1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2024-11-21 10:55:51 +02:00
FFmpeg/libavcodec/cbs_h2645.c
James Almer 27eb55a9c9 avcodec/cbs_h265: add support for 3D Reference Displays Information SEI
Signed-off-by: James Almer <jamrial@gmail.com>
2024-07-15 16:39:44 -03:00

2323 lines
68 KiB
C

/*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "libavutil/attributes.h"
#include "libavutil/avassert.h"
#include "libavutil/mem.h"
#include "bytestream.h"
#include "cbs.h"
#include "cbs_internal.h"
#include "cbs_h264.h"
#include "cbs_h265.h"
#include "cbs_h266.h"
#include "h264.h"
#include "h2645_parse.h"
#include "refstruct.h"
#include "vvc.h"
#include "hevc/hevc.h"
static int cbs_read_ue_golomb(CodedBitstreamContext *ctx, GetBitContext *gbc,
const char *name, const int *subscripts,
uint32_t *write_to,
uint32_t range_min, uint32_t range_max)
{
uint32_t leading_bits, value;
int max_length, leading_zeroes;
CBS_TRACE_READ_START();
max_length = FFMIN(get_bits_left(gbc), 32);
leading_bits = max_length ? show_bits_long(gbc, max_length) : 0;
if (leading_bits == 0) {
if (max_length >= 32) {
av_log(ctx->log_ctx, AV_LOG_ERROR, "Invalid ue-golomb code at "
"%s: more than 31 zeroes.\n", name);
return AVERROR_INVALIDDATA;
} else {
av_log(ctx->log_ctx, AV_LOG_ERROR, "Invalid ue-golomb code at "
"%s: bitstream ended.\n", name);
return AVERROR_INVALIDDATA;
}
}
leading_zeroes = max_length - 1 - av_log2(leading_bits);
skip_bits_long(gbc, leading_zeroes);
if (get_bits_left(gbc) < leading_zeroes + 1) {
av_log(ctx->log_ctx, AV_LOG_ERROR, "Invalid ue-golomb code at "
"%s: bitstream ended.\n", name);
return AVERROR_INVALIDDATA;
}
value = get_bits_long(gbc, leading_zeroes + 1) - 1;
CBS_TRACE_READ_END();
if (value < range_min || value > range_max) {
av_log(ctx->log_ctx, AV_LOG_ERROR, "%s out of range: "
"%"PRIu32", but must be in [%"PRIu32",%"PRIu32"].\n",
name, value, range_min, range_max);
return AVERROR_INVALIDDATA;
}
*write_to = value;
return 0;
}
static int cbs_read_se_golomb(CodedBitstreamContext *ctx, GetBitContext *gbc,
const char *name, const int *subscripts,
int32_t *write_to,
int32_t range_min, int32_t range_max)
{
uint32_t leading_bits, unsigned_value;
int max_length, leading_zeroes;
int32_t value;
CBS_TRACE_READ_START();
max_length = FFMIN(get_bits_left(gbc), 32);
leading_bits = max_length ? show_bits_long(gbc, max_length) : 0;
if (leading_bits == 0) {
if (max_length >= 32) {
av_log(ctx->log_ctx, AV_LOG_ERROR, "Invalid se-golomb code at "
"%s: more than 31 zeroes.\n", name);
return AVERROR_INVALIDDATA;
} else {
av_log(ctx->log_ctx, AV_LOG_ERROR, "Invalid se-golomb code at "
"%s: bitstream ended.\n", name);
return AVERROR_INVALIDDATA;
}
}
leading_zeroes = max_length - 1 - av_log2(leading_bits);
skip_bits_long(gbc, leading_zeroes);
if (get_bits_left(gbc) < leading_zeroes + 1) {
av_log(ctx->log_ctx, AV_LOG_ERROR, "Invalid se-golomb code at "
"%s: bitstream ended.\n", name);
return AVERROR_INVALIDDATA;
}
unsigned_value = get_bits_long(gbc, leading_zeroes + 1);
if (unsigned_value & 1)
value = -(int32_t)(unsigned_value / 2);
else
value = unsigned_value / 2;
CBS_TRACE_READ_END();
if (value < range_min || value > range_max) {
av_log(ctx->log_ctx, AV_LOG_ERROR, "%s out of range: "
"%"PRId32", but must be in [%"PRId32",%"PRId32"].\n",
name, value, range_min, range_max);
return AVERROR_INVALIDDATA;
}
*write_to = value;
return 0;
}
static int cbs_write_ue_golomb(CodedBitstreamContext *ctx, PutBitContext *pbc,
const char *name, const int *subscripts,
uint32_t value,
uint32_t range_min, uint32_t range_max)
{
int len;
CBS_TRACE_WRITE_START();
if (value < range_min || value > range_max) {
av_log(ctx->log_ctx, AV_LOG_ERROR, "%s out of range: "
"%"PRIu32", but must be in [%"PRIu32",%"PRIu32"].\n",
name, value, range_min, range_max);
return AVERROR_INVALIDDATA;
}
av_assert0(value != UINT32_MAX);
len = av_log2(value + 1);
if (put_bits_left(pbc) < 2 * len + 1)
return AVERROR(ENOSPC);
put_bits(pbc, len, 0);
if (len + 1 < 32)
put_bits(pbc, len + 1, value + 1);
else
put_bits32(pbc, value + 1);
CBS_TRACE_WRITE_END();
return 0;
}
static int cbs_write_se_golomb(CodedBitstreamContext *ctx, PutBitContext *pbc,
const char *name, const int *subscripts,
int32_t value,
int32_t range_min, int32_t range_max)
{
int len;
uint32_t uvalue;
CBS_TRACE_WRITE_START();
if (value < range_min || value > range_max) {
av_log(ctx->log_ctx, AV_LOG_ERROR, "%s out of range: "
"%"PRId32", but must be in [%"PRId32",%"PRId32"].\n",
name, value, range_min, range_max);
return AVERROR_INVALIDDATA;
}
av_assert0(value != INT32_MIN);
if (value == 0)
uvalue = 0;
else if (value > 0)
uvalue = 2 * (uint32_t)value - 1;
else
uvalue = 2 * (uint32_t)-value;
len = av_log2(uvalue + 1);
if (put_bits_left(pbc) < 2 * len + 1)
return AVERROR(ENOSPC);
put_bits(pbc, len, 0);
if (len + 1 < 32)
put_bits(pbc, len + 1, uvalue + 1);
else
put_bits32(pbc, uvalue + 1);
CBS_TRACE_WRITE_END();
return 0;
}
// payload_extension_present() - true if we are before the last 1-bit
// in the payload structure, which must be in the last byte.
static int cbs_h265_payload_extension_present(GetBitContext *gbc, uint32_t payload_size,
int cur_pos)
{
int bits_left = payload_size * 8 - cur_pos;
return (bits_left > 0 &&
(bits_left > 7 || show_bits(gbc, bits_left) & MAX_UINT_BITS(bits_left - 1)));
}
#define HEADER(name) do { \
ff_cbs_trace_header(ctx, name); \
} while (0)
#define CHECK(call) do { \
err = (call); \
if (err < 0) \
return err; \
} while (0)
#define FUNC_NAME2(rw, codec, name) cbs_ ## codec ## _ ## rw ## _ ## name
#define FUNC_NAME1(rw, codec, name) FUNC_NAME2(rw, codec, name)
#define FUNC_H264(name) FUNC_NAME1(READWRITE, h264, name)
#define FUNC_H265(name) FUNC_NAME1(READWRITE, h265, name)
#define FUNC_H266(name) FUNC_NAME1(READWRITE, h266, name)
#define FUNC_SEI(name) FUNC_NAME1(READWRITE, sei, name)
#define SEI_FUNC(name, args) \
static int FUNC(name) args; \
static int FUNC(name ## _internal)(CodedBitstreamContext *ctx, \
RWContext *rw, void *cur, \
SEIMessageState *state) \
{ \
return FUNC(name)(ctx, rw, cur, state); \
} \
static int FUNC(name) args
#define SUBSCRIPTS(subs, ...) (subs > 0 ? ((int[subs + 1]){ subs, __VA_ARGS__ }) : NULL)
#define u(width, name, range_min, range_max) \
xu(width, name, current->name, range_min, range_max, 0, )
#define flag(name) ub(1, name)
#define ue(name, range_min, range_max) \
xue(name, current->name, range_min, range_max, 0, )
#define i(width, name, range_min, range_max) \
xi(width, name, current->name, range_min, range_max, 0, )
#define ib(width, name) \
xi(width, name, current->name, MIN_INT_BITS(width), MAX_INT_BITS(width), 0, )
#define se(name, range_min, range_max) \
xse(name, current->name, range_min, range_max, 0, )
#define us(width, name, range_min, range_max, subs, ...) \
xu(width, name, current->name, range_min, range_max, subs, __VA_ARGS__)
#define ubs(width, name, subs, ...) \
xu(width, name, current->name, 0, MAX_UINT_BITS(width), subs, __VA_ARGS__)
#define flags(name, subs, ...) \
xu(1, name, current->name, 0, 1, subs, __VA_ARGS__)
#define ues(name, range_min, range_max, subs, ...) \
xue(name, current->name, range_min, range_max, subs, __VA_ARGS__)
#define is(width, name, range_min, range_max, subs, ...) \
xi(width, name, current->name, range_min, range_max, subs, __VA_ARGS__)
#define ibs(width, name, subs, ...) \
xi(width, name, current->name, MIN_INT_BITS(width), MAX_INT_BITS(width), subs, __VA_ARGS__)
#define ses(name, range_min, range_max, subs, ...) \
xse(name, current->name, range_min, range_max, subs, __VA_ARGS__)
#define fixed(width, name, value) do { \
av_unused uint32_t fixed_value = value; \
xu(width, name, fixed_value, value, value, 0, ); \
} while (0)
#define READ
#define READWRITE read
#define RWContext GetBitContext
#define ub(width, name) do { \
uint32_t value; \
CHECK(ff_cbs_read_simple_unsigned(ctx, rw, width, #name, \
&value)); \
current->name = value; \
} while (0)
#define xu(width, name, var, range_min, range_max, subs, ...) do { \
uint32_t value; \
CHECK(ff_cbs_read_unsigned(ctx, rw, width, #name, \
SUBSCRIPTS(subs, __VA_ARGS__), \
&value, range_min, range_max)); \
var = value; \
} while (0)
#define xue(name, var, range_min, range_max, subs, ...) do { \
uint32_t value; \
CHECK(cbs_read_ue_golomb(ctx, rw, #name, \
SUBSCRIPTS(subs, __VA_ARGS__), \
&value, range_min, range_max)); \
var = value; \
} while (0)
#define xi(width, name, var, range_min, range_max, subs, ...) do { \
int32_t value; \
CHECK(ff_cbs_read_signed(ctx, rw, width, #name, \
SUBSCRIPTS(subs, __VA_ARGS__), \
&value, range_min, range_max)); \
var = value; \
} while (0)
#define xse(name, var, range_min, range_max, subs, ...) do { \
int32_t value; \
CHECK(cbs_read_se_golomb(ctx, rw, #name, \
SUBSCRIPTS(subs, __VA_ARGS__), \
&value, range_min, range_max)); \
var = value; \
} while (0)
#define infer(name, value) do { \
current->name = value; \
} while (0)
static int cbs_h2645_read_more_rbsp_data(GetBitContext *gbc)
{
int bits_left = get_bits_left(gbc);
if (bits_left > 8)
return 1;
if (bits_left == 0)
return 0;
if (show_bits(gbc, bits_left) & MAX_UINT_BITS(bits_left - 1))
return 1;
return 0;
}
#define more_rbsp_data(var) ((var) = cbs_h2645_read_more_rbsp_data(rw))
#define bit_position(rw) (get_bits_count(rw))
#define byte_alignment(rw) (get_bits_count(rw) % 8)
/* The CBS SEI code uses the refstruct API for the allocation
* of its child buffers. */
#define allocate(name, size) do { \
name = ff_refstruct_allocz(size + \
AV_INPUT_BUFFER_PADDING_SIZE); \
if (!name) \
return AVERROR(ENOMEM); \
} while (0)
#define FUNC(name) FUNC_SEI(name)
#include "cbs_sei_syntax_template.c"
#undef FUNC
#undef allocate
/* The other code uses the refstruct API for the allocation
* of its child buffers. */
#define allocate(name, size) do { \
name ## _ref = av_buffer_allocz(size + \
AV_INPUT_BUFFER_PADDING_SIZE); \
if (!name ## _ref) \
return AVERROR(ENOMEM); \
name = name ## _ref->data; \
} while (0)
#define FUNC(name) FUNC_H264(name)
#include "cbs_h264_syntax_template.c"
#undef FUNC
#define FUNC(name) FUNC_H265(name)
#include "cbs_h265_syntax_template.c"
#undef FUNC
#define FUNC(name) FUNC_H266(name)
#include "cbs_h266_syntax_template.c"
#undef FUNC
#undef READ
#undef READWRITE
#undef RWContext
#undef ub
#undef xu
#undef xi
#undef xue
#undef xse
#undef infer
#undef more_rbsp_data
#undef bit_position
#undef byte_alignment
#undef allocate
#define WRITE
#define READWRITE write
#define RWContext PutBitContext
#define ub(width, name) do { \
uint32_t value = current->name; \
CHECK(ff_cbs_write_simple_unsigned(ctx, rw, width, #name, \
value)); \
} while (0)
#define xu(width, name, var, range_min, range_max, subs, ...) do { \
uint32_t value = var; \
CHECK(ff_cbs_write_unsigned(ctx, rw, width, #name, \
SUBSCRIPTS(subs, __VA_ARGS__), \
value, range_min, range_max)); \
} while (0)
#define xue(name, var, range_min, range_max, subs, ...) do { \
uint32_t value = var; \
CHECK(cbs_write_ue_golomb(ctx, rw, #name, \
SUBSCRIPTS(subs, __VA_ARGS__), \
value, range_min, range_max)); \
} while (0)
#define xi(width, name, var, range_min, range_max, subs, ...) do { \
int32_t value = var; \
CHECK(ff_cbs_write_signed(ctx, rw, width, #name, \
SUBSCRIPTS(subs, __VA_ARGS__), \
value, range_min, range_max)); \
} while (0)
#define xse(name, var, range_min, range_max, subs, ...) do { \
int32_t value = var; \
CHECK(cbs_write_se_golomb(ctx, rw, #name, \
SUBSCRIPTS(subs, __VA_ARGS__), \
value, range_min, range_max)); \
} while (0)
#define infer(name, value) do { \
if (current->name != (value)) { \
av_log(ctx->log_ctx, AV_LOG_ERROR, \
"%s does not match inferred value: " \
"%"PRId64", but should be %"PRId64".\n", \
#name, (int64_t)current->name, (int64_t)(value)); \
return AVERROR_INVALIDDATA; \
} \
} while (0)
#define more_rbsp_data(var) (var)
#define bit_position(rw) (put_bits_count(rw))
#define byte_alignment(rw) (put_bits_count(rw) % 8)
#define allocate(name, size) do { \
if (!name) { \
av_log(ctx->log_ctx, AV_LOG_ERROR, "%s must be set " \
"for writing.\n", #name); \
return AVERROR_INVALIDDATA; \
} \
} while (0)
#define FUNC(name) FUNC_SEI(name)
#include "cbs_sei_syntax_template.c"
#undef FUNC
#define FUNC(name) FUNC_H264(name)
#include "cbs_h264_syntax_template.c"
#undef FUNC
#define FUNC(name) FUNC_H265(name)
#include "cbs_h265_syntax_template.c"
#undef FUNC
#define FUNC(name) FUNC_H266(name)
#include "cbs_h266_syntax_template.c"
#undef FUNC
#undef WRITE
#undef READWRITE
#undef RWContext
#undef ub
#undef xu
#undef xi
#undef xue
#undef xse
#undef u
#undef i
#undef flag
#undef ue
#undef se
#undef infer
#undef more_rbsp_data
#undef bit_position
#undef byte_alignment
#undef allocate
static int cbs_h2645_fragment_add_nals(CodedBitstreamContext *ctx,
CodedBitstreamFragment *frag,
const H2645Packet *packet)
{
int err, i;
for (i = 0; i < packet->nb_nals; i++) {
const H2645NAL *nal = &packet->nals[i];
AVBufferRef *ref;
size_t size = nal->size;
enum AVCodecID codec_id = ctx->codec->codec_id;
if (codec_id == AV_CODEC_ID_HEVC && nal->nuh_layer_id > 0 &&
(nal->type < HEVC_NAL_VPS || nal->type > HEVC_NAL_PPS))
continue;
// Remove trailing zeroes.
while (size > 0 && nal->data[size - 1] == 0)
--size;
if (size == 0) {
av_log(ctx->log_ctx, AV_LOG_VERBOSE, "Discarding empty 0 NAL unit\n");
continue;
}
ref = (nal->data == nal->raw_data) ? frag->data_ref
: packet->rbsp.rbsp_buffer_ref;
err = ff_cbs_append_unit_data(frag, nal->type,
(uint8_t*)nal->data, size, ref);
if (err < 0)
return err;
}
return 0;
}
static int cbs_h2645_split_fragment(CodedBitstreamContext *ctx,
CodedBitstreamFragment *frag,
int header)
{
enum AVCodecID codec_id = ctx->codec->codec_id;
CodedBitstreamH2645Context *priv = ctx->priv_data;
GetByteContext gbc;
int err;
av_assert0(frag->data && frag->nb_units == 0);
if (frag->data_size == 0)
return 0;
if (header && frag->data[0] && codec_id == AV_CODEC_ID_H264) {
// AVCC header.
size_t size, start, end;
int i, count, version;
priv->mp4 = 1;
bytestream2_init(&gbc, frag->data, frag->data_size);
if (bytestream2_get_bytes_left(&gbc) < 6)
return AVERROR_INVALIDDATA;
version = bytestream2_get_byte(&gbc);
if (version != 1) {
av_log(ctx->log_ctx, AV_LOG_ERROR, "Invalid AVCC header: "
"first byte %u.\n", version);
return AVERROR_INVALIDDATA;
}
bytestream2_skip(&gbc, 3);
priv->nal_length_size = (bytestream2_get_byte(&gbc) & 3) + 1;
// SPS array.
