1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2024-12-18 03:19:31 +02:00
FFmpeg/libavcodec/videotoolboxenc.c
Steven Liu 0052f3f527 avcodec/videotoolboxenc: add rc_max_bitrate control into videotoolbox
add kVTCompressionPropertyKey_DataRateLimits support by rc_max_bitrate

Reviewed-by: Rick Kern <kernrj@gmail.com>
Signed-off-by: Steven Liu <lq@chinaffmpeg.org>
2017-03-15 09:37:25 -04:00

2492 lines
79 KiB
C

/*
* copyright (c) 2015 Rick Kern <kernrj@gmail.com>
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <VideoToolbox/VideoToolbox.h>
#include <CoreVideo/CoreVideo.h>
#include <CoreMedia/CoreMedia.h>
#include <TargetConditionals.h>
#include <Availability.h>
#include "avcodec.h"
#include "libavutil/opt.h"
#include "libavutil/avassert.h"
#include "libavutil/atomic.h"
#include "libavutil/avstring.h"
#include "libavcodec/avcodec.h"
#include "libavutil/pixdesc.h"
#include "internal.h"
#include <pthread.h>
#include "h264.h"
#include "h264_sei.h"
#include <dlfcn.h>
//These symbols may not be present
static struct{
CFStringRef kCVImageBufferColorPrimaries_ITU_R_2020;
CFStringRef kCVImageBufferTransferFunction_ITU_R_2020;
CFStringRef kCVImageBufferYCbCrMatrix_ITU_R_2020;
CFStringRef kVTCompressionPropertyKey_H264EntropyMode;
CFStringRef kVTH264EntropyMode_CAVLC;
CFStringRef kVTH264EntropyMode_CABAC;
CFStringRef kVTProfileLevel_H264_Baseline_4_0;
CFStringRef kVTProfileLevel_H264_Baseline_4_2;
CFStringRef kVTProfileLevel_H264_Baseline_5_0;
CFStringRef kVTProfileLevel_H264_Baseline_5_1;
CFStringRef kVTProfileLevel_H264_Baseline_5_2;
CFStringRef kVTProfileLevel_H264_Baseline_AutoLevel;
CFStringRef kVTProfileLevel_H264_Main_4_2;
CFStringRef kVTProfileLevel_H264_Main_5_1;
CFStringRef kVTProfileLevel_H264_Main_5_2;
CFStringRef kVTProfileLevel_H264_Main_AutoLevel;
CFStringRef kVTProfileLevel_H264_High_3_0;
CFStringRef kVTProfileLevel_H264_High_3_1;
CFStringRef kVTProfileLevel_H264_High_3_2;
CFStringRef kVTProfileLevel_H264_High_4_0;
CFStringRef kVTProfileLevel_H264_High_4_1;
CFStringRef kVTProfileLevel_H264_High_4_2;
CFStringRef kVTProfileLevel_H264_High_5_1;
CFStringRef kVTProfileLevel_H264_High_5_2;
CFStringRef kVTProfileLevel_H264_High_AutoLevel;
CFStringRef kVTCompressionPropertyKey_RealTime;
CFStringRef kVTVideoEncoderSpecification_EnableHardwareAcceleratedVideoEncoder;
CFStringRef kVTVideoEncoderSpecification_RequireHardwareAcceleratedVideoEncoder;
} compat_keys;
#define GET_SYM(symbol, defaultVal) \
do{ \
CFStringRef cfstr = *(CFStringRef*)dlsym(RTLD_DEFAULT, #symbol); \
if(!cfstr) \
compat_keys.symbol = CFSTR(defaultVal); \
else \
compat_keys.symbol = cfstr; \
}while(0)
static pthread_once_t once_ctrl = PTHREAD_ONCE_INIT;
static void loadVTEncSymbols(){
GET_SYM(kCVImageBufferColorPrimaries_ITU_R_2020, "ITU_R_2020");
GET_SYM(kCVImageBufferTransferFunction_ITU_R_2020, "ITU_R_2020");
GET_SYM(kCVImageBufferYCbCrMatrix_ITU_R_2020, "ITU_R_2020");
GET_SYM(kVTCompressionPropertyKey_H264EntropyMode, "H264EntropyMode");
GET_SYM(kVTH264EntropyMode_CAVLC, "CAVLC");
GET_SYM(kVTH264EntropyMode_CABAC, "CABAC");
GET_SYM(kVTProfileLevel_H264_Baseline_4_0, "H264_Baseline_4_0");
GET_SYM(kVTProfileLevel_H264_Baseline_4_2, "H264_Baseline_4_2");
GET_SYM(kVTProfileLevel_H264_Baseline_5_0, "H264_Baseline_5_0");
GET_SYM(kVTProfileLevel_H264_Baseline_5_1, "H264_Baseline_5_1");
GET_SYM(kVTProfileLevel_H264_Baseline_5_2, "H264_Baseline_5_2");
GET_SYM(kVTProfileLevel_H264_Baseline_AutoLevel, "H264_Baseline_AutoLevel");
GET_SYM(kVTProfileLevel_H264_Main_4_2, "H264_Main_4_2");
GET_SYM(kVTProfileLevel_H264_Main_5_1, "H264_Main_5_1");
GET_SYM(kVTProfileLevel_H264_Main_5_2, "H264_Main_5_2");
GET_SYM(kVTProfileLevel_H264_Main_AutoLevel, "H264_Main_AutoLevel");
GET_SYM(kVTProfileLevel_H264_High_3_0, "H264_High_3_0");
GET_SYM(kVTProfileLevel_H264_High_3_1, "H264_High_3_1");
GET_SYM(kVTProfileLevel_H264_High_3_2, "H264_High_3_2");
GET_SYM(kVTProfileLevel_H264_High_4_0, "H264_High_4_0");
GET_SYM(kVTProfileLevel_H264_High_4_1, "H264_High_4_1");
GET_SYM(kVTProfileLevel_H264_High_4_2, "H264_High_4_2");
GET_SYM(kVTProfileLevel_H264_High_5_1, "H264_High_5_1");
GET_SYM(kVTProfileLevel_H264_High_5_2, "H264_High_5_2");
GET_SYM(kVTProfileLevel_H264_High_AutoLevel, "H264_High_AutoLevel");
GET_SYM(kVTCompressionPropertyKey_RealTime, "RealTime");
GET_SYM(kVTVideoEncoderSpecification_EnableHardwareAcceleratedVideoEncoder,
"EnableHardwareAcceleratedVideoEncoder");
GET_SYM(kVTVideoEncoderSpecification_RequireHardwareAcceleratedVideoEncoder,
"RequireHardwareAcceleratedVideoEncoder");
}
typedef enum VT_H264Profile {
H264_PROF_AUTO,
H264_PROF_BASELINE,
H264_PROF_MAIN,
H264_PROF_HIGH,
H264_PROF_COUNT
} VT_H264Profile;
typedef enum VTH264Entropy{
VT_ENTROPY_NOT_SET,
VT_CAVLC,
VT_CABAC
} VTH264Entropy;
static const uint8_t start_code[] = { 0, 0, 0, 1 };
typedef struct ExtraSEI {
void *data;
size_t size;
} ExtraSEI;
typedef struct BufNode {
CMSampleBufferRef cm_buffer;
ExtraSEI *sei;
struct BufNode* next;
int error;
} BufNode;
typedef struct VTEncContext {
AVClass *class;
VTCompressionSessionRef session;
CFStringRef ycbcr_matrix;
CFStringRef color_primaries;
CFStringRef transfer_function;
pthread_mutex_t lock;
pthread_cond_t cv_sample_sent;
int async_error;
BufNode *q_head;
BufNode *q_tail;
int64_t frame_ct_out;
int64_t frame_ct_in;
int64_t first_pts;
int64_t dts_delta;
int64_t profile;
int64_t level;
int64_t entropy;
int64_t realtime;
int64_t frames_before;
int64_t frames_after;
int64_t allow_sw;
bool flushing;
bool has_b_frames;
bool warned_color_range;
bool a53_cc;
} VTEncContext;
static int vtenc_populate_extradata(AVCodecContext *avctx,
CMVideoCodecType codec_type,
CFStringRef profile_level,
CFNumberRef gamma_level,
CFDictionaryRef enc_info,
CFDictionaryRef pixel_buffer_info);
/**
* NULL-safe release of *refPtr, and sets value to NULL.
*/
static void vt_release_num(CFNumberRef* refPtr){
if (!*refPtr) {
return;
}
CFRelease(*refPtr);
*refPtr = NULL;
}
static void set_async_error(VTEncContext *vtctx, int err)
{
BufNode *info;
pthread_mutex_lock(&vtctx->lock);
vtctx->async_error = err;
info = vtctx->q_head;
vtctx->q_head = vtctx->q_tail = NULL;
while (info) {
BufNode *next = info->next;
CFRelease(info->cm_buffer);
av_free(info);
info = next;
}
pthread_mutex_unlock(&vtctx->lock);
}
static void clear_frame_queue(VTEncContext *vtctx)
{
set_async_error(vtctx, 0);
}
static int vtenc_q_pop(VTEncContext *vtctx, bool wait, CMSampleBufferRef *buf, ExtraSEI **sei)
{
BufNode *info;
pthread_mutex_lock(&vtctx->lock);
if (vtctx->async_error) {
pthread_mutex_unlock(&vtctx->lock);
return vtctx->async_error;
}
if (vtctx->flushing && vtctx->frame_ct_in == vtctx->frame_ct_out) {
*buf = NULL;
pthread_mutex_unlock(&vtctx->lock);
return 0;
}
while (!vtctx->q_head && !vtctx->async_error && wait) {
pthread_cond_wait(&vtctx->cv_sample_sent, &vtctx->lock);
}
if (!vtctx->q_head) {
pthread_mutex_unlock(&vtctx->lock);
*buf = NULL;
return 0;
}
info = vtctx->q_head;
vtctx->q_head = vtctx->q_head->next;
if (!vtctx->q_head) {
vtctx->q_tail = NULL;
}
pthread_mutex_unlock(&vtctx->lock);
*buf = info->cm_buffer;
if (sei && *buf) {
*sei = info->sei;
} else if (info->sei) {
if (info->sei->data) av_free(info->sei->data);
av_free(info->sei);
}
av_free(info);
vtctx->frame_ct_out++;
return 0;
}
static void vtenc_q_push(VTEncContext *vtctx, CMSampleBufferRef buffer, ExtraSEI *sei)
{
BufNode *info = av_malloc(sizeof(BufNode));
if (!info) {
set_async_error(vtctx, AVERROR(ENOMEM));
return;
}
CFRetain(buffer);
info->cm_buffer = buffer;
info->sei = sei;
info->next = NULL;
pthread_mutex_lock(&vtctx->lock);
pthread_cond_signal(&vtctx->cv_sample_sent);
if (!vtctx->q_head) {
vtctx->q_head = info;
} else {
vtctx->q_tail->next = info;
}
vtctx->q_tail = info;
pthread_mutex_unlock(&vtctx->lock);
}
static int count_nalus(size_t length_code_size,
CMSampleBufferRef sample_buffer,
int *count)
{
size_t offset = 0;
int status;
int nalu_ct = 0;
uint8_t size_buf[4];
size_t src_size = CMSampleBufferGetTotalSampleSize(sample_buffer);
CMBlockBufferRef block = CMSampleBufferGetDataBuffer(sample_buffer);
if (length_code_size > 4)
return AVERROR_INVALIDDATA;
while (offset < src_size) {
size_t curr_src_len;
size_t box_len = 0;
size_t i;
status = CMBlockBufferCopyDataBytes(block,
offset,
length_code_size,
size_buf);
for (i = 0; i < length_code_size; i++) {
box_len <<= 8;
box_len |= size_buf[i];
}
curr_src_len = box_len + length_code_size;
offset += curr_src_len;
nalu_ct++;
}
*count = nalu_ct;
return 0;
}
static CMVideoCodecType get_cm_codec_type(enum AVCodecID id)
{
switch (id) {
case AV_CODEC_ID_H264: return kCMVideoCodecType_H264;
default: return 0;
}
}
/**
* Get the parameter sets from a CMSampleBufferRef.
* @param dst If *dst isn't NULL, the parameters are copied into existing
* memory. *dst_size must be set accordingly when *dst != NULL.
* If *dst is NULL, it will be allocated.
* In all cases, *dst_size is set to the number of bytes used starting
* at *dst.
*/
static int get_params_size(
AVCodecContext *avctx,
CMVideoFormatDescriptionRef vid_fmt,
size_t *size)
{
size_t total_size = 0;
size_t ps_count;
int is_count_bad = 0;
size_t i;
int status;
status = CMVideoFormatDescriptionGetH264ParameterSetAtIndex(vid_fmt,
0,
NULL,
NULL,
&ps_count,
NULL);
if (status) {
is_count_bad = 1;
ps_count = 0;
status = 0;
}
for (i = 0; i < ps_count || is_count_bad; i++) {
const uint8_t *ps;
size_t ps_size;
status = CMVideoFormatDescriptionGetH264ParameterSetAtIndex(vid_fmt,
i,
&ps,
&ps_size,
NULL,
NULL);
if (status) {
/*
* When ps_count is invalid, status != 0 ends the loop normally
* unless we didn't get any parameter sets.
*/
if (i > 0 && is_count_bad) status = 0;
break;
}
total_size += ps_size + sizeof(start_code);
}
if (status) {
av_log(avctx, AV_LOG_ERROR, "Error getting parameter set sizes: %d\n", status);
return AVERROR_EXTERNAL;
}
*size = total_size;
return 0;
}
static int copy_param_sets(
AVCodecContext *avctx,
CMVideoFormatDescriptionRef vid_fmt,
uint8_t *dst,
size_t dst_size)
{
size_t ps_count;
int is_count_bad = 0;
int status;
size_t offset = 0;
size_t i;
status = CMVideoFormatDescriptionGetH264ParameterSetAtIndex(vid_fmt,
0,
NULL,
NULL,
&ps_count,
NULL);
if (status) {
is_count_bad = 1;
ps_count = 0;
status = 0;
}
for (i = 0; i < ps_count || is_count_bad; i++) {
const uint8_t *ps;
size_t ps_size;
size_t next_offset;
status = CMVideoFormatDescriptionGetH264ParameterSetAtIndex(vid_fmt,
i,
&ps,
&ps_size,
NULL,
NULL);
if (status) {
if (i > 0 && is_count_bad) status = 0;
break;
}
next_offset = offset + sizeof(start_code) + ps_size;
if (dst_size < next_offset) {
av_log(avctx, AV_LOG_ERROR, "Error: buffer too small for parameter sets.\n");
return AVERROR_BUFFER_TOO_SMALL;
}
memcpy(dst + offset, start_code, sizeof(start_code));
offset += sizeof(start_code);
memcpy(dst + offset, ps, ps_size);
offset = next_offset;
}
if (status) {
av_log(avctx, AV_LOG_ERROR, "Error getting parameter set data: %d\n", status);
return AVERROR_EXTERNAL;
}
return 0;
}
static int set_extradata(AVCodecContext *avctx, CMSampleBufferRef sample_buffer)
{
CMVideoFormatDescriptionRef vid_fmt;
size_t total_size;
int status;
vid_fmt = CMSampleBufferGetFormatDescription(sample_buffer);
if (!vid_fmt) {
av_log(avctx, AV_LOG_ERROR, "No video format.\n");
return AVERROR_EXTERNAL;
}
status = get_params_size(avctx, vid_fmt, &total_size);
if (status) {
av_log(avctx, AV_LOG_ERROR, "Could not get parameter sets.\n");
return status;
}
avctx->extradata = av_mallocz(total_size + AV_INPUT_BUFFER_PADDING_SIZE);
if (!avctx->extradata) {
return AVERROR(ENOMEM);
}
avctx->extradata_size = total_size;
status = copy_param_sets(avctx, vid_fmt, avctx->extradata, total_size);
if (status) {
av_log(avctx, AV_LOG_ERROR, "Could not copy param sets.\n");
return status;
}
return 0;
}
static void vtenc_output_callback(
void *ctx,
void *sourceFrameCtx,
OSStatus status,
VTEncodeInfoFlags flags,
CMSampleBufferRef sample_buffer)
{
AVCodecContext *avctx = ctx;
VTEncContext *vtctx = avctx->priv_data;
ExtraSEI *sei = sourceFrameCtx;
if (vtctx->async_error) {
if(sample_buffer) CFRelease(sample_buffer);
return;
}
if (status || !sample_buffer) {
av_log(avctx, AV_LOG_ERROR, "Error encoding frame: %d\n", (int)status);
set_async_error(vtctx, AVERROR_EXTERNAL);
return;
}
if (!avctx->extradata && (avctx->flags & AV_CODEC_FLAG_GLOBAL_HEADER)) {
int set_status = set_extradata(avctx, sample_buffer);
if (set_status) {
set_async_error(vtctx, set_status);
return;
}
}
vtenc_q_push(vtctx, sample_buffer, sei);
}
static int get_length_code_size(
AVCodecContext *avctx,
CMSampleBufferRef sample_buffer,
size_t *size)
{
CMVideoFormatDescriptionRef vid_fmt;
int isize;
int status;
vid_fmt = CMSampleBufferGetFormatDescription(sample_buffer);
if (!vid_fmt) {
av_log(avctx, AV_LOG_ERROR, "Error getting buffer format description.\n");
return AVERROR_EXTERNAL;
}
status = CMVideoFormatDescriptionGetH264ParameterSetAtIndex(vid_fmt,
0,
NULL,
NULL,
NULL,
&isize);
if (status) {
av_log(avctx, AV_LOG_ERROR, "Error getting length code size: %d\n", status);
return AVERROR_EXTERNAL;
}
*size = isize;
return 0;
}
/*
* Returns true on success.
*
* If profile_level_val is NULL and this method returns true, don't specify the
* profile/level to the encoder.
*/
static bool get_vt_profile_level(AVCodecContext *avctx,
CFStringRef *profile_level_val)
{
VTEncContext *vtctx = avctx->priv_data;
int64_t profile = vtctx->profile;
if (profile == H264_PROF_AUTO && vtctx->level) {
//Need to pick a profile if level is not auto-selected.
profile = vtctx->has_b_frames ? H264_PROF_MAIN : H264_PROF_BASELINE;
}
*profile_level_val = NULL;
switch (profile) {
case H264_PROF_AUTO:
return true;
case H264_PROF_BASELINE:
switch (vtctx->level) {
case 0: *profile_level_val =
compat_keys.kVTProfileLevel_H264_Baseline_AutoLevel; break;
case 13: *profile_level_val = kVTProfileLevel_H264_Baseline_1_3; break;
case 30: *profile_level_val = kVTProfileLevel_H264_Baseline_3_0; break;
case 31: *profile_level_val = kVTProfileLevel_H264_Baseline_3_1; break;
case 32: *profile_level_val = kVTProfileLevel_H264_Baseline_3_2; break;
case 40: *profile_level_val =
compat_keys.kVTProfileLevel_H264_Baseline_4_0; break;
case 41: *profile_level_val = kVTProfileLevel_H264_Baseline_4_1; break;
case 42: *profile_level_val =
compat_keys.kVTProfileLevel_H264_Baseline_4_2; break;
case 50: *profile_level_val =
compat_keys.kVTProfileLevel_H264_Baseline_5_0; break;
case 51: *profile_level_val =
compat_keys.kVTProfileLevel_H264_Baseline_5_1; break;
case 52: *profile_level_val =
compat_keys.kVTProfileLevel_H264_Baseline_5_2; break;
}
break;
case H264_PROF_MAIN:
switch (vtctx->level) {
case 0: *profile_level_val =
compat_keys.kVTProfileLevel_H264_Main_AutoLevel; break;
case 30: *profile_level_val = kVTProfileLevel_H264_Main_3_0; break;
case 31: *profile_level_val = kVTProfileLevel_H264_Main_3_1; break;
case 32: *profile_level_val = kVTProfileLevel_H264_Main_3_2; break;
case 40: *profile_level_val = kVTProfileLevel_H264_Main_4_0; break;
case 41: *profile_level_val = kVTProfileLevel_H264_Main_4_1; break;
case 42: *profile_level_val =
compat_keys.kVTProfileLevel_H264_Main_4_2; break;
case 50: *profile_level_val = kVTProfileLevel_H264_Main_5_0; break;
case 51: *profile_level_val =
compat_keys.kVTProfileLevel_H264_Main_5_1; break;
case 52: *profile_level_val =
compat_keys.kVTProfileLevel_H264_Main_5_2; break;
}
break;
case H264_PROF_HIGH:
switch (vtctx->level) {
case 0: *profile_level_val =
compat_keys.kVTProfileLevel_H264_High_AutoLevel; break;
case 30: *profile_level_val =
compat_keys.kVTProfileLevel_H264_High_3_0; break;
case 31: *profile_level_val =
compat_keys.kVTProfileLevel_H264_High_3_1; break;
case 32: *profile_level_val =
compat_keys.kVTProfileLevel_H264_High_3_2; break;
case 40: *profile_level_val =
compat_keys.kVTProfileLevel_H264_High_4_0; break;
case 41: *profile_level_val =
compat_keys.kVTProfileLevel_H264_High_4_1; break;
case 42: *profile_level_val =
compat_keys.kVTProfileLevel_H264_High_4_2; break;
case 50: *profile_level_val = kVTProfileLevel_H264_High_5_0; break;
case 51: *profile_level_val =
compat_keys.kVTProfileLevel_H264_High_5_1; break;
case 52: *profile_level_val =
compat_keys.kVTProfileLevel_H264_High_5_2; break;
}
break;
}
if (!*profile_level_val) {
av_log(avctx, AV_LOG_ERROR, "Invalid Profile/Level.\n");
return false;
}
return true;
}
static int get_cv_pixel_format(AVCodecContext* avctx,
enum AVPixelFormat fmt,
enum AVColorRange range,
int* av_pixel_format,
int* range_guessed)
{
if (range_guessed) *range_guessed = range != AVCOL_RANGE_MPEG &&
range != AVCOL_RANGE_JPEG;
//MPEG range is used when no range is set
if (fmt == AV_PIX_FMT_NV12) {
*av_pixel_format = range == AVCOL_RANGE_JPEG ?
kCVPixelFormatType_420YpCbCr8BiPlanarFullRange :
kCVPixelFormatType_420YpCbCr8BiPlanarVideoRange;
} else if (fmt == AV_PIX_FMT_YUV420P) {
*av_pixel_format = range == AVCOL_RANGE_JPEG ?
kCVPixelFormatType_420YpCbCr8PlanarFullRange :
kCVPixelFormatType_420YpCbCr8Planar;
} else {
return AVERROR(EINVAL);
}
return 0;
}
static void add_color_attr(AVCodecContext *avctx, CFMutableDictionaryRef dict) {
VTEncContext *vtctx = avctx->priv_data;
if (vtctx->color_primaries) {
CFDictionarySetValue(dict,
kCVImageBufferColorPrimariesKey,
vtctx->color_primaries);
}
if (vtctx->transfer_function) {
CFDictionarySetValue(dict,
kCVImageBufferTransferFunctionKey,
vtctx->transfer_function);
}
if (vtctx->ycbcr_matrix) {
CFDictionarySetValue(dict,
kCVImageBufferYCbCrMatrixKey,
vtctx->ycbcr_matrix);
}
}
static int create_cv_pixel_buffer_info(AVCodecContext* avctx,
CFMutableDictionaryRef* dict)
{
CFNumberRef cv_color_format_num = NULL;
CFNumberRef width_num = NULL;
CFNumberRef height_num = NULL;
CFMutableDictionaryRef pixel_buffer_info = NULL;
int cv_color_format;
int status = get_cv_pixel_format(avctx,
avctx->pix_fmt,
avctx->color_range,
&cv_color_format,
NULL);
if (status) return status;
pixel_buffer_info = CFDictionaryCreateMutable(
kCFAllocatorDefault,
20,
&kCFCopyStringDictionaryKeyCallBacks,
&kCFTypeDictionaryValueCallBacks);
if (!pixel_buffer_info) goto pbinfo_nomem;
cv_color_format_num = CFNumberCreate(kCFAllocatorDefault,
kCFNumberSInt32Type,
&cv_color_format);
if (!cv_color_format_num) goto pbinfo_nomem;
CFDictionarySetValue(pixel_buffer_info,
kCVPixelBufferPixelFormatTypeKey,
cv_color_format_num);
vt_release_num(&cv_color_format_num);
width_num = CFNumberCreate(kCFAllocatorDefault,
kCFNumberSInt32Type,
&avctx->width);
if (!width_num) return AVERROR(ENOMEM);
CFDictionarySetValue(pixel_buffer_info,
kCVPixelBufferWidthKey,
width_num);
vt_release_num(&width_num);
height_num = CFNumberCreate(kCFAllocatorDefault,
kCFNumberSInt32Type,
&avctx->height);
if (!height_num) goto pbinfo_nomem;
CFDictionarySetValue(pixel_buffer_info,
kCVPixelBufferHeightKey,
height_num);
vt_release_num(&height_num);
add_color_attr(avctx, pixel_buffer_info);
*dict = pixel_buffer_info;
return 0;
pbinfo_nomem:
vt_release_num(&cv_color_format_num);
vt_release_num(&width_num);
vt_release_num(&height_num);
if (pixel_buffer_info) CFRelease(pixel_buffer_info);
return AVERROR(ENOMEM);
}
static int get_cv_color_primaries(AVCodecContext *avctx,
CFStringRef *primaries)
{
enum AVColorPrimaries pri = avctx->color_primaries;
switch (pri) {
case AVCOL_PRI_UNSPECIFIED:
*primaries = NULL;
break;
case AVCOL_PRI_BT709:
*primaries = kCVImageBufferColorPrimaries_ITU_R_709_2;
break;
case AVCOL_PRI_BT2020:
*primaries = compat_keys.kCVImageBufferColorPrimaries_ITU_R_2020;
break;
default:
av_log(avctx, AV_LOG_ERROR, "Color primaries %s is not supported.\n", av_color_primaries_name(pri));
*primaries = NULL;
return -1;
}
return 0;
}
static int get_cv_transfer_function(AVCodecContext *avctx,
CFStringRef *transfer_fnc,
CFNumberRef *gamma_level)
{
enum AVColorTransferCharacteristic trc = avctx->color_trc;
Float32 gamma;
*gamma_level = NULL;
switch (trc) {
case AVCOL_TRC_UNSPECIFIED:
*transfer_fnc = NULL;
break;
case AVCOL_TRC_BT709:
*transfer_fnc = kCVImageBufferTransferFunction_ITU_R_709_2;
break;
case AVCOL_TRC_SMPTE240M:
*transfer_fnc = kCVImageBufferTransferFunction_SMPTE_240M_1995;
break;
case AVCOL_TRC_GAMMA22:
gamma = 2.2;
*transfer_fnc = kCVImageBufferTransferFunction_UseGamma;
*gamma_level = CFNumberCreate(NULL, kCFNumberFloat32Type, &gamma);
break;
case AVCOL_TRC_GAMMA28:
gamma = 2.8;
*transfer_fnc = kCVImageBufferTransferFunction_UseGamma;
*gamma_level = CFNumberCreate(NULL, kCFNumberFloat32Type, &gamma);
break;
case AVCOL_TRC_BT2020_10:
case AVCOL_TRC_BT2020_12:
*transfer_fnc = compat_keys.kCVImageBufferTransferFunction_ITU_R_2020;
break;
default:
av_log(avctx, AV_LOG_ERROR, "Transfer function %s is not supported.\n", av_color_transfer_name(trc));
return -1;
}
return 0;
}
static int get_cv_ycbcr_matrix(AVCodecContext *avctx, CFStringRef *matrix) {
switch(avctx->colorspace) {
case AVCOL_SPC_BT709:
*matrix = kCVImageBufferYCbCrMatrix_ITU_R_709_2;
break;
case AVCOL_SPC_UNSPECIFIED:
*matrix = NULL;
break;
case AVCOL_SPC_BT470BG:
case AVCOL_SPC_SMPTE170M:
*matrix = kCVImageBufferYCbCrMatrix_ITU_R_601_4;
break;
case AVCOL_SPC_SMPTE240M:
*matrix = kCVImageBufferYCbCrMatrix_SMPTE_240M_1995;
break;
case AVCOL_SPC_BT2020_NCL:
*matrix = compat_keys.kCVImageBufferYCbCrMatrix_ITU_R_2020;
break;
default:
av_log(avctx, AV_LOG_ERROR, "Color space %s is not supported.\n", av_color_space_name(avctx->colorspace));
return -1;
}
return 0;
}
static int vtenc_create_encoder(AVCodecContext *avctx,
CMVideoCodecType codec_type,
CFStringRef profile_level,
CFNumberRef gamma_level,
CFDictionaryRef enc_info,
CFDictionaryRef pixel_buffer_info,
VTCompressionSessionRef *session)
{
VTEncContext *vtctx = avctx->priv_data;
SInt32 bit_rate = avctx->bit_rate;
SInt32 max_rate = avctx->rc_max_rate;
CFNumberRef bit_rate_num;
CFNumberRef bytes_per_second;
CFNumberRef one_second;
CFArrayRef data_rate_limits;
int64_t bytes_per_second_value = 0;
int64_t one_second_value = 0;
void *nums[2];
int status = VTCompressionSessionCreate(kCFAllocatorDefault,
avctx->width,
avctx->height,
codec_type,
enc_info,
pixel_buffer_info,
kCFAllocatorDefault,
vtenc_output_callback,
avctx,
session);
if (status || !vtctx->session) {
av_log(avctx, AV_LOG_ERROR, "Error: cannot create compression session: %d\n", status);
#if !TARGET_OS_IPHONE
if (!vtctx->allow_sw) {
av_log(avctx, AV_LOG_ERROR, "Try -allow_sw 1. The hardware encoder may be busy, or not supported.\n");
}
#endif
return AVERROR_EXTERNAL;
}
bit_rate_num = CFNumberCreate(kCFAllocatorDefault,
kCFNumberSInt32Type,
&bit_rate);
if (!bit_rate_num) return AVERROR(ENOMEM);
status = VTSessionSetProperty(vtctx->session,
kVTCompressionPropertyKey_AverageBitRate,
bit_rate_num);
CFRelease(bit_rate_num);
if (status) {
av_log(avctx, AV_LOG_ERROR, "Error setting bitrate property: %d\n", status);
return AVERROR_EXTERNAL;
}
bytes_per_second_value = max_rate >> 3;
bytes_per_second = CFNumberCreate(kCFAllocatorDefault,
kCFNumberSInt64Type,
&bytes_per_second_value);
if (!bytes_per_second) {
return AVERROR(ENOMEM);
}
one_second_value = 1;
one_second = CFNumberCreate(kCFAllocatorDefault,
kCFNumberSInt64Type,
&one_second_value);
if (!one_second) {
CFRelease(bytes_per_second);
return AVERROR(ENOMEM);
}
nums[0] = bytes_per_second;
nums[1] = one_second;
data_rate_limits = CFArrayCreate(kCFAllocatorDefault,
nums,
2,
&kCFTypeArrayCallBacks);
if (!data_rate_limits) {
CFRelease(bytes_per_second);
CFRelease(one_second);
return AVERROR(ENOMEM);
}
status = VTSessionSetProperty(vtctx->session,
kVTCompressionPropertyKey_DataRateLimits,
data_rate_limits);
CFRelease(bytes_per_second);
CFRelease(one_second);
CFRelease(data_rate_limits);
if (status) {
av_log(avctx, AV_LOG_ERROR, "Error setting max bitrate property: %d\n", status);
return AVERROR_EXTERNAL;
}
if (profile_level) {
status = VTSessionSetProperty(vtctx->session,
kVTCompressionPropertyKey_ProfileLevel,
profile_level);
if (status) {
av_log(avctx, AV_LOG_ERROR, "Error setting profile/level property: %d\n", status);
}
}
if (avctx->gop_size > 0) {
CFNumberRef interval = CFNumberCreate(kCFAllocatorDefault,
kCFNumberIntType,
&avctx->gop_size);
if (!interval) {
return AVERROR(ENOMEM);
}
status = VTSessionSetProperty(vtctx->session,
kVTCompressionPropertyKey_MaxKeyFrameInterval,
interval);
CFRelease(interval);
if (status) {
av_log(avctx, AV_LOG_ERROR, "Error setting 'max key-frame interval' property: %d\n", status);
return AVERROR_EXTERNAL;
}
}
if (vtctx->frames_before) {
status = VTSessionSetProperty(vtctx->session,
kVTCompressionPropertyKey_MoreFramesBeforeStart,
kCFBooleanTrue);
if (status == kVTPropertyNotSupportedErr) {
av_log(avctx, AV_LOG_WARNING, "frames_before property is not supported on this device. Ignoring.\n");
} else if (status) {
av_log(avctx, AV_LOG_ERROR, "Error setting frames_before property: %d\n", status);
}
}
if (vtctx->frames_after) {
status = VTSessionSetProperty(vtctx->session,
kVTCompressionPropertyKey_MoreFramesAfterEnd,
kCFBooleanTrue);
if (status == kVTPropertyNotSupportedErr) {
av_log(avctx, AV_LOG_WARNING, "frames_after property is not supported on this device. Ignoring.\n");
} else if (status) {
av_log(avctx, AV_LOG_ERROR, "Error setting frames_after property: %d\n", status);
}
}
if (avctx->sample_aspect_ratio.num != 0) {
CFNumberRef num;
CFNumberRef den;
CFMutableDictionaryRef par;
AVRational *avpar = &avctx->sample_aspect_ratio;
av_reduce(&avpar->num, &avpar->den,
avpar->num, avpar->den,
0xFFFFFFFF);
num = CFNumberCreate(kCFAllocatorDefault,
kCFNumberIntType,
&avpar->num);
den = CFNumberCreate(kCFAllocatorDefault,
kCFNumberIntType,
&avpar->den);
par = CFDictionaryCreateMutable(kCFAllocatorDefault,
2,
&kCFCopyStringDictionaryKeyCallBacks,
&kCFTypeDictionaryValueCallBacks);
if (!par || !num || !den) {
if (par) CFRelease(par);
if (num) CFRelease(num);
if (den) CFRelease(den);
return AVERROR(ENOMEM);
}
CFDictionarySetValue(
par,
kCMFormatDescriptionKey_PixelAspectRatioHorizontalSpacing,
num);
CFDictionarySetValue(
par,
kCMFormatDescriptionKey_PixelAspectRatioVerticalSpacing,
den);
status = VTSessionSetProperty(vtctx->session,
kVTCompressionPropertyKey_PixelAspectRatio,
par);
CFRelease(par);
CFRelease(num);
CFRelease(den);
if (status) {
av_log(avctx,
AV_LOG_ERROR,
"Error setting pixel aspect ratio to %d:%d: %d.\n",
avctx->sample_aspect_ratio.num,
avctx->sample_aspect_ratio.den,
status);
return AVERROR_EXTERNAL;
}
}
if (vtctx->transfer_function) {
status = VTSessionSetProperty(vtctx->session,
kVTCompressionPropertyKey_TransferFunction,
vtctx->transfer_function);
if (status) {
av_log(avctx, AV_LOG_WARNING, "Could not set transfer function: %d\n", status);
}
}
if (vtctx->ycbcr_matrix) {
status = VTSessionSetProperty(vtctx->session,
kVTCompressionPropertyKey_YCbCrMatrix,
vtctx->ycbcr_matrix);
if (status) {
av_log(avctx, AV_LOG_WARNING, "Could not set ycbcr matrix: %d\n", status);
}
}
if (vtctx->color_primaries) {
status = VTSessionSetProperty(vtctx->session,
kVTCompressionPropertyKey_ColorPrimaries,
vtctx->color_primaries);
if (status) {
av_log(avctx, AV_LOG_WARNING, "Could not set color primaries: %d\n", status);
}
}
if (gamma_level) {
status = VTSessionSetProperty(vtctx->session,
kCVImageBufferGammaLevelKey,
gamma_level);
if (status) {
av_log(avctx, AV_LOG_WARNING, "Could not set gamma level: %d\n", status);
}
}
if (!vtctx->has_b_frames) {
status = VTSessionSetProperty(vtctx->session,
kVTCompressionPropertyKey_AllowFrameReordering,
kCFBooleanFalse);
if (status) {
av_log(avctx, AV_LOG_ERROR, "Error setting 'allow frame reordering' property: %d\n", status);
return AVERROR_EXTERNAL;
}
}
if (vtctx->entropy != VT_ENTROPY_NOT_SET) {
CFStringRef entropy = vtctx->entropy == VT_CABAC ?
compat_keys.kVTH264EntropyMode_CABAC:
compat_keys.kVTH264EntropyMode_CAVLC;
status = VTSessionSetProperty(vtctx->session,
compat_keys.kVTCompressionPropertyKey_H264EntropyMode,
entropy);
if (status) {
av_log(avctx, AV_LOG_ERROR, "Error setting entropy property: %d\n", status);
}
}
if (vtctx->realtime) {
status = VTSessionSetProperty(vtctx->session,
compat_keys.kVTCompressionPropertyKey_RealTime,
kCFBooleanTrue);
if (status) {
av_log(avctx, AV_LOG_ERROR, "Error setting realtime property: %d\n", status);
}
}
status = VTCompressionSessionPrepareToEncodeFrames(vtctx->session);
if (status) {
av_log(avctx, AV_LOG_ERROR, "Error: cannot prepare encoder: %d\n", status);
return AVERROR_EXTERNAL;
}
return 0;
}
static av_cold int vtenc_init(AVCodecContext *avctx)
{
CFMutableDictionaryRef enc_info;
CFMutableDictionaryRef pixel_buffer_info;
CMVideoCodecType codec_type;
VTEncContext *vtctx = avctx->priv_data;
CFStringRef profile_level;
CFBooleanRef has_b_frames_cfbool;
CFNumberRef gamma_level = NULL;
int status;
pthread_once(&once_ctrl, loadVTEncSymbols);
codec_type = get_cm_codec_type(avctx->codec_id);
if (!codec_type) {
av_log(avctx, AV_LOG_ERROR, "Error: no mapping for AVCodecID %d\n", avctx->codec_id);
return AVERROR(EINVAL);
}
vtctx->has_b_frames = avctx->max_b_frames > 0;
if(vtctx->has_b_frames && vtctx->profile == H264_PROF_BASELINE){
av_log(avctx, AV_LOG_WARNING, "Cannot use B-frames with baseline profile. Output will not contain B-frames.\n");
vtctx->has_b_frames = false;
}
if (vtctx->entropy == VT_CABAC && vtctx->profile == H264_PROF_BASELINE) {
av_log(avctx, AV_LOG_WARNING, "CABAC entropy requires 'main' or 'high' profile, but baseline was requested. Encode will not use CABAC entropy.\n");
vtctx->entropy = VT_ENTROPY_NOT_SET;
}
if (!get_vt_profile_level(avctx, &profile_level)) return AVERROR(EINVAL);
vtctx->session = NULL;
enc_info = CFDictionaryCreateMutable(
kCFAllocatorDefault,
20,
&kCFCopyStringDictionaryKeyCallBacks,
&kCFTypeDictionaryValueCallBacks
);
if (!enc_info) return AVERROR(ENOMEM);
#if !TARGET_OS_IPHONE
if (!vtctx->allow_sw) {
CFDictionarySetValue(enc_info,
compat_keys.kVTVideoEncoderSpecification_RequireHardwareAcceleratedVideoEncoder,
kCFBooleanTrue);
} else {
CFDictionarySetValue(enc_info,
compat_keys.kVTVideoEncoderSpecification_EnableHardwareAcceleratedVideoEncoder,
kCFBooleanTrue);
}
#endif
if (avctx->pix_fmt != AV_PIX_FMT_VIDEOTOOLBOX) {
status = create_cv_pixel_buffer_info(avctx, &pixel_buffer_info);
if (status)
goto init_cleanup;
} else {
pixel_buffer_info = NULL;
}
pthread_mutex_init(&vtctx->lock, NULL);
pthread_cond_init(&vtctx->cv_sample_sent, NULL);
vtctx->dts_delta = vtctx->has_b_frames ? -1 : 0;
get_cv_transfer_function(avctx, &vtctx->transfer_function, &gamma_level);
get_cv_ycbcