1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2025-01-19 05:49:09 +02:00
FFmpeg/libavcodec/ppc/mpegvideo_altivec.c
Romain Dolbeau e45a2872fa 1) remove TBL support in PPC performance. It's much more useful to use the
PMCs, and with Apple's CHUD it's fairly easy too. No reason to keep useless
    code around
2) make the PPC perf stuff a configure option
3) make put_pixels16_altivec a bit faster by unrolling the loop by 4
patch by (Romain Dolbeau <dolbeau at irisa dot fr>)

Originally committed as revision 2022 to svn://svn.ffmpeg.org/ffmpeg/trunk
2003-07-09 20:18:13 +00:00

646 lines
24 KiB
C

/*
* Copyright (c) 2002 Dieter Shirley
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <stdlib.h>
#include <stdio.h>
#include "../dsputil.h"
#include "../mpegvideo.h"
#include "gcc_fixes.h"
#include "dsputil_altivec.h"
// Swaps two variables (used for altivec registers)
#define SWAP(a,b) \
do { \
__typeof__(a) swap_temp=a; \
a=b; \
b=swap_temp; \
} while (0)
// transposes a matrix consisting of four vectors with four elements each
#define TRANSPOSE4(a,b,c,d) \
do { \
__typeof__(a) _trans_ach = vec_mergeh(a, c); \
__typeof__(a) _trans_acl = vec_mergel(a, c); \
__typeof__(a) _trans_bdh = vec_mergeh(b, d); \
__typeof__(a) _trans_bdl = vec_mergel(b, d); \
\
a = vec_mergeh(_trans_ach, _trans_bdh); \
b = vec_mergel(_trans_ach, _trans_bdh); \
c = vec_mergeh(_trans_acl, _trans_bdl); \
d = vec_mergel(_trans_acl, _trans_bdl); \
} while (0)
#define TRANSPOSE8(a,b,c,d,e,f,g,h) \
do { \
__typeof__(a) _A1, _B1, _C1, _D1, _E1, _F1, _G1, _H1; \
__typeof__(a) _A2, _B2, _C2, _D2, _E2, _F2, _G2, _H2; \
\
_A1 = vec_mergeh (a, e); \
_B1 = vec_mergel (a, e); \
_C1 = vec_mergeh (b, f); \
_D1 = vec_mergel (b, f); \
_E1 = vec_mergeh (c, g); \
_F1 = vec_mergel (c, g); \
_G1 = vec_mergeh (d, h); \
_H1 = vec_mergel (d, h); \
\
_A2 = vec_mergeh (_A1, _E1); \
_B2 = vec_mergel (_A1, _E1); \
_C2 = vec_mergeh (_B1, _F1); \
_D2 = vec_mergel (_B1, _F1); \
_E2 = vec_mergeh (_C1, _G1); \
_F2 = vec_mergel (_C1, _G1); \
_G2 = vec_mergeh (_D1, _H1); \
_H2 = vec_mergel (_D1, _H1); \
\
a = vec_mergeh (_A2, _E2); \
b = vec_mergel (_A2, _E2); \
c = vec_mergeh (_B2, _F2); \
d = vec_mergel (_B2, _F2); \
e = vec_mergeh (_C2, _G2); \
f = vec_mergel (_C2, _G2); \
g = vec_mergeh (_D2, _H2); \
h = vec_mergel (_D2, _H2); \
} while (0)
// Loads a four-byte value (int or float) from the target address
// into every element in the target vector. Only works if the
// target address is four-byte aligned (which should be always).
