_group;
 | |
|     short predicted_dc;
 | |
| 
 | |
|     /* validity flags for the left, up-left, up, and up-right fragments */
 | |
|     int fl, ful, fu, fur;
 | |
| 
 | |
|     /* DC values for the left, up-left, up, and up-right fragments */
 | |
|     int vl, vul, vu, vur;
 | |
| 
 | |
|     /* indices for the left, up-left, up, and up-right fragments */
 | |
|     int l, ul, u, ur;
 | |
| 
 | |
|     /* 
 | |
|      * The 6 fields mean:
 | |
|      *   0: up-left multiplier
 | |
|      *   1: up multiplier
 | |
|      *   2: up-right multiplier
 | |
|      *   3: left multiplier
 | |
|      *   4: mask
 | |
|      *   5: right bit shift divisor (e.g., 7 means >>=7, a.k.a. div by 128)
 | |
|      */
 | |
|     int predictor_transform[16][6] = {
 | |
|         {  0,  0,  0,  0,   0,  0 },
 | |
|         {  0,  0,  0,  1,   0,  0 },        // PL
 | |
|         {  0,  0,  1,  0,   0,  0 },        // PUR
 | |
|         {  0,  0, 53, 75, 127,  7 },        // PUR|PL
 | |
|         {  0,  1,  0,  0,   0,  0 },        // PU
 | |
|         {  0,  1,  0,  1,   1,  1 },        // PU|PL
 | |
|         {  0,  1,  0,  0,   0,  0 },        // PU|PUR
 | |
|         {  0,  0, 53, 75, 127,  7 },        // PU|PUR|PL
 | |
|         {  1,  0,  0,  0,   0,  0 },        // PUL
 | |
|         {  0,  0,  0,  1,   0,  0 },        // PUL|PL
 | |
|         {  1,  0,  1,  0,   1,  1 },        // PUL|PUR
 | |
|         {  0,  0, 53, 75, 127,  7 },        // PUL|PUR|PL
 | |
|         {  0,  1,  0,  0,   0,  0 },        // PUL|PU
 | |
|         {-26, 29,  0, 29,  31,  5 },        // PUL|PU|PL
 | |
|         {  3, 10,  3,  0,  15,  4 },        // PUL|PU|PUR
 | |
|         {-26, 29,  0, 29,  31,  5 }         // PUL|PU|PUR|PL
 | |
|     };
 | |
| 
 | |
|     /* This table shows which types of blocks can use other blocks for
 | |
|      * prediction. For example, INTRA is the only mode in this table to
 | |
|      * have a frame number of 0. That means INTRA blocks can only predict
 | |
|      * from other INTRA blocks. There are 2 golden frame coding types; 
 | |
|      * blocks encoding in these modes can only predict from other blocks
 | |
|      * that were encoded with these 1 of these 2 modes. */
 | |
|     unsigned char compatible_frame[8] = {
 | |
|         1,    /* MODE_INTER_NO_MV */
 | |
|         0,    /* MODE_INTRA */
 | |
|         1,    /* MODE_INTER_PLUS_MV */
 | |
|         1,    /* MODE_INTER_LAST_MV */
 | |
|         1,    /* MODE_INTER_PRIOR_MV */
 | |
|         2,    /* MODE_USING_GOLDEN */
 | |
|         2,    /* MODE_GOLDEN_MV */
 | |
|         1     /* MODE_INTER_FOUR_MV */
 | |
|     };
 | |
|     int current_frame_type;
 | |
| 
 | |
|     /* there is a last DC predictor for each of the 3 frame types */
 | |
|     short last_dc[3];
 | |
| 
 | |
|     int transform = 0;
 | |
| 
 | |
|     debug_vp3("  vp3: reversing DC prediction\n");
 | |
| 
 | |
|     vul = vu = vur = vl = 0;
 | |
|     last_dc[0] = last_dc[1] = last_dc[2] = 0;
 | |
| 
 | |
|     /* for each fragment row... */
 | |
|     for (y = 0; y < fragment_height; y++) {
 | |
| 
 | |
|         /* for each fragment in a row... */
 | |
|         for (x = 0; x < fragment_width; x++, i++) {
 | |
| 
 | |
|             /* reverse prediction if this block was coded */
 | |
|             if (s->all_fragments[i].coding_method != MODE_COPY) {
 | |
| 
 | |
|                 current_frame_type = 
 | |
|                     compatible_frame[s->all_fragments[i].coding_method];
 | |
|                 predictor_group = (x == 0) + ((y == 0) << 1) +
 | |
|                     ((x + 1 == fragment_width) << 2);
 | |
|                 debug_dc_pred(" frag %d: group %d, orig DC = %d, ",
 | |
|                     i, predictor_group, s->all_fragments[i].coeffs[0]);
 | |
| 
 | |
|                 switch (predictor_group) {
 | |
| 
 | |
|                 case 0:
 | |
|                     /* main body of fragments; consider all 4 possible
 | |
|                      * fragments for prediction */
 | |
| 
 | |
|                     /* calculate the indices of the predicting fragments */
 | |
|                     ul = i - fragment_width - 1;
 | |
|                     u = i - fragment_width;
 | |
|                     ur = i - fragment_width + 1;
 | |
|                     l = i - 1;
 | |
| 
 | |
|                     /* fetch the DC values for the predicting fragments */
 | |
|                     vul = s->all_fragments[ul].coeffs[0];
 | |
|                     vu = s->all_fragments[u].coeffs[0];
 | |
|                     vur = s->all_fragments[ur].coeffs[0];
 | |
|                     vl = s->all_fragments[l].coeffs[0];
 | |
| 
 | |
|                     /* figure out which fragments are valid */
 | |
|                     ful = FRAME_CODED(ul) && COMPATIBLE_FRAME(ul);
 | |
|                     fu = FRAME_CODED(u) && COMPATIBLE_FRAME(u);
 | |
|                     fur = FRAME_CODED(ur) && COMPATIBLE_FRAME(ur);
 | |
|                     fl = FRAME_CODED(l) && COMPATIBLE_FRAME(l);
 | |
| 
 | |
|                     /* decide which predictor transform to use */
 | |
|                     transform = (fl*PL) | (fu*PU) | (ful*PUL) | (fur*PUR);
 | |
| 
 | |
|                     break;
 | |
| 
 | |
|                 case 1:
 | |
|                     /* left column of fragments, not including top corner;
 | |
|                      * only consider up and up-right fragments */
 | |
| 
 | |
|                     /* calculate the indices of the predicting fragments */
 | |
|                     u = i - fragment_width;
 | |
|                     ur = i - fragment_width + 1;
 | |
| 
