1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2024-12-18 03:19:31 +02:00
FFmpeg/libavcodec/exr.c
Paul B Mahol 8a1759ad46 avcodec/exr: export writer info into frame metadata
Signed-off-by: Paul B Mahol <onemda@gmail.com>
2017-01-19 21:06:34 +01:00

1899 lines
61 KiB
C

/*
* OpenEXR (.exr) image decoder
* Copyright (c) 2006 Industrial Light & Magic, a division of Lucas Digital Ltd. LLC
* Copyright (c) 2009 Jimmy Christensen
*
* B44/B44A, Tile added by Jokyo Images support by CNC - French National Center for Cinema
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* OpenEXR decoder
* @author Jimmy Christensen
*
* For more information on the OpenEXR format, visit:
* http://openexr.com/
*
* exr_flt2uint() and exr_halflt2uint() is credited to Reimar Döffinger.
* exr_half2float() is credited to Aaftab Munshi, Dan Ginsburg, Dave Shreiner.
*/
#include <float.h>
#include <zlib.h>
#include "libavutil/common.h"
#include "libavutil/imgutils.h"
#include "libavutil/intfloat.h"
#include "libavutil/opt.h"
#include "libavutil/color_utils.h"
#include "avcodec.h"
#include "bytestream.h"
#include "get_bits.h"
#include "internal.h"
#include "mathops.h"
#include "thread.h"
enum ExrCompr {
EXR_RAW,
EXR_RLE,
EXR_ZIP1,
EXR_ZIP16,
EXR_PIZ,
EXR_PXR24,
EXR_B44,
EXR_B44A,
EXR_DWA,
EXR_DWB,
EXR_UNKN,
};
enum ExrPixelType {
EXR_UINT,
EXR_HALF,
EXR_FLOAT,
EXR_UNKNOWN,
};
enum ExrTileLevelMode {
EXR_TILE_LEVEL_ONE,
EXR_TILE_LEVEL_MIPMAP,
EXR_TILE_LEVEL_RIPMAP,
EXR_TILE_LEVEL_UNKNOWN,
};
enum ExrTileLevelRound {
EXR_TILE_ROUND_UP,
EXR_TILE_ROUND_DOWN,
EXR_TILE_ROUND_UNKNOWN,
};
typedef struct EXRChannel {
int xsub, ysub;
enum ExrPixelType pixel_type;
} EXRChannel;
typedef struct EXRTileAttribute {
int32_t xSize;
int32_t ySize;
enum ExrTileLevelMode level_mode;
enum ExrTileLevelRound level_round;
} EXRTileAttribute;
typedef struct EXRThreadData {
uint8_t *uncompressed_data;
int uncompressed_size;
uint8_t *tmp;
int tmp_size;
uint8_t *bitmap;
uint16_t *lut;
int ysize, xsize;
int channel_line_size;
} EXRThreadData;
typedef struct EXRContext {
AVClass *class;
AVFrame *picture;
AVCodecContext *avctx;
enum ExrCompr compression;
enum ExrPixelType pixel_type;
int channel_offsets[4]; // 0 = red, 1 = green, 2 = blue and 3 = alpha
const AVPixFmtDescriptor *desc;
int w, h;
uint32_t xmax, xmin;
uint32_t ymax, ymin;
uint32_t xdelta, ydelta;
int scan_lines_per_block;
EXRTileAttribute tile_attr; /* header data attribute of tile */
int is_tile; /* 0 if scanline, 1 if tile */
int is_luma;/* 1 if there is an Y plane */
GetByteContext gb;
const uint8_t *buf;
int buf_size;
EXRChannel *channels;
int nb_channels;
int current_channel_offset;
EXRThreadData *thread_data;
const char *layer;
enum AVColorTransferCharacteristic apply_trc_type;
float gamma;
uint16_t gamma_table[65536];
} EXRContext;
/* -15 stored using a single precision bias of 127 */
#define HALF_FLOAT_MIN_BIASED_EXP_AS_SINGLE_FP_EXP 0x38000000
/* max exponent value in single precision that will be converted
* to Inf or Nan when stored as a half-float */
#define HALF_FLOAT_MAX_BIASED_EXP_AS_SINGLE_FP_EXP 0x47800000
/* 255 is the max exponent biased value */
#define FLOAT_MAX_BIASED_EXP (0xFF << 23)
#define HALF_FLOAT_MAX_BIASED_EXP (0x1F << 10)
/**
* Convert a half float as a uint16_t into a full float.
*
* @param hf half float as uint16_t
*
* @return float value
*/
static union av_intfloat32 exr_half2float(uint16_t hf)
{
unsigned int sign = (unsigned int) (hf >> 15);
unsigned int mantissa = (unsigned int) (hf & ((1 << 10) - 1));
unsigned int exp = (unsigned int) (hf & HALF_FLOAT_MAX_BIASED_EXP);
union av_intfloat32 f;
if (exp == HALF_FLOAT_MAX_BIASED_EXP) {
// we have a half-float NaN or Inf
// half-float NaNs will be converted to a single precision NaN
// half-float Infs will be converted to a single precision Inf
exp = FLOAT_MAX_BIASED_EXP;
if (mantissa)
mantissa = (1 << 23) - 1; // set all bits to indicate a NaN
} else if (exp == 0x0) {
// convert half-float zero/denorm to single precision value
if (mantissa) {
mantissa <<= 1;
exp = HALF_FLOAT_MIN_BIASED_EXP_AS_SINGLE_FP_EXP;
// check for leading 1 in denorm mantissa
while ((mantissa & (1 << 10))) {
// for every leading 0, decrement single precision exponent by 1
// and shift half-float mantissa value to the left
mantissa <<= 1;
exp -= (1 << 23);
}
// clamp the mantissa to 10 bits
mantissa &= ((1 << 10) - 1);
// shift left to generate single-precision mantissa of 23 bits
mantissa <<= 13;
}
} else {
// shift left to generate single-precision mantissa of 23 bits
mantissa <<= 13;
// generate single precision biased exponent value
exp = (exp << 13) + HALF_FLOAT_MIN_BIASED_EXP_AS_SINGLE_FP_EXP;
}
f.i = (sign << 31) | exp | mantissa;
return f;
}
/**
* Convert from 32-bit float as uint32_t to uint16_t.
*
* @param v 32-bit float
*
* @return normalized 16-bit unsigned int
*/
static inline uint16_t exr_flt2uint(uint32_t v)
{
unsigned int exp = v >> 23;
// "HACK": negative values result in exp< 0, so clipping them to 0
// is also handled by this condition, avoids explicit check for sign bit.
if (exp <= 127 + 7 - 24) // we would shift out all bits anyway
return 0;
if (exp >= 127)
return 0xffff;
v &= 0x007fffff;
return (v + (1 << 23)) >> (127 + 7 - exp);
}
/**
* Convert from 16-bit float as uint16_t to uint16_t.