#define LOAD4(vec, address) \
{ \
__typeof__(vec)* _load_addr = (__typeof__(vec)*)(address); \
vector unsigned char _perm_vec = vec_lvsl(0,(address)); \
vec = vec_ld(0, _load_addr); \
vec = vec_perm(vec, vec, _perm_vec); \
vec = vec_splat(vec, 0); \
}
#ifdef CONFIG_DARWIN
#define FOUROF(a) (a)
#else
// slower, for dumb non-apple GCC
#define FOUROF(a) {a,a,a,a}
#endif
int dct_quantize_altivec(MpegEncContext* s,
DCTELEM* data, int n,
int qscale, int* overflow)
{
int lastNonZero;
vector float row0, row1, row2, row3, row4, row5, row6, row7;
vector float alt0, alt1, alt2, alt3, alt4, alt5, alt6, alt7;
const vector float zero = (const vector float)FOUROF(0.);
// Load the data into the row/alt vectors
{
vector signed short data0, data1, data2, data3, data4, data5, data6, data7;
data0 = vec_ld(0, data);
data1 = vec_ld(16, data);
data2 = vec_ld(32, data);
data3 = vec_ld(48, data);
data4 = vec_ld(64, data);
data5 = vec_ld(80, data);
data6 = vec_ld(96, data);
data7 = vec_ld(112, data);
// Transpose the data before we start
TRANSPOSE8(data0, data1, data2, data3, data4, data5, data6, data7);
// load the data into floating point vectors. We load
// the high half of each row into the main row vectors
// and the low half into the alt vectors.
row0 = vec_ctf(vec_unpackh(data0), 0);
alt0 = vec_ctf(vec_unpackl(data0), 0);
row1 = vec_ctf(vec_unpackh(data1), 0);
alt1 = vec_ctf(vec_unpackl(data1), 0);
row2 = vec_ctf(vec_unpackh(data2), 0);
alt2 = vec_ctf(vec_unpackl(data2), 0);
row3 = vec_ctf(vec_unpackh(data3), 0);
alt3 = vec_ctf(vec_unpackl(data3), 0);
row4 = vec_ctf(vec_unpackh(data4), 0);
alt4 = vec_ctf(vec_unpackl(data4), 0);
row5 = vec_ctf(vec_unpackh(data5), 0);
alt5 = vec_ctf(vec_unpackl(data5), 0);
row6 = vec_ctf(vec_unpackh(data6), 0);
alt6 = vec_ctf(vec_unpackl(data6), 0);
row7 = vec_ctf(vec_unpackh(data7), 0);
alt7 = vec_ctf(vec_unpackl(data7), 0);
}
// The following block could exist as a separate an altivec dct
// function. However, if we put it inline, the DCT data can remain
// in the vector local variables, as floats, which we'll use during the
// quantize step...
{
const vector float vec_0_298631336 = (vector float)FOUROF(0.298631336f);
const vector float vec_0_390180644 = (vector float)FOUROF(-0.390180644f);
const vector float vec_0_541196100 = (vector float)FOUROF(0.541196100f);
const vector float vec_0_765366865 = (vector float)FOUROF(0.765366865f);
const vector float vec_0_899976223 = (vector float)FOUROF(-0.899976223f);
const vector float vec_1_175875602 = (vector float)FOUROF(1.175875602f);
const vector float vec_1_501321110 = (vector float)FOUROF(1.501321110f);
const vector float vec_1_847759065 = (vector float)FOUROF(-1.847759065f);
const vector float vec_1_961570560 = (vector float)FOUROF(-1.961570560f);
const vector float vec_2_053119869 = (vector float)FOUROF(2.053119869f);
const vector float vec_2_562915447 = (vector float)FOUROF(-2.562915447f);
const vector float vec_3_072711026 = (vector float)FOUROF(3.072711026f);
int whichPass, whichHalf;
for(whichPass = 1; whichPass<=2; whichPass++)
{
for(whichHalf = 1; whichHalf<=2; whichHalf++)
{
vector float tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
vector float tmp10, tmp11, tmp12, tmp13;
vector float z1, z2, z3, z4, z5;
