1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2024-12-28 20:53:54 +02:00
FFmpeg/libavcodec/vc1dsp.c
Jerome Borsboom 975a1a81b2 avcodec/vc1: fix overlap filter for frame interlaced pictures
The overlap filter is not correct for vertical edges in frame interlaced
I and P pictures. When filtering macroblocks with different FIELDTX values,
we have to match the lines at both sides of the vertical border. In addition,
we have to use the correct rounding values, depending on the line we are
filtering.

Signed-off-by: Jerome Borsboom <jerome.borsboom@carpalis.nl>
2018-06-29 01:18:44 +02:00

1043 lines
39 KiB
C

/*
* VC-1 and WMV3 decoder - DSP functions
* Copyright (c) 2006 Konstantin Shishkov
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* VC-1 and WMV3 decoder
*/
#include "libavutil/avassert.h"
#include "libavutil/common.h"
#include "libavutil/intreadwrite.h"
#include "h264chroma.h"
#include "qpeldsp.h"
#include "rnd_avg.h"
#include "vc1dsp.h"
#include "startcode.h"
/* Apply overlap transform to horizontal edge */
static void vc1_v_overlap_c(uint8_t *src, int stride)
{
int i;
int a, b, c, d;
int d1, d2;
int rnd = 1;
for (i = 0; i < 8; i++) {
a = src[-2 * stride];
b = src[-stride];
c = src[0];
d = src[stride];
d1 = (a - d + 3 + rnd) >> 3;
d2 = (a - d + b - c + 4 - rnd) >> 3;
src[-2 * stride] = a - d1;
src[-stride] = av_clip_uint8(b - d2);
src[0] = av_clip_uint8(c + d2);
src[stride] = d + d1;
src++;
rnd = !rnd;
}
}
/* Apply overlap transform to vertical edge */
static void vc1_h_overlap_c(uint8_t *src, int stride)
{
int i;
int a, b, c, d;
int d1, d2;
int rnd = 1;
for (i = 0; i < 8; i++) {
a = src[-2];
b = src[-1];
c = src[0];
d = src[1];
d1 = (a - d + 3 + rnd) >> 3;
d2 = (a - d + b - c + 4 - rnd) >> 3;
src[-2] = a - d1;
src[-1] = av_clip_uint8(b - d2);
src[0] = av_clip_uint8(c + d2);
src[1] = d + d1;
src += stride;
rnd = !rnd;
}
}
static void vc1_v_s_overlap_c(int16_t *top, int16_t *bottom)
{
int i;
int a, b, c, d;
int d1, d2;
int rnd1 = 4, rnd2 = 3;
for (i = 0; i < 8; i++) {
a = top[48];
b = top[56];
c = bottom[0];
d = bottom[8];
d1 = a - d;
d2 = a - d + b - c;
top[48] = ((a << 3) - d1 + rnd1) >> 3;
top[56] = ((b << 3) - d2 + rnd2) >> 3;
bottom[0] = ((c << 3) + d2 + rnd1) >> 3;
bottom[8] = ((d << 3) + d1 + rnd2) >> 3;
bottom++;
top++;
rnd2 = 7 - rnd2;
rnd1 = 7 - rnd1;
}
}
static void vc1_h_s_overlap_c(int16_t *left, int16_t *right, int left_stride, int right_stride, int flags)
{
int i;
int a, b, c, d;
int d1, d2;
int rnd1 = flags & 2 ? 3 : 4;
int rnd2 = 7 - rnd1;
for (i = 0; i < 8; i++) {
a = left[6];
b = left[7];
c = right[0];
d = right[1];
d1 = a - d;
d2 = a - d + b - c;
left[6] = ((a << 3) - d1 + rnd1) >> 3;
left[7] = ((b << 3) - d2 + rnd2) >> 3;
right[0] = ((c << 3) + d2 + rnd1) >> 3;
right[1] = ((d << 3) + d1 + rnd2) >> 3;
right += right_stride;
left += left_stride;
if (flags & 1) {
rnd2 = 7 - rnd2;
rnd1 = 7 - rnd1;
}
}
}
/**
* VC-1 in-loop deblocking filter for one line
* @param src source block type
* @param stride block stride
* @param pq block quantizer
* @return whether other 3 pairs should be filtered or not
* @see 8.6
*/
static av_always_inline int vc1_filter_line(uint8_t *src, int stride, int pq)
{
int a0 = (2 * (src[-2 * stride] - src[1 * stride]) -
5 * (src[-1 * stride] - src[0 * stride]) + 4) >> 3;
int a0_sign = a0 >> 31; /* Store sign */
a0 = (a0 ^ a0_sign) - a0_sign; /* a0 = FFABS(a0); */
if (a0 < pq) {
int a1 = FFABS((2 * (src[-4 * stride] - src[-1 * stride]) -
5 * (src[-3 * stride] - src[-2 * stride]) + 4) >> 3);
int a2 = FFABS((2 * (src[ 0 * stride] - src[ 3 * stride]) -
5 * (src[ 1 * stride] - src[ 2 * stride]) + 4) >> 3);
if (a1 < a0 || a2 < a0) {
int clip = src[-1 * stride] - src[0 * stride];
int clip_sign = clip >> 31;
clip = ((clip ^ clip_sign) - clip_sign) >> 1;
if (clip) {
int a3 = FFMIN(a1, a2);
int d = 5 * (a3 - a0);
int d_sign = (d >> 31);
d = ((d ^ d_sign) - d_sign) >> 3;
d_sign ^= a0_sign;
if (d_sign ^ clip_sign)
d = 0;
else {
d = FFMIN(d, clip);
d = (d ^ d_sign) - d_sign; /* Restore sign */
src[-1 * stride] = av_clip_uint8(src[-1 * stride] - d);
src[ 0 * stride] = av_clip_uint8(src[ 0 * stride] + d);
}
return 1;
}
}
}
return 0;
}
/**
* VC-1 in-loop deblocking filter
* @param src source block type
* @param step distance between horizontally adjacent elements
* @param stride distance between vertically adjacent elements
* @param len edge length to filter (4 or 8 pixels)
* @param pq block quantizer
* @see 8.6
*/
static inline void vc1_loop_filter(uint8_t *src, int step, int stride,
int len, int pq)
{
int i;
int filt3;
for (i = 0; i < len; i += 4) {
filt3 = vc1_filter_line(src + 2 * step, stride, pq);
if (filt3) {
vc1_filter_line(src + 0 * step, stride, pq);
vc1_filter_line(src + 1 * step, stride, pq);
vc1_filter_line(src + 3 * step, stride, pq);
}
src += step * 4;
}
}
static void vc1_v_loop_filter4_c(uint8_t *src, int stride, int pq)
{
vc1_loop_filter(src, 1, stride, 4, pq);
}
static void vc1_h_loop_filter4_c(uint8_t *src, int stride, int pq)
{
vc1_loop_filter(src, stride, 1, 4, pq);
}
static void vc1_v_loop_filter8_c(uint8_t *src, int stride, int pq)
{
vc1_loop_filter(src, 1, stride, 8, pq);
}
static void vc1_h_loop_filter8_c(uint8_t *src, int stride, int pq)
{
vc1_loop_filter(src, stride, 1, 8, pq);
}
static void vc1_v_loop_filter16_c(uint8_t *src, int stride, int pq)
{
vc1_loop_filter(src, 1, stride, 16, pq);
}
static void vc1_h_loop_filter16_c(uint8_t *src, int stride, int pq)
{
vc1_loop_filter(src, stride, 1, 16, pq);
}
/* Do inverse transform on 8x8 block */
static void vc1_inv_trans_8x8_dc_c(uint8_t *dest, ptrdiff_t stride, int16_t *block)
{
int i;
int dc = block[0];
dc = (3 * dc + 1) >> 1;
dc = (3 * dc + 16) >> 5;
for (i = 0; i < 8; i++) {
dest[0] = av_clip_uint8(dest[0] + dc);
dest[1] = av_clip_uint8(dest[1] + dc);
dest[2] = av_clip_uint8(dest[2] + dc);
dest[3] = av_clip_uint8(dest[3] + dc);
dest[4] = av_clip_uint8(dest[4] + dc);
dest[5] = av_clip_uint8(dest[5] + dc);
dest[6] = av_clip_uint8(dest[6] + dc);
dest[7] = av_clip_uint8(dest[7] + dc);
dest += stride;
}
}
static void vc1_inv_trans_8x8_c(int16_t block[64])
{
int i;
register int t1, t2, t3, t4, t5, t6, t7, t8;
int16_t *src, *dst, temp[64];
src = block;
dst = temp;
for (i = 0; i < 8; i++) {
t1 = 12 * (src[ 0] + src[32]) + 4;
t2 = 12 * (src[ 0] - src[32]) + 4;
t3 = 16 * src[16] + 6 * src[48];
t4 = 6 * src[16] - 16 * src[48];
t5 = t1 + t3;
t6 = t2 + t4;
t7 = t2 - t4;
t8 = t1 - t3;
t1 = 16 * src[ 8] + 15 * src[24] + 9 * src[40] + 4 * src[56];
t2 = 15 * src[ 8] - 4 * src[24] - 16 * src[40] - 9 * src[56];
t3 = 9 * src[ 8] - 16 * src[24] + 4 * src[40] + 15 * src[56];
t4 = 4 * src[ 8] - 9 * src[24] + 15 * src[40] - 16 * src[56];
dst[0] = (t5 + t1) >> 3;
dst[1] = (t6 + t2) >> 3;
dst[2] = (t7 + t3) >> 3;
dst[3] = (t8 + t4) >> 3;
dst[4] = (t8 - t4) >> 3;
dst[5] = (t7 - t3) >> 3;
dst[6] = (t6 - t2) >> 3;
dst[7] = (t5 - t1) >> 3;
src += 1;
dst += 8;
}
src = temp;
dst = block;
for (i = 0; i < 8; i++) {
t1 = 12 * (src[ 0] + src[32]) + 64;
t2 = 12 * (src[ 0] - src[32]) + 64;
t3 = 16 * src[16] + 6 * src[48];
t4 = 6 * src[16] - 16 * src[48];
t5 = t1 + t3;
t6 = t2 + t4;
t7 = t2 - t4;
t8 = t1 - t3;
t1 = 16 * src[ 8] + 15 * src[24] + 9 * src[40] + 4 * src[56];
t2 = 15 * src[ 8] - 4 * src[24] - 16 * src[40] - 9 * src[56];
t3 = 9 * src[ 8] - 16 * src[24] + 4 * src[40] + 15 * src[56];
t4 = 4 * src[ 8] - 9 * src[24] + 15 * src[40] - 16 * src[56];
dst[ 0] = (t5 + t1) >> 7;
dst[ 8] = (t6 + t2) >> 7;
dst[16] = (t7 + t3) >> 7;
dst[24] = (t8 + t4) >> 7;
dst[32] = (t8 - t4 + 1) >> 7;
dst[40] = (t7 - t3 + 1) >> 7;
dst[48] = (t6 - t2 + 1) >> 7;
dst[56] = (t5 - t1 + 1) >> 7;
src++;
dst++;
}
}
/* Do inverse transform on 8x4 part of block */
static void vc1_inv_trans_8x4_dc_c(uint8_t *dest, ptrdiff_t stride, int16_t *block)
{
int i;
int dc = block[0];
dc = (3 * dc + 1) >> 1;
dc = (17 * dc + 64) >> 7;
for (i = 0; i < 4; i++) {
dest[0] = av_clip_uint8(dest[0] + dc);
dest[1] = av_clip_uint8(dest[1] + dc);
dest[2] = av_clip_uint8(dest[2] + dc);
dest[3] = av_clip_uint8(dest[3] + dc);
dest[4] = av_clip_uint8(dest[4] + dc);
dest[5] = av_clip_uint8(dest[5] + dc);
dest[6] = av_clip_uint8(dest[6] + dc);
dest[7] = av_clip_uint8(dest[7] + dc);
dest += stride;
}
}
static void vc1_inv_trans_8x4_c(uint8_t *dest, ptrdiff_t stride, int16_t *block)
{
int i;
register int t1, t2, t3, t4, t5, t6, t7, t8;
int16_t *src, *dst;
src = block;
dst = block;
for (i = 0; i < 4; i++) {
t1 = 12 * (src[0] + src[4]) + 4;
t2 = 12 * (src[0] - src[4]) + 4;
t3 = 16 * src[2] + 6 * src[6];
t4 = 6 * src[2] - 16 * src[6];
t5 = t1 + t3;
t6 = t2 + t4;
t7 = t2 - t4;
t8 = t1 - t3;
t1 = 16 * src[1] + 15 * src[3] + 9 * src[5] + 4 * src[7];
t2 = 15 * src[1] - 4 * src[3] - 16 * src[5] - 9 * src[7];
t3 = 9 * src[1] - 16 * src[3] + 4 * src[5] + 15 * src[7];
t4 = 4 * src[1] - 9 * src[3] + 15 * src[5] - 16 * src[7];
dst[0] = (t5 + t1) >> 3;
dst[1] = (t6 + t2) >> 3;
dst[2] = (t7 + t3) >> 3;
dst[3] = (t8 + t4) >> 3;
dst[4] = (t8 - t4) >> 3;
dst[5] = (t7 - t3) >> 3;
dst[6] = (t6 - t2) >> 3;
dst[7] = (t5 - t1) >> 3;
src += 8;
dst += 8;
}
src = block;
for (i = 0; i < 8; i++) {
t1 = 17 * (src[ 0] + src[16]) + 64;
t2 = 17 * (src[ 0] - src[16]) + 64;
t3 = 22 * src[ 8] + 10 * src[24];
t4 = 22 * src[24] - 10 * src[ 8];
dest[0 * stride] = av_clip_uint8(dest[0 * stride] + ((t1 + t3) >> 7));
dest[1 * stride] = av_clip_uint8(dest[1 * stride] + ((t2 - t4) >> 7));
dest[2 * stride] = av_clip_uint8(dest[2 * stride] + ((t2 + t4) >> 7));
dest[3 * stride] = av_clip_uint8(dest[3 * stride] + ((t1 - t3) >> 7));
src++;
dest++;
}
}
/* Do inverse transform on 4x8 parts of block */
static void vc1_inv_trans_4x8_dc_c(uint8_t *dest, ptrdiff_t stride, int16_t *block)
{
int i;
int dc = block[0];
dc = (17 * dc + 4) >> 3;
dc = (12 * dc + 64) >> 7;
for (i = 0; i < 8; i++) {
dest[0] = av_clip_uint8(dest[0] + dc);
dest[1] = av_clip_uint8(dest[1] + dc);
dest[2] = av_clip_uint8(dest[2] + dc);
dest[3] = av_clip_uint8(dest[3] + dc);
dest += stride;
}
}
static void vc1_inv_trans_4x8_c(uint8_t *dest, ptrdiff_t stride, int16_t *block)
{
int i;
register int t1, t2, t3, t4, t5, t6, t7, t8;
int16_t *src, *dst;
src = block;
dst = block;
for (i = 0; i < 8; i++) {
t1 = 17 * (src[0] + src[2]) + 4;
t2 = 17 * (src[0] - src[2]) + 4;
t3 = 22 * src[1] + 10 * src[3];
t4 = 22 * src[3] - 10 * src[1];
dst[0] = (t1 + t3) >> 3;
dst[1] = (t2 - t4) >> 3;
dst[2] = (t2 + t4) >> 3;
dst[3] = (t1 - t3) >> 3;
src += 8;
dst += 8;
}
src = block;
for (i = 0; i < 4; i++) {
t1 = 12 * (src[ 0] + src[32]) + 64;
t2 = 12 * (src[ 0] - src[32]) + 64;
t3 = 16 * src[16] + 6 * src[48];
t4 = 6 * src[16] - 16 * src[48];
t5 = t1 + t3;
t6 = t2 + t4;
t7 = t2 - t4;
t8 = t1 - t3;
t1 = 16 * src[ 8] + 15 * src[24] + 9 * src[40] + 4 * src[56];
t2 = 15 * src[ 8] - 4 * src[24] - 16 * src[40] - 9 * src[56];
t3 = 9 * src[ 8] - 16 * src[24] + 4 * src[40] + 15 * src[56];
t4 = 4 * src[ 8] - 9 * src[24] + 15 * src[40] - 16 * src[56];
dest[0 * stride] = av_clip_uint8(dest[0 * stride] + ((t5 + t1) >> 7));
dest[1 * stride] = av_clip_uint8(dest[1 * stride] + ((t6 + t2) >> 7));
dest[2 * stride] = av_clip_uint8(dest[2 * stride] + ((t7 + t3) >> 7));
dest[3 * stride] = av_clip_uint8(dest[3 * stride] + ((t8 + t4) >> 7));
dest[4 * stride] = av_clip_uint8(dest[4 * stride] + ((t8 - t4 + 1) >> 7));
dest[5 * stride] = av_clip_uint8(dest[5 * stride] + ((t7 - t3 + 1) >> 7));
dest[6 * stride] = av_clip_uint8(dest[6 * stride] + ((t6 - t2 + 1) >> 7));
dest[7 * stride] = av_clip_uint8(dest[7 * stride] + ((t5 - t1 + 1) >> 7));
src++;
dest++;
}
}
/* Do inverse transform on 4x4 part of block */
static void vc1_inv_trans_4x4_dc_c(uint8_t *dest, ptrdiff_t stride, int16_t *block)
{
int i;
int dc = block[0];
dc = (17 * dc + 4) >> 3;
dc = (17 * dc + 64) >> 7;
for (i = 0; i < 4; i++) {
dest[0] = av_clip_uint8(dest[0] + dc);
dest[1] = av_clip_uint8(dest[1] + dc);
dest[2] = av_clip_uint8(dest[2] + dc);
dest[3] = av_clip_uint8(dest[3] + dc);
dest += stride;
}
}
static void vc1_inv_trans_4x4_c(uint8_t *dest, ptrdiff_t stride, int16_t *block)
{
int i;
register int t1, t2, t3, t4;
int16_t *src, *dst;
src = block;
dst = block;
for (i = 0; i < 4; i++) {
t1 = 17 * (src[0] + src[2]) + 4;
t2 = 17 * (src[0] - src[2]) + 4;
t3 = 22 * src[1] + 10 * src[3];
t4 = 22 * src[3] - 10 * src[1];
dst[0] = (t1 + t3) >> 3;
dst[1] = (t2 - t4) >> 3;
dst[2] = (t2 + t4) >> 3;
dst[3] = (t1 - t3) >> 3;
src += 8;
dst += 8;
}
src = block;
for (i = 0; i < 4; i++) {
t1 = 17 * (src[0] + src[16]) + 64;
t2 = 17 * (src[0] - src[16]) + 64;
t3 = 22 * src[8] + 10 * src[24];
t4 = 22 * src[24] - 10 * src[8];
dest[0 * stride] = av_clip_uint8(dest[0 * stride] + ((t1 + t3) >> 7));
dest[1 * stride] = av_clip_uint8(dest[1 * stride] + ((t2 - t4) >> 7));
dest[2 * stride] = av_clip_uint8(dest[2 * stride] + ((t2 + t4) >> 7));
dest[3 * stride] = av_clip_uint8(dest[3 * stride] + ((t1 - t3) >> 7));
src++;
dest++;
}
}
/* motion compensation functions */
/* Filter in case of 2 filters */
#define VC1_MSPEL_FILTER_16B(DIR, TYPE) \
static av_always_inline int vc1_mspel_ ## DIR ## _filter_16bits(const TYPE *src, \
int stride, \
int mode) \
{ \
switch(mode) { \
case 0: /* no shift - should not occur */ \
return 0; \
case 1: /* 1/4 shift */ \
return -4 * src[-stride] + 53 * src[0] + \
18 * src[stride] - 3 * src[stride * 2]; \
case 2: /* 1/2 shift */ \
return -1 * src[-stride] + 9 * src[0] + \
9 * src[stride] - 1 * src[stride * 2]; \
case 3: /* 3/4 shift */ \
return -3 * src[-stride] + 18 * src[0] + \
53 * src[stride] - 4 * src[stride * 2]; \
} \
return 0; /* should not occur */ \
}
VC1_MSPEL_FILTER_16B(ver, uint8_t)
VC1_MSPEL_FILTER_16B(hor, int16_t)
/* Filter used to interpolate fractional pel values */
static av_always_inline int vc1_mspel_filter(const uint8_t *src, int stride,
int mode, int r)
{
switch (mode) {
case 0: // no shift
return src[0];
case 1: // 1/4 shift
return (-4 * src[-stride] + 53 * src[0] +
18 * src[stride] - 3 * src[stride * 2] + 32 - r) >> 6;
case 2: // 1/2 shift
return (-1 * src[-stride] + 9 * src[0] +
9 * src[stride] - 1 * src[stride * 2] + 8 - r) >> 4;
case 3: // 3/4 shift
return (-3 * src[-stride] + 18 * src[0] +
53 * src[stride] - 4 * src[stride * 2] + 32 - r) >> 6;
}
return 0; // should not occur
}
/* Function used to do motion compensation with bicubic interpolation */
#define VC1_MSPEL_MC(OP, OP4, OPNAME) \
static av_always_inline void OPNAME ## vc1_mspel_mc(uint8_t *dst, \
const uint8_t *src, \
ptrdiff_t stride, \
int hmode, \
int vmode, \
int rnd) \
{ \
int i, j; \
\
if (vmode) { /* Horizontal filter to apply */ \
int r; \
\
if (hmode) { /* Vertical filter to apply, output to tmp */ \
static const int shift_value[] = { 0, 5, 1, 5 }; \
int shift = (shift_value[hmode] + shift_value[vmode]) >> 1; \
int16_t tmp[11 * 8], *tptr = tmp; \
\
r = (1 << (shift - 1)) + rnd - 1; \
\
src -= 1; \
for (j = 0; j < 8; j++) { \
for (i = 0; i < 11; i++) \
tptr[i] = (vc1_mspel_ver_filter_16bits(src + i, stride, vmode) + r) >> shift; \
src += stride; \
tptr += 11; \
} \
\
r = 64 - rnd; \
tptr = tmp + 1; \
for (j = 0; j < 8; j++) { \
for (i = 0; i < 8; i++) \
OP(dst[i], (vc1_mspel_hor_filter_16bits(tptr + i, 1, hmode) + r) >> 7); \
dst += stride; \
tptr += 11; \
} \
\
return; \
} else { /* No horizontal filter, output 8 lines to dst */ \
r = 1 - rnd; \
\
for (j = 0; j < 8; j++) { \
for (i = 0; i < 8; i++) \
OP(dst[i], vc1_mspel_filter(src + i, stride, vmode, r)); \
src += stride; \
dst += stride; \
} \
return; \
} \
} \
\
/* Horizontal mode with no vertical mode */ \
for (j = 0; j < 8; j++) { \
for (i = 0; i < 8; i++) \
OP(dst[i], vc1_mspel_filter(src + i, 1, hmode, rnd)); \
dst += stride; \
src += stride; \
} \
}\
static av_always_inline void OPNAME ## vc1_mspel_mc_16(uint8_t *dst, \
const uint8_t *src, \
ptrdiff_t stride, \
int hmode, \
int vmode, \
int rnd) \
{ \
int i, j; \
\
if (vmode) { /* Horizontal filter to apply */ \
int r; \
\
if (hmode) { /* Vertical filter to apply, output to tmp */ \
static const int shift_value[] = { 0, 5, 1, 5 }; \
int shift = (shift_value[hmode] + shift_value[vmode]) >> 1; \
int16_t tmp[19 * 16], *tptr = tmp; \
\
r = (1 << (shift - 1)) + rnd - 1; \
\
src -= 1; \
for (j = 0; j < 16; j++) { \
for (i = 0; i < 19; i++) \
tptr[i] = (vc1_mspel_ver_filter_16bits(src + i, stride, vmode) + r) >> shift; \
src += stride; \
tptr += 19; \
} \
\
r = 64 - rnd; \
tptr = tmp + 1; \
for (j = 0; j < 16; j++) { \
for (i = 0; i < 16; i++) \
OP(dst[i], (vc1_mspel_hor_filter_16bits(tptr + i, 1, hmode) + r) >> 7); \
dst += stride; \
tptr += 19; \
} \
\
return; \
} else { /* No horizontal filter, output 8 lines to dst */ \
r = 1 - rnd; \
\
for (j = 0; j < 16; j++) { \
for (i = 0; i < 16; i++) \
OP(dst[i], vc1_mspel_filter(src + i, stride, vmode, r)); \
src += stride; \
dst += stride; \
} \
return; \
} \
} \
\
/* Horizontal mode with no vertical mode */ \
for (j = 0; j < 16; j++) { \
for (i = 0; i < 16; i++) \
OP(dst[i], vc1_mspel_filter(src + i, 1, hmode, rnd)); \
dst += stride; \
src += stride; \
} \
}\
static void OPNAME ## pixels8x8_c(uint8_t *block, const uint8_t *pixels, ptrdiff_t line_size, int rnd){\
int i;\
for(i=0; i<8; i++){\
OP4(*(uint32_t*)(block ), AV_RN32(pixels ));\
OP4(*(uint32_t*)(block+4), AV_RN32(pixels+4));\
pixels+=line_size;\
block +=line_size;\
}\
}\
static void OPNAME ## pixels16x16_c(uint8_t *block, const uint8_t *pixels, ptrdiff_t line_size, int rnd){\
int i;\
for(i=0; i<16; i++){\
OP4(*(uint32_t*)(block ), AV_RN32(pixels ));\
OP4(*(uint32_t*)(block+ 4), AV_RN32(pixels+ 4));\
OP4(*(uint32_t*)(block+ 8), AV_RN32(pixels+ 8));\
OP4(*(uint32_t*)(block+12), AV_RN32(pixels+12));\
pixels+=line_size;\
block +=line_size;\
}\
}
#define op_put(a, b) (a) = av_clip_uint8(b)
#define op_avg(a, b) (a) = ((a) + av_clip_uint8(b) + 1) >> 1
#define op4_avg(a, b) (a) = rnd_avg32(a, b)
#define op4_put(a, b) (a) = (b)
VC1_MSPEL_MC(op_put, op4_put, put_)
VC1_MSPEL_MC(op_avg, op4_avg, avg_)
/* pixel functions - really are entry points to vc1_mspel_mc */
#define PUT_VC1_MSPEL(a, b) \
static void put_vc1_mspel_mc ## a ## b ## _c(uint8_t *dst, \
const uint8_t *src, \
ptrdiff_t stride, int rnd) \
{ \
put_vc1_mspel_mc(dst, src, stride, a, b, rnd); \
} \
static void avg_vc1_mspel_mc ## a ## b ## _c(uint8_t *dst, \
const uint8_t *src, \
ptrdiff_t stride, int rnd) \
{ \
avg_vc1_mspel_mc(dst, src, stride, a, b, rnd); \
} \
static void put_vc1_mspel_mc ## a ## b ## _16_c(uint8_t *dst, \
const uint8_t *src, \
ptrdiff_t stride, int rnd) \
{ \
put_vc1_mspel_mc_16(dst, src, stride, a, b, rnd); \
} \
static void avg_vc1_mspel_mc ## a ## b ## _16_c(uint8_t *dst, \
const uint8_t *src, \
ptrdiff_t stride, int rnd) \
{ \
avg_vc1_mspel_mc_16(dst, src, stride, a, b, rnd); \
}
PUT_VC1_MSPEL(1, 0)
PUT_VC1_MSPEL(2, 0)
PUT_VC1_MSPEL(3, 0)
PUT_VC1_MSPEL(0, 1)
PUT_VC1_MSPEL(1, 1)
PUT_VC1_MSPEL(2, 1)
PUT_VC1_MSPEL(3, 1)
PUT_VC1_MSPEL(0, 2)
PUT_VC1_MSPEL(1, 2)
PUT_VC1_MSPEL(2, 2)
PUT_VC1_MSPEL(3, 2)
PUT_VC1_MSPEL(0, 3)
PUT_VC1_MSPEL(1, 3)
PUT_VC1_MSPEL(2, 3)
PUT_VC1_MSPEL(3, 3)
#define chroma_mc(a) \
((A * src[a] + B * src[a + 1] + \
C * src[stride + a] + D * src[stride + a + 1] + 32 - 4) >> 6)
static void put_no_rnd_vc1_chroma_mc8_c(uint8_t *dst /* align 8 */,
uint8_t *src /* align 1 */,
ptrdiff_t stride, int h, int x, int y)
{
const int A = (8 - x) * (8 - y);
const int B = (x) * (8 - y);
const int C = (8 - x) * (y);
const int D = (x) * (y);
int i;
av_assert2(x < 8 && y < 8 && x >= 0 && y >= 0);
for (i = 0; i < h; i++) {
dst[0] = chroma_mc(0);
dst[1] = chroma_mc(1);
dst[2] = chroma_mc(2);
dst[3] = chroma_mc(3);
dst[4] = chroma_mc(4);
dst[5] = chroma_mc(5);
dst[6] = chroma_mc(6);
dst[7] = chroma_mc(7);
dst += stride;
src += stride;
}
}
static void put_no_rnd_vc1_chroma_mc4_c(uint8_t *dst, uint8_t *src,
ptrdiff_t stride, int h, int x, int y)
{
const int A = (8 - x) * (8 - y);
const int B = (x) * (8 - y);
const int C = (8 - x) * (y);
const int D = (x) * (y);
int i;
av_assert2(x < 8 && y < 8 && x >= 0 && y >= 0);
for (i = 0; i < h; i++) {
dst[0] = chroma_mc(0);
dst[1] = chroma_mc(1);
dst[2] = chroma_mc(2);
dst[3] = chroma_mc(3);
dst += stride;
src += stride;
}
}
#define avg2(a, b) (((a) + (b) + 1) >> 1)
static void avg_no_rnd_vc1_chroma_mc8_c(uint8_t *dst /* align 8 */,
uint8_t *src /* align 1 */,
ptrdiff_t stride, int h, int x, int y)
{
const int A = (8 - x) * (8 - y);
const int B = (x) * (8 - y);
const int C = (8 - x) * (y);
const int D = (x) * (y);
int i;
av_assert2(x < 8 && y < 8 && x >= 0 && y >= 0);
for (i = 0; i < h; i++) {
dst[0] = avg2(dst[0], chroma_mc(0));
dst[1] = avg2(dst[1], chroma_mc(1));
dst[2] = avg2(dst[2], chroma_mc(2));
dst[3] = avg2(dst[3], chroma_mc(3));
dst[4] = avg2(dst[4], chroma_mc(4));
dst[5] = avg2(dst[5], chroma_mc(5));
dst[6] = avg2(dst[6], chroma_mc(6));
dst[7] = avg2(dst[7], chroma_mc(7));
dst += stride;
src += stride;
}
}
static void avg_no_rnd_vc1_chroma_mc4_c(uint8_t *dst /* align 8 */,
uint8_t *src /* align 1 */,
ptrdiff_t stride, int h, int x, int y)
{
const int A = (8 - x) * (8 - y);
const int B = ( x) * (8 - y);
const int C = (8 - x) * ( y);
const int D = ( x) * ( y);
int i;
av_assert2(x < 8 && y < 8 && x >= 0 && y >= 0);
for (i = 0; i < h; i++) {
dst[0] = avg2(dst[0], chroma_mc(0));
dst[1] = avg2(dst[1], chroma_mc(1));
dst[2] = avg2(dst[2], chroma_mc(2));
dst[3] = avg2(dst[3], chroma_mc(3));
dst += stride;
src += stride;
}
}
#if CONFIG_WMV3IMAGE_DECODER || CONFIG_VC1IMAGE_DECODER
static void sprite_h_c(uint8_t *dst, const uint8_t *src, int offset,
int advance, int count)
{
while (count--) {
int a = src[(offset >> 16)];
int b = src[(offset >> 16) + 1];
*dst++ = a + ((b - a) * (offset & 0xFFFF) >> 16);
offset += advance;
}
}
static av_always_inline void sprite_v_template(uint8_t *dst,
const uint8_t *src1a,
const uint8_t *src1b,
int offset1,
int two_sprites,
const uint8_t *src2a,
const uint8_t *src2b,
int offset2,
int alpha, int scaled,
int width)
{
int a1, b1, a2, b2;
while (width--) {
a1 = *src1a++;
if (scaled) {
b1 = *src1b++;
a1 = a1 + ((b1 - a1) * offset1 >> 16);
}
if (two_sprites) {
a2 = *src2a++;
if (scaled > 1) {
b2 = *src2b++;
a2 = a2 + ((b2 - a2) * offset2 >> 16);
}
a1 = a1 + ((a2 - a1) * alpha >> 16);
}
*dst++ = a1;
}
}
static void sprite_v_single_c(uint8_t *dst, const uint8_t *src1a,
const uint8_t *src1b,
int offset, int width)
{
sprite_v_template(dst, src1a, src1b, offset, 0, NULL, NULL, 0, 0, 1, width);
}
static void sprite_v_double_noscale_c(uint8_t *dst, const uint8_t *src1a,
const uint8_t *src2a,
int alpha, int width)
{
sprite_v_template(dst, src1a, NULL, 0, 1, src2a, NULL, 0, alpha, 0, width);
}
static void sprite_v_double_onescale_c(uint8_t *dst,
const uint8_t *src1a,
const uint8_t *src1b,
int offset1,
const uint8_t *src2a,
int alpha, int width)
{
sprite_v_template(dst, src1a, src1b, offset1, 1, src2a, NULL, 0, alpha, 1,
width);
}
static void sprite_v_double_twoscale_c(uint8_t *dst,
const uint8_t *src1a,
const uint8_t *src1b,
int offset1,
const uint8_t *src2a,
const uint8_t *src2b,
int offset2,
int alpha,
int width)
{
sprite_v_template(dst, src1a, src1b, offset1, 1, src2a, src2b, offset2,
alpha, 2, width);
}
#endif /* CONFIG_WMV3IMAGE_DECODER || CONFIG_VC1IMAGE_DECODER */
#define FN_ASSIGN(X, Y) \
dsp->put_vc1_mspel_pixels_tab[1][X+4*Y] = put_vc1_mspel_mc##X##Y##_c; \
dsp->put_vc1_mspel_pixels_tab[0][X+4*Y] = put_vc1_mspel_mc##X##Y##_16_c; \
dsp->avg_vc1_mspel_pixels_tab[1][X+4*Y] = avg_vc1_mspel_mc##X##Y##_c; \
dsp->avg_vc1_mspel_pixels_tab[0][X+4*Y] = avg_vc1_mspel_mc##X##Y##_16_c
av_cold void ff_vc1dsp_init(VC1DSPContext *dsp)
{
dsp->vc1_inv_trans_8x8 = vc1_inv_trans_8x8_c;
dsp->vc1_inv_trans_4x8 = vc1_inv_trans_4x8_c;
dsp->vc1_inv_trans_8x4 = vc1_inv_trans_8x4_c;
dsp->vc1_inv_trans_4x4 = vc1_inv_trans_4x4_c;
dsp->vc1_inv_trans_8x8_dc = vc1_inv_trans_8x8_dc_c;
dsp->vc1_inv_trans_4x8_dc = vc1_inv_trans_4x8_dc_c;
dsp->vc1_inv_trans_8x4_dc = vc1_inv_trans_8x4_dc_c;
dsp->vc1_inv_trans_4x4_dc = vc1_inv_trans_4x4_dc_c;
dsp->vc1_h_overlap = vc1_h_overlap_c;
dsp->vc1_v_overlap = vc1_v_overlap_c;
dsp->vc1_h_s_overlap = vc1_h_s_overlap_c;
dsp->vc1_v_s_overlap = vc1_v_s_overlap_c;
dsp->vc1_v_loop_filter4 = vc1_v_loop_filter4_c;
dsp->vc1_h_loop_filter4 = vc1_h_loop_filter4_c;
dsp->vc1_v_loop_filter8 = vc1_v_loop_filter8_c;
dsp->vc1_h_loop_filter8 = vc1_h_loop_filter8_c;
dsp->vc1_v_loop_filter16 = vc1_v_loop_filter16_c;
dsp->vc1_h_loop_filter16 = vc1_h_loop_filter16_c;
dsp->put_vc1_mspel_pixels_tab[0][0] = put_pixels16x16_c;
dsp->avg_vc1_mspel_pixels_tab[0][0] = avg_pixels16x16_c;
dsp->put_vc1_mspel_pixels_tab[1][0] = put_pixels8x8_c;
dsp->avg_vc1_mspel_pixels_tab[1][0] = avg_pixels8x8_c;
FN_ASSIGN(0, 1);
FN_ASSIGN(0, 2);
FN_ASSIGN(0, 3);
FN_ASSIGN(1, 0);
FN_ASSIGN(1, 1);
FN_ASSIGN(1, 2);
FN_ASSIGN(1, 3);
FN_ASSIGN(2, 0);
FN_ASSIGN(2, 1);
FN_ASSIGN(2, 2);
FN_ASSIGN(2, 3);
FN_ASSIGN(3, 0);
FN_ASSIGN(3, 1);
FN_ASSIGN(3, 2);
FN_ASSIGN(3, 3);
dsp->put_no_rnd_vc1_chroma_pixels_tab[0] = put_no_rnd_vc1_chroma_mc8_c;
dsp->avg_no_rnd_vc1_chroma_pixels_tab[0] = avg_no_rnd_vc1_chroma_mc8_c;
dsp->put_no_rnd_vc1_chroma_pixels_tab[1] = put_no_rnd_vc1_chroma_mc4_c;
dsp->avg_no_rnd_vc1_chroma_pixels_tab[1] = avg_no_rnd_vc1_chroma_mc4_c;
#if CONFIG_WMV3IMAGE_DECODER || CONFIG_VC1IMAGE_DECODER
dsp->sprite_h = sprite_h_c;
dsp->sprite_v_single = sprite_v_single_c;
dsp->sprite_v_double_noscale = sprite_v_double_noscale_c;
dsp->sprite_v_double_onescale = sprite_v_double_onescale_c;
dsp->sprite_v_double_twoscale = sprite_v_double_twoscale_c;
#endif /* CONFIG_WMV3IMAGE_DECODER || CONFIG_VC1IMAGE_DECODER */
dsp->startcode_find_candidate = ff_startcode_find_candidate_c;
if (ARCH_AARCH64)
ff_vc1dsp_init_aarch64(dsp);
if (ARCH_ARM)
ff_vc1dsp_init_arm(dsp);
if (ARCH_PPC)
ff_vc1dsp_init_ppc(dsp);
if (ARCH_X86)
ff_vc1dsp_init_x86(dsp);
if (ARCH_MIPS)
ff_vc1dsp_init_mips(dsp);
}