 | |
|                     /* fetch the DC values for the predicting fragments */
 | |
|                     vu = s->all_fragments[u].coeffs[0];
 | |
|                     vur = s->all_fragments[ur].coeffs[0];
 | |
| 
 | |
|                     /* figure out which fragments are valid */
 | |
|                     fur = FRAME_CODED(ur) && COMPATIBLE_FRAME(ur);
 | |
|                     fu = FRAME_CODED(u) && COMPATIBLE_FRAME(u);
 | |
| 
 | |
|                     /* decide which predictor transform to use */
 | |
|                     transform = (fu*PU) | (fur*PUR);
 | |
| 
 | |
|                     break;
 | |
| 
 | |
|                 case 2:
 | |
|                 case 6:
 | |
|                     /* top row of fragments, not including top-left frag;
 | |
|                      * only consider the left fragment for prediction */
 | |
| 
 | |
|                     /* calculate the indices of the predicting fragments */
 | |
|                     l = i - 1;
 | |
| 
 | |
|                     /* fetch the DC values for the predicting fragments */
 | |
|                     vl = s->all_fragments[l].coeffs[0];
 | |
| 
 | |
|                     /* figure out which fragments are valid */
 | |
|                     fl = FRAME_CODED(l) && COMPATIBLE_FRAME(l);
 | |
| 
 | |
|                     /* decide which predictor transform to use */
 | |
|                     transform = (fl*PL);
 | |
| 
 | |
|                     break;
 | |
| 
 | |
|                 case 3:
 | |
|                     /* top-left fragment */
 | |
| 
 | |
|                     /* nothing to predict from in this case */
 | |
|                     transform = 0;
 | |
| 
 | |
|                     break;
 | |
| 
 | |
|                 case 4:
 | |
|                     /* right column of fragments, not including top corner;
 | |
|                      * consider up-left, up, and left fragments for
 | |
|                      * prediction */
 | |
| 
 | |
|                     /* calculate the indices of the predicting fragments */
 | |
|                     ul = i - fragment_width - 1;
 | |
|                     u = i - fragment_width;
 | |
|                     l = i - 1;
 | |
| 
 | |
|                     /* fetch the DC values for the predicting fragments */
 | |
|                     vul = s->all_fragments[ul].coeffs[0];
 | |
|                     vu = s->all_fragments[u].coeffs[0];
 | |
|                     vl = s->all_fragments[l].coeffs[0];
 | |
| 
 | |
|                     /* figure out which fragments are valid */
 | |
|                     ful = FRAME_CODED(ul) && COMPATIBLE_FRAME(ul);
 | |
|                     fu = FRAME_CODED(u) && COMPATIBLE_FRAME(u);
 | |
|                     fl = FRAME_CODED(l) && COMPATIBLE_FRAME(l);
 | |
| 
 | |
|                     /* decide which predictor transform to use */
 | |
|                     transform = (fl*PL) | (fu*PU) | (ful*PUL);
 | |
| 
 | |
|                     break;
 | |
| 
 | |
|                 }
 | |
| 
 | |
|                 debug_dc_pred("transform = %d, ", transform);
 | |
| 
 | |
|                 if (transform == 0) {
 | |
| 
 | |
|                     /* if there were no fragments to predict from, use last
 | |
|                      * DC saved */
 | |
|                     s->all_fragments[i].coeffs[0] += last_dc[current_frame_type];
 | |
|                     debug_dc_pred("from last DC (%d) = %d\n", 
 | |
|                         current_frame_type, s->all_fragments[i].coeffs[0]);
 | |
| 
 | |
|                 } else {
 | |
| 
 | |
|                     /* apply the appropriate predictor transform */
 | |
|                     predicted_dc =
 | |
|                         (predictor_transform[transform][0] * vul) +
 | |
|                         (predictor_transform[transform][1] * vu) +
 | |
|                         (predictor_transform[transform][2] * vur) +
 | |
|                         (predictor_transform[transform][3] * vl);
 | |
| 
 | |
|                     /* if there is a shift value in the transform, add
 | |
|                      * the sign bit before the shift */
 | |
|                     if (predictor_transform[transform][5] != 0) {
 | |
|                         predicted_dc += ((predicted_dc >> 15) & 
 | |
|                             predictor_transform[transform][4]);
 | |
|                         predicted_dc >>= predictor_transform[transform][5];
 | |
|                     }
 | |
| 
 | |
|                     /* check for outranging on the [ul u l] and
 | |
|                      * [ul u ur l] predictors */
 | |
|                     if ((transform == 13) || (transform == 15)) {
 | |
|                         if (iabs(predicted_dc - vu) > 128)
 | |
|                             predicted_dc = vu;
 | |
|                         else if (iabs(predicted_dc - vl) > 128)
 | |
|                             predicted_dc = vl;
 | |
|                         else if (iabs(predicted_dc - vul) > 128)
 | |
|                             predicted_dc = vul;
 | |
|                     }
 | |
| 
 | |
|                     /* at long last, apply the predictor */
 | |
|                     s->all_fragments[i].coeffs[0] += predicted_dc;
 | |
|                     debug_dc_pred("from pred DC = %d\n", 
 | |
|                     s->all_fragments[i].coeffs[0]);
 | |
|                 }
 | |
| 
 | |
|                 /* save the DC */
 | |
|                 last_dc[current_frame_type] = s->all_fragments[i].coeffs[0];
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function performs the final rendering of each fragment's data
 | |
|  * onto the output frame.