count = bytestream2_get_byte(&gbc) & 0x1f;
start = bytestream2_tell(&gbc);
for (i = 0; i < count; i++) {
if (bytestream2_get_bytes_left(&gbc) < 2 * (count - i))
return AVERROR_INVALIDDATA;
size = bytestream2_get_be16(&gbc);
if (bytestream2_get_bytes_left(&gbc) < size)
return AVERROR_INVALIDDATA;
bytestream2_skip(&gbc, size);
}
end = bytestream2_tell(&gbc);
err = ff_h2645_packet_split(&priv->read_packet,
frag->data + start, end - start,
ctx->log_ctx, 1, 2, AV_CODEC_ID_H264, 1, 1);
if (err < 0) {
av_log(ctx->log_ctx, AV_LOG_ERROR, "Failed to split AVCC SPS array.\n");
return err;
}
err = cbs_h2645_fragment_add_nals(ctx, frag, &priv->read_packet);
if (err < 0)
return err;
// PPS array.
count = bytestream2_get_byte(&gbc);
start = bytestream2_tell(&gbc);
for (i = 0; i < count; i++) {
if (bytestream2_get_bytes_left(&gbc) < 2 * (count - i))
return AVERROR_INVALIDDATA;
size = bytestream2_get_be16(&gbc);
if (bytestream2_get_bytes_left(&gbc) < size)
return AVERROR_INVALIDDATA;
bytestream2_skip(&gbc, size);
}
end = bytestream2_tell(&gbc);
err = ff_h2645_packet_split(&priv->read_packet,
frag->data + start, end - start,
ctx->log_ctx, 1, 2, AV_CODEC_ID_H264, 1, 1);
if (err < 0) {
av_log(ctx->log_ctx, AV_LOG_ERROR, "Failed to split AVCC PPS array.\n");
return err;
}
err = cbs_h2645_fragment_add_nals(ctx, frag, &priv->read_packet);
if (err < 0)
return err;
if (bytestream2_get_bytes_left(&gbc) > 0) {
av_log(ctx->log_ctx, AV_LOG_WARNING, "%u bytes left at end of AVCC "
"header.\n", bytestream2_get_bytes_left(&gbc));
}
} else if (header && frag->data[0] && codec_id == AV_CODEC_ID_HEVC) {
// HVCC header.
size_t size, start, end;
int i, j, nb_arrays, nal_unit_type, nb_nals, version;
priv->mp4 = 1;
bytestream2_init(&gbc, frag->data, frag->data_size);
if (bytestream2_get_bytes_left(&gbc) < 23)
return AVERROR_INVALIDDATA;
version = bytestream2_get_byte(&gbc);
if (version != 1) {
av_log(ctx->log_ctx, AV_LOG_ERROR, "Invalid HVCC header: "
"first byte %u.\n", version);
return AVERROR_INVALIDDATA;
}
bytestream2_skip(&gbc, 20);
priv->nal_length_size = (bytestream2_get_byte(&gbc) & 3) + 1;
nb_arrays = bytestream2_get_byte(&gbc);
for (i = 0; i < nb_arrays; i++) {
nal_unit_type = bytestream2_get_byte(&gbc) & 0x3f;
nb_nals = bytestream2_get_be16(&gbc);
start = bytestream2_tell(&gbc);
for (j = 0; j < nb_nals; j++) {
if (bytestream2_get_bytes_left(&gbc) < 2)
return AVERROR_INVALIDDATA;
size = bytestream2_get_be16(&gbc);
if (bytestream2_get_bytes_left(&gbc) < size)
return AVERROR_INVALIDDATA;
bytestream2_skip(&gbc, size);
}
end = bytestream2_tell(&gbc);
err = ff_h2645_packet_split(&priv->read_packet,
frag->data + start, end - start,
ctx->log_ctx, 1, 2, AV_CODEC_ID_HEVC, 1, 1);
if (err < 0) {
av_log(ctx->log_ctx, AV_LOG_ERROR, "Failed to split "
"HVCC array %d (%d NAL units of type %d).\n",
i, nb_nals, nal_unit_type);
return err;
}
err = cbs_h2645_fragment_add_nals(ctx, frag, &priv->read_packet);
if (err < 0)
return err;
}
} else if(header && frag->data[0] && codec_id == AV_CODEC_ID_VVC) {
// VVCC header.
int ptl_present_flag, num_arrays;
int b, i, j;
priv->mp4 = 1;
bytestream2_init(&gbc, frag->data, frag->data_size);
b = bytestream2_get_byte(&gbc);
priv->nal_length_size = ((b >> 1) & 3) + 1;
ptl_present_flag = b & 1;
if(ptl_present_flag) {
int num_sublayers, num_bytes_constraint_info, num_sub_profiles;
num_sublayers = (bytestream2_get_be16u(&gbc) >> 4) & 7;
bytestream2_skip(&gbc, 1);
// begin VvcPTLRecord(num_sublayers);
num_bytes_constraint_info = bytestream2_get_byte(&gbc) & 0x3f;
bytestream2_skip(&gbc, 2 + num_bytes_constraint_info);
if(num_sublayers > 1) {
int count_present_flags = 0;
b = bytestream2_get_byte(&gbc);
for(i = num_sublayers - 2; i >= 0; i--) {
if((b >> (7 - (num_sublayers - 2 - i))) & 0x01)
count_present_flags++;
}
bytestream2_skip(&gbc, count_present_flags);
}
num_sub_profiles = bytestream2_get_byte(&gbc);
bytestream2_skip(&gbc, num_sub_profiles * 4);
// end VvcPTLRecord(num_sublayers);
bytestream2_skip(&gbc, 3 * 2);
}
num_arrays = bytestream2_get_byte(&gbc);
for(j = 0; j < num_arrays; j++) {
size_t start, end, size;
int nal_unit_type = bytestream2_get_byte(&gbc) & 0x1f;
unsigned int num_nalus = 1;
if(nal_unit_type != VVC_DCI_NUT && nal_unit_type != VVC_OPI_NUT)
num_nalus = bytestream2_get_be16(&gbc);
start = bytestream2_tell(&gbc);
for(i = 0; i < num_nalus; i++) {
if (bytestream2_get_bytes_left(&gbc) < 2)
return AVERROR_INVALIDDATA;
size = bytestream2_get_be16(&gbc);
if (bytestream2_get_bytes_left(&gbc) < size)
return AVERROR_INVALIDDATA;
bytestream2_skip(&gbc, size);
}
end = bytestream2_tell(&gbc);
err = ff_h2645_packet_split(&priv->read_packet,
frag->data + start, end - start,
ctx->log_ctx, 1, 2, AV_CODEC_ID_VVC, 1, 1);
if (err < 0) {
av_log(ctx->log_ctx, AV_LOG_ERROR, "Failed to split "
"VVCC array %d (%d NAL units of type %d).\n",
i, num_nalus, nal_unit_type);
return err;
}
err = cbs_h2645_fragment_add_nals(ctx, frag, &priv->read_packet);
if (err < 0)
return err;
}
} else {
// Annex B, or later MP4 with already-known parameters.
