1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2024-12-28 20:53:54 +02:00
FFmpeg/libavcodec/aaccoder_twoloop.h
Claudio Freire ca203e9985 AAC encoder: improve SF range utilization
This patch does 4 things, all of which interact and thus it
woudln't be possible to commit them separately without causing
either quality regressions or assertion failures.

Fate comparison targets don't all reflect improvements in
quality, yet listening tests show substantially improved quality
and stability.

1. Increase SF range utilization.

The spec requires SF delta values to be constrained within the
range -60..60. The previous code was applying that range to
the whole SF array and not only the deltas of consecutive values,
because doing so requires smarter code: zeroing or otherwise
skipping a band may invalidate lots of SF choices.

This patch implements that logic to allow the coders to utilize
the full dynamic range of scalefactors, increasing quality quite
considerably, and fixing delta-SF-related assertion failures,
since now the limitation is enforced rather than asserted.

2. PNS tweaks

The previous modification makes big improvements in twoloop's
efficiency, and every time that happens PNS logic needs to be
tweaked accordingly to avoid it from stepping all over twoloop's
decisions. This patch includes modifications of the sort.

3. Account for lowpass cutoff during PSY analysis

The closer PSY's allocation is to final allocation the better
the quality is, and given these modifications, twoloop is now
very efficient at avoiding holes. Thus, to compute accurate
thresholds, PSY needs to account for the lowpass applied
implicitly during twoloop (by zeroing high bands).

This patch makes twoloop set the cutoff in psymodel's context
the first time it runs, and makes PSY account for it during
threshold computation, making PE and threshold computations
closer to the final allocation and thus achieving better
subjective quality.

4. Tweaks to RC lambda tracking loop in relation to PNS

Without this tweak some corner cases cause quality regressions.
Basically, lambda needs to react faster to overall bitrate
efficiency changes since now PNS can be quite successful in
enforcing maximum bitrates, when PSY allocates too many bits
to the lower bands, suppressing the signals RC logic uses to
lower lambda in those cases and causing aggressive PNS.

This tweak makes PNS much less aggressive, though it can still
use some further tweaks.

Also update MIPS specializations and adjust fuzz

Also in lavc/mips/aacpsy_mips.h: remove trailing whitespace
2015-12-02 07:47:37 -03:00

756 lines
34 KiB
C

/*
* AAC encoder twoloop coder
* Copyright (C) 2008-2009 Konstantin Shishkov
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* AAC encoder twoloop coder
* @author Konstantin Shishkov, Claudio Freire
*/
/**
* This file contains a template for the twoloop coder function.
* It needs to be provided, externally, as an already included declaration,
* the following functions from aacenc_quantization/util.h. They're not included
* explicitly here to make it possible to provide alternative implementations:
* - quantize_band_cost
* - abs_pow34_v
* - find_max_val
* - find_min_book
* - find_form_factor
*/
#ifndef AVCODEC_AACCODER_TWOLOOP_H
#define AVCODEC_AACCODER_TWOLOOP_H
#include <float.h>
#include "libavutil/mathematics.h"
#include "mathops.h"
#include "avcodec.h"
#include "put_bits.h"
#include "aac.h"
#include "aacenc.h"
#include "aactab.h"
#include "aacenctab.h"
/** Frequency in Hz for lower limit of noise substitution **/
#define NOISE_LOW_LIMIT 4000
#define sclip(x) av_clip(x,60,218)
/* Reflects the cost to change codebooks */
static inline int ff_pns_bits(SingleChannelElement *sce, int w, int g)
{
return (!g || !sce->zeroes[w*16+g-1] || !sce->can_pns[w*16+g-1]) ? 9 : 5;
}
/**
* two-loop quantizers search taken from ISO 13818-7 Appendix C
*/
static void search_for_quantizers_twoloop(AVCodecContext *avctx,
AACEncContext *s,
SingleChannelElement *sce,
const float lambda)
{
int start = 0, i, w, w2, g, recomprd;
int destbits = avctx->bit_rate * 1024.0 / avctx->sample_rate
/ ((avctx->flags & CODEC_FLAG_QSCALE) ? 2.0f : avctx->channels)
* (lambda / 120.f);
int refbits = destbits;
int toomanybits, toofewbits;
char nzs[128];
uint8_t nextband[128];
int maxsf[128];
float dists[128] = { 0 }, qenergies[128] = { 0 }, uplims[128], euplims[128], energies[128];
float maxvals[128], spread_thr_r[128];
float min_spread_thr_r, max_spread_thr_r;
/**
* rdlambda controls the maximum tolerated distortion. Twoloop
* will keep iterating until it fails to lower it or it reaches
* ulimit * rdlambda. Keeping it low increases quality on difficult
* signals, but lower it too much, and bits will be taken from weak
* signals, creating "holes". A balance is necesary.
* rdmax and rdmin specify the relative deviation from rdlambda
* allowed for tonality compensation
*/
float rdlambda = av_clipf(2.0f * 120.f / lambda, 0.0625f, 16.0f);
const float nzslope = 1.5f;
float rdmin = 0.03125f;
float rdmax = 1.0f;
/**
* sfoffs controls an offset of optmium allocation that will be
* applied based on lambda. Keep it real and modest, the loop
* will take care of the rest, this just accelerates convergence
*/
float sfoffs = av_clipf(log2f(120.0f / lambda) * 4.0f, -5, 10);
int fflag, minscaler, maxscaler, nminscaler;
int its = 0;
int maxits = 30;
int allz = 0;
int tbits;
int cutoff = 1024;
int pns_start_pos;
int prev;
/**
* zeroscale controls a multiplier of the threshold, if band energy
* is below this, a zero is forced. Keep it lower than 1, unless
* low lambda is used, because energy < threshold doesn't mean there's
* no audible signal outright, it's just energy. Also make it rise
* slower than rdlambda, as rdscale has due compensation with
* noisy band depriorization below, whereas zeroing logic is rather dumb
*/
float zeroscale;
if (lambda > 120.f) {
zeroscale = av_clipf(powf(120.f / lambda, 0.25f), 0.0625f, 1.0f);
} else {
zeroscale = 1.f;
}
if (s->psy.bitres.alloc >= 0) {
/**
* Psy granted us extra bits to use, from the reservoire
* adjust for lambda except what psy already did
*/
destbits = s->psy.bitres.alloc
* (lambda / (avctx->global_quality ? avctx->global_quality : 120));
}
if (avctx->flags & CODEC_FLAG_QSCALE) {
/**
* Constant Q-scale doesn't compensate MS coding on its own
* No need to be overly precise, this only controls RD
* adjustment CB limits when going overboard
*/
if (s->options.mid_side && s->cur_type == TYPE_CPE)
destbits *= 2;
/**
* When using a constant Q-scale, don't adjust bits, just use RD
* Don't let it go overboard, though... 8x psy target is enough
*/
toomanybits = 5800;
toofewbits = destbits / 16;
/** Don't offset scalers, just RD */
sfoffs = sce->ics.num_windows - 1;
rdlambda = sqrtf(rdlambda);
/** search further */
maxits *= 2;
} else {
/* When using ABR, be strict, but a reasonable leeway is
* critical to allow RC to smoothly track desired bitrate
* without sudden quality drops that cause audible artifacts.
* Symmetry is also desirable, to avoid systematic bias.
*/
toomanybits = destbits + destbits/8;
toofewbits = destbits - destbits/8;
sfoffs = 0;
rdlambda = sqrtf(rdlambda);
}
/** and zero out above cutoff frequency */
{
int wlen = 1024 / sce->ics.num_windows;
int bandwidth;
/**
* Scale, psy gives us constant quality, this LP only scales
* bitrate by lambda, so we save bits on subjectively unimportant HF
* rather than increase quantization noise. Adjust nominal bitrate
* to effective bitrate according to encoding parameters,
* AAC_CUTOFF_FROM_BITRATE is calibrated for effective bitrate.
*/
float rate_bandwidth_multiplier = 1.5f;
int frame_bit_rate = (avctx->flags & CODEC_FLAG_QSCALE)
? (refbits * rate_bandwidth_multiplier * avctx->sample_rate / 1024)
: (avctx->bit_rate / avctx->channels);
/** Compensate for extensions that increase efficiency */
if (s->options.pns || s->options.intensity_stereo)
frame_bit_rate *= 1.15f;
if (avctx->cutoff > 0) {
bandwidth = avctx->cutoff;
} else {
bandwidth = FFMAX(3000, AAC_CUTOFF_FROM_BITRATE(frame_bit_rate, 1, avctx->sample_rate));
s->psy.cutoff = bandwidth;
}
cutoff = bandwidth * 2 * wlen / avctx->sample_rate;
pns_start_pos = NOISE_LOW_LIMIT * 2 * wlen / avctx->sample_rate;
}
/**
* for values above this the decoder might end up in an endless loop
* due to always having more bits than what can be encoded.
*/
destbits = FFMIN(destbits, 5800);
toomanybits = FFMIN(toomanybits, 5800);
toofewbits = FFMIN(toofewbits, 5800);
/**
* XXX: some heuristic to determine initial quantizers will reduce search time
* determine zero bands and upper distortion limits
*/
min_spread_thr_r = -1;
max_spread_thr_r = -1;
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
for (g = start = 0; g < sce->ics.num_swb; start += sce->ics.swb_sizes[g++]) {
int nz = 0;
float uplim = 0.0f, energy = 0.0f, spread = 0.0f;
for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g];
if (start >= cutoff || band->energy <= (band->threshold * zeroscale) || band->threshold == 0.0f) {
sce->zeroes[(w+w2)*16+g] = 1;
continue;
}
nz = 1;
}
if (!nz) {
uplim = 0.0f;
} else {
nz = 0;
for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g];
if (band->energy <= (band->threshold * zeroscale) || band->threshold == 0.0f)
continue;
uplim += band->threshold;
energy += band->energy;
spread += band->spread;
nz++;
}
}
uplims[w*16+g] = uplim;
energies[w*16+g] = energy;
nzs[w*16+g] = nz;
sce->zeroes[w*16+g] = !nz;
allz |= nz;
if (nz && sce->can_pns[w*16+g]) {
spread_thr_r[w*16+g] = energy * nz / (uplim * spread);
if (min_spread_thr_r < 0) {
min_spread_thr_r = max_spread_thr_r = spread_thr_r[w*16+g];
} else {
min_spread_thr_r = FFMIN(min_spread_thr_r, spread_thr_r[w*16+g]);
max_spread_thr_r = FFMAX(max_spread_thr_r, spread_thr_r[w*16+g]);
}
}
}
}
/** Compute initial scalers */
minscaler = 65535;
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
for (g = 0; g < sce->ics.num_swb; g++) {
if (sce->zeroes[w*16+g]) {
sce->sf_idx[w*16+g] = SCALE_ONE_POS;
continue;
}
/**
* log2f-to-distortion ratio is, technically, 2 (1.5db = 4, but it's power vs level so it's 2).
* But, as offsets are applied, low-frequency signals are too sensitive to the induced distortion,
* so we make scaling more conservative by choosing a lower log2f-to-distortion ratio, and thus
* more robust.
*/
sce->sf_idx[w*16+g] = av_clip(
SCALE_ONE_POS
+ 1.75*log2f(FFMAX(0.00125f,uplims[w*16+g]) / sce->ics.swb_sizes[g])
+ sfoffs,
60, SCALE_MAX_POS);
minscaler = FFMIN(minscaler, sce->sf_idx[w*16+g]);
}
}
/** Clip */
minscaler = av_clip(minscaler, SCALE_ONE_POS - SCALE_DIV_512, SCALE_MAX_POS - SCALE_DIV_512);
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w])
for (g = 0; g < sce->ics.num_swb; g++)
if (!sce->zeroes[w*16+g])
sce->sf_idx[w*16+g] = av_clip(sce->sf_idx[w*16+g], minscaler, minscaler + SCALE_MAX_DIFF - 1);
if (!allz)
return;
abs_pow34_v(s->scoefs, sce->coeffs, 1024);
ff_quantize_band_cost_cache_init(s);
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
start = w*128;
for (g = 0; g < sce->ics.num_swb; g++) {
const float *scaled = s->scoefs + start;
maxvals[w*16+g] = find_max_val(sce->ics.group_len[w], sce->ics.swb_sizes[g], scaled);
start += sce->ics.swb_sizes[g];
}
}
/**
* Scale uplims to match rate distortion to quality
* bu applying noisy band depriorization and tonal band priorization.
* Maxval-energy ratio gives us an idea of how noisy/tonal the band is.
* If maxval^2 ~ energy, then that band is mostly noise, and we can relax
* rate distortion requirements.
*/
memcpy(euplims, uplims, sizeof(euplims));
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
/** psy already priorizes transients to some extent */
float de_psy_factor = (sce->ics.num_windows > 1) ? 8.0f / sce->ics.group_len[w] : 1.0f;
start = w*128;
for (g = 0; g < sce->ics.num_swb; g++) {
if (nzs[g] > 0) {
float cleanup_factor = ff_sqrf(av_clipf(start / (cutoff * 0.75f), 1.0f, 2.0f));
float energy2uplim = find_form_factor(
sce->ics.group_len[w], sce->ics.swb_sizes[g],
uplims[w*16+g] / (nzs[g] * sce->ics.swb_sizes[w]),
sce->coeffs + start,
nzslope * cleanup_factor);
energy2uplim *= de_psy_factor;
if (!(avctx->flags & CODEC_FLAG_QSCALE)) {
/** In ABR, we need to priorize less and let rate control do its thing */
energy2uplim = sqrtf(energy2uplim);
}
energy2uplim = FFMAX(0.015625f, FFMIN(1.0f, energy2uplim));
uplims[w*16+g] *= av_clipf(rdlambda * energy2uplim, rdmin, rdmax)
* sce->ics.group_len[w];
energy2uplim = find_form_factor(
sce->ics.group_len[w], sce->ics.swb_sizes[g],
uplims[w*16+g] / (nzs[g] * sce->ics.swb_sizes[w]),
sce->coeffs + start,
2.0f);
energy2uplim *= de_psy_factor;
if (!(avctx->flags & CODEC_FLAG_QSCALE)) {
/** In ABR, we need to priorize less and let rate control do its thing */
energy2uplim = sqrtf(energy2uplim);
}
energy2uplim = FFMAX(0.015625f, FFMIN(1.0f, energy2uplim));
euplims[w*16+g] *= av_clipf(rdlambda * energy2uplim * sce->ics.group_len[w],
0.5f, 1.0f);
}
start += sce->ics.swb_sizes[g];
}
}
for (i = 0; i < sizeof(maxsf) / sizeof(maxsf[0]); ++i)
maxsf[i] = SCALE_MAX_POS;
//perform two-loop search
//outer loop - improve quality
do {
//inner loop - quantize spectrum to fit into given number of bits
int overdist;
int qstep = its ? 1 : 32;
do {
int changed = 0;
prev = -1;
recomprd = 0;
tbits = 0;
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
start = w*128;
for (g = 0; g < sce->ics.num_swb; g++) {
const float *coefs = &sce->coeffs[start];
const float *scaled = &s->scoefs[start];
int bits = 0;
int cb;
float dist = 0.0f;
float qenergy = 0.0f;
if (sce->zeroes[w*16+g] || sce->sf_idx[w*16+g] >= 218) {
start += sce->ics.swb_sizes[g];
if (sce->can_pns[w*16+g]) {
/** PNS isn't free */
tbits += ff_pns_bits(sce, w, g);
}
continue;
}
cb = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]);
for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
int b;
float sqenergy;
dist += quantize_band_cost_cached(s, w + w2, g, coefs + w2*128,
scaled + w2*128,
sce->ics.swb_sizes[g],
sce->sf_idx[w*16+g],
cb,
1.0f,
INFINITY,
&b, &sqenergy,
0);
bits += b;
qenergy += sqenergy;
}
dists[w*16+g] = dist - bits;
qenergies[w*16+g] = qenergy;
if (prev != -1) {
int sfdiff = av_clip(sce->sf_idx[w*16+g] - prev + SCALE_DIFF_ZERO, 0, 2*SCALE_MAX_DIFF);
bits += ff_aac_scalefactor_bits[sfdiff];
}
tbits += bits;
start += sce->ics.swb_sizes[g];
prev = sce->sf_idx[w*16+g];
}
}
if (tbits > toomanybits) {
recomprd = 1;
for (i = 0; i < 128; i++) {
if (sce->sf_idx[i] < (SCALE_MAX_POS - SCALE_DIV_512)) {
int maxsf_i = (tbits > 5800) ? SCALE_MAX_POS : maxsf[i];
int new_sf = FFMIN(maxsf_i, sce->sf_idx[i] + qstep);
if (new_sf != sce->sf_idx[i]) {
sce->sf_idx[i] = new_sf;
changed = 1;
}
}
}
} else if (tbits < toofewbits) {
recomprd = 1;
for (i = 0; i < 128; i++) {
if (sce->sf_idx[i] > SCALE_ONE_POS) {
int new_sf = FFMAX(SCALE_ONE_POS, sce->sf_idx[i] - qstep);
if (new_sf != sce->sf_idx[i]) {
sce->sf_idx[i] = new_sf;
changed = 1;
}
}
}
}
qstep >>= 1;
if (!qstep && tbits > toomanybits && sce->sf_idx[0] < 217 && changed)
qstep = 1;
} while (qstep);
overdist = 1;
fflag = tbits < toofewbits;
for (i = 0; i < 2 && (overdist || recomprd); ++i) {
if (recomprd) {
/** Must recompute distortion */
prev = -1;
tbits = 0;
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
start = w*128;
for (g = 0; g < sce->ics.num_swb; g++) {
const float *coefs = sce->coeffs + start;
const float *scaled = s->scoefs + start;
int bits = 0;
int cb;
float dist = 0.0f;
float qenergy = 0.0f;
if (sce->zeroes[w*16+g] || sce->sf_idx[w*16+g] >= 218) {
start += sce->ics.swb_sizes[g];
if (sce->can_pns[w*16+g]) {
/** PNS isn't free */
tbits += ff_pns_bits(sce, w, g);
}
continue;
}
cb = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]);
for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
int b;
float sqenergy;
dist += quantize_band_cost_cached(s, w + w2, g, coefs + w2*128,
scaled + w2*128,
sce->ics.swb_sizes[g],
sce->sf_idx[w*16+g],
cb,
1.0f,
INFINITY,
&b, &sqenergy,
0);
bits += b;
qenergy += sqenergy;
}
dists[w*16+g] = dist - bits;
qenergies[w*16+g] = qenergy;
if (prev != -1) {
int sfdiff = av_clip(sce->sf_idx[w*16+g] - prev + SCALE_DIFF_ZERO, 0, 2*SCALE_MAX_DIFF);
bits += ff_aac_scalefactor_bits[sfdiff];
}
tbits += bits;
start += sce->ics.swb_sizes[g];
prev = sce->sf_idx[w*16+g];
}
}
}
if (!i && s->options.pns && its > maxits/2 && tbits > toofewbits) {
float maxoverdist = 0.0f;
float ovrfactor = 1.f+(maxits-its)*16.f/maxits;
overdist = recomprd = 0;
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
for (g = start = 0; g < sce->ics.num_swb; start += sce->ics.swb_sizes[g++]) {
if (!sce->zeroes[w*16+g] && sce->sf_idx[w*16+g] > SCALE_ONE_POS && dists[w*16+g] > uplims[w*16+g]*ovrfactor) {
float ovrdist = dists[w*16+g] / FFMAX(uplims[w*16+g],euplims[w*16+g]);
maxoverdist = FFMAX(maxoverdist, ovrdist);
overdist++;
}
}
}
if (overdist) {
/* We have overdistorted bands, trade for zeroes (that can be noise)
* Zero the bands in the lowest 1.25% spread-energy-threshold ranking
*/
float minspread = max_spread_thr_r;
float maxspread = min_spread_thr_r;
float zspread;
int zeroable = 0;
int zeroed = 0;
int maxzeroed, zloop;
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
for (g = start = 0; g < sce->ics.num_swb; start += sce->ics.swb_sizes[g++]) {
if (start >= pns_start_pos && !sce->zeroes[w*16+g] && sce->can_pns[w*16+g]) {
minspread = FFMIN(minspread, spread_thr_r[w*16+g]);
maxspread = FFMAX(maxspread, spread_thr_r[w*16+g]);
zeroable++;
}
}
}
zspread = (maxspread-minspread) * 0.0125f + minspread;
/* Don't PNS everything even if allowed. It suppresses bit starvation signals from RC,
* and forced the hand of the later search_for_pns step.
* Instead, PNS a fraction of the spread_thr_r range depending on how starved for bits we are,
* and leave further PNSing to search_for_pns if worthwhile.
*/
zspread = FFMIN3(min_spread_thr_r * 8.f, zspread,
((toomanybits - tbits) * min_spread_thr_r + (tbits - toofewbits) * max_spread_thr_r) / (toomanybits - toofewbits + 1));
maxzeroed = FFMIN(zeroable, FFMAX(1, (zeroable * its + maxits - 1) / (2 * maxits)));
for (zloop = 0; zloop < 2; zloop++) {
/* Two passes: first distorted stuff - two birds in one shot and all that,
* then anything viable. Viable means not zero, but either CB=zero-able
* (too high SF), not SF <= 1 (that means we'd be operating at very high
* quality, we don't want PNS when doing VHQ), PNS allowed, and within
* the lowest ranking percentile.
*/
float loopovrfactor = (zloop) ? 1.0f : ovrfactor;
int loopminsf = (zloop) ? (SCALE_ONE_POS - SCALE_DIV_512) : SCALE_ONE_POS;
int mcb;
for (g = sce->ics.num_swb-1; g > 0 && zeroed < maxzeroed; g--) {
if (sce->ics.swb_offset[g] < pns_start_pos)
continue;
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
if (!sce->zeroes[w*16+g] && sce->can_pns[w*16+g] && spread_thr_r[w*16+g] <= zspread
&& sce->sf_idx[w*16+g] > loopminsf
&& (dists[w*16+g] > loopovrfactor*uplims[w*16+g] || !(mcb = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]))
|| (mcb <= 1 && dists[w*16+g] > FFMIN(uplims[w*16+g], euplims[w*16+g]))) ) {
sce->zeroes[w*16+g] = 1;
sce->band_type[w*16+g] = 0;
zeroed++;
}
}
}
}
if (zeroed)
recomprd = fflag = 1;
} else {
overdist = 0;
}
}
}
minscaler = SCALE_MAX_POS;
maxscaler = 0;
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
for (g = 0; g < sce->ics.num_swb; g++) {
if (!sce->zeroes[w*16+g]) {
minscaler = FFMIN(minscaler, sce->sf_idx[w*16+g]);
maxscaler = FFMAX(maxscaler, sce->sf_idx[w*16+g]);
}
}
}
minscaler = nminscaler = av_clip(minscaler, SCALE_ONE_POS - SCALE_DIV_512, SCALE_MAX_POS - SCALE_DIV_512);
prev = -1;
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
/** Start with big steps, end up fine-tunning */
int depth = (its > maxits/2) ? ((its > maxits*2/3) ? 1 : 3) : 10;
int edepth = depth+2;
float uplmax = its / (maxits*0.25f) + 1.0f;
uplmax *= (tbits > destbits) ? FFMIN(2.0f, tbits / (float)FFMAX(1,destbits)) : 1.0f;
start = w * 128;
for (g = 0; g < sce->ics.num_swb; g++) {
int prevsc = sce->sf_idx[w*16+g];
if (prev < 0 && !sce->zeroes[w*16+g])
prev = sce->sf_idx[0];
if (!sce->zeroes[w*16+g]) {
const float *coefs = sce->coeffs + start;
const float *scaled = s->scoefs + start;
int cmb = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]);
int mindeltasf = FFMAX(0, prev - SCALE_MAX_DIFF);
int maxdeltasf = FFMIN(SCALE_MAX_POS - SCALE_DIV_512, prev + SCALE_MAX_DIFF);
if ((!cmb || dists[w*16+g] > uplims[w*16+g]) && sce->sf_idx[w*16+g] > mindeltasf) {
/* Try to make sure there is some energy in every nonzero band
* NOTE: This algorithm must be forcibly imbalanced, pushing harder
* on holes or more distorted bands at first, otherwise there's
* no net gain (since the next iteration will offset all bands
* on the opposite direction to compensate for extra bits)
*/
for (i = 0; i < edepth && sce->sf_idx[w*16+g] > mindeltasf; ++i) {
int cb, bits;
float dist, qenergy;
int mb = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]-1);
cb = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]);
dist = qenergy = 0.f;
bits = 0;
if (!cb) {
maxsf[w*16+g] = FFMIN(sce->sf_idx[w*16+g]-1, maxsf[w*16+g]);
} else if (i >= depth && dists[w*16+g] < euplims[w*16+g]) {
break;
}
/* !g is the DC band, it's important, since quantization error here
* applies to less than a cycle, it creates horrible intermodulation
* distortion if it doesn't stick to what psy requests
*/
if (!g && sce->ics.num_windows > 1 && dists[w*16+g] >= euplims[w*16+g])
maxsf[w*16+g] = FFMIN(sce->sf_idx[w*16+g], maxsf[w*16+g]);
for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
int b;
float sqenergy;
dist += quantize_band_cost_cached(s, w + w2, g, coefs + w2*128,
scaled + w2*128,
sce->ics.swb_sizes[g],
sce->sf_idx[w*16+g]-1,
cb,
1.0f,
INFINITY,
&b, &sqenergy,
0);
bits += b;
qenergy += sqenergy;
}
sce->sf_idx[w*16+g]--;
dists[w*16+g] = dist - bits;
qenergies[w*16+g] = qenergy;
if (mb && (sce->sf_idx[w*16+g] < mindeltasf || (
(dists[w*16+g] < FFMIN(uplmax*uplims[w*16+g], euplims[w*16+g]))
&& (fabsf(qenergies[w*16+g]-energies[w*16+g]) < euplims[w*16+g])
) )) {
break;
}
}
} else if (tbits > toofewbits && sce->sf_idx[w*16+g] < FFMIN(maxdeltasf, maxsf[w*16+g])
&& (dists[w*16+g] < FFMIN(euplims[w*16+g], uplims[w*16+g]))
&& (fabsf(qenergies[w*16+g]-energies[w*16+g]) < euplims[w*16+g])
) {
/** Um... over target. Save bits for more important stuff. */
for (i = 0; i < depth && sce->sf_idx[w*16+g] < maxdeltasf; ++i) {
int cb, bits;
float dist, qenergy;
cb = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]+1);
if (cb > 0) {
dist = qenergy = 0.f;
bits = 0;
for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
int b;
float sqenergy;
dist += quantize_band_cost_cached(s, w + w2, g, coefs + w2*128,
scaled + w2*128,
sce->ics.swb_sizes[g],
sce->sf_idx[w*16+g]+1,
cb,
1.0f,
INFINITY,
&b, &sqenergy,
0);
bits += b;
qenergy += sqenergy;
}
dist -= bits;
if (dist < FFMIN(euplims[w*16+g], uplims[w*16+g])) {
sce->sf_idx[w*16+g]++;
dists[w*16+g] = dist;
qenergies[w*16+g] = qenergy;
} else {
break;
}
} else {
maxsf[w*16+g] = FFMIN(sce->sf_idx[w*16+g], maxsf[w*16+g]);
break;
}
}
}
prev = sce->sf_idx[w*16+g] = av_clip(sce->sf_idx[w*16+g], mindeltasf, maxdeltasf);
if (sce->sf_idx[w*16+g] != prevsc)
fflag = 1;
nminscaler = FFMIN(nminscaler, sce->sf_idx[w*16+g]);
sce->band_type[w*16+g] = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]);
}
start += sce->ics.swb_sizes[g];
}
}
/** SF difference limit violation risk. Must re-clamp. */
prev = -1;
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
for (g = 0; g < sce->ics.num_swb; g++) {
if (!sce->zeroes[w*16+g]) {
int prevsf = sce->sf_idx[w*16+g];
if (prev < 0)
prev = prevsf;
sce->sf_idx[w*16+g] = av_clip(sce->sf_idx[w*16+g], prev - SCALE_MAX_DIFF, prev + SCALE_MAX_DIFF);
sce->band_type[w*16+g] = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]);
prev = sce->sf_idx[w*16+g];
if (!fflag && prevsf != sce->sf_idx[w*16+g])
fflag = 1;
}
}
}
its++;
} while (fflag && its < maxits);
/** Scout out next nonzero bands */
ff_init_nextband_map(sce, nextband);
prev = -1;
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
/** Make sure proper codebooks are set */
for (g = 0; g < sce->ics.num_swb; g++) {
if (!sce->zeroes[w*16+g]) {
sce->band_type[w*16+g] = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]);
if (sce->band_type[w*16+g] <= 0) {
if (!ff_sfdelta_can_remove_band(sce, nextband, prev, w*16+g)) {
/** Cannot zero out, make sure it's not attempted */
sce->band_type[w*16+g] = 1;
} else {
sce->zeroes[w*16+g] = 1;
sce->band_type[w*16+g] = 0;
}
}
} else {
sce->band_type[w*16+g] = 0;
}
/** Check that there's no SF delta range violations */
if (!sce->zeroes[w*16+g]) {
if (prev != -1) {
av_unused int sfdiff = sce->sf_idx[w*16+g] - prev + SCALE_DIFF_ZERO;
av_assert1(sfdiff >= 0 && sfdiff <= 2*SCALE_MAX_DIFF);
} else if (sce->zeroes[0]) {
/** Set global gain to something useful */
sce->sf_idx[0] = sce->sf_idx[w*16+g];
}
prev = sce->sf_idx[w*16+g];
}
}
}
}
#endif /* AVCODEC_AACCODER_TWOLOOP_H */