 | |
|  */
 | |
| static void render_fragments(Vp3DecodeContext *s,
 | |
|                              int first_fragment,
 | |
|                              int width,
 | |
|                              int height,
 | |
|                              int plane /* 0 = Y, 1 = U, 2 = V */) 
 | |
| {
 | |
|     int x, y;
 | |
|     int m, n;
 | |
|     int i = first_fragment;
 | |
|     int16_t *dequantizer;
 | |
|     DCTELEM __align16 output_samples[64];
 | |
|     unsigned char *output_plane;
 | |
|     unsigned char *last_plane;
 | |
|     unsigned char *golden_plane;
 | |
|     int stride;
 | |
|     int motion_x = 0xdeadbeef, motion_y = 0xdeadbeef;
 | |
|     int upper_motion_limit, lower_motion_limit;
 | |
|     int motion_halfpel_index;
 | |
|     uint8_t *motion_source;
 | |
| 
 | |
|     debug_vp3("  vp3: rendering final fragments for %s\n",
 | |
|         (plane == 0) ? "Y plane" : (plane == 1) ? "U plane" : "V plane");
 | |
| 
 | |
|     /* set up plane-specific parameters */
 | |
|     if (plane == 0) {
 | |
|         dequantizer = s->intra_y_dequant;
 | |
|         output_plane = s->current_frame.data[0];
 | |
|         last_plane = s->last_frame.data[0];
 | |
|         golden_plane = s->golden_frame.data[0];
 | |
|         stride = s->current_frame.linesize[0];
 | |
| 	if (!s->flipped_image) stride = -stride;
 | |
|         upper_motion_limit = 7 * s->current_frame.linesize[0];
 | |
|         lower_motion_limit = height * s->current_frame.linesize[0] + width - 8;
 | |
|     } else if (plane == 1) {
 | |
|         dequantizer = s->intra_c_dequant;
 | |
|         output_plane = s->current_frame.data[1];
 | |
|         last_plane = s->last_frame.data[1];
 | |
|         golden_plane = s->golden_frame.data[1];
 | |
|         stride = s->current_frame.linesize[1];
 | |
| 	if (!s->flipped_image) stride = -stride;
 | |
|         upper_motion_limit = 7 * s->current_frame.linesize[1];
 | |
|         lower_motion_limit = height * s->current_frame.linesize[1] + width - 8;
 | |
|     } else {
 | |
|         dequantizer = s->intra_c_dequant;
 | |
|         output_plane = s->current_frame.data[2];
 | |
|         last_plane = s->last_frame.data[2];
 | |
|         golden_plane = s->golden_frame.data[2];
 | |
|         stride = s->current_frame.linesize[2];
 | |
| 	if (!s->flipped_image) stride = -stride;
 | |
|         upper_motion_limit = 7 * s->current_frame.linesize[2];
 | |
|         lower_motion_limit = height * s->current_frame.linesize[2] + width - 8;
 | |
|     }
 | |
| 
 | |
|     /* for each fragment row... */
 | |
|     for (y = 0; y < height; y += 8) {
 | |
| 
 | |
|         /* for each fragment in a row... */
 | |
|         for (x = 0; x < width; x += 8, i++) {
 | |
| 
 | |
|             if ((i < 0) || (i >= s->fragment_count)) {
 | |
|                 av_log(s->avctx, AV_LOG_ERROR, "  vp3:render_fragments(): bad fragment number (%d)\n", i);
 | |
|                 return;
 | |
|             }
 | |
| 
 | |
|             /* transform if this block was coded */
 | |
|             if ((s->all_fragments[i].coding_method != MODE_COPY) &&
 | |
| 		!((s->avctx->flags & CODEC_FLAG_GRAY) && plane)) {
 | |
| 
 | |
|                 if ((s->all_fragments[i].coding_method == MODE_USING_GOLDEN) ||
 | |
|                     (s->all_fragments[i].coding_method == MODE_GOLDEN_MV))
 | |
|                     motion_source= golden_plane;
 | |
|                 else 
 | |
|                     motion_source= last_plane;
 | |
| 
 | |
|                 motion_source += s->all_fragments[i].first_pixel;
 | |
|                 motion_halfpel_index = 0;
 | |
| 
 | |
|                 /* sort out the motion vector if this fragment is coded
 | |
|                  * using a motion vector method */
 | |
|                 if ((s->all_fragments[i].coding_method > MODE_INTRA) &&
 | |
|                     (s->all_fragments[i].coding_method != MODE_USING_GOLDEN)) {
 | |
|                     int src_x, src_y;
 | |
|                     motion_x = s->all_fragments[i].motion_x;
 | |
|                     motion_y = s->all_fragments[i].motion_y;
 | |
|                     if(plane){
 | |
|                         motion_x= (motion_x>>1) | (motion_x&1);
 | |
|                         motion_y= (motion_y>>1) | (motion_y&1);
 | |
|                     }
 | |
| 
 | |
|                     src_x= (motion_x>>1) + x;
 | |
|                     src_y= (motion_y>>1) + y;
 | |
| if ((motion_x == 0xbeef) || (motion_y == 0xbeef))
 | |
| av_log(s->avctx, AV_LOG_ERROR, " help! got beefy vector! (%X, %X)\n", motion_x, motion_y);
 | |
| 
 | |
|                     motion_halfpel_index = motion_x & 0x01;
 | |
|                     motion_source += (motion_x >> 1);
 | |
| 
 | |
| //                    motion_y = -motion_y;
 | |
|                     motion_halfpel_index |= (motion_y & 0x01) << 1;
 | |
|                     motion_source += ((motion_y >> 1) * stride);
 | |
| 
 | |
|                     if(src_x<0 || src_y<0 || src_x + 9 >= width || src_y + 9 >= height){
 | |
|                         uint8_t *temp= s->edge_emu_buffer;
 | |
|                         if(stride<0) temp -= 9*stride;
 | |
| 			else temp += 9*stride;
 | |
| 
 | |
|                         ff_emulated_edge_mc(temp, motion_source, stride, 9, 9, src_x, src_y, width, height);
 | |
|                         motion_source= temp;
 | |
|                     }
 | |
|                 }
 | |
|                 
 | |
| 
 | |
|                 /* first, take care of copying a block from either the
 | |
|                  * previous or the golden frame */
 | |
|                 if (s->all_fragments[i].coding_method != MODE_INTRA) {
 | |
|                     //Note, it is possible to implement all MC cases with put_no_rnd_pixels_l2 which would look more like the VP3 source but this would be slower as put_no_rnd_pixels_tab is better optimzed
 | |
|                     if(motion_halfpel_index != 3){
 | |
|                         s->dsp.put_no_rnd_pixels_tab[1][motion_halfpel_index](
 | |
|                             output_plane + s->all_fragments[i].first_pixel,
 | |
|                             motion_source, stride, 8);
 | |
|                     }else{
 | |
|                         int d= (motion_x ^ motion_y)>>31; // d is 0 if motion_x and _y have the same sign, else -1
 | |
|                         s->dsp.put_no_rnd_pixels_l2[1](
 | |
|                             output_plane + s->all_fragments[i].first_pixel,
 | |
|                             motion_source - d, 
 | |
|                             motion_source + stride + 1 + d, 
 | |
|                             stride, 8);
 | |
|                     }
 | |
|                 }
 | |
| 
 | |
|                 /* dequantize the DCT coefficients */
 | |
|                 debug_idct("fragment %d, coding mode %d, DC = %d, dequant = %d:\n", 
 | |
|                     i, s->all_fragments[i].coding_method, 
 | |
|                     s->all_fragments[i].coeffs[0], dequantizer[0]);
 | |
| 
 | |
|                 /* invert DCT and place (or add) in final output */
 | |
|                 s->dsp.vp3_idct(s->all_fragments[i].coeffs,
 | |
|                     dequantizer,
 | |
|                     s->all_fragments[i].coeff_count,
 | |
|                     output_samples);
 | |
|                 if (s->all_fragments[i].coding_method == MODE_INTRA) {
 | |
|                     s->dsp.put_signed_pixels_clamped(output_samples,
 | |
|                         output_plane + s->all_fragments[i].first_pixel,
 | |
|                         stride);
 | |
|                 } else {
 | |
|                     s->dsp.add_pixels_clamped(output_samples,
 | |
|                         output_plane + s->all_fragments[i].first_pixel,
 | |
|                         stride);
 | |
|                 }
 | |
| 
 | |
|                 debug_idct("block after idct_%s():\n",
 | |
|                     (s->all_fragments[i].coding_method == MODE_INTRA)?