err = ff_h2645_packet_split(&priv->read_packet,
frag->data, frag->data_size,
ctx->log_ctx,
priv->mp4, priv->nal_length_size,
codec_id, 1, 1);
if (err < 0)
return err;
err = cbs_h2645_fragment_add_nals(ctx, frag, &priv->read_packet);
if (err < 0)
return err;
}
return 0;
}
#define cbs_h2645_replace_ps(h26n, ps_name, ps_var, id_element) \
static int cbs_h26 ## h26n ## _replace_ ## ps_var(CodedBitstreamContext *ctx, \
CodedBitstreamUnit *unit) \
{ \
CodedBitstreamH26 ## h26n ## Context *priv = ctx->priv_data; \
H26 ## h26n ## Raw ## ps_name *ps_var = unit->content; \
unsigned int id = ps_var->id_element; \
int err = ff_cbs_make_unit_refcounted(ctx, unit); \
if (err < 0) \
return err; \
if (priv->ps_var[id] == priv->active_ ## ps_var) \
priv->active_ ## ps_var = NULL ; \
av_assert0(unit->content_ref); \
ff_refstruct_replace(&priv->ps_var[id], unit->content_ref); \
return 0; \
}
cbs_h2645_replace_ps(4, SPS, sps, seq_parameter_set_id)
cbs_h2645_replace_ps(4, PPS, pps, pic_parameter_set_id)
cbs_h2645_replace_ps(5, VPS, vps, vps_video_parameter_set_id)
cbs_h2645_replace_ps(5, SPS, sps, sps_seq_parameter_set_id)
cbs_h2645_replace_ps(5, PPS, pps, pps_pic_parameter_set_id)
#define cbs_h266_replace_ps(h26n, ps_name, ps_var, id_element) \
static int cbs_h26 ## h26n ## _replace_ ## ps_var(CodedBitstreamContext *ctx, \
CodedBitstreamUnit *unit) \
{ \
CodedBitstreamH26 ## h26n ## Context *priv = ctx->priv_data; \
H26 ## h26n ## Raw ## ps_name *ps_var = unit->content; \
unsigned int id = ps_var->id_element; \
int err = ff_cbs_make_unit_refcounted(ctx, unit); \
if (err < 0) \
return err; \
av_assert0(unit->content_ref); \
ff_refstruct_replace(&priv->ps_var[id], unit->content_ref); \
return 0; \
}
cbs_h266_replace_ps(6, VPS, vps, vps_video_parameter_set_id)
cbs_h266_replace_ps(6, PPS, pps, pps_pic_parameter_set_id)
static int cbs_h266_replace_sps(CodedBitstreamContext *ctx,
CodedBitstreamUnit *unit)
{
CodedBitstreamH266Context *priv = ctx->priv_data;
H266RawSPS *sps = unit->content;
unsigned int id = sps->sps_seq_parameter_set_id;
int err = ff_cbs_make_unit_refcounted(ctx, unit);
if (err < 0)
return err;
av_assert0(unit->content_ref);
if (priv->sps[id] && memcmp(priv->sps[id], unit->content_ref, sizeof(*priv->sps[id]))) {
for (unsigned int i = 0; i < VVC_MAX_PPS_COUNT; i++) {
if (priv->pps[i] && priv->pps[i]->pps_seq_parameter_set_id == id)
ff_refstruct_unref(&priv->pps[i]);
}
}
ff_refstruct_replace(&priv->sps[id], unit->content_ref);
return 0;
}
static int cbs_h266_replace_ph(CodedBitstreamContext *ctx,
CodedBitstreamUnit *unit,
H266RawPictureHeader *ph)
{
CodedBitstreamH266Context *h266 = ctx->priv_data;
int err;
err = ff_cbs_make_unit_refcounted(ctx, unit);
if (err < 0)
return err;
av_assert0(unit->content_ref);
ff_refstruct_replace(&h266->ph_ref, unit->content_ref);
h266->ph = ph;
return 0;
}
static int cbs_h264_read_nal_unit(CodedBitstreamContext *ctx,
CodedBitstreamUnit *unit)
{
GetBitContext gbc;
int err;
err = init_get_bits(&gbc, unit->data, 8 * unit->data_size);
if (err < 0)
return err;
err = ff_cbs_alloc_unit_content(ctx, unit);
if (err < 0)
return err;
switch (unit->type) {
case H264_NAL_SPS:
{
H264RawSPS *sps = unit->content;
err = cbs_h264_read_sps(ctx, &gbc, sps);
if (err < 0)
return err;
err = cbs_h264_replace_sps(ctx, unit);
if (err < 0)
return err;
}
break;
case H264_NAL_SPS_EXT:
{
err = cbs_h264_read_sps_extension(ctx, &gbc, unit->content);
if (err < 0)
return err;
}
break;
case H264_NAL_PPS:
{
H264RawPPS *pps = unit->content;
err = cbs_h264_read_pps(ctx, &gbc, pps);
if (err < 0)
return err;
err = cbs_h264_replace_pps(ctx, unit);
if (err < 0)
return err;
}
break;
case H264_NAL_SLICE:
case H264_NAL_IDR_SLICE:
case H264_NAL_AUXILIARY_SLICE:
{
H264RawSlice *slice = unit->content;
int pos, len;
err = cbs_h264_read_slice_header(ctx, &gbc, &slice->header);
if (err < 0)
return err;
if (!cbs_h2645_read_more_rbsp_data(&gbc))
return AVERROR_INVALIDDATA;
pos = get_bits_count(&gbc);
len = unit->data_size;
slice->data_size = len - pos / 8;
slice->data_ref = av_buffer_ref(unit->data_ref);
if (!slice->data_ref)
return AVERROR(ENOMEM);
slice->data = unit->data + pos / 8;
slice->data_bit_start = pos % 8;
}
break;
case H264_NAL_AUD:
{
err = cbs_h264_read_aud(ctx, &gbc, unit->content);
if (err < 0)
return err;
}
break;
case H264_NAL_SEI:
{
err = cbs_h264_read_sei(ctx, &gbc, unit->content);
if (err < 0)
return err;
}
break;
case H264_NAL_FILLER_DATA:
{
err = cbs_h264_read_filler(ctx, &gbc, unit->content);
if (err < 0)
return err;
}
break;
case H264_NAL_END_SEQUENCE:
case H264_NAL_END_STREAM:
{
err = (unit->type == H264_NAL_END_SEQUENCE ?
cbs_h264_read_end_of_sequence :
cbs_h264_read_end_of_stream)(ctx, &gbc, unit->content);
if (err < 0)
return err;
}
break;
default:
return AVERROR(ENOSYS);
}
return 0;
}
static int cbs_h265_read_nal_unit(CodedBitstreamContext *ctx,
CodedBitstreamUnit *unit)
{
GetBitContext gbc;
int err;
err = init_get_bits(&gbc, unit->data, 8 * unit->data_size);
if (err < 0)
return err;
err = ff_cbs_alloc_unit_content(ctx, unit);
if (err < 0)
return err;
switch (unit->type) {
case HEVC_NAL_VPS:
{
H265RawVPS *vps = unit->content;
err = cbs_h265_read_vps(ctx, &gbc, vps);
if (err < 0)
return err;
err = cbs_h265_replace_vps(ctx, unit);
if (err < 0)
return err;
}
break;
case HEVC_NAL_SPS:
{
H265RawSPS *sps = unit->content;
err = cbs_h265_read_sps(ctx, &gbc, sps);
if (err < 0)
return err;
err = cbs_h265_replace_sps(ctx, unit);
if (err < 0)
return err;
}
break;
case HEVC_NAL_PPS:
{
H265RawPPS *pps = unit->content;
err = cbs_h265_read_pps(ctx, &gbc, pps);
if (err < 0)
return err;
err = cbs_h265_replace_pps(ctx, unit);
if (err < 0)
return err;
}
break;
case HEVC_NAL_TRAIL_N:
case HEVC_NAL_TRAIL_R:
case HEVC_NAL_TSA_N:
case HEVC_NAL_TSA_R:
case HEVC_NAL_STSA_N:
case HEVC_NAL_STSA_R:
case HEVC_NAL_RADL_N:
case HEVC_NAL_RADL_R:
case HEVC_NAL_RASL_N:
case HEVC_NAL_RASL_R:
case HEVC_NAL_BLA_W_LP:
case HEVC_NAL_BLA_W_RADL:
case HEVC_NAL_BLA_N_LP:
case HEVC_NAL_IDR_W_RADL:
case HEVC_NAL_IDR_N_LP:
case HEVC_NAL_CRA_NUT:
{
H265RawSlice *slice = unit->content;
int pos, len;
err = cbs_h265_read_slice_segment_header(ctx, &gbc, &slice->header);
if (err < 0)
return err;
if (!cbs_h2645_read_more_rbsp_data(&gbc))
return AVERROR_INVALIDDATA;
pos = get_bits_count(&gbc);
len = unit->data_size;
slice->data_size = len - pos / 8;
slice->data_ref = av_buffer_ref(unit->data_ref);
if (!slice->data_ref)
return AVERROR(ENOMEM);
slice->data = unit->data + pos / 8;
slice->data_bit_start = pos % 8;
}
break;
case HEVC_NAL_AUD:
{
err = cbs_h265_read_aud(ctx, &gbc, unit->content);
if (err < 0)
return err;
}
break;
case HEVC_NAL_SEI_PREFIX:
case HEVC_NAL_SEI_SUFFIX:
{
err = cbs_h265_read_sei(ctx, &gbc, unit->content,
unit->type == HEVC_NAL_SEI_PREFIX);
if (err < 0)
return err;
}
break;
default:
return AVERROR(ENOSYS);
}
return 0;
}
static int cbs_h266_read_nal_unit(CodedBitstreamContext *ctx,
CodedBitstreamUnit *unit)
{
GetBitContext gbc;
int err;
err = init_get_bits8(&gbc, unit->data, unit->data_size);
if (err < 0)
return err;
err = ff_cbs_alloc_unit_content(ctx, unit);
if (err < 0)
return err;
switch (unit->type) {
case VVC_DCI_NUT:
{
err = cbs_h266_read_dci(ctx, &gbc, unit->content);
if (err < 0)
return err;
}
break;
case VVC_OPI_NUT:
{
err = cbs_h266_read_opi(ctx, &gbc, unit->content);
if (err < 0)
return err;
}
break;
case VVC_VPS_NUT:
{
H266RawVPS *vps = unit->content;
err = cbs_h266_read_vps(ctx, &gbc, vps);
if (err < 0)
return err;
err = cbs_h266_replace_vps(ctx, unit);
if (err < 0)
return err;
}
break;
case VVC_SPS_NUT:
{
H266RawSPS *sps = unit->content;
err = cbs_h266_read_sps(ctx, &gbc, sps);
if (err < 0)
return err;
err = cbs_h266_replace_sps(ctx, unit);
if (err < 0)
return err;
}
break;
case VVC_PPS_NUT:
{
H266RawPPS *pps = unit->content;
err = cbs_h266_read_pps(ctx, &gbc, pps);
if (err < 0)
return err;
err = cbs_h266_replace_pps(ctx, unit);
if (err < 0)
return err;
}
break;
case VVC_PREFIX_APS_NUT:
case VVC_SUFFIX_APS_NUT:
{
err = cbs_h266_read_aps(ctx, &gbc, unit->content,
unit->type == VVC_PREFIX_APS_NUT);
if (err < 0)
return err;
}
break;
case VVC_PH_NUT:
{
H266RawPH *ph = unit->content;
err = cbs_h266_read_ph(ctx, &gbc, ph);
if (err < 0)
return err;
err = cbs_h266_replace_ph(ctx, unit, &ph->ph_picture_header);
if (err < 0)
return err;
}
break;
case VVC_TRAIL_NUT:
case VVC_STSA_NUT:
case VVC_RADL_NUT:
case VVC_RASL_NUT:
case VVC_IDR_W_RADL:
case VVC_IDR_N_LP:
case VVC_CRA_NUT:
case VVC_GDR_NUT:
{
H266RawSlice *slice = unit->content;
int pos, len;
err = cbs_h266_read_slice_header(ctx, &gbc, &slice->header);
if (err < 0)
return err;
if (!cbs_h2645_read_more_rbsp_data(&gbc))
return AVERROR_INVALIDDATA;
pos = get_bits_count(&gbc);
len = unit->data_size;
if (slice->header.sh_picture_header_in_slice_header_flag) {
err = cbs_h266_replace_ph(ctx, unit, &slice->header.sh_picture_header);
if (err < 0)
return err;
}
slice->header_size = pos / 8;
slice->data_size = len - pos / 8;
slice->data_ref = av_buffer_ref(unit->data_ref);
if (!slice->data_ref)
return AVERROR(ENOMEM);
slice->data = unit->data + pos / 8;
slice->data_bit_start = pos % 8;
}
break;
case VVC_AUD_NUT:
{
err = cbs_h266_read_aud(ctx, &gbc, unit->content);
if (err < 0)
return err;
}
break;
case VVC_PREFIX_SEI_NUT:
case VVC_SUFFIX_SEI_NUT:
{
err = cbs_h266_read_sei(ctx, &gbc, unit->content,
unit->type == VVC_PREFIX_SEI_NUT);
if (err < 0)
return err;
}
break;
default:
return AVERROR(ENOSYS);
}
return 0;
}
static int cbs_h2645_write_slice_data(CodedBitstreamContext *ctx,
PutBitContext *pbc, const uint8_t *data,
size_t data_size, int data_bit_start)
{
size_t rest = data_size - (data_bit_start + 7) / 8;
const uint8_t *pos = data + data_bit_start / 8;
av_assert0(data_bit_start >= 0 &&
data_size > data_bit_start / 8);
if (data_size * 8 + 8 > put_bits_left(pbc))
return AVERROR(ENOSPC);
if (!rest)
goto rbsp_stop_one_bit;
// First copy the remaining bits of the first byte
// The above check ensures that we do not accidentally
// copy beyond the rbsp_stop_one_bit.