*
* @param v 16-bit float
*
* @return normalized 16-bit unsigned int
*/
static inline uint16_t exr_halflt2uint(uint16_t v)
{
unsigned exp = 14 - (v >> 10);
if (exp >= 14) {
if (exp == 14)
return (v >> 9) & 1;
else
return (v & 0x8000) ? 0 : 0xffff;
}
v <<= 6;
return (v + (1 << 16)) >> (exp + 1);
}
static void predictor(uint8_t *src, int size)
{
uint8_t *t = src + 1;
uint8_t *stop = src + size;
while (t < stop) {
int d = (int) t[-1] + (int) t[0] - 128;
t[0] = d;
++t;
}
}
static void reorder_pixels(uint8_t *src, uint8_t *dst, int size)
{
const int8_t *t1 = src;
const int8_t *t2 = src + (size + 1) / 2;
int8_t *s = dst;
int8_t *stop = s + size;
while (1) {
if (s < stop)
*(s++) = *(t1++);
else
break;
if (s < stop)
*(s++) = *(t2++);
else
break;
}
}
static int zip_uncompress(const uint8_t *src, int compressed_size,
int uncompressed_size, EXRThreadData *td)
{
unsigned long dest_len = uncompressed_size;
if (uncompress(td->tmp, &dest_len, src, compressed_size) != Z_OK ||
dest_len != uncompressed_size)
return AVERROR_INVALIDDATA;
predictor(td->tmp, uncompressed_size);
reorder_pixels(td->tmp, td->uncompressed_data, uncompressed_size);
return 0;
}
static int rle_uncompress(const uint8_t *src, int compressed_size,
int uncompressed_size, EXRThreadData *td)
{
uint8_t *d = td->tmp;
const int8_t *s = src;
int ssize = compressed_size;
int dsize = uncompressed_size;
uint8_t *dend = d + dsize;
int count;
while (ssize > 0) {
count = *s++;
if (count < 0) {
count = -count;
if ((dsize -= count) < 0 ||
(ssize -= count + 1) < 0)
return AVERROR_INVALIDDATA;
while (count--)
*d++ = *s++;
} else {
count++;
if ((dsize -= count) < 0 ||
(ssize -= 2) < 0)
return AVERROR_INVALIDDATA;
while (count--)
*d++ = *s;
s++;
}
}
if (dend != d)
return AVERROR_INVALIDDATA;
predictor(td->tmp, uncompressed_size);
reorder_pixels(td->tmp, td->uncompressed_data, uncompressed_size);
return 0;
}
#define USHORT_RANGE (1 << 16)
#define BITMAP_SIZE (1 << 13)
static uint16_t reverse_lut(const uint8_t *bitmap, uint16_t *lut)
{
int i, k = 0;
for (i = 0; i < USHORT_RANGE; i++)
if ((i == 0) || (bitmap[i >> 3] & (1 << (i & 7))))
lut[k++] = i;
i = k - 1;
memset(lut + k, 0, (USHORT_RANGE - k) * 2);
return i;
}
static void apply_lut(const uint16_t *lut, uint16_t *dst, int dsize)
{
int i;
for (i = 0; i < dsize; ++i)
dst[i] = lut[dst[i]];
}
#define HUF_ENCBITS 16 // literal (value) bit length
#define HUF_DECBITS 14 // decoding bit size (>= 8)
#define HUF_ENCSIZE ((1 << HUF_ENCBITS) + 1) // encoding table size
#define HUF_DECSIZE (1 << HUF_DECBITS) // decoding table size
#define HUF_DECMASK (HUF_DECSIZE - 1)
typedef struct HufDec {
int len;
int lit;
int *p;
} HufDec;
static void huf_canonical_code_table(uint64_t *hcode)
{
uint64_t c, n[59] = { 0 };
int i;
for (i = 0; i < HUF_ENCSIZE; ++i)
n[hcode[i]] += 1;
c = 0;
for (i = 58; i > 0; --i) {
uint64_t nc = ((c + n[i]) >> 1);
n[i] = c;
c = nc;
}
for (i = 0; i < HUF_ENCSIZE; ++i) {
int l = hcode[i];
if (l > 0)
hcode[i] = l | (n[l]++ << 6);
}
}
#define SHORT_ZEROCODE_RUN 59
#define LONG_ZEROCODE_RUN 63
#define SHORTEST_LONG_RUN (2 + LONG_ZEROCODE_RUN - SHORT_ZEROCODE_RUN)
#define LONGEST_LONG_RUN (255 + SHORTEST_LONG_RUN)
static int huf_unpack_enc_table(GetByteContext *gb,
int32_t im, int32_t iM, uint64_t *hcode)
{
GetBitContext gbit;
int ret = init_get_bits8(&gbit, gb->buffer, bytestream2_get_bytes_left(gb));
if (ret < 0)
return ret;
for (; im <= iM; im++) {
uint64_t l = hcode[im] = get_bits(&gbit, 6);
if (l == LONG_ZEROCODE_RUN) {
int zerun = get_bits(&gbit, 8) + SHORTEST_LONG_RUN;
if (im + zerun > iM + 1)
return AVERROR_INVALIDDATA;
while (zerun--)
hcode[im++] = 0;
im--;
} else if (l >= SHORT_ZEROCODE_RUN) {
int zerun = l - SHORT_ZEROCODE_RUN + 2;
if (im + zerun > iM + 1)
return AVERROR_INVALIDDATA;
while (zerun--)
hcode[im++] = 0;
im--;
}
}
bytestream2_skip(gb, (get_bits_count(&gbit) + 7) / 8);
huf_canonical_code_table(hcode);
return 0;
}
static int huf_build_dec_table(const uint64_t *hcode, int im,
int iM, HufDec *hdecod)
{
for (; im <= iM; im++) {
uint64_t c = hcode[im] >> 6;
int i, l = hcode[im] & 63;
if (c >> l)
return AVERROR_INVALIDDATA;
if (l > HUF_DECBITS) {
HufDec *pl = hdecod + (c >> (l - HUF_DECBITS));
if (pl->len)
return AVERROR_INVALIDDATA;
pl->lit++;
pl->p = av_realloc(pl->p, pl->lit * sizeof(int));
if (!pl->p)
return AVERROR(ENOMEM);
pl->p[pl->lit - 1] = im;
} else if (l) {
HufDec *pl = hdecod + (c << (HUF_DECBITS - l));
for (i = 1 << (HUF_DECBITS - l); i > 0; i--, pl++) {
if (pl->len || pl->p)
return AVERROR_INVALIDDATA;
pl->len = l;
pl->lit = im;
}
}
}
return 0;
}
#define get_char(c, lc, gb) \
{ \
c = (c << 8) | bytestream2_get_byte(gb); \
lc += 8; \
}
#define get_code(po, rlc, c, lc, gb, out, oe, outb) \
{ \
if (po == rlc) { \
if (lc < 8) \
get_char(c, lc, gb); \
lc -= 8; \
\
cs = c >> lc; \
\
if (out + cs > oe || out == outb) \
return AVERROR_INVALIDDATA; \
\
s = out[-1]; \
\
while (cs-- > 0) \
*out++ = s; \
} else if (out < oe) { \
*out++ = po; \
} else { \
return AVERROR_INVALIDDATA; \
} \
}
static int huf_decode(const uint64_t *hcode, const HufDec *hdecod,
GetByteContext *gb, int nbits,
int rlc, int no, uint16_t *out)
{
uint64_t c = 0;
uint16_t *outb = out;
uint16_t *oe = out + no;
const uint8_t *ie = gb->buffer + (nbits + 7) / 8; // input byte size
uint8_t cs;
uint16_t s;
int i, lc = 0;
while (gb->buffer < ie) {
get_char(c, lc, gb);
while (lc >= HUF_DECBITS) {
const HufDec pl = hdecod[(c >> (lc - HUF_DECBITS)) & HUF_DECMASK];
if (pl.len) {
lc -= pl.len;
get_code(pl.lit, rlc, c, lc, gb, out, oe, outb);
} else {
int j;
if (!pl.p)
return AVERROR_INVALIDDATA;
for (j = 0; j < pl.lit; j++) {
int l = hcode[pl.p[j]] & 63;
while (lc < l && bytestream2_get_bytes_left(gb) > 0)
get_char(c, lc, gb);
if (lc >= l) {