 | |
|                     "put" : "add");
 | |
|                 for (m = 0; m < 8; m++) {
 | |
|                     for (n = 0; n < 8; n++) {
 | |
|                         debug_idct(" %3d", *(output_plane + 
 | |
|                             s->all_fragments[i].first_pixel + (m * stride + n)));
 | |
|                     }
 | |
|                     debug_idct("\n");
 | |
|                 }
 | |
|                 debug_idct("\n");
 | |
| 
 | |
|             } else {
 | |
| 
 | |
|                 /* copy directly from the previous frame */
 | |
|                 s->dsp.put_pixels_tab[1][0](
 | |
|                     output_plane + s->all_fragments[i].first_pixel,
 | |
|                     last_plane + s->all_fragments[i].first_pixel,
 | |
|                     stride, 8);
 | |
| 
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     emms_c();
 | |
| 
 | |
| }
 | |
| 
 | |
| /* 
 | |
|  * This function computes the first pixel addresses for each fragment.
 | |
|  * This function needs to be invoked after the first frame is allocated
 | |
|  * so that it has access to the plane strides.
 | |
|  */
 | |
| static void vp3_calculate_pixel_addresses(Vp3DecodeContext *s) 
 | |
| {
 | |
| 
 | |
|     int i, x, y;
 | |
| 
 | |
|     /* figure out the first pixel addresses for each of the fragments */
 | |
|     /* Y plane */
 | |
|     i = 0;
 | |
|     for (y = s->fragment_height; y > 0; y--) {
 | |
|         for (x = 0; x < s->fragment_width; x++) {
 | |
|             s->all_fragments[i++].first_pixel = 
 | |
|                 s->golden_frame.linesize[0] * y * FRAGMENT_PIXELS -
 | |
|                     s->golden_frame.linesize[0] +
 | |
|                     x * FRAGMENT_PIXELS;
 | |
|             debug_init("  fragment %d, first pixel @ %d\n", 
 | |
|                 i-1, s->all_fragments[i-1].first_pixel);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* U plane */
 | |
|     i = s->u_fragment_start;
 | |
|     for (y = s->fragment_height / 2; y > 0; y--) {
 | |
|         for (x = 0; x < s->fragment_width / 2; x++) {
 | |
|             s->all_fragments[i++].first_pixel = 
 | |
|                 s->golden_frame.linesize[1] * y * FRAGMENT_PIXELS -
 | |
|                     s->golden_frame.linesize[1] +
 | |
|                     x * FRAGMENT_PIXELS;
 | |
|             debug_init("  fragment %d, first pixel @ %d\n", 
 | |
|                 i-1, s->all_fragments[i-1].first_pixel);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* V plane */
 | |
|     i = s->v_fragment_start;
 | |
|     for (y = s->fragment_height / 2; y > 0; y--) {
 | |
|         for (x = 0; x < s->fragment_width / 2; x++) {
 | |
|             s->all_fragments[i++].first_pixel = 
 | |
|                 s->golden_frame.linesize[2] * y * FRAGMENT_PIXELS -
 | |
|                     s->golden_frame.linesize[2] +
 | |
|                     x * FRAGMENT_PIXELS;
 | |
|             debug_init("  fragment %d, first pixel @ %d\n", 
 | |
|                 i-1, s->all_fragments[i-1].first_pixel);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* FIXME: this should be merged with the above! */
 | |
| static void theora_calculate_pixel_addresses(Vp3DecodeContext *s) 
 | |
| {
 | |
| 
 | |
|     int i, x, y;
 | |
| 
 | |
|     /* figure out the first pixel addresses for each of the fragments */
 | |
|     /* Y plane */
 | |
|     i = 0;
 | |
|     for (y = 1; y <= s->fragment_height; y++) {
 | |
|         for (x = 0; x < s->fragment_width; x++) {
 | |
|             s->all_fragments[i++].first_pixel = 
 | |
|                 s->golden_frame.linesize[0] * y * FRAGMENT_PIXELS -
 | |
|                     s->golden_frame.linesize[0] +
 | |
|                     x * FRAGMENT_PIXELS;
 | |
|             debug_init("  fragment %d, first pixel @ %d\n", 
 | |
|                 i-1, s->all_fragments[i-1].first_pixel);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* U plane */
 | |
|     i = s->u_fragment_start;
 | |
|     for (y = 1; y <= s->fragment_height / 2; y++) {
 | |
|         for (x = 0; x < s->fragment_width / 2; x++) {
 | |
|             s->all_fragments[i++].first_pixel = 
 | |
|                 s->golden_frame.linesize[1] * y * FRAGMENT_PIXELS -
 | |
|                     s->golden_frame.linesize[1] +
 | |
|                     x * FRAGMENT_PIXELS;
 | |
|             debug_init("  fragment %d, first pixel @ %d\n", 
 | |
|                 i-1, s->all_fragments[i-1].first_pixel);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* V plane */
 | |
|     i = s->v_fragment_start;
 | |
|     for (y = 1; y <= s->fragment_height / 2; y++) {
 | |
|         for (x = 0; x < s->fragment_width / 2; x++) {
 | |
|             s->all_fragments[i++].first_pixel = 
 | |
|                 s->golden_frame.linesize[2] * y * FRAGMENT_PIXELS -
 | |
|                     s->golden_frame.linesize[2] +
 | |
|                     x * FRAGMENT_PIXELS;
 | |
|             debug_init("  fragment %d, first pixel @ %d\n", 
 | |
|                 i-1, s->all_fragments[i-1].first_pixel);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is the ffmpeg/libavcodec API init function.
 | |
|  */
 | |
| static int vp3_decode_init(AVCodecContext *avctx)
 | |
| {
 | |
|     Vp3DecodeContext *s = avctx->priv_data;
 | |
|     int i;
 | |
|     int c_width;
 | |
|     int c_height;
 | |
|     int y_superblock_count;
 | |
|     int c_superblock_count;
 | |
| 
 | |
|     if (avctx->codec_tag == MKTAG('V','P','3','0'))
 | |
| 	s->version = 0;
 | |
|     else
 | |
| 	s->version = 1;
 | |
| 
 | |
|     s->avctx = avctx;
 | |
| #if 0
 | |
|     s->width = avctx->width;
 | |
|     s->height = avctx->height;
 | |
| #else
 | |
|     s->width = (avctx->width + 15) & 0xFFFFFFF0;
 | |
|     s->height = (avctx->height + 15) & 0xFFFFFFF0;
 | |
| #endif
 | |
|     avctx->pix_fmt = PIX_FMT_YUV420P;
 | |
|     avctx->has_b_frames = 0;
 | |
|     dsputil_init(&s->dsp, avctx);
 | |
|     s->dsp.vp3_dsp_init();
 | |
| 
 | |
|     /* initialize to an impossible value which will force a recalculation
 | |
|      * in the first frame decode */
 | |
|     s->quality_index = -1;
 | |
| 
 | |
|     s->y_superblock_width = (s->width + 31) / 32;
 | |
|     s->y_superblock_height = (s->height + 31) / 32;
 | |
|     y_superblock_count = s->y_superblock_width * s->y_superblock_height;
 | |
| 
 | |
|     /* work out the dimensions for the C planes */
 | |
|     c_width = s->width / 2;
 | |
|     c_height = s->height / 2;
 | |
|     s->c_superblock_width = (c_width + 31) / 32;
 | |
|     s->c_superblock_height = (c_height + 31) / 32;
 | |
|     c_superblock_count = s->c_superblock_width * s->c_superblock_height;
 | |
| 
 | |
|     s->superblock_count = y_superblock_count + (c_superblock_count * 2);
 | |
|     s->u_superblock_start = y_superblock_count;
 | |
|     s->v_superblock_start = s->u_superblock_start + c_superblock_count;
 | |
|     s->superblock_coding = av_malloc(s->superblock_count);
 | |
| 
 | |
|     s->macroblock_width = (s->width + 15) / 16;
 | |
|     s->macroblock_height = (s->height + 15) / 16;
 | |
|     s->macroblock_count = s->macroblock_width * s->macroblock_height;
 | |
| 
 | |
|     s->fragment_width = s->width / FRAGMENT_PIXELS;
 | |
|     s->fragment_height = s->height / FRAGMENT_PIXELS;
 | |
| 
 | |
|     /* fragment count covers all 8x8 blocks for all 3 planes */
 | |
|     s->fragment_count = s->fragment_width * s->fragment_height * 3 / 2;
 | |
|     s->u_fragment_start = s->fragment_width * s->fragment_height;
 | |
|     s->v_fragment_start = s->fragment_width * s->fragment_height * 5 / 4;
 | |
| 
 | |
|     debug_init("  Y plane: %d x %d\n", s->width, s->height);
 | |
|     debug_init("  C plane: %d x %d\n", c_width, c_height);
 | |
|     debug_init("  Y superblocks: %d x %d, %d total\n",
 | |
|         s->y_superblock_width, s->y_superblock_height, y_superblock_count);
 | |
|     debug_init("  C superblocks: %d x %d, %d total\n",
 | |
|         s->c_superblock_width, s->c_superblock_height, c_superblock_count);
 | |
|     debug_init("  total superblocks = %d, U starts @ %d, V starts @ %d\n", 
 | |
|         s->superblock_count, s->u_superblock_start, s->v_superblock_start);
 | |
|     debug_init("  macroblocks: %d x %d, %d total\n",
 | |
|         s->macroblock_width, s->macroblock_height, s->macroblock_count);
 | |
|     debug_init("  %d fragments, %d x %d, u starts @ %d, v starts @ %d\n",
 | |
|         s->fragment_count,
 | |
|         s->fragment_width,
 | |
|         s->fragment_height,
 | |
|         s->u_fragment_start,
 | |
|         s->v_fragment_start);
 | |
| 
 | |
|     s->all_fragments = av_malloc(s->fragment_count * sizeof(Vp3Fragment));
 | |
|     s->coded_fragment_list = av_malloc(s->fragment_count * sizeof(int));
 | |
|     s->pixel_addresses_inited = 0;
 | |
| 
 | |
|     if (!s->theora_tables)
 | |
|     {
 | |
| 	for (i = 0; i < 64; i++)
 | |
| 	    s->coded_dc_scale_factor[i] = vp31_dc_scale_factor[i];
 | |
| 	for (i = 0; i < 64; i++)
 | |
| 	    s->coded_ac_scale_factor[i] = vp31_ac_scale_factor[i];
 | |
| 	for (i = 0; i < 64; i++)
 | |
| 	    s->coded_intra_y_dequant[i] = vp31_intra_y_dequant[i];
 | |
| 	for (i = 0; i < 64; i++)
 | |
| 	    s->coded_intra_c_dequant[i] = vp31_intra_c_dequant[i];
 | |
| 	for (i = 0; i < 64; i++)
 | |
| 	    s->coded_inter_dequant[i] = vp31_inter_dequant[i];
 | |
|     }
 | |
| 
 | |
|     /* init VLC tables */
 | |
|     for (i = 0; i < 16; i++) {
 | |
| 
 | |
|         /* DC histograms */
 | |
|         init_vlc(&s->dc_vlc[i], 5, 32,
 | |
|             &dc_bias[i][0][1], 4, 2,
 | |
|             &dc_bias[i][0][0], 4, 2);
 | |
| 
 | |
|         /* group 1 AC histograms */
 | |
|         init_vlc(&s->ac_vlc_1[i], 5, 32,
 | |
|             &ac_bias_0[i][0][1], 4, 2,
 | |
|             &ac_bias_0[i][0][0], 4, 2);
 | |
| 
 | |
|         /* group 2 AC histograms */
 | |
|         init_vlc(&s->ac_vlc_2[i], 5, 32,
 | |
|             &ac_bias_1[i][0][1], 4, 2,
 | |
|             &ac_bias_1[i][0][0], 4, 2);
 | |
| 
 | |
|         /* group 3 AC histograms */
 | |
|         init_vlc(&s->ac_vlc_3[i], 5, 32,
 | |
|             &ac_bias_2[i][0][1], 4, 2,
 | |
|             &ac_bias_2[i][0][0], 4, 2);
 | |
| 
 | |
|         /* group 4 AC histograms */
 | |
|         init_vlc(&s->ac_vlc_4[i], 5, 32,
 | |
|             &ac_bias_3[i][0][1], 4, 2,
 | |
|             &ac_bias_3[i][0][0], 4, 2);
 | |
|     }
 | |
| 
 | |
|     /* build quantization zigzag table */
 | |
|     for (i = 0; i < 64; i++)
 | |
|         zigzag_index[dezigzag_index[i]] = i;
 | |
| 
 | |
|     /* work out the block mapping tables */
 | |
|     s->superblock_fragments = av_malloc(s->superblock_count * 16 * sizeof(int));
 | |
|     s->superblock_macroblocks = av_malloc(s->superblock_count * 4 * sizeof(int));
 | |
|     s->macroblock_fragments = av_malloc(s->macroblock_count * 6 * sizeof(int));
 | |
|     s->macroblock_coding = av_malloc(s->macroblock_count + 1);
 | |
|     init_block_mapping(s);
 | |
| 
 | |
|     for (i = 0; i < 3; i++) {
 | |
|         s->current_frame.data[i] = NULL;
 | |
|         s->last_frame.data[i] = NULL;
 | |
|         s->golden_frame.data[i] = NULL;
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is the ffmpeg/libavcodec API frame decode function.
 | |
|  */
 | |
| static int vp3_decode_frame(AVCodecContext *avctx, 
 | |
|                             void *data, int *data_size,
 | |
|                             uint8_t *buf, int buf_size)
 | |
| {
 | |
|     Vp3DecodeContext *s = avctx->priv_data;
 | |
|     GetBitContext gb;
 | |
|     static int counter = 0;
 | |
| 
 | |
|     init_get_bits(&gb, buf, buf_size * 8);
 | |
|     
 | |
|     if (s->theora && get_bits1(&gb))
 | |
|     {
 | |
| 	int ptype = get_bits(&gb, 7);
 | |
| 
 | |
| 	skip_bits(&gb, 6*8); /* "theora" */
 | |
| 	
 | |
| 	switch(ptype)
 | |
| 	{
 | |
| 	    case 1:
 | |
| 		theora_decode_comments(avctx, gb);
 | |
| 		break;
 | |
| 	    case 2:
 | |
| 		theora_decode_tables(avctx, gb);
 | |
|     		init_dequantizer(s);
 | |
| 		break;
 | |
| 	    default:
 | |
| 		av_log(avctx, AV_LOG_ERROR, "Unknown Theora config packet: %d\n", ptype);
 | |
| 	}
 | |
| 	return buf_size;
 | |
|     }
 | |
| 
 | |
|     s->keyframe = !get_bits1(&gb);
 | |
|     if (!s->theora)
 | |
| 	skip_bits(&gb, 1);
 | |
|     s->last_quality_index = s->quality_index;
 | |
|     s->quality_index = get_bits(&gb, 6);
 | |
|     if (s->theora >= 0x030300)
 | |
|         skip_bits1(&gb);
 | |
| 
 | |
|     if (s->avctx->debug & FF_DEBUG_PICT_INFO)
 | |
| 	av_log(s->avctx, AV_LOG_INFO, " VP3 %sframe #%d: Q index = %d\n",
 | |
| 	    s->keyframe?"key":"", counter, s->quality_index);
 | |
|     counter++;
 | |
| 
 | |
|     if (s->quality_index != s->last_quality_index)
 | |
|         init_dequantizer(s);
 | |
| 
 | |
|     if (s->keyframe) {
 | |
| 	if (!s->theora)
 | |
| 	{
 | |
| 	    skip_bits(&gb, 4); /* width code */
 | |
| 	    skip_bits(&gb, 4); /* height code */
 | |
| 	    if (s->version)
 | |
| 	    {
 | |
| 		s->version = get_bits(&gb, 5);
 | |
| 		if (counter == 1)
 | |
| 		    av_log(s->avctx, AV_LOG_DEBUG, "VP version: %d\n", s->version);
 | |
| 	    }
 | |
| 	}
 | |
| 	if (s->version || s->theora)
 | |
| 	{
 | |
|     	    if (get_bits1(&gb))
 | |
|     	        av_log(s->avctx, AV_LOG_ERROR, "Warning, unsupported keyframe coding type?!\n");
 | |
| 	    skip_bits(&gb, 2); /* reserved? */
 | |
| 	}
 | |
| 
 | |
|         if (s->last_frame.data[0] == s->golden_frame.data[0]) {
 | |
|             if (s->golden_frame.data[0])
 | |
|                 avctx->release_buffer(avctx, &s->golden_frame);
 | |
|             s->last_frame= s->golden_frame; /* ensure that we catch any access to this released frame */
 | |
|         } else {
 | |
|             if (s->golden_frame.data[0])
 | |
|                 avctx->release_buffer(avctx, &s->golden_frame);
 | |
|             if (s->last_frame.data[0])
 | |
|                 avctx->release_buffer(avctx, &s->last_frame);
 | |
|         }
 | |
| 
 | |
|         s->golden_frame.reference = 3;
 | |
|         if(avctx->get_buffer(avctx, &s->golden_frame) < 0) {
 | |
|             av_log(s->avctx, AV_LOG_ERROR, "vp3: get_buffer() failed\n");
 | |
|             return -1;
 | |
|         }
 | |
| 
 | |
|         /* golden frame is also the current frame */
 | |
|         memcpy(&s->current_frame, &s->golden_frame, sizeof(AVFrame));
 | |
| 
 | |
|         /* time to figure out pixel addresses? */
 | |