if (data_bit_start % 8)
put_bits(pbc, 8 - data_bit_start % 8,
*pos++ & MAX_UINT_BITS(8 - data_bit_start % 8));
if (put_bits_count(pbc) % 8 == 0) {
// If the writer is aligned at this point,
// memcpy can be used to improve performance.
// This happens normally for CABAC.
flush_put_bits(pbc);
memcpy(put_bits_ptr(pbc), pos, rest);
skip_put_bytes(pbc, rest);
} else {
// If not, we have to copy manually.
// rbsp_stop_one_bit forces us to special-case
// the last byte.
uint8_t temp;
int i;
for (; rest > 4; rest -= 4, pos += 4)
put_bits32(pbc, AV_RB32(pos));
for (; rest > 1; rest--, pos++)
put_bits(pbc, 8, *pos);
rbsp_stop_one_bit:
temp = rest ? *pos : *pos & MAX_UINT_BITS(8 - data_bit_start % 8);
av_assert0(temp);
i = ff_ctz(*pos);
temp = temp >> i;
i = rest ? (8 - i) : (8 - i - data_bit_start % 8);
put_bits(pbc, i, temp);
if (put_bits_count(pbc) % 8)
put_bits(pbc, 8 - put_bits_count(pbc) % 8, 0);
}
return 0;
}
static int cbs_h264_write_nal_unit(CodedBitstreamContext *ctx,
CodedBitstreamUnit *unit,
PutBitContext *pbc)
{
int err;
switch (unit->type) {
case H264_NAL_SPS:
{
H264RawSPS *sps = unit->content;
err = cbs_h264_write_sps(ctx, pbc, sps);
if (err < 0)
return err;
err = cbs_h264_replace_sps(ctx, unit);
if (err < 0)
return err;
}
break;
case H264_NAL_SPS_EXT:
{
H264RawSPSExtension *sps_ext = unit->content;
err = cbs_h264_write_sps_extension(ctx, pbc, sps_ext);
if (err < 0)
return err;
}
break;
case H264_NAL_PPS:
{
H264RawPPS *pps = unit->content;
err = cbs_h264_write_pps(ctx, pbc, pps);
if (err < 0)
return err;
err = cbs_h264_replace_pps(ctx, unit);
if (err < 0)
return err;
}
break;
case H264_NAL_SLICE:
case H264_NAL_IDR_SLICE:
case H264_NAL_AUXILIARY_SLICE:
{
H264RawSlice *slice = unit->content;
err = cbs_h264_write_slice_header(ctx, pbc, &slice->header);
if (err < 0)
return err;
if (slice->data) {
err = cbs_h2645_write_slice_data(ctx, pbc, slice->data,
slice->data_size,
slice->data_bit_start);
if (err < 0)
return err;
} else {
// No slice data - that was just the header.
// (Bitstream may be unaligned!)
}
}
break;
case H264_NAL_AUD:
{
err = cbs_h264_write_aud(ctx, pbc, unit->content);
if (err < 0)
return err;
}
break;
case H264_NAL_SEI:
{
err = cbs_h264_write_sei(ctx, pbc, unit->content);
if (err < 0)
return err;
}
break;
case H264_NAL_FILLER_DATA:
{
err = cbs_h264_write_filler(ctx, pbc, unit->content);
if (err < 0)
return err;
}
break;
case H264_NAL_END_SEQUENCE:
{
err = cbs_h264_write_end_of_sequence(ctx, pbc, unit->content);
if (err < 0)
return err;
}
break;
case H264_NAL_END_STREAM:
{
err = cbs_h264_write_end_of_stream(ctx, pbc, unit->content);
if (err < 0)
return err;
}
break;
default:
av_log(ctx->log_ctx, AV_LOG_ERROR, "Write unimplemented for "
"NAL unit type %"PRIu32".\n", unit->type);
return AVERROR_PATCHWELCOME;
}
return 0;
}
static int cbs_h265_write_nal_unit(CodedBitstreamContext *ctx,
CodedBitstreamUnit *unit,
PutBitContext *pbc)
{
int err;
switch (unit->type) {
case HEVC_NAL_VPS:
{
H265RawVPS *vps = unit->content;
err = cbs_h265_write_vps(ctx, pbc, vps);
if (err < 0)
return err;
err = cbs_h265_replace_vps(ctx, unit);
if (err < 0)
return err;
}
break;
case HEVC_NAL_SPS:
{
H265RawSPS *sps = unit->content;
err = cbs_h265_write_sps(ctx, pbc, sps);
if (err < 0)
return err;
err = cbs_h265_replace_sps(ctx, unit);
if (err < 0)
return err;
}
break;
case HEVC_NAL_PPS:
{
H265RawPPS *pps = unit->content;
err = cbs_h265_write_pps(ctx, pbc, pps);
if (err < 0)
return err;
err = cbs_h265_replace_pps(ctx, unit);
if (err < 0)
return err;
}
break;
case HEVC_NAL_TRAIL_N:
case HEVC_NAL_TRAIL_R:
case HEVC_NAL_TSA_N:
case HEVC_NAL_TSA_R:
case HEVC_NAL_STSA_N:
case HEVC_NAL_STSA_R:
case HEVC_NAL_RADL_N:
case HEVC_NAL_RADL_R:
case HEVC_NAL_RASL_N:
case HEVC_NAL_RASL_R:
case HEVC_NAL_BLA_W_LP:
case HEVC_NAL_BLA_W_RADL:
case HEVC_NAL_BLA_N_LP:
case HEVC_NAL_IDR_W_RADL:
case HEVC_NAL_IDR_N_LP:
case HEVC_NAL_CRA_NUT:
{
H265RawSlice *slice = unit->content;
err = cbs_h265_write_slice_segment_header(ctx, pbc, &slice->header);
if (err < 0)
return err;
if (slice->data) {
err = cbs_h2645_write_slice_data(ctx, pbc, slice->data,
slice->data_size,
slice->data_bit_start);
if (err < 0)
return err;
} else {
// No slice data - that was just the header.