if ((hcode[pl.p[j]] >> 6) ==
((c >> (lc - l)) & ((1LL << l) - 1))) {
lc -= l;
get_code(pl.p[j], rlc, c, lc, gb, out, oe, outb);
break;
}
}
}
if (j == pl.lit)
return AVERROR_INVALIDDATA;
}
}
}
i = (8 - nbits) & 7;
c >>= i;
lc -= i;
while (lc > 0) {
const HufDec pl = hdecod[(c << (HUF_DECBITS - lc)) & HUF_DECMASK];
if (pl.len) {
lc -= pl.len;
get_code(pl.lit, rlc, c, lc, gb, out, oe, outb);
} else {
return AVERROR_INVALIDDATA;
}
}
if (out - outb != no)
return AVERROR_INVALIDDATA;
return 0;
}
static int huf_uncompress(GetByteContext *gb,
uint16_t *dst, int dst_size)
{
int32_t src_size, im, iM;
uint32_t nBits;
uint64_t *freq;
HufDec *hdec;
int ret, i;
src_size = bytestream2_get_le32(gb);
im = bytestream2_get_le32(gb);
iM = bytestream2_get_le32(gb);
bytestream2_skip(gb, 4);
nBits = bytestream2_get_le32(gb);
if (im < 0 || im >= HUF_ENCSIZE ||
iM < 0 || iM >= HUF_ENCSIZE ||
src_size < 0)
return AVERROR_INVALIDDATA;
bytestream2_skip(gb, 4);
freq = av_mallocz_array(HUF_ENCSIZE, sizeof(*freq));
hdec = av_mallocz_array(HUF_DECSIZE, sizeof(*hdec));
if (!freq || !hdec) {
ret = AVERROR(ENOMEM);
goto fail;
}
if ((ret = huf_unpack_enc_table(gb, im, iM, freq)) < 0)
goto fail;
if (nBits > 8 * bytestream2_get_bytes_left(gb)) {
ret = AVERROR_INVALIDDATA;
goto fail;
}
if ((ret = huf_build_dec_table(freq, im, iM, hdec)) < 0)
goto fail;
ret = huf_decode(freq, hdec, gb, nBits, iM, dst_size, dst);
fail:
for (i = 0; i < HUF_DECSIZE; i++)
if (hdec)
av_freep(&hdec[i].p);
av_free(freq);
av_free(hdec);
return ret;
}
static inline void wdec14(uint16_t l, uint16_t h, uint16_t *a, uint16_t *b)
{
int16_t ls = l;
int16_t hs = h;
int hi = hs;
int ai = ls + (hi & 1) + (hi >> 1);
int16_t as = ai;
int16_t bs = ai - hi;
*a = as;
*b = bs;
}
#define NBITS 16
#define A_OFFSET (1 << (NBITS - 1))
#define MOD_MASK ((1 << NBITS) - 1)
static inline void wdec16(uint16_t l, uint16_t h, uint16_t *a, uint16_t *b)
{
int m = l;
int d = h;
int bb = (m - (d >> 1)) & MOD_MASK;
int aa = (d + bb - A_OFFSET) & MOD_MASK;
*b = bb;
*a = aa;
}
static void wav_decode(uint16_t *in, int nx, int ox,
int ny, int oy, uint16_t mx)
{
int w14 = (mx < (1 << 14));
int n = (nx > ny) ? ny : nx;
int p = 1;
int p2;
while (p <= n)
p <<= 1;
p >>= 1;
p2 = p;
p >>= 1;
while (p >= 1) {
uint16_t *py = in;
uint16_t *ey = in + oy * (ny - p2);
uint16_t i00, i01, i10, i11;
int oy1 = oy * p;
int oy2 = oy * p2;
int ox1 = ox * p;
int ox2 = ox * p2;
for (; py <= ey; py += oy2) {
uint16_t *px = py;
uint16_t *ex = py + ox * (nx - p2);
for (; px <= ex; px += ox2) {
uint16_t *p01 = px + ox1;
uint16_t *p10 = px + oy1;
uint16_t *p11 = p10 + ox1;
if (w14) {
wdec14(*px, *p10, &i00, &i10);
wdec14(*p01, *p11, &i01, &i11);
wdec14(i00, i01, px, p01);
wdec14(i10, i11, p10, p11);
} else {
wdec16(*px, *p10, &i00, &i10);
wdec16(*p01, *p11, &i01, &i11);
wdec16(i00, i01, px, p01);
wdec16(i10, i11, p10, p11);
}
}
if (nx & p) {
uint16_t *p10 = px + oy1;
if (w14)
wdec14(*px, *p10, &i00, p10);
else
wdec16(*px, *p10, &i00, p10);
*px = i00;
}
}
if (ny & p) {
uint16_t *px = py;
uint16_t *ex = py + ox * (nx - p2);
for (; px <= ex; px += ox2) {
uint16_t *p01 = px + ox1;
if (w14)
wdec14(*px, *p01, &i00, p01);
else
wdec16(*px, *p01, &i00, p01);
*px = i00;
}
}
p2 = p;
p >>= 1;
}
}
static int piz_uncompress(EXRContext *s, const uint8_t *src, int ssize,
int dsize, EXRThreadData *td)
{
GetByteContext gb;
uint16_t maxval, min_non_zero, max_non_zero;
uint16_t *ptr;
uint16_t *tmp = (uint16_t *)td->tmp;
uint8_t *out;
int ret, i, j;
int pixel_half_size;/* 1 for half, 2 for float and uint32 */
EXRChannel *channel;
int tmp_offset;
if (!td->bitmap)
td->bitmap = av_malloc(BITMAP_SIZE);
if (!td->lut)
td->lut = av_malloc(1 << 17);
if (!td->bitmap || !td->lut) {
av_freep(&td->bitmap);
av_freep(&td->lut);
return AVERROR(ENOMEM);
}
bytestream2_init(&gb, src, ssize);
min_non_zero = bytestream2_get_le16(&gb);
max_non_zero = bytestream2_get_le16(&gb);
if (max_non_zero >= BITMAP_SIZE)
return AVERROR_INVALIDDATA;
memset(td->bitmap, 0, FFMIN(min_non_zero, BITMAP_SIZE));
if (min_non_zero <= max_non_zero)
bytestream2_get_buffer(&gb, td->bitmap + min_non_zero,
max_non_zero - min_non_zero + 1);
memset(td->bitmap + max_non_zero + 1, 0, BITMAP_SIZE - max_non_zero - 1);
maxval = reverse_lut(td->bitmap, td->lut);
ret = huf_uncompress(&gb, tmp, dsize / sizeof(uint16_t));
if (ret)
return ret;
ptr = tmp;
for (i = 0; i < s->nb_channels; i++) {
channel = &s->channels[i];
if (channel->pixel_type == EXR_HALF)
pixel_half_size = 1;
else
pixel_half_size = 2;
for (j = 0; j < pixel_half_size; j++)
wav_decode(ptr + j, td->xsize, pixel_half_size, td->ysize,
td->xsize * pixel_half_size, maxval);
ptr += td->xsize * td->ysize * pixel_half_size;
}
apply_lut(td->lut, tmp, dsize / sizeof(uint16_t));
out = td->uncompressed_data;
for (i = 0; i < td->ysize; i++) {
tmp_offset = 0;
for (j = 0; j < s->nb_channels; j++) {
uint16_t *in;
EXRChannel *channel = &s->channels[j];
if (channel->pixel_type == EXR_HALF)
pixel_half_size = 1;
else
pixel_half_size = 2;
in = tmp + tmp_offset * td->xsize * td->ysize + i * td->xsize * pixel_half_size;
tmp_offset += pixel_half_size;
memcpy(out, in, td->xsize * 2 * pixel_half_size);
out += td->xsize * 2 * pixel_half_size;
}
}
return 0;
}
static int pxr24_uncompress(EXRContext *s, const uint8_t *src,
int compressed_size, int uncompressed_size,
EXRThreadData *td)
{
unsigned long dest_len, expected_len = 0;
const uint8_t *in = td->tmp;
uint8_t *out;
int c, i, j;
for (i = 0; i < s->nb_channels; i++) {
if (s->channels[i].pixel_type == EXR_FLOAT) {
expected_len += (td->xsize * td->ysize * 3);/* PRX 24 store float in 24 bit instead of 32 */
} else if (s->channels[i].pixel_type == EXR_HALF) {
expected_len += (td->xsize * td->ysize * 2);