tmp0 = vec_add(row0, row7); // tmp0 = dataptr[0] + dataptr[7];
tmp7 = vec_sub(row0, row7); // tmp7 = dataptr[0] - dataptr[7];
tmp3 = vec_add(row3, row4); // tmp3 = dataptr[3] + dataptr[4];
tmp4 = vec_sub(row3, row4); // tmp4 = dataptr[3] - dataptr[4];
tmp1 = vec_add(row1, row6); // tmp1 = dataptr[1] + dataptr[6];
tmp6 = vec_sub(row1, row6); // tmp6 = dataptr[1] - dataptr[6];
tmp2 = vec_add(row2, row5); // tmp2 = dataptr[2] + dataptr[5];
tmp5 = vec_sub(row2, row5); // tmp5 = dataptr[2] - dataptr[5];
tmp10 = vec_add(tmp0, tmp3); // tmp10 = tmp0 + tmp3;
tmp13 = vec_sub(tmp0, tmp3); // tmp13 = tmp0 - tmp3;
tmp11 = vec_add(tmp1, tmp2); // tmp11 = tmp1 + tmp2;
tmp12 = vec_sub(tmp1, tmp2); // tmp12 = tmp1 - tmp2;
// dataptr[0] = (DCTELEM) ((tmp10 + tmp11) << PASS1_BITS);
row0 = vec_add(tmp10, tmp11);
// dataptr[4] = (DCTELEM) ((tmp10 - tmp11) << PASS1_BITS);
row4 = vec_sub(tmp10, tmp11);
// z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
z1 = vec_madd(vec_add(tmp12, tmp13), vec_0_541196100, (vector float)zero);
// dataptr[2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),
// CONST_BITS-PASS1_BITS);
row2 = vec_madd(tmp13, vec_0_765366865, z1);
// dataptr[6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065),
// CONST_BITS-PASS1_BITS);
row6 = vec_madd(tmp12, vec_1_847759065, z1);
z1 = vec_add(tmp4, tmp7); // z1 = tmp4 + tmp7;
z2 = vec_add(tmp5, tmp6); // z2 = tmp5 + tmp6;
z3 = vec_add(tmp4, tmp6); // z3 = tmp4 + tmp6;
z4 = vec_add(tmp5, tmp7); // z4 = tmp5 + tmp7;
// z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
z5 = vec_madd(vec_add(z3, z4), vec_1_175875602, (vector float)zero);
// z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
z3 = vec_madd(z3, vec_1_961570560, z5);
// z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
z4 = vec_madd(z4, vec_0_390180644, z5);
// The following adds are rolled into the multiplies above
// z3 = vec_add(z3, z5); // z3 += z5;
// z4 = vec_add(z4, z5); // z4 += z5;
// z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
// Wow! It's actually more effecient to roll this multiply
// into the adds below, even thought the multiply gets done twice!
// z2 = vec_madd(z2, vec_2_562915447, (vector float)zero);
// z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
// Same with this one...
// z1 = vec_madd(z1, vec_0_899976223, (vector float)zero);
// tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
// dataptr[7] = (DCTELEM) DESCALE(tmp4 + z1 + z3, CONST_BITS-PASS1_BITS);
row7 = vec_madd(tmp4, vec_0_298631336, vec_madd(z1, vec_0_899976223, z3));
// tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
// dataptr[5] = (DCTELEM) DESCALE(tmp5 + z2 + z4, CONST_BITS-PASS1_BITS);
row5 = vec_madd(tmp5, vec_2_053119869, vec_madd(z2, vec_2_562915447, z4));
// tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
// dataptr[3] = (DCTELEM) DESCALE(tmp6 + z2 + z3, CONST_BITS-PASS1_BITS);
row3 = vec_madd(tmp6, vec_3_072711026, vec_madd(z2, vec_2_562915447, z3));
// tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
// dataptr[1] = (DCTELEM) DESCALE(tmp7 + z1 + z4, CONST_BITS-PASS1_BITS);
row1 = vec_madd(z1, vec_0_899976223, vec_madd(tmp7, vec_1_501321110, z4));
// Swap the row values with the alts. If this is the first half,
// this sets up the low values to be acted on in the second half.
// If this is the second half, it puts the high values back in
// the row values where they are expected to be when we're done.
SWAP(row0, alt0);
SWAP(row1, alt1);
SWAP(row2, alt2);
SWAP(row3, alt3);
SWAP(row4, alt4);
SWAP(row5, alt5);
SWAP(row6, alt6);
SWAP(row7, alt7);
}
if (whichPass == 1)
{
// transpose the data for the second pass
// First, block transpose the upper right with lower left.
SWAP(row4, alt0);
SWAP(row5, alt1);
SWAP(row6, alt2);
SWAP(row7, alt3);
// Now, transpose each block of four
TRANSPOSE4(row0, row1, row2, row3);
TRANSPOSE4(row4, row5, row6, row7);
TRANSPOSE4(alt0, alt1, alt2, alt3);
TRANSPOSE4(alt4, alt5, alt6, alt7);
}
}
}
// used after quantise step
int oldBaseValue = 0;
// perform the quantise step, using the floating point data
// still in the row/alt registers
{
const int* biasAddr;
const vector signed int* qmat;
vector float bias, negBias;
if (s->mb_intra)
{
vector signed int baseVector;
// We must cache element 0 in the intra case
// (it needs special handling).
baseVector = vec_cts(vec_splat(row0, 0), 0);
vec_ste(baseVector, 0, &oldBaseValue);
qmat = (vector signed int*)s->q_intra_matrix[qscale];
biasAddr = &(s->intra_quant_bias);
}
else
{
qmat = (vector signed int*)s->q_inter_matrix[qscale];
biasAddr = &(s->inter_quant_bias);
}
// Load the bias vector (We add 0.5 to the bias so that we're
// rounding when we convert to int, instead of flooring.)
{
vector signed int biasInt;
const vector float negOneFloat = (vector float)FOUROF(-1.0f);
LOAD4(biasInt, biasAddr);
bias = vec_ctf(biasInt, QUANT_BIAS_SHIFT);
negBias = vec_madd(bias, negOneFloat, zero);
}
{
vector float q0, q1, q2, q3, q4, q5, q6, q7;
q0 = vec_ctf(qmat[0], QMAT_SHIFT);
q1 = vec_ctf(qmat[2], QMAT_SHIFT);
q2 = vec_ctf(qmat[4], QMAT_SHIFT);
q3 = vec_ctf(qmat[6], QMAT_SHIFT);
q4 = vec_ctf(qmat[8], QMAT_SHIFT);
q5 = vec_ctf(qmat[10], QMAT_SHIFT);
q6 = vec_ctf(qmat[12], QMAT_SHIFT);
q7 = vec_ctf(qmat[14], QMAT_SHIFT);
row0 = vec_sel(vec_madd(row0, q0, negBias), vec_madd(row0, q0, bias),
vec_cmpgt(row0, zero));
row1 = vec_sel(vec_madd(row1, q1, negBias), vec_madd(row1, q1, bias),
vec_cmpgt(row1, zero));
row2 = vec_sel(vec_madd(row2, q2, negBias), vec_madd(row2, q2, bias),
vec_cmpgt(row2, zero));
row3 = vec_sel(vec_madd(row3, q3, negBias), vec_madd(row3, q3, bias),
vec_cmpgt(row3, zero));
row4 = vec_sel(vec_madd(row4, q4, negBias), vec_madd(row4, q4, bias),
vec_cmpgt(row4, zero));
row5 = vec_sel(vec_madd(row5, q5, negBias), vec_madd(row5, q5, bias),
vec_cmpgt(row5, zero));
row6 = vec_sel(vec_madd(row6, q6, negBias), vec_madd(row6, q6, bias),
vec_cmpgt(row6, zero));
row7 = vec_sel(vec_madd(row7, q7, negBias), vec_madd(row7, q7, bias),
vec_cmpgt(row7, zero));
q0 = vec_ctf(qmat[1], QMAT_SHIFT);
q1 = vec_ctf(qmat[3], QMAT_SHIFT);
q2 = vec_ctf(qmat[5], QMAT_SHIFT);
q3 = vec_ctf(qmat[7], QMAT_SHIFT);
q4 = vec_ctf(qmat[9], QMAT_SHIFT);
q5 = vec_ctf(qmat[11], QMAT_SHIFT);
q6 = vec_ctf(qmat[13], QMAT_SHIFT);
q7 = vec_ctf(qmat[15], QMAT_SHIFT);
alt0 = vec_sel(vec_madd(alt0, q0, negBias), vec_madd(alt0, q0, bias),
vec_cmpgt(alt0, zero));
alt1 = vec_sel(vec_madd(alt1, q1, negBias), vec_madd(alt1, q1, bias),
vec_cmpgt(alt1, zero));
alt2 = vec_sel(vec_madd(alt2, q2, negBias), vec_madd(alt2, q2, bias),
vec_cmpgt(alt2, zero));
alt3 = vec_sel(vec_madd(alt3, q3, negBias), vec_madd(alt3, q3, bias),
vec_cmpgt(alt3, zero));
alt4 = vec_sel(vec_madd(alt4, q4, negBias), vec_madd(alt4, q4, bias),
vec_cmpgt(alt4, zero));
alt5 = vec_sel(vec_madd(alt5, q5, negBias), vec_madd(alt5, q5, bias),
vec_cmpgt(alt5, zero));
alt6 = vec_sel(vec_madd(alt6, q6, negBias), vec_madd(alt6, q6, bias),
vec_cmpgt(alt6, zero));
alt7 = vec_sel(vec_madd(alt7, q7, negBias), vec_madd(alt7, q7, bias),
vec_cmpgt(alt7, zero));
}
}
// Store the data back into the original block
{
vector signed short data0, data1, data2, data3, data4, data5, data6, data7;
data0 = vec_pack(vec_cts(row0, 0), vec_cts(alt0, 0));
data1 = vec_pack(vec_cts(row1, 0), vec_cts(alt1, 0));
data2 = vec_pack(vec_cts(row2, 0), vec_cts(alt2, 0));
data3 = vec_pack(vec_cts(row3, 0), vec_cts(alt3, 0));
data4 = vec_pack(vec_cts(row4, 0), vec_cts(alt4, 0));
data5 = vec_pack(vec_cts(row5, 0), vec_cts(alt5, 0));
data6 = vec_pack(vec_cts(row6, 0), vec_cts(alt6, 0));
data7 = vec_pack(vec_cts(row7, 0), vec_cts(alt7, 0));
{
// Clamp for overflow
vector signed int max_q_int, min_q_int;
vector signed short max_q, min_q;
LOAD4(max_q_int, &(s->max_qcoeff));
LOAD4(min_q_int, &(s->min_qcoeff));
max_q = vec_pack(max_q_int, max_q_int);
min_q = vec_pack(min_q_int, min_q_int);
data0 = vec_max(vec_min(data0, max_q), min_q);
data1 = vec_max(vec_min(data1, max_q), min_q);
data2 = vec_max(vec_min(data2, max_q), min_q);
data4 = vec_max(vec_min(data4, max_q), min_q);
data5 = vec_max(vec_min(data5, max_q), min_q);
data6 = vec_max(vec_min(data6, max_q), min_q);
data7 = vec_max(vec_min(data7, max_q), min_q);
}
vector bool char zero_01, zero_23, zero_45, zero_67;
vector signed char scanIndices_01, scanIndices_23, scanIndices_45, scanIndices_67;
vector signed char negOne = vec_splat_s8(-1);
vector signed char* scanPtr =
(vector signed char*)(s->intra_scantable.inverse);
// Determine the largest non-zero index.
zero_01 = vec_pack(vec_cmpeq(data0, (vector short)zero),
vec_cmpeq(data1, (vector short)zero));
zero_23 = vec_pack(vec_cmpeq(data2, (vector short)zero),
vec_cmpeq(data3, (vector short)zero));
zero_45 = vec_pack(vec_cmpeq(data4, (vector short)zero),
vec_cmpeq(data5, (vector short)zero));
zero_67 = vec_pack(vec_cmpeq(data6, (vector short)zero),
vec_cmpeq(data7, (vector short)zero));
// 64 biggest values
scanIndices_01 = vec_sel(scanPtr[0], negOne, zero_01);
scanIndices_23 = vec_sel(scanPtr[1], negOne, zero_23);
scanIndices_45 = vec_sel(scanPtr[2], negOne, zero_45);
scanIndices_67 = vec_sel(scanPtr[3], negOne, zero_67);
// 32 largest values
scanIndices_01 = vec_max(scanIndices_01, scanIndices_23);
scanIndices_45 = vec_max(scanIndices_45, scanIndices_67);
// 16 largest values
scanIndices_01 = vec_max(scanIndices_01, scanIndices_45);
// 8 largest values
scanIndices_01 = vec_max(vec_mergeh(scanIndices_01, negOne),
vec_mergel(scanIndices_01, negOne));
// 4 largest values
scanIndices_01 = vec_max(vec_mergeh(scanIndices_01, negOne),
vec_mergel(scanIndices_01, negOne));
// 2 largest values
scanIndices_01 = vec_max(vec_mergeh(scanIndices_01, negOne),
vec_mergel(scanIndices_01, negOne));
// largest value
scanIndices_01 = vec_max(vec_mergeh(scanIndices_01, negOne),
vec_mergel(scanIndices_01, negOne));
scanIndices_01 = vec_splat(scanIndices_01, 0);
signed char lastNonZeroChar;
vec_ste(scanIndices_01, 0, &lastNonZeroChar);
lastNonZero = lastNonZeroChar;
// While the data is still in vectors we check for the transpose IDCT permute
// and handle it using the vector unit if we can. This is the permute used
// by the altivec idct, so it is common when using the altivec dct.
if ((lastNonZero > 0) && (s->dsp.idct_permutation_type == FF_TRANSPOSE_IDCT_PERM))
{
TRANSPOSE8(data0, data1, data2, data3, data4, data5, data6, data7);
}
vec_st(data0, 0, data);
vec_st(data1, 16, data);
vec_st(data2, 32, data);
vec_st(data3, 48, data);
vec_st(data4, 64, data);
vec_st(data5, 80, data);
vec_st(data6, 96, data);
vec_st(data7, 112, data);
}
// special handling of block[0]
if (s->mb_intra)
{
if (!s->h263_aic)
{
if (n < 4)
oldBaseValue /= s->y_dc_scale;
else
oldBaseValue /= s->c_dc_scale;
}
// Divide by 8, rounding the result
data[0] = (oldBaseValue + 4) >> 3;
}
// We handled the tranpose permutation above and we don't
// need to permute the "no" permutation case.
if ((lastNonZero > 0) &&
(s->dsp.idct_permutation_type != FF_TRANSPOSE_IDCT_PERM) &&
(s->dsp.idct_permutation_type != FF_NO_IDCT_PERM))
{
ff_block_permute(data, s->dsp.idct_permutation,
s->intra_scantable.scantable, lastNonZero);
}
return lastNonZero;
}
#undef FOUROF
/*
AltiVec version of dct_unquantize_h263
this code assumes `block' is 16 bytes-aligned
*/
void dct_unquantize_h263_altivec(MpegEncContext *s,
DCTELEM *block, int n, int qscale)
{
POWERPC_PERF_DECLARE(altivec_dct_unquantize_h263_num, 1);
int i, level, qmul, qadd;
int nCoeffs;
assert(s->block_last_index[n]>=0);
POWERPC_PERF_START_COUNT(altivec_dct_unquantize_h263_num, 1);
qadd = (qscale - 1) | 1;
qmul = qscale << 1;
if (s->mb_intra) {
if (!s->h263_aic) {
if (n < 4)
block[0] = block[0] * s->y_dc_scale;
else
block[0] = block[0] * s->c_dc_scale;
}else
qadd = 0;
i = 1;
nCoeffs= 63; //does not allways use zigzag table
} else {
i = 0;
nCoeffs= s->intra_scantable.raster_end[ s->block_last_index[n] ];
}
#ifdef ALTIVEC_USE_REFERENCE_C_CODE
for(;i<=nCoeffs;i++) {
level = block[i];
if (level) {
if (level < 0) {
level = level * qmul - qadd;
} else {
level = level * qmul + qadd;
}
block[i] = level;
}
}
#else /* ALTIVEC_USE_REFERENCE_C_CODE */
{
register const vector short vczero = (const vector short)vec_splat_s16(0);
short __attribute__ ((aligned(16))) qmul8[] =
{
qmul, qmul, qmul, qmul,
qmul, qmul, qmul, qmul
};
short __attribute__ ((aligned(16))) qadd8[] =
{
qadd, qadd, qadd, qadd,
qadd, qadd, qadd, qadd
};
short __attribute__ ((aligned(16))) nqadd8[] =
{
-qadd, -qadd, -qadd, -qadd,
-qadd, -qadd, -qadd, -qadd
};
register vector short blockv, qmulv, qaddv, nqaddv, temp1;
register vector bool short blockv_null, blockv_neg;
register short backup_0 = block[0];
register int j = 0;
qmulv = vec_ld(0, qmul8);
qaddv = vec_ld(0, qadd8);
nqaddv = vec_ld(0, nqadd8);
#if 0 // block *is* 16 bytes-aligned, it seems.
// first make sure block[j] is 16 bytes-aligned
for(j = 0; (j <= nCoeffs) && ((((unsigned long)block) + (j << 1)) & 0x0000000F) ; j++) {
level = block[j];
if (level) {
if (level < 0) {
level = level * qmul - qadd;
} else {
level = level * qmul + qadd;
}
block[j] = level;
}
}
#endif
// vectorize all the 16 bytes-aligned blocks
// of 8 elements
for(; (j + 7) <= nCoeffs ; j+=8)
{
blockv = vec_ld(j << 1, block);
blockv_neg = vec_cmplt(blockv, vczero);
blockv_null = vec_cmpeq(blockv, vczero);
// choose between +qadd or -qadd as the third operand
temp1 = vec_sel(qaddv, nqaddv, blockv_neg);
// multiply & add (block{i,i+7} * qmul [+-] qadd)
temp1 = vec_mladd(blockv, qmulv, temp1);
// put 0 where block[{i,i+7} used to have 0
blockv = vec_sel(temp1, blockv, blockv_null);
vec_st(blockv, j << 1, block);
}
// if nCoeffs isn't a multiple of 8, finish the job
// using good old scalar units.
// (we could do it using a truncated vector,
// but I'm not sure it's worth the hassle)
for(; j <= nCoeffs ; j++) {
level = block[j];
if (level) {
if (level < 0) {
level = level * qmul - qadd;
} else {
level = level * qmul + qadd;
}
block[j] = level;
}
}
if (i == 1)
{ // cheat. this avoid special-casing the first iteration
block[0] = backup_0;
}
}
#endif /* ALTIVEC_USE_REFERENCE_C_CODE */
POWERPC_PERF_STOP_COUNT(altivec_dct_unquantize_h263_num, nCoeffs == 63);
}