}
}
break;
case HEVC_NAL_AUD:
{
err = cbs_h265_write_aud(ctx, pbc, unit->content);
if (err < 0)
return err;
}
break;
case HEVC_NAL_SEI_PREFIX:
case HEVC_NAL_SEI_SUFFIX:
{
err = cbs_h265_write_sei(ctx, pbc, unit->content,
unit->type == HEVC_NAL_SEI_PREFIX);
if (err < 0)
return err;
}
break;
default:
av_log(ctx->log_ctx, AV_LOG_ERROR, "Write unimplemented for "
"NAL unit type %"PRIu32".\n", unit->type);
return AVERROR_PATCHWELCOME;
}
return 0;
}
static int cbs_h264_discarded_nal_unit(CodedBitstreamContext *ctx,
const CodedBitstreamUnit *unit,
enum AVDiscard skip)
{
H264RawNALUnitHeader *header;
H264RawSliceHeader *slice;
int slice_type_i, slice_type_b, slice_type_si;
if (skip <= AVDISCARD_DEFAULT)
return 0;
// keep non-VCL
if (unit->type != H264_NAL_SLICE &&
unit->type != H264_NAL_IDR_SLICE &&
unit->type != H264_NAL_AUXILIARY_SLICE)
return 0;
if (skip >= AVDISCARD_ALL)
return 1;
if (skip >= AVDISCARD_NONKEY && unit->type != H264_NAL_IDR_SLICE)
return 1;
header = (H264RawNALUnitHeader *)unit->content;
if (!header) {
av_log(ctx->log_ctx, AV_LOG_WARNING,
"h264 nal unit header is null, missing decompose?\n");
return 0;
}
if (skip >= AVDISCARD_NONREF && !header->nal_ref_idc)
return 1;
slice = (H264RawSliceHeader *)unit->content;
if (!slice) {
av_log(ctx->log_ctx, AV_LOG_WARNING,
"h264 slice header is null, missing decompose?\n");
return 0;
}
slice_type_i = slice->slice_type % 5 == 2;
slice_type_b = slice->slice_type % 5 == 1;
slice_type_si = slice->slice_type % 5 == 4;
if (skip >= AVDISCARD_BIDIR && slice_type_b)
return 1;
if (skip >= AVDISCARD_NONINTRA && !slice_type_i && !slice_type_si)
return 1;
return 0;
}
static int cbs_h265_discarded_nal_unit(CodedBitstreamContext *ctx,
const CodedBitstreamUnit *unit,
enum AVDiscard skip)
{
H265RawSliceHeader *slice;
if (skip <= AVDISCARD_DEFAULT)
return 0;
switch (unit->type) {
case HEVC_NAL_BLA_W_LP:
case HEVC_NAL_BLA_W_RADL:
case HEVC_NAL_BLA_N_LP:
case HEVC_NAL_IDR_W_RADL:
case HEVC_NAL_IDR_N_LP:
case HEVC_NAL_CRA_NUT:
// IRAP slice
if (skip < AVDISCARD_ALL)
return 0;
break;
case HEVC_NAL_TRAIL_R:
case HEVC_NAL_TRAIL_N:
case HEVC_NAL_TSA_N:
case HEVC_NAL_TSA_R:
case HEVC_NAL_STSA_N:
case HEVC_NAL_STSA_R:
case HEVC_NAL_RADL_N:
case HEVC_NAL_RADL_R:
case HEVC_NAL_RASL_N:
case HEVC_NAL_RASL_R:
// Slice
break;
default:
// Don't discard non-slice nal.
return 0;
}
if (skip >= AVDISCARD_NONKEY)
return 1;
slice = (H265RawSliceHeader *)unit->content;
if (!slice) {
av_log(ctx->log_ctx, AV_LOG_WARNING,
"h265 slice header is null, missing decompose?\n");
return 0;
}
if (skip >= AVDISCARD_NONINTRA && slice->slice_type != HEVC_SLICE_I)
return 1;
if (skip >= AVDISCARD_BIDIR && slice->slice_type == HEVC_SLICE_B)
return 1;
if (skip >= AVDISCARD_NONREF) {
switch (unit->type) {
case HEVC_NAL_TRAIL_N:
case HEVC_NAL_TSA_N:
case HEVC_NAL_STSA_N:
case HEVC_NAL_RADL_N:
case HEVC_NAL_RASL_N:
case HEVC_NAL_VCL_N10:
case HEVC_NAL_VCL_N12:
case HEVC_NAL_VCL_N14:
// non-ref
return 1;
default:
break;
}
}
return 0;
}
static int cbs_h266_write_nal_unit(CodedBitstreamContext *ctx,
CodedBitstreamUnit *unit,
PutBitContext *pbc)
{
int err;
switch (unit->type) {
case VVC_DCI_NUT:
{
H266RawDCI *dci = unit->content;
err = cbs_h266_write_dci(ctx, pbc, dci);
if (err < 0)
return err;
}
break;
case VVC_OPI_NUT:
{
H266RawOPI *opi = unit->content;
err = cbs_h266_write_opi(ctx, pbc, opi);
if (err < 0)
return err;
}
break;
case VVC_VPS_NUT:
{
H266RawVPS *vps = unit->content;
err = cbs_h266_write_vps(ctx, pbc, vps);
if (err < 0)
return err;
err = cbs_h266_replace_vps(ctx, unit);
if (err < 0)
return err;
}
break;
case VVC_SPS_NUT:
{
H266RawSPS *sps = unit->content;
err = cbs_h266_write_sps(ctx, pbc, sps);
if (err < 0)
return err;
err = cbs_h266_replace_sps(ctx, unit);
if (err < 0)
return err;
}
break;
case VVC_PPS_NUT:
{
H266RawPPS *pps = unit->content;
err = cbs_h266_write_pps(ctx, pbc, pps);
if (err < 0)
return err;
err = cbs_h266_replace_pps(ctx, unit);
if (err < 0)
return err;
}
break;
case VVC_PREFIX_APS_NUT:
case VVC_SUFFIX_APS_NUT:
{
err = cbs_h266_write_aps(ctx, pbc, unit->content,
unit->type == VVC_PREFIX_APS_NUT);
if (err < 0)
return err;
}
break;
case VVC_PH_NUT:
{
H266RawPH *ph = unit->content;
err = cbs_h266_write_ph(ctx, pbc, ph);
if (err < 0)
return err;
err = cbs_h266_replace_ph(ctx, unit, &ph->ph_picture_header);
if (err < 0)
return err;
}
break;
case VVC_TRAIL_NUT:
case VVC_STSA_NUT:
case VVC_RADL_NUT:
case VVC_RASL_NUT:
case VVC_IDR_W_RADL:
case VVC_IDR_N_LP:
case VVC_CRA_NUT:
case VVC_GDR_NUT:
{
H266RawSlice *slice = unit->content;
err = cbs_h266_write_slice_header(ctx, pbc, &slice->header);
if (err < 0)
return err;
if (slice->header.sh_picture_header_in_slice_header_flag) {
err = cbs_h266_replace_ph(ctx, unit, &slice->header.sh_picture_header);
if (err < 0)
return err;
}
if (slice->data) {
err = cbs_h2645_write_slice_data(ctx, pbc, slice->data,
slice->data_size,
slice->data_bit_start);
if (err < 0)
return err;
} else {
// No slice data - that was just the header.
}
}
break;
case VVC_AUD_NUT:
{
err = cbs_h266_write_aud(ctx, pbc, unit->content);
if (err < 0)
return err;
}
break;
case VVC_PREFIX_SEI_NUT:
case VVC_SUFFIX_SEI_NUT:
{
err = cbs_h266_write_sei(ctx, pbc, unit->content,
unit->type == VVC_PREFIX_SEI_NUT);
if (err < 0)
return err;
}
break;
default:
av_log(ctx->log_ctx, AV_LOG_ERROR, "Write unimplemented for "
"NAL unit type %"PRIu32".\n", unit->type);
return AVERROR_PATCHWELCOME;
}
return 0;
}
static int cbs_h2645_unit_requires_zero_byte(enum AVCodecID codec_id,
CodedBitstreamUnitType type,
int nal_unit_index)
{
// Section B.1.2 in H.264, section B.2.2 in H.265, H.266.
if (nal_unit_index == 0) {
// Assume that this is the first NAL unit in an access unit.
return 1;
}
if (codec_id == AV_CODEC_ID_H264)
return type == H264_NAL_SPS || type == H264_NAL_PPS;
if (codec_id == AV_CODEC_ID_HEVC)
return type == HEVC_NAL_VPS || type == HEVC_NAL_SPS || type == HEVC_NAL_PPS;
if (codec_id == AV_CODEC_ID_VVC)
return type >= VVC_OPI_NUT && type <= VVC_SUFFIX_APS_NUT;
return 0;
}
static int cbs_h2645_assemble_fragment(CodedBitstreamContext *ctx,
CodedBitstreamFragment *frag)
{
uint8_t *data;
size_t max_size, dp, sp;
int err, i, zero_run;
for (i = 0; i < frag->nb_units; i++) {
// Data should already all have been written when we get here.
av_assert0(frag->units[i].data);
}
max_size = 0;
for (i = 0; i < frag->nb_units; i++) {
// Start code + content with worst-case emulation prevention.
max_size += 4 + frag->units[i].data_size * 3 / 2;
}
data = av_realloc(NULL, max_size + AV_INPUT_BUFFER_PADDING_SIZE);
if (!data)
return AVERROR(ENOMEM);
dp = 0;
for (i = 0; i < frag->nb_units; i++) {
CodedBitstreamUnit *unit = &frag->units[i];
if (unit->data_bit_padding > 0) {
if (i < frag->nb_units - 1)
av_log(ctx->log_ctx, AV_LOG_WARNING, "Probably invalid "
"unaligned padding on non-final NAL unit.\n");
else
frag->data_bit_padding = unit->data_bit_padding;
}
if (cbs_h2645_unit_requires_zero_byte(ctx->codec->codec_id, unit->type, i)) {
// zero_byte
data[dp++] = 0;
}
// start_code_prefix_one_3bytes
data[dp++] = 0;
data[dp++] = 0;
data[dp++] = 1;
zero_run = 0;
for (sp = 0; sp < unit->data_size; sp++) {
if (zero_run < 2) {
if (unit->data[sp] == 0)
++zero_run;
else
zero_run = 0;
} else {
if ((unit->data[sp] & ~3) == 0) {
// emulation_prevention_three_byte
data[dp++] = 3;
}
zero_run = unit->data[sp] == 0;
}
data[dp++] = unit->data[sp];
}
}
av_assert0(dp <= max_size);
err = av_reallocp(&data, dp + AV_INPUT_BUFFER_PADDING_SIZE);
if (err)
return err;
memset(data + dp, 0, AV_INPUT_BUFFER_PADDING_SIZE);
frag->data_ref = av_buffer_create(data, dp + AV_INPUT_BUFFER_PADDING_SIZE,
NULL, NULL, 0);
if (!frag->data_ref) {
av_freep(&data);
return AVERROR(ENOMEM);
}
frag->data = data;
frag->data_size = dp;
return 0;
}
static void cbs_h264_flush(CodedBitstreamContext *ctx)
{
CodedBitstreamH264Context *h264 = ctx->priv_data;
for (int i = 0; i < FF_ARRAY_ELEMS(h264->sps); i++)
ff_refstruct_unref(&h264->sps[i]);
for (int i = 0; i < FF_ARRAY_ELEMS(h264->pps); i++)
ff_refstruct_unref(&h264->pps[i]);
h264->active_sps = NULL;
h264->active_pps = NULL;
h264->last_slice_nal_unit_type = 0;
}
static void cbs_h264_close(CodedBitstreamContext *ctx)
{
CodedBitstreamH264Context *h264 = ctx->priv_data;
int i;
ff_h2645_packet_uninit(&h264->common.read_packet);
for (i = 0; i < FF_ARRAY_ELEMS(h264->sps); i++)
ff_refstruct_unref(&h264->sps[i]);
for (i = 0; i < FF_ARRAY_ELEMS(h264->pps); i++)
ff_refstruct_unref(&h264->pps[i]);
}
static void cbs_h265_flush(CodedBitstreamContext *ctx)
{
CodedBitstreamH265Context *h265 = ctx->priv_data;
for (int i = 0; i < FF_ARRAY_ELEMS(h265->vps); i++)
ff_refstruct_unref(&h265->vps[i]);
for (int i = 0; i < FF_ARRAY_ELEMS(h265->sps); i++)
ff_refstruct_unref(&h265->sps[i]);
for (int i = 0; i < FF_ARRAY_ELEMS(h265->pps); i++)
ff_refstruct_unref(&h265->pps[i]);
h265->active_vps = NULL;
h265->active_sps = NULL;
h265->active_pps = NULL;
}
static void cbs_h265_close(CodedBitstreamContext *ctx)
{
CodedBitstreamH265Context *h265 = ctx->priv_data;
int i;
ff_h2645_packet_uninit(&h265->common.read_packet);
for (i = 0; i < FF_ARRAY_ELEMS(h265->vps); i++)
ff_refstruct_unref(&h265->vps[i]);
for (i = 0; i < FF_ARRAY_ELEMS(h265->sps); i++)
ff_refstruct_unref(&h265->sps[i]);
for (i = 0; i < FF_ARRAY_ELEMS(h265->pps); i++)
ff_refstruct_unref(&h265->pps[i]);
}
static void cbs_h266_flush(CodedBitstreamContext *ctx)
{
CodedBitstreamH266Context *h266 = ctx->priv_data;
for (int i = 0; i < FF_ARRAY_ELEMS(h266->vps); i++)
ff_refstruct_unref(&h266->vps[i]);
for (int i = 0; i < FF_ARRAY_ELEMS(h266->sps); i++)
ff_refstruct_unref(&h266->sps[i]);
for (int i = 0; i < FF_ARRAY_ELEMS(h266->pps); i++)
ff_refstruct_unref(&h266->pps[i]);
ff_refstruct_unref(&h266->ph_ref);
}
static void cbs_h266_close(CodedBitstreamContext *ctx)
{
CodedBitstreamH266Context *h266 = ctx->priv_data;
cbs_h266_flush(ctx);
ff_h2645_packet_uninit(&h266->common.read_packet);
}
static void cbs_h264_free_sei(FFRefStructOpaque unused, void *content)
{
H264RawSEI *sei = content;
ff_cbs_sei_free_message_list(&sei->message_list);
}
static const CodedBitstreamUnitTypeDescriptor cbs_h264_unit_types[] = {
CBS_UNIT_TYPE_POD(H264_NAL_SPS, H264RawSPS),
CBS_UNIT_TYPE_POD(H264_NAL_SPS_EXT, H264RawSPSExtension),
CBS_UNIT_TYPE_INTERNAL_REF(H264_NAL_PPS, H264RawPPS, slice_group_id),
CBS_UNIT_TYPES_INTERNAL_REF((H264_NAL_IDR_SLICE,
H264_NAL_SLICE,
H264_NAL_AUXILIARY_SLICE), H264RawSlice, data),
CBS_UNIT_TYPE_POD(H264_NAL_AUD, H264RawAUD),
CBS_UNIT_TYPE_POD(H264_NAL_FILLER_DATA, H264RawFiller),
CBS_UNIT_TYPE_POD(H264_NAL_END_SEQUENCE, H264RawNALUnitHeader),
CBS_UNIT_TYPE_POD(H264_NAL_END_STREAM, H264RawNALUnitHeader),
CBS_UNIT_TYPE_COMPLEX(H264_NAL_SEI, H264RawSEI, &cbs_h264_free_sei),
CBS_UNIT_TYPE_END_OF_LIST
};
static void cbs_h265_free_sei(FFRefStructOpaque unused, void *content)
{
H265RawSEI *sei = content;
ff_cbs_sei_free_message_list(&sei->message_list);
}
static const CodedBitstreamUnitTypeDescriptor cbs_h265_unit_types[] = {
CBS_UNIT_TYPE_INTERNAL_REF(HEVC_NAL_VPS, H265RawVPS, extension_data.data),
CBS_UNIT_TYPE_INTERNAL_REF(HEVC_NAL_SPS, H265RawSPS, extension_data.data),
CBS_UNIT_TYPE_INTERNAL_REF(HEVC_NAL_PPS, H265RawPPS, extension_data.data),
CBS_UNIT_TYPE_POD(HEVC_NAL_AUD, H265RawAUD),
// Slices of non-IRAP pictures.
CBS_UNIT_RANGE_INTERNAL_REF(HEVC_NAL_TRAIL_N, HEVC_NAL_RASL_R,
H265RawSlice, data),
// Slices of IRAP pictures.
CBS_UNIT_RANGE_INTERNAL_REF(HEVC_NAL_BLA_W_LP, HEVC_NAL_CRA_NUT,
H265RawSlice, data),
CBS_UNIT_TYPES_COMPLEX((HEVC_NAL_SEI_PREFIX, HEVC_NAL_SEI_SUFFIX),
H265RawSEI, cbs_h265_free_sei),
CBS_UNIT_TYPE_END_OF_LIST
};
static void cbs_h266_free_sei(FFRefStructOpaque unused, void *content)
{
H266RawSEI *sei = content;
ff_cbs_sei_free_message_list(&sei->message_list);
}
static const CodedBitstreamUnitTypeDescriptor cbs_h266_unit_types[] = {
CBS_UNIT_TYPE_INTERNAL_REF(VVC_DCI_NUT, H266RawDCI, extension_data.data),
CBS_UNIT_TYPE_INTERNAL_REF(VVC_OPI_NUT, H266RawOPI, extension_data.data),
CBS_UNIT_TYPE_INTERNAL_REF(VVC_VPS_NUT, H266RawVPS, extension_data.data),
{
.nb_unit_types = 1,
.unit_type.list[0] = VVC_SPS_NUT,
.content_type = CBS_CONTENT_TYPE_INTERNAL_REFS,
.content_size = sizeof(H266RawSPS),
.type.ref = {
.nb_offsets = 2,
.offsets = { offsetof(H266RawSPS, extension_data.data),
offsetof(H266RawSPS, vui.extension_data.data) }
},
},
CBS_UNIT_TYPE_INTERNAL_REF(VVC_PPS_NUT, H266RawPPS, extension_data.data),
CBS_UNIT_TYPE_INTERNAL_REF(VVC_PREFIX_APS_NUT, H266RawAPS, extension_data.data),
CBS_UNIT_TYPE_INTERNAL_REF(VVC_SUFFIX_APS_NUT, H266RawAPS, extension_data.data),
CBS_UNIT_TYPE_POD(VVC_PH_NUT , H266RawPH),
CBS_UNIT_TYPE_POD(VVC_AUD_NUT, H266RawAUD),
CBS_UNIT_RANGE_INTERNAL_REF(VVC_TRAIL_NUT, VVC_RASL_NUT,
H266RawSlice, data),
CBS_UNIT_RANGE_INTERNAL_REF(VVC_IDR_W_RADL, VVC_GDR_NUT,
H266RawSlice, data),
CBS_UNIT_TYPES_COMPLEX((VVC_PREFIX_SEI_NUT, VVC_SUFFIX_SEI_NUT),
H266RawSEI, cbs_h266_free_sei),
CBS_UNIT_TYPE_END_OF_LIST
};
const CodedBitstreamType ff_cbs_type_h264 = {
.codec_id = AV_CODEC_ID_H264,
.priv_data_size = sizeof(CodedBitstreamH264Context),
.unit_types = cbs_h264_unit_types,
.split_fragment = &cbs_h2645_split_fragment,
.read_unit = &cbs_h264_read_nal_unit,
.write_unit = &cbs_h264_write_nal_unit,
.discarded_unit = &cbs_h264_discarded_nal_unit,
.assemble_fragment = &cbs_h2645_assemble_fragment,
.flush = &cbs_h264_flush,
.close = &cbs_h264_close,
};
const CodedBitstreamType ff_cbs_type_h265 = {
.codec_id = AV_CODEC_ID_HEVC,
.priv_data_size = sizeof(CodedBitstreamH265Context),
.unit_types = cbs_h265_unit_types,
.split_fragment = &cbs_h2645_split_fragment,
.read_unit = &cbs_h265_read_nal_unit,
.write_unit = &cbs_h265_write_nal_unit,
.discarded_unit = &cbs_h265_discarded_nal_unit,
.assemble_fragment = &cbs_h2645_assemble_fragment,
.flush = &cbs_h265_flush,
.close = &cbs_h265_close,
};
const CodedBitstreamType ff_cbs_type_h266 = {
.codec_id = AV_CODEC_ID_VVC,
.priv_data_size = sizeof(CodedBitstreamH266Context),
.unit_types = cbs_h266_unit_types,
.split_fragment = &cbs_h2645_split_fragment,
.read_unit = &cbs_h266_read_nal_unit,
.write_unit = &cbs_h266_write_nal_unit,
.assemble_fragment = &cbs_h2645_assemble_fragment,
.flush = &cbs_h266_flush,
.close = &cbs_h266_close,
};
// Macro for the read/write pair.
#define SEI_MESSAGE_RW(codec, name) \
.read = cbs_ ## codec ## _read_ ## name ## _internal, \
.write = cbs_ ## codec ## _write_ ## name ## _internal
static const SEIMessageTypeDescriptor cbs_sei_common_types[] = {
{
SEI_TYPE_FILLER_PAYLOAD,
1, 1,
sizeof(SEIRawFillerPayload),
SEI_MESSAGE_RW(sei, filler_payload),
},
{
SEI_TYPE_USER_DATA_REGISTERED_ITU_T_T35,
1, 1,
sizeof(SEIRawUserDataRegistered),
SEI_MESSAGE_RW(sei, user_data_registered),
},
{
SEI_TYPE_USER_DATA_UNREGISTERED,
1, 1,
sizeof(SEIRawUserDataUnregistered),
SEI_MESSAGE_RW(sei, user_data_unregistered),
},
{
SEI_TYPE_FRAME_PACKING_ARRANGEMENT,
1, 0,
sizeof(SEIRawFramePackingArrangement),
SEI_MESSAGE_RW(sei, frame_packing_arrangement),
},
{
SEI_TYPE_DECODED_PICTURE_HASH,
0, 1,
sizeof(SEIRawDecodedPictureHash),
SEI_MESSAGE_RW(sei, decoded_picture_hash),
},
{
SEI_TYPE_MASTERING_DISPLAY_COLOUR_VOLUME,
1, 0,
sizeof(SEIRawMasteringDisplayColourVolume),
SEI_MESSAGE_RW(sei, mastering_display_colour_volume),
},
{
SEI_TYPE_CONTENT_LIGHT_LEVEL_INFO,
1, 0,
sizeof(SEIRawContentLightLevelInfo),
SEI_MESSAGE_RW(sei, content_light_level_info),
},
{
SEI_TYPE_ALTERNATIVE_TRANSFER_CHARACTERISTICS,
1, 0,
sizeof(SEIRawAlternativeTransferCharacteristics),
SEI_MESSAGE_RW(sei, alternative_transfer_characteristics),
},
{
SEI_TYPE_AMBIENT_VIEWING_ENVIRONMENT,
1, 0,
sizeof(SEIRawAmbientViewingEnvironment),
SEI_MESSAGE_RW(sei, ambient_viewing_environment),
},
SEI_MESSAGE_TYPE_END,
};
static const SEIMessageTypeDescriptor cbs_sei_h264_types[] = {
{
SEI_TYPE_BUFFERING_PERIOD,
1, 0,
sizeof(H264RawSEIBufferingPeriod),
SEI_MESSAGE_RW(h264, sei_buffering_period),
},
{
SEI_TYPE_PIC_TIMING,
1, 0,
sizeof(H264RawSEIPicTiming),
SEI_MESSAGE_RW(h264, sei_pic_timing),
},
{
SEI_TYPE_PAN_SCAN_RECT,
1, 0,
sizeof(H264RawSEIPanScanRect),
SEI_MESSAGE_RW(h264, sei_pan_scan_rect),
},
{
SEI_TYPE_RECOVERY_POINT,
1, 0,
sizeof(H264RawSEIRecoveryPoint),
SEI_MESSAGE_RW(h264, sei_recovery_point),
},
{
SEI_TYPE_FILM_GRAIN_CHARACTERISTICS,
1, 0,
sizeof(H264RawFilmGrainCharacteristics),
SEI_MESSAGE_RW(h264, film_grain_characteristics),
},
{
SEI_TYPE_FRAME_PACKING_ARRANGEMENT,
1, 0,
sizeof(H264RawSEIFramePackingArrangement),
SEI_MESSAGE_RW(h264, sei_frame_packing_arrangement),
},
{
SEI_TYPE_DISPLAY_ORIENTATION,
1, 0,
sizeof(H264RawSEIDisplayOrientation),
SEI_MESSAGE_RW(h264, sei_display_orientation),
},
SEI_MESSAGE_TYPE_END
};
static const SEIMessageTypeDescriptor cbs_sei_h265_types[] = {
{
SEI_TYPE_BUFFERING_PERIOD,
1, 0,
sizeof(H265RawSEIBufferingPeriod),
SEI_MESSAGE_RW(h265, sei_buffering_period),
},
{
SEI_TYPE_PIC_TIMING,
1, 0,
sizeof(H265RawSEIPicTiming),
SEI_MESSAGE_RW(h265, sei_pic_timing),
},
{
SEI_TYPE_PAN_SCAN_RECT,
1, 0,
sizeof(H265RawSEIPanScanRect),
SEI_MESSAGE_RW(h265, sei_pan_scan_rect),
},
{
SEI_TYPE_RECOVERY_POINT,
1, 0,
sizeof(H265RawSEIRecoveryPoint),
SEI_MESSAGE_RW(h265, sei_recovery_point),
},
{
SEI_TYPE_FILM_GRAIN_CHARACTERISTICS,
1, 0,
sizeof(H265RawFilmGrainCharacteristics),
SEI_MESSAGE_RW(h265, film_grain_characteristics),
},
{
SEI_TYPE_DISPLAY_ORIENTATION,
1, 0,
sizeof(H265RawSEIDisplayOrientation),
SEI_MESSAGE_RW(h265, sei_display_orientation),
},
{
SEI_TYPE_ACTIVE_PARAMETER_SETS,
1, 0,
sizeof(H265RawSEIActiveParameterSets),
SEI_MESSAGE_RW(h265, sei_active_parameter_sets),
},
{
SEI_TYPE_DECODED_PICTURE_HASH,
0, 1,
sizeof(H265RawSEIDecodedPictureHash),
SEI_MESSAGE_RW(h265, sei_decoded_picture_hash),
},
{
SEI_TYPE_TIME_CODE,
1, 0,
sizeof(H265RawSEITimeCode),
SEI_MESSAGE_RW(h265, sei_time_code),
},
{
SEI_TYPE_ALPHA_CHANNEL_INFO,
1, 0,
sizeof(H265RawSEIAlphaChannelInfo),
SEI_MESSAGE_RW(h265, sei_alpha_channel_info),
},
{
SEI_TYPE_THREE_DIMENSIONAL_REFERENCE_DISPLAYS_INFO,
1, 0,
sizeof(H265RawSEI3DReferenceDisplaysInfo),
SEI_MESSAGE_RW(h265, sei_3d_reference_displays_info),
},
SEI_MESSAGE_TYPE_END
};
static const SEIMessageTypeDescriptor cbs_sei_h266_types[] = {
SEI_MESSAGE_TYPE_END
};
const SEIMessageTypeDescriptor *ff_cbs_sei_find_type(CodedBitstreamContext *ctx,
int payload_type)
{
const SEIMessageTypeDescriptor *codec_list;
int i;
switch (ctx->codec->codec_id) {
case AV_CODEC_ID_H264:
codec_list = cbs_sei_h264_types;
break;
case AV_CODEC_ID_H265:
codec_list = cbs_sei_h265_types;
break;
case AV_CODEC_ID_H266:
codec_list = cbs_sei_h266_types;
break;
default:
return NULL;
}
for (i = 0; codec_list[i].type >= 0; i++) {
if (codec_list[i].type == payload_type)
return &codec_list[i];
}
for (i = 0; cbs_sei_common_types[i].type >= 0; i++) {
if (cbs_sei_common_types[i].type == payload_type)
return &cbs_sei_common_types[i];
}
return NULL;
}