|         if (!s->pixel_addresses_inited)
 | |
| 	{
 | |
| 	    if (!s->flipped_image)
 | |
|         	vp3_calculate_pixel_addresses(s);
 | |
| 	    else
 | |
| 		theora_calculate_pixel_addresses(s);
 | |
| 	}
 | |
|     } else {
 | |
|         /* allocate a new current frame */
 | |
|         s->current_frame.reference = 3;
 | |
|         if(avctx->get_buffer(avctx, &s->current_frame) < 0) {
 | |
|             av_log(s->avctx, AV_LOG_ERROR, "vp3: get_buffer() failed\n");
 | |
|             return -1;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     s->current_frame.qscale_table= s->qscale_table; //FIXME allocate individual tables per AVFrame
 | |
|     s->current_frame.qstride= 0;
 | |
| 
 | |
|     init_frame(s, &gb);
 | |
| 
 | |
| #if KEYFRAMES_ONLY
 | |
| if (!s->keyframe) {
 | |
| 
 | |
|     memcpy(s->current_frame.data[0], s->golden_frame.data[0],
 | |
|         s->current_frame.linesize[0] * s->height);
 | |
|     memcpy(s->current_frame.data[1], s->golden_frame.data[1],
 | |
|         s->current_frame.linesize[1] * s->height / 2);
 | |
|     memcpy(s->current_frame.data[2], s->golden_frame.data[2],
 | |
|         s->current_frame.linesize[2] * s->height / 2);
 | |
| 
 | |
| } else {
 | |
| #endif
 | |
| 
 | |
|     if (unpack_superblocks(s, &gb) ||
 | |
|         unpack_modes(s, &gb) ||
 | |
|         unpack_vectors(s, &gb) ||
 | |
|         unpack_dct_coeffs(s, &gb)) {
 | |
| 
 | |
|         av_log(s->avctx, AV_LOG_ERROR, "  vp3: could not decode frame\n");
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     reverse_dc_prediction(s, 0, s->fragment_width, s->fragment_height);
 | |
|     render_fragments(s, 0, s->width, s->height, 0);
 | |
| 
 | |
|     if ((avctx->flags & CODEC_FLAG_GRAY) == 0) {
 | |
|         reverse_dc_prediction(s, s->u_fragment_start,
 | |
|             s->fragment_width / 2, s->fragment_height / 2);
 | |
|         reverse_dc_prediction(s, s->v_fragment_start,
 | |
|             s->fragment_width / 2, s->fragment_height / 2);
 | |
|         render_fragments(s, s->u_fragment_start, s->width / 2, s->height / 2, 1);
 | |
|         render_fragments(s, s->v_fragment_start, s->width / 2, s->height / 2, 2);
 | |
|     } else {
 | |
|         memset(s->current_frame.data[1], 0x80, s->width * s->height / 4);
 | |
|         memset(s->current_frame.data[2], 0x80, s->width * s->height / 4);
 | |
|     }
 | |
| 
 | |
| #if KEYFRAMES_ONLY
 | |
| }
 | |
| #endif
 | |
| 
 | |
|     *data_size=sizeof(AVFrame);
 | |
|     *(AVFrame*)data= s->current_frame;
 | |
| 
 | |
|     /* release the last frame, if it is allocated and if it is not the
 | |
|      * golden frame */
 | |
|     if ((s->last_frame.data[0]) &&
 | |
|         (s->last_frame.data[0] != s->golden_frame.data[0]))
 | |
|         avctx->release_buffer(avctx, &s->last_frame);
 | |
| 
 | |
|     /* shuffle frames (last = current) */
 | |
|     memcpy(&s->last_frame, &s->current_frame, sizeof(AVFrame));
 | |
|     s->current_frame.data[0]= NULL; /* ensure that we catch any access to this released frame */
 | |
| 
 | |
|     return buf_size;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is the ffmpeg/libavcodec API module cleanup function.
 | |
|  */
 | |
| static int vp3_decode_end(AVCodecContext *avctx)
 | |
| {
 | |
|     Vp3DecodeContext *s = avctx->priv_data;
 | |
| 
 | |
|     av_free(s->all_fragments);
 | |
|     av_free(s->coded_fragment_list);
 | |
|     av_free(s->superblock_fragments);
 | |
|     av_free(s->superblock_macroblocks);
 | |
|     av_free(s->macroblock_fragments);
 | |
|     av_free(s->macroblock_coding);
 | |
|     
 | |
|     /* release all frames */
 | |
|     if (s->golden_frame.data[0] && s->golden_frame.data[0] != s->last_frame.data[0])
 | |
|         avctx->release_buffer(avctx, &s->golden_frame);
 | |
|     if (s->last_frame.data[0])
 | |
|         avctx->release_buffer(avctx, &s->last_frame);
 | |
|     /* no need to release the current_frame since it will always be pointing
 | |
|      * to the same frame as either the golden or last frame */
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int theora_decode_header(AVCodecContext *avctx, GetBitContext gb)
 | |
| {
 | |
|     Vp3DecodeContext *s = avctx->priv_data;
 | |
|     int major, minor, micro;
 | |
| 
 | |
|     major = get_bits(&gb, 8); /* version major */
 | |
|     minor = get_bits(&gb, 8); /* version minor */
 | |
|     micro = get_bits(&gb, 8); /* version micro */
 | |
|     av_log(avctx, AV_LOG_INFO, "Theora bitstream version %d.%d.%d\n",
 | |
| 	major, minor, micro);
 | |
| 
 | |
|     /* FIXME: endianess? */
 | |
|     s->theora = (major << 16) | (minor << 8) | micro;
 | |
| 
 | |
|     /* 3.3.0 aka alpha3 has the same frame orientation as original vp3 */
 | |
|     /* but previous versions have the image flipped relative to vp3 */
 | |
|     if (s->theora < 0x030300)
 | |
|     {
 | |
| 	s->flipped_image = 1;
 | |
|         av_log(avctx, AV_LOG_DEBUG, "Old (<alpha3) Theora bitstream, flipped image\n");
 | |
|     }
 | |
| 
 | |
|     s->width = get_bits(&gb, 16) << 4;
 | |
|     s->height = get_bits(&gb, 16) << 4;
 | |
|     
 | |
|     skip_bits(&gb, 24); /* frame width */
 | |
|     skip_bits(&gb, 24); /* frame height */
 | |
| 
 | |
|     skip_bits(&gb, 8); /* offset x */
 | |
|     skip_bits(&gb, 8); /* offset y */
 | |
| 
 | |
|     skip_bits(&gb, 32); /* fps numerator */
 | |
|     skip_bits(&gb, 32); /* fps denumerator */
 | |
|     skip_bits(&gb, 24); /* aspect numerator */
 | |
|     skip_bits(&gb, 24); /* aspect denumerator */
 | |
|     
 | |
|     if (s->theora < 0x030300)
 | |
| 	skip_bits(&gb, 5); /* keyframe frequency force */
 | |
|     skip_bits(&gb, 8); /* colorspace */
 | |
|     skip_bits(&gb, 24); /* bitrate */
 | |
| 
 | |
|     skip_bits(&gb, 6); /* last(?) quality index */
 | |
|     
 | |
|     if (s->theora >= 0x030300)
 | |
|     {
 | |
| 	skip_bits(&gb, 5); /* keyframe frequency force */
 | |
| 	skip_bits(&gb, 5); /* spare bits */
 | |
|     }
 | |
|     
 | |
| //    align_get_bits(&gb);
 | |
|     
 | |
|     avctx->width = s->width;
 | |
|     avctx->height = s->height;
 | |
| 
 | |
|     vp3_decode_init(avctx);
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int theora_decode_comments(AVCodecContext *avctx, GetBitContext gb)
 | |
| {
 | |
|     int nb_comments, i, tmp;
 | |
| 
 | |
|     tmp = get_bits_long(&gb, 32);
 | |
|     tmp = be2me_32(tmp);
 | |
|     while(tmp--)
 | |
| 	    skip_bits(&gb, 8);
 | |
| 
 | |
|     nb_comments = get_bits_long(&gb, 32);
 | |
|     nb_comments = be2me_32(nb_comments);
 | |
|     for (i = 0; i < nb_comments; i++)
 | |
|     {
 | |
| 	tmp = get_bits_long(&gb, 32);
 | |
| 	tmp = be2me_32(tmp);
 | |
| 	while(tmp--)
 | |
| 	    skip_bits(&gb, 8);
 | |
|     }
 | |
|     
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int theora_decode_tables(AVCodecContext *avctx, GetBitContext gb)
 | |
| {
 | |
|     Vp3DecodeContext *s = avctx->priv_data;
 | |
|     int i;
 | |
|     
 | |
|     /* quality threshold table */
 | |
|     for (i = 0; i < 64; i++)
 | |
| 	s->coded_ac_scale_factor[i] = get_bits(&gb, 16);
 | |
| 
 | |
|     /* dc scale factor table */
 | |
|     for (i = 0; i < 64; i++)
 | |
| 	s->coded_dc_scale_factor[i] = get_bits(&gb, 16);
 | |
| 
 | |
|     /* y coeffs */
 | |
|     for (i = 0; i < 64; i++)
 | |
| 	s->coded_intra_y_dequant[i] = get_bits(&gb, 8);
 | |
| 
 | |
|     /* uv coeffs */
 | |
|     for (i = 0; i < 64; i++)
 | |
| 	s->coded_intra_c_dequant[i] = get_bits(&gb, 8);
 | |
| 
 | |
|     /* inter coeffs */
 | |
|     for (i = 0; i < 64; i++)
 | |
| 	s->coded_inter_dequant[i] = get_bits(&gb, 8);
 | |
| 
 | |
|     /* FIXME: read huffmann tree.. */
 | |
|     
 | |
|     s->theora_tables = 1;
 | |
|     
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int theora_decode_init(AVCodecContext *avctx)
 | |
| {
 | |
|     Vp3DecodeContext *s = avctx->priv_data;
 | |
|     GetBitContext gb;
 | |
|     int ptype;
 | |
|     
 | |
|     s->theora = 1;
 | |
| 
 | |
|     if (!avctx->extradata_size)
 | |
| 	return -1;
 | |
| 
 | |
|     init_get_bits(&gb, avctx->extradata, avctx->extradata_size);
 | |
| 
 | |
|     ptype = get_bits(&gb, 8);
 | |
|     debug_vp3("Theora headerpacket type: %x\n", ptype);
 | |
| 	    
 | |
|     if (!(ptype & 0x80))
 | |
| 	return -1;
 | |
| 	
 | |
|     skip_bits(&gb, 6*8); /* "theora" */
 | |
| 	
 | |
|     switch(ptype)
 | |
|     {
 | |
|         case 0x80:
 | |
|             theora_decode_header(avctx, gb);
 | |
| 	    vp3_decode_init(avctx);
 | |
|     	    break;
 | |
| 	case 0x81:
 | |
| 	    theora_decode_comments(avctx, gb);
 | |
| 	    break;
 | |
| 	case 0x82:
 | |
| 	    theora_decode_tables(avctx, gb);
 | |
| 	    break;
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| AVCodec vp3_decoder = {
 | |
|     "vp3",
 | |
|     CODEC_TYPE_VIDEO,
 | |
|     CODEC_ID_VP3,
 | |
|     sizeof(Vp3DecodeContext),
 | |
|     vp3_decode_init,
 | |
|     NULL,
 | |
|     vp3_decode_end,
 | |
|     vp3_decode_frame,
 | |
|     0,
 | |
|     NULL
 | |
| };
 | |
| 
 | |
| AVCodec theora_decoder = {
 | |
|     "theora",
 | |
|     CODEC_TYPE_VIDEO,
 | |
|     CODEC_ID_THEORA,
 | |
|     sizeof(Vp3DecodeContext),
 | |
|     theora_decode_init,
 | |
|     NULL,
 | |
|     vp3_decode_end,
 | |
|     vp3_decode_frame,
 | |
|     0,
 | |
|     NULL
 | |
| };
 |