} else {//UINT 32
expected_len += (td->xsize * td->ysize * 4);
}
}
dest_len = expected_len;
if (uncompress(td->tmp, &dest_len, src, compressed_size) != Z_OK) {
return AVERROR_INVALIDDATA;
} else if (dest_len != expected_len) {
return AVERROR_INVALIDDATA;
}
out = td->uncompressed_data;
for (i = 0; i < td->ysize; i++)
for (c = 0; c < s->nb_channels; c++) {
EXRChannel *channel = &s->channels[c];
const uint8_t *ptr[4];
uint32_t pixel = 0;
switch (channel->pixel_type) {
case EXR_FLOAT:
ptr[0] = in;
ptr[1] = ptr[0] + td->xsize;
ptr[2] = ptr[1] + td->xsize;
in = ptr[2] + td->xsize;
for (j = 0; j < td->xsize; ++j) {
uint32_t diff = (*(ptr[0]++) << 24) |
(*(ptr[1]++) << 16) |
(*(ptr[2]++) << 8);
pixel += diff;
bytestream_put_le32(&out, pixel);
}
break;
case EXR_HALF:
ptr[0] = in;
ptr[1] = ptr[0] + td->xsize;
in = ptr[1] + td->xsize;
for (j = 0; j < td->xsize; j++) {
uint32_t diff = (*(ptr[0]++) << 8) | *(ptr[1]++);
pixel += diff;
bytestream_put_le16(&out, pixel);
}
break;
case EXR_UINT:
ptr[0] = in;
ptr[1] = ptr[0] + s->xdelta;
ptr[2] = ptr[1] + s->xdelta;
ptr[3] = ptr[2] + s->xdelta;
in = ptr[3] + s->xdelta;
for (j = 0; j < s->xdelta; ++j) {
uint32_t diff = (*(ptr[0]++) << 24) |
(*(ptr[1]++) << 16) |
(*(ptr[2]++) << 8 ) |
(*(ptr[3]++));
pixel += diff;
bytestream_put_le32(&out, pixel);
}
break;
default:
return AVERROR_INVALIDDATA;
}
}
return 0;
}
static void unpack_14(const uint8_t b[14], uint16_t s[16])
{
unsigned short shift = (b[ 2] >> 2);
unsigned short bias = (0x20 << shift);
int i;
s[ 0] = (b[0] << 8) | b[1];
s[ 4] = s[ 0] + ((((b[ 2] << 4) | (b[ 3] >> 4)) & 0x3f) << shift) - bias;
s[ 8] = s[ 4] + ((((b[ 3] << 2) | (b[ 4] >> 6)) & 0x3f) << shift) - bias;
s[12] = s[ 8] + ((b[ 4] & 0x3f) << shift) - bias;
s[ 1] = s[ 0] + ((b[ 5] >> 2) << shift) - bias;
s[ 5] = s[ 4] + ((((b[ 5] << 4) | (b[ 6] >> 4)) & 0x3f) << shift) - bias;
s[ 9] = s[ 8] + ((((b[ 6] << 2) | (b[ 7] >> 6)) & 0x3f) << shift) - bias;
s[13] = s[12] + ((b[ 7] & 0x3f) << shift) - bias;
s[ 2] = s[ 1] + ((b[ 8] >> 2) << shift) - bias;
s[ 6] = s[ 5] + ((((b[ 8] << 4) | (b[ 9] >> 4)) & 0x3f) << shift) - bias;
s[10] = s[ 9] + ((((b[ 9] << 2) | (b[10] >> 6)) & 0x3f) << shift) - bias;
s[14] = s[13] + ((b[10] & 0x3f) << shift) - bias;
s[ 3] = s[ 2] + ((b[11] >> 2) << shift) - bias;
s[ 7] = s[ 6] + ((((b[11] << 4) | (b[12] >> 4)) & 0x3f) << shift) - bias;
s[11] = s[10] + ((((b[12] << 2) | (b[13] >> 6)) & 0x3f) << shift) - bias;
s[15] = s[14] + ((b[13] & 0x3f) << shift) - bias;
for (i = 0; i < 16; ++i) {
if (s[i] & 0x8000)
s[i] &= 0x7fff;
else
s[i] = ~s[i];
}
}
static void unpack_3(const uint8_t b[3], uint16_t s[16])
{
int i;
s[0] = (b[0] << 8) | b[1];
if (s[0] & 0x8000)
s[0] &= 0x7fff;
else
s[0] = ~s[0];
for (i = 1; i < 16; i++)
s[i] = s[0];
}
static int b44_uncompress(EXRContext *s, const uint8_t *src, int compressed_size,
int uncompressed_size, EXRThreadData *td) {
const int8_t *sr = src;
int stay_to_uncompress = compressed_size;
int nb_b44_block_w, nb_b44_block_h;
int index_tl_x, index_tl_y, index_out, index_tmp;
uint16_t tmp_buffer[16]; /* B44 use 4x4 half float pixel */
int c, iY, iX, y, x;
int target_channel_offset = 0;
/* calc B44 block count */
nb_b44_block_w = td->xsize / 4;
if ((td->xsize % 4) != 0)
nb_b44_block_w++;
nb_b44_block_h = td->ysize / 4;
if ((td->ysize % 4) != 0)
nb_b44_block_h++;
for (c = 0; c < s->nb_channels; c++) {
if (s->channels[c].pixel_type == EXR_HALF) {/* B44 only compress half float data */
for (iY = 0; iY < nb_b44_block_h; iY++) {
for (iX = 0; iX < nb_b44_block_w; iX++) {/* For each B44 block */
if (stay_to_uncompress < 3) {
av_log(s, AV_LOG_ERROR, "Not enough data for B44A block: %d", stay_to_uncompress);
return AVERROR_INVALIDDATA;
}
if (src[compressed_size - stay_to_uncompress + 2] == 0xfc) { /* B44A block */
unpack_3(sr, tmp_buffer);
sr += 3;
stay_to_uncompress -= 3;
} else {/* B44 Block */
if (stay_to_uncompress < 14) {
av_log(s, AV_LOG_ERROR, "Not enough data for B44 block: %d", stay_to_uncompress);
return AVERROR_INVALIDDATA;
}
unpack_14(sr, tmp_buffer);
sr += 14;
stay_to_uncompress -= 14;
}
/* copy data to uncompress buffer (B44 block can exceed target resolution)*/
index_tl_x = iX * 4;
index_tl_y = iY * 4;
for (y = index_tl_y; y < FFMIN(index_tl_y + 4, td->ysize); y++) {
for (x = index_tl_x; x < FFMIN(index_tl_x + 4, td->xsize); x++) {
index_out = target_channel_offset * td->xsize + y * td->channel_line_size + 2 * x;
index_tmp = (y-index_tl_y) * 4 + (x-index_tl_x);
td->uncompressed_data[index_out] = tmp_buffer[index_tmp] & 0xff;
td->uncompressed_data[index_out + 1] = tmp_buffer[index_tmp] >> 8;
}
}
}
}
target_channel_offset += 2;
} else {/* Float or UINT 32 channel */
if (stay_to_uncompress < td->ysize * td->xsize * 4) {
av_log(s, AV_LOG_ERROR, "Not enough data for uncompress channel: %d", stay_to_uncompress);
return AVERROR_INVALIDDATA;
}
for (y = 0; y < td->ysize; y++) {
index_out = target_channel_offset * td->xsize + y * td->channel_line_size;
memcpy(&td->uncompressed_data[index_out], sr, td->xsize * 4);
sr += td->xsize * 4;
}
target_channel_offset += 4;
stay_to_uncompress -= td->ysize * td->xsize * 4;
}
}
return 0;
}
static int decode_block(AVCodecContext *avctx, void *tdata,
int jobnr, int threadnr)
{
EXRContext *s = avctx->priv_data;
AVFrame *const p = s->picture;
EXRThreadData *td = &s->thread_data[threadnr];
const uint8_t *channel_buffer[4] = { 0 };
const uint8_t *buf = s->buf;
uint64_t line_offset, uncompressed_size;
uint16_t *ptr_x;
uint8_t *ptr;
uint32_t data_size;
uint64_t line, col = 0;
uint64_t tileX, tileY, tileLevelX, tileLevelY;
const uint8_t *src;
int axmax = (avctx->width - (s->xmax + 1)) * 2 * s->desc->nb_components; /* nb pixel to add at the right of the datawindow */
int bxmin = s->xmin * 2 * s->desc->nb_components; /* nb pixel to add at the left of the datawindow */
int i, x, buf_size = s->buf_size;
int c, rgb_channel_count;
float one_gamma = 1.0f / s->gamma;
avpriv_trc_function trc_func = avpriv_get_trc_function_from_trc(s->apply_trc_type);
int ret;
line_offset = AV_RL64(s->gb.buffer + jobnr * 8);
if (s->is_tile) {
if (line_offset > buf_size - 20)
return AVERROR_INVALIDDATA;
src = buf + line_offset + 20;
tileX = AV_RL32(src - 20);
tileY = AV_RL32(src - 16);
tileLevelX = AV_RL32(src - 12);
tileLevelY = AV_RL32(src - 8);
data_size = AV_RL32(src - 4);
if (data_size <= 0 || data_size > buf_size)
return AVERROR_INVALIDDATA;
if (tileLevelX || tileLevelY) { /* tile level, is not the full res level */
avpriv_report_missing_feature(s->avctx, "Subres tile before full res tile");
return AVERROR_PATCHWELCOME;
}
if (s->xmin || s->ymin) {
avpriv_report_missing_feature(s->avctx, "Tiles with xmin/ymin");
return AVERROR_PATCHWELCOME;
}
line = s->tile_attr.ySize * tileY;
col = s->tile_attr.xSize * tileX;
if (line < s->ymin || line > s->ymax ||
col < s->xmin || col > s->xmax)
return AVERROR_INVALIDDATA;
td->ysize = FFMIN(s->tile_attr.ySize, s->ydelta - tileY * s->tile_attr.ySize);
td->xsize = FFMIN(s->tile_attr.xSize, s->xdelta - tileX * s->tile_attr.xSize);
if (col) { /* not the first tile of the line */
bxmin = 0; /* doesn't add pixel at the left of the datawindow */
}
if ((col + td->xsize) != s->xdelta)/* not the last tile of the line */
axmax = 0; /* doesn't add pixel at the right of the datawindow */
td->channel_line_size = td->xsize * s->current_channel_offset;/* uncompress size of one line */
uncompressed_size = td->channel_line_size * (uint64_t)td->ysize;/* uncompress size of the block */
} else {
if (line_offset > buf_size - 8)
return AVERROR_INVALIDDATA;
src = buf + line_offset + 8;
line = AV_RL32(src - 8);
if (line < s->ymin || line > s->ymax)
return AVERROR_INVALIDDATA;
data_size = AV_RL32(src - 4);
if (data_size <= 0 || data_size > buf_size)
return AVERROR_INVALIDDATA;
td->ysize = FFMIN(s->scan_lines_per_block, s->ymax - line + 1); /* s->ydelta - line ?? */
td->xsize = s->xdelta;
td->channel_line_size = td->xsize * s->current_channel_offset;/* uncompress size of one line */
uncompressed_size = td->channel_line_size * (uint64_t)td->ysize;/* uncompress size of the block */
if ((s->compression == EXR_RAW && (data_size != uncompressed_size ||
line_offset > buf_size - uncompressed_size)) ||
(s->compression != EXR_RAW && (data_size > uncompressed_size ||
line_offset > buf_size - data_size))) {
return AVERROR_INVALIDDATA;
}
}
if (data_size < uncompressed_size || s->is_tile) { /* td->tmp is use for tile reorganization */
av_fast_padded_malloc(&td->tmp, &td->tmp_size, uncompressed_size);
if (!td->tmp)
return AVERROR(ENOMEM);
}
if (data_size < uncompressed_size) {
av_fast_padded_malloc(&td->uncompressed_data,
&td->uncompressed_size, uncompressed_size);
if (!td->uncompressed_data)
return AVERROR(ENOMEM);
ret = AVERROR_INVALIDDATA;
switch (s->compression) {
case EXR_ZIP1:
case EXR_ZIP16:
ret = zip_uncompress(src, data_size, uncompressed_size, td);
break;
case EXR_PIZ:
ret = piz_uncompress(s, src, data_size, uncompressed_size, td);
break;
case EXR_PXR24:
ret = pxr24_uncompress(s, src, data_size, uncompressed_size, td);
break;
case EXR_RLE:
ret = rle_uncompress(src, data_size, uncompressed_size, td);
break;
case EXR_B44:
case EXR_B44A:
ret = b44_uncompress(s, src, data_size, uncompressed_size, td);
break;
}
if (ret < 0) {
av_log(avctx, AV_LOG_ERROR, "decode_block() failed.\n");
return ret;
}
src = td->uncompressed_data;
}
if (!s->is_luma) {
channel_buffer[0] = src + td->xsize * s->channel_offsets[0];
channel_buffer[1] = src + td->xsize * s->channel_offsets[1];
channel_buffer[2] = src + td->xsize * s->channel_offsets[2];
rgb_channel_count = 3;
} else { /* put y data in the first channel_buffer */
channel_buffer[0] = src + td->xsize * s->channel_offsets[1];
rgb_channel_count = 1;
}
if (s->channel_offsets[3] >= 0)
channel_buffer[3] = src + td->xsize * s->channel_offsets[3];
ptr = p->data[0] + line * p->linesize[0] + (col * s->desc->nb_components * 2);
for (i = 0;
i < td->ysize; i++, ptr += p->linesize[0]) {
const uint8_t * a;
const uint8_t *rgb[3];
for (c = 0; c < rgb_channel_count; c++){
rgb[c] = channel_buffer[c];
}
if (channel_buffer[3])
a = channel_buffer[3];
ptr_x = (uint16_t *) ptr;
// Zero out the start if xmin is not 0
memset(ptr_x, 0, bxmin);
ptr_x += s->xmin * s->desc->nb_components;
if (s->pixel_type == EXR_FLOAT) {
// 32-bit
if (trc_func) {
for (x = 0; x < td->xsize; x++) {
union av_intfloat32 t;
for (c = 0; c < rgb_channel_count; c++) {
t.i = bytestream_get_le32(&rgb[c]);
t.f = trc_func(t.f);
*ptr_x++ = exr_flt2uint(t.i);
}
if (channel_buffer[3])
*ptr_x++ = exr_flt2uint(bytestream_get_le32(&a));
}
} else {
for (x = 0; x < td->xsize; x++) {
union av_intfloat32 t;
int c;
for (c = 0; c < rgb_channel_count; c++) {
t.i = bytestream_get_le32(&rgb[c]);
if (t.f > 0.0f) /* avoid negative values */
t.f = powf(t.f, one_gamma);
*ptr_x++ = exr_flt2uint(t.i);
}
if (channel_buffer[3])
*ptr_x++ = exr_flt2uint(bytestream_get_le32(&a));
}
}
} else {
// 16-bit
for (x = 0; x < td->xsize; x++) {
int c;
for (c = 0; c < rgb_channel_count; c++) {
*ptr_x++ = s->gamma_table[bytestream_get_le16(&rgb[c])];
}
if (channel_buffer[3])
*ptr_x++ = exr_halflt2uint(bytestream_get_le16(&a));
}
}
// Zero out the end if xmax+1 is not w
memset(ptr_x, 0, axmax);
channel_buffer[0] += td->channel_line_size;
channel_buffer[1] += td->channel_line_size;
channel_buffer[2] += td->channel_line_size;
if (channel_buffer[3])
channel_buffer[3] += td->channel_line_size;
}
return 0;
}
/**
* Check if the variable name corresponds to its data type.
*
* @param s the EXRContext
* @param value_name name of the variable to check
* @param value_type type of the variable to check
* @param minimum_length minimum length of the variable data
*
* @return bytes to read containing variable data
* -1 if variable is not found
* 0 if buffer ended prematurely
*/
static int check_header_variable(EXRContext *s,
const char *value_name,
const char *value_type,
unsigned int minimum_length)
{
int var_size = -1;
if (bytestream2_get_bytes_left(&s->gb) >= minimum_length &&
!strcmp(s->gb.buffer, value_name)) {
// found value_name, jump to value_type (null terminated strings)
s->gb.buffer += strlen(value_name) + 1;
if (!strcmp(s->gb.buffer, value_type)) {
s->gb.buffer += strlen(value_type) + 1;
var_size = bytestream2_get_le32(&s->gb);
// don't go read past boundaries
if (var_size > bytestream2_get_bytes_left(&s->gb))
var_size = 0;
} else {
// value_type not found, reset the buffer
s->gb.buffer -= strlen(value_name) + 1;
av_log(s->avctx, AV_LOG_WARNING,
"Unknown data type %s for header variable %s.\n",
value_type, value_name);
}
}
return var_size;
}
static int decode_header(EXRContext *s, AVFrame *frame)
{
AVDictionary *metadata = NULL;
int magic_number, version, i, flags, sar = 0;
int layer_match = 0;
s->current_channel_offset = 0;
s->xmin = ~0;
s->xmax = ~0;
s->ymin = ~0;
s->ymax = ~0;
s->xdelta = ~0;
s->ydelta = ~0;
s->channel_offsets[0] = -1;
s->channel_offsets[1] = -1;
s->channel_offsets[2] = -1;
s->channel_offsets[3] = -1;
s->pixel_type = EXR_UNKNOWN;
s->compression = EXR_UNKN;
s->nb_channels = 0;
s->w = 0;
s->h = 0;
s->tile_attr.xSize = -1;
s->tile_attr.ySize = -1;
s->is_tile = 0;
s->is_luma = 0;
if (bytestream2_get_bytes_left(&s->gb) < 10) {
av_log(s->avctx, AV_LOG_ERROR, "Header too short to parse.\n");
return AVERROR_INVALIDDATA;
}
magic_number = bytestream2_get_le32(&s->gb);
if (magic_number != 20000630) {
/* As per documentation of OpenEXR, it is supposed to be
* int 20000630 little-endian */
av_log(s->avctx, AV_LOG_ERROR, "Wrong magic number %d.\n", magic_number);
return AVERROR_INVALIDDATA;
}
version = bytestream2_get_byte(&s->gb);
if (version != 2) {
avpriv_report_missing_feature(s->avctx, "Version %d", version);
return AVERROR_PATCHWELCOME;
}
flags = bytestream2_get_le24(&s->gb);
if (flags == 0x00)
s->is_tile = 0;
else if (flags & 0x02)
s->is_tile = 1;
else{
avpriv_report_missing_feature(s->avctx, "flags %d", flags);
return AVERROR_PATCHWELCOME;
}
// Parse the header
while (bytestream2_get_bytes_left(&s->gb) > 0 && *s->gb.buffer) {
int var_size;
if ((var_size = check_header_variable(s, "channels",
"chlist", 38)) >= 0) {
GetByteContext ch_gb;
if (!var_size)
return AVERROR_INVALIDDATA;
bytestream2_init(&ch_gb, s->gb.buffer, var_size);
while (bytestream2_get_bytes_left(&ch_gb) >= 19) {
EXRChannel *channel;
enum ExrPixelType current_pixel_type;
int channel_index = -1;
int xsub, ysub;
if (strcmp(s->layer, "") != 0) {
if (strncmp(ch_gb.buffer, s->layer, strlen(s->layer)) == 0) {
layer_match = 1;
av_log(s->avctx, AV_LOG_INFO,
"Channel match layer : %s.\n", ch_gb.buffer);
ch_gb.buffer += strlen(s->layer);
if (*ch_gb.buffer == '.')
ch_gb.buffer++; /* skip dot if not given */
} else {
av_log(s->avctx, AV_LOG_INFO,
"Channel doesn't match layer : %s.\n", ch_gb.buffer);
}
} else {
layer_match = 1;
}
if (layer_match) { /* only search channel if the layer match is valid */
if (!strcmp(ch_gb.buffer, "R") ||
!strcmp(ch_gb.buffer, "X") ||
!strcmp(ch_gb.buffer, "U")) {
channel_index = 0;
s->is_luma = 0;
} else if (!strcmp(ch_gb.buffer, "G") ||
!strcmp(ch_gb.buffer, "V")) {
channel_index = 1;
s->is_luma = 0;
} else if (!strcmp(ch_gb.buffer, "Y")) {
channel_index = 1;
s->is_luma = 1;
} else if (!strcmp(ch_gb.buffer, "B") ||
!strcmp(ch_gb.buffer, "Z") ||
!strcmp(ch_gb.buffer, "W")){
channel_index = 2;
s->is_luma = 0;
} else if (!strcmp(ch_gb.buffer, "A")) {
channel_index = 3;
} else {
av_log(s->avctx, AV_LOG_WARNING,
"Unsupported channel %.256s.\n", ch_gb.buffer);
}
}
/* skip until you get a 0 */
while (bytestream2_get_bytes_left(&ch_gb) > 0 &&
bytestream2_get_byte(&ch_gb))
continue;
if (bytestream2_get_bytes_left(&ch_gb) < 4) {
av_log(s->avctx, AV_LOG_ERROR, "Incomplete header.\n");
return AVERROR_INVALIDDATA;
}
current_pixel_type = bytestream2_get_le32(&ch_gb);
if (current_pixel_type >= EXR_UNKNOWN) {
avpriv_report_missing_feature(s->avctx, "Pixel type %d",
current_pixel_type);
return AVERROR_PATCHWELCOME;
}
bytestream2_skip(&ch_gb, 4);
xsub = bytestream2_get_le32(&ch_gb);
ysub = bytestream2_get_le32(&ch_gb);
if (xsub != 1 || ysub != 1) {
avpriv_report_missing_feature(s->avctx,
"Subsampling %dx%d",
xsub, ysub);
return AVERROR_PATCHWELCOME;
}
if (channel_index >= 0 && s->channel_offsets[channel_index] == -1) { /* channel has not been previously assigned */
if (s->pixel_type != EXR_UNKNOWN &&
s->pixel_type != current_pixel_type) {
av_log(s->avctx, AV_LOG_ERROR,
"RGB channels not of the same depth.\n");
return AVERROR_INVALIDDATA;
}
s->pixel_type = current_pixel_type;
s->channel_offsets[channel_index] = s->current_channel_offset;
}
s->channels = av_realloc(s->channels,
++s->nb_channels * sizeof(EXRChannel));
if (!s->channels)
return AVERROR(ENOMEM);
channel = &s->channels[s->nb_channels - 1];
channel->pixel_type = current_pixel_type;
channel->xsub = xsub;
channel->ysub = ysub;
if (current_pixel_type == EXR_HALF) {
s->current_channel_offset += 2;
} else {/* Float or UINT32 */
s->current_channel_offset += 4;
}
}
/* Check if all channels are set with an offset or if the channels
* are causing an overflow */
if (!s->is_luma){/* if we expected to have at least 3 channels */
if (FFMIN3(s->channel_offsets[0],
s->channel_offsets[1],
s->channel_offsets[2]) < 0) {
if (s->channel_offsets[0] < 0)
av_log(s->avctx, AV_LOG_ERROR, "Missing red channel.\n");
if (s->channel_offsets[1] < 0)
av_log(s->avctx, AV_LOG_ERROR, "Missing green channel.\n");
if (s->channel_offsets[2] < 0)
av_log(s->avctx, AV_LOG_ERROR, "Missing blue channel.\n");
return AVERROR_INVALIDDATA;
}
}
// skip one last byte and update main gb
s->gb.buffer = ch_gb.buffer + 1;
continue;
} else if ((var_size = check_header_variable(s, "dataWindow", "box2i",
31)) >= 0) {
if (!var_size)
return AVERROR_INVALIDDATA;
s->xmin = bytestream2_get_le32(&s->gb);
s->ymin = bytestream2_get_le32(&s->gb);
s->xmax = bytestream2_get_le32(&s->gb);
s->ymax = bytestream2_get_le32(&s->gb);
s->xdelta = (s->xmax - s->xmin) + 1;
s->ydelta = (s->ymax - s->ymin) + 1;
continue;
} else if ((var_size = check_header_variable(s, "displayWindow",
"box2i", 34)) >= 0) {
if (!var_size)
return AVERROR_INVALIDDATA;
bytestream2_skip(&s->gb, 8);
s->w = bytestream2_get_le32(&s->gb) + 1;
s->h = bytestream2_get_le32(&s->gb) + 1;
continue;
} else if ((var_size = check_header_variable(s, "lineOrder",
"lineOrder", 25)) >= 0) {
int line_order;
if (!var_size)
return AVERROR_INVALIDDATA;
line_order = bytestream2_get_byte(&s->gb);
av_log(s->avctx, AV_LOG_DEBUG, "line order: %d.\n", line_order);
if (line_order > 2) {
av_log(s->avctx, AV_LOG_ERROR, "Unknown line order.\n");
return AVERROR_INVALIDDATA;
}
continue;
} else if ((var_size = check_header_variable(s, "pixelAspectRatio",
"float", 31)) >= 0) {
if (!var_size)
return AVERROR_INVALIDDATA;
sar = bytestream2_get_le32(&s->gb);
continue;
} else if ((var_size = check_header_variable(s, "compression",
"compression", 29)) >= 0) {
if (!var_size)
return AVERROR_INVALIDDATA;
if (s->compression == EXR_UNKN)
s->compression = bytestream2_get_byte(&s->gb);
else
av_log(s->avctx, AV_LOG_WARNING,
"Found more than one compression attribute.\n");
continue;
} else if ((var_size = check_header_variable(s, "tiles",
"tiledesc", 22)) >= 0) {
char tileLevel;
if (!s->is_tile)
av_log(s->avctx, AV_LOG_WARNING,
"Found tile attribute and scanline flags. Exr will be interpreted as scanline.\n");
s->tile_attr.xSize = bytestream2_get_le32(&s->gb);
s->tile_attr.ySize = bytestream2_get_le32(&s->gb);
tileLevel = bytestream2_get_byte(&s->gb);
s->tile_attr.level_mode = tileLevel & 0x0f;
s->tile_attr.level_round = (tileLevel >> 4) & 0x0f;
if (s->tile_attr.level_mode >= EXR_TILE_LEVEL_UNKNOWN){
avpriv_report_missing_feature(s->avctx, "Tile level mode %d",
s->tile_attr.level_mode);
return AVERROR_PATCHWELCOME;
}
if (s->tile_attr.level_round >= EXR_TILE_ROUND_UNKNOWN) {
avpriv_report_missing_feature(s->avctx, "Tile level round %d",
s->tile_attr.level_round);
return AVERROR_PATCHWELCOME;
}
continue;
} else if ((var_size = check_header_variable(s, "writer",
"string", 1)) >= 0) {
uint8_t key[256] = { 0 };
bytestream2_get_buffer(&s->gb, key, FFMIN(sizeof(key) - 1, var_size));
av_dict_set(&metadata, "writer", key, 0);
continue;
}
// Check if there are enough bytes for a header
if (bytestream2_get_bytes_left(&s->gb) <= 9) {
av_log(s->avctx, AV_LOG_ERROR, "Incomplete header\n");
return AVERROR_INVALIDDATA;
}
// Process unknown variables
for (i = 0; i < 2; i++) // value_name and value_type
while (bytestream2_get_byte(&s->gb) != 0);
// Skip variable length
bytestream2_skip(&s->gb, bytestream2_get_le32(&s->gb));
}
ff_set_sar(s->avctx, av_d2q(av_int2float(sar), 255));
if (s->compression == EXR_UNKN) {
av_log(s->avctx, AV_LOG_ERROR, "Missing compression attribute.\n");
return AVERROR_INVALIDDATA;
}
if (s->is_tile) {
if (s->tile_attr.xSize < 1 || s->tile_attr.ySize < 1) {
av_log(s->avctx, AV_LOG_ERROR, "Invalid tile attribute.\n");
return AVERROR_INVALIDDATA;
}
}
if (bytestream2_get_bytes_left(&s->gb) <= 0) {
av_log(s->avctx, AV_LOG_ERROR, "Incomplete frame.\n");
return AVERROR_INVALIDDATA;
}
av_frame_set_metadata(frame, metadata);
// aaand we are done
bytestream2_skip(&s->gb, 1);
return 0;
}
static int decode_frame(AVCodecContext *avctx, void *data,
int *got_frame, AVPacket *avpkt)
{
EXRContext *s = avctx->priv_data;
ThreadFrame frame = { .f = data };
AVFrame *picture = data;
uint8_t *ptr;
int y, ret;
int out_line_size;
int nb_blocks;/* nb scanline or nb tile */
bytestream2_init(&s->gb, avpkt->data, avpkt->size);
if ((ret = decode_header(s, picture)) < 0)
return ret;
switch (s->pixel_type) {
case EXR_FLOAT:
case EXR_HALF:
if (s->channel_offsets[3] >= 0) {
if (!s->is_luma) {
avctx->pix_fmt = AV_PIX_FMT_RGBA64;
} else {
avctx->pix_fmt = AV_PIX_FMT_YA16;
}
} else {
if (!s->is_luma) {
avctx->pix_fmt = AV_PIX_FMT_RGB48;
} else {
avctx->pix_fmt = AV_PIX_FMT_GRAY16;
}
}
break;
case EXR_UINT:
avpriv_request_sample(avctx, "32-bit unsigned int");
return AVERROR_PATCHWELCOME;
default:
av_log(avctx, AV_LOG_ERROR, "Missing channel list.\n");
return AVERROR_INVALIDDATA;
}
if (s->apply_trc_type != AVCOL_TRC_UNSPECIFIED)
avctx->color_trc = s->apply_trc_type;
switch (s->compression) {
case EXR_RAW:
case EXR_RLE:
case EXR_ZIP1:
s->scan_lines_per_block = 1;
break;
case EXR_PXR24:
case EXR_ZIP16:
s->scan_lines_per_block = 16;
break;
case EXR_PIZ:
case EXR_B44:
case EXR_B44A:
s->scan_lines_per_block = 32;
break;
default:
avpriv_report_missing_feature(avctx, "Compression %d", s->compression);
return AVERROR_PATCHWELCOME;
}
/* Verify the xmin, xmax, ymin, ymax and xdelta before setting
* the actual image size. */
if (s->xmin > s->xmax ||
s->ymin > s->ymax ||
s->xdelta != s->xmax - s->xmin + 1 ||
s->xmax >= s->w ||
s->ymax >= s->h) {
av_log(avctx, AV_LOG_ERROR, "Wrong or missing size information.\n");
return AVERROR_INVALIDDATA;
}
if ((ret = ff_set_dimensions(avctx, s->w, s->h)) < 0)
return ret;
s->desc = av_pix_fmt_desc_get(avctx->pix_fmt);
if (!s->desc)
return AVERROR_INVALIDDATA;
out_line_size = avctx->width * 2 * s->desc->nb_components;
if (s->is_tile) {
nb_blocks = ((s->xdelta + s->tile_attr.xSize - 1) / s->tile_attr.xSize) *
((s->ydelta + s->tile_attr.ySize - 1) / s->tile_attr.ySize);
} else { /* scanline */
nb_blocks = (s->ydelta + s->scan_lines_per_block - 1) /
s->scan_lines_per_block;
}
if ((ret = ff_thread_get_buffer(avctx, &frame, 0)) < 0)
return ret;
if (bytestream2_get_bytes_left(&s->gb) < nb_blocks * 8)
return AVERROR_INVALIDDATA;
// save pointer we are going to use in decode_block
s->buf = avpkt->data;
s->buf_size = avpkt->size;
ptr = picture->data[0];
// Zero out the start if ymin is not 0
for (y = 0; y < s->ymin; y++) {
memset(ptr, 0, out_line_size);
ptr += picture->linesize[0];
}
s->picture = picture;
avctx->execute2(avctx, decode_block, s->thread_data, NULL, nb_blocks);
// Zero out the end if ymax+1 is not h
ptr = picture->data[0] + ((s->ymax+1) * picture->linesize[0]);
for (y = s->ymax + 1; y < avctx->height; y++) {
memset(ptr, 0, out_line_size);
ptr += picture->linesize[0];
}
picture->pict_type = AV_PICTURE_TYPE_I;
*got_frame = 1;
return avpkt->size;
}
static av_cold int decode_init(AVCodecContext *avctx)
{
EXRContext *s = avctx->priv_data;
uint32_t i;
union av_intfloat32 t;
float one_gamma = 1.0f / s->gamma;
avpriv_trc_function trc_func = NULL;
s->avctx = avctx;
trc_func = avpriv_get_trc_function_from_trc(s->apply_trc_type);
if (trc_func) {
for (i = 0; i < 65536; ++i) {
t = exr_half2float(i);
t.f = trc_func(t.f);
s->gamma_table[i] = exr_flt2uint(t.i);
}
} else {
if (one_gamma > 0.9999f && one_gamma < 1.0001f) {
for (i = 0; i < 65536; ++i)
s->gamma_table[i] = exr_halflt2uint(i);
} else {
for (i = 0; i < 65536; ++i) {
t = exr_half2float(i);
/* If negative value we reuse half value */
if (t.f <= 0.0f) {
s->gamma_table[i] = exr_halflt2uint(i);
} else {
t.f = powf(t.f, one_gamma);
s->gamma_table[i] = exr_flt2uint(t.i);
}
}
}
}
// allocate thread data, used for non EXR_RAW compression types
s->thread_data = av_mallocz_array(avctx->thread_count, sizeof(EXRThreadData));
if (!s->thread_data)
return AVERROR_INVALIDDATA;
return 0;
}
#if HAVE_THREADS
static int decode_init_thread_copy(AVCodecContext *avctx)
{ EXRContext *s = avctx->priv_data;
// allocate thread data, used for non EXR_RAW compression types
s->thread_data = av_mallocz_array(avctx->thread_count, sizeof(EXRThreadData));
if (!s->thread_data)
return AVERROR_INVALIDDATA;
return 0;
}
#endif
static av_cold int decode_end(AVCodecContext *avctx)
{
EXRContext *s = avctx->priv_data;
int i;
for (i = 0; i < avctx->thread_count; i++) {
EXRThreadData *td = &s->thread_data[i];
av_freep(&td->uncompressed_data);
av_freep(&td->tmp);
av_freep(&td->bitmap);
av_freep(&td->lut);
}
av_freep(&s->thread_data);
av_freep(&s->channels);
return 0;
}
#define OFFSET(x) offsetof(EXRContext, x)
#define VD AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_DECODING_PARAM
static const AVOption options[] = {
{ "layer", "Set the decoding layer", OFFSET(layer),
AV_OPT_TYPE_STRING, { .str = "" }, 0, 0, VD },
{ "gamma", "Set the float gamma value when decoding", OFFSET(gamma),
AV_OPT_TYPE_FLOAT, { .dbl = 1.0f }, 0.001, FLT_MAX, VD },
// XXX: Note the abuse of the enum using AVCOL_TRC_UNSPECIFIED to subsume the existing gamma option
{ "apply_trc", "color transfer characteristics to apply to EXR linear input", OFFSET(apply_trc_type),
AV_OPT_TYPE_INT, {.i64 = AVCOL_TRC_UNSPECIFIED }, 1, AVCOL_TRC_NB-1, VD, "apply_trc_type"},
{ "bt709", "BT.709", 0,
AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_BT709 }, INT_MIN, INT_MAX, VD, "apply_trc_type"},
{ "gamma", "gamma", 0,
AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_UNSPECIFIED }, INT_MIN, INT_MAX, VD, "apply_trc_type"},
{ "gamma22", "BT.470 M", 0,
AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_GAMMA22 }, INT_MIN, INT_MAX, VD, "apply_trc_type"},
{ "gamma28", "BT.470 BG", 0,
AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_GAMMA28 }, INT_MIN, INT_MAX, VD, "apply_trc_type"},
{ "smpte170m", "SMPTE 170 M", 0,
AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_SMPTE170M }, INT_MIN, INT_MAX, VD, "apply_trc_type"},
{ "smpte240m", "SMPTE 240 M", 0,
AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_SMPTE240M }, INT_MIN, INT_MAX, VD, "apply_trc_type"},
{ "linear", "Linear", 0,
AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_LINEAR }, INT_MIN, INT_MAX, VD, "apply_trc_type"},
{ "log", "Log", 0,
AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_LOG }, INT_MIN, INT_MAX, VD, "apply_trc_type"},
{ "log_sqrt", "Log square root", 0,
AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_LOG_SQRT }, INT_MIN, INT_MAX, VD, "apply_trc_type"},
{ "iec61966_2_4", "IEC 61966-2-4", 0,
AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_IEC61966_2_4 }, INT_MIN, INT_MAX, VD, "apply_trc_type"},
{ "bt1361", "BT.1361", 0,
AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_BT1361_ECG }, INT_MIN, INT_MAX, VD, "apply_trc_type"},
{ "iec61966_2_1", "IEC 61966-2-1", 0,
AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_IEC61966_2_1 }, INT_MIN, INT_MAX, VD, "apply_trc_type"},
{ "bt2020_10bit", "BT.2020 - 10 bit", 0,
AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_BT2020_10 }, INT_MIN, INT_MAX, VD, "apply_trc_type"},
{ "bt2020_12bit", "BT.2020 - 12 bit", 0,
AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_BT2020_12 }, INT_MIN, INT_MAX, VD, "apply_trc_type"},
{ "smpte2084", "SMPTE ST 2084", 0,
AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_SMPTEST2084 }, INT_MIN, INT_MAX, VD, "apply_trc_type"},
{ "smpte428_1", "SMPTE ST 428-1", 0,
AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_SMPTEST428_1 }, INT_MIN, INT_MAX, VD, "apply_trc_type"},
{ NULL },
};
static const AVClass exr_class = {
.class_name = "EXR",
.item_name = av_default_item_name,
.option = options,
.version = LIBAVUTIL_VERSION_INT,
};
AVCodec ff_exr_decoder = {
.name = "exr",
.long_name = NULL_IF_CONFIG_SMALL("OpenEXR image"),
.type = AVMEDIA_TYPE_VIDEO,
.id = AV_CODEC_ID_EXR,
.priv_data_size = sizeof(EXRContext),
.init = decode_init,
.init_thread_copy = ONLY_IF_THREADS_ENABLED(decode_init_thread_copy),
.close = decode_end,
.decode = decode_frame,
.capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_FRAME_THREADS |
AV_CODEC_CAP_SLICE_THREADS,
.priv_class = &exr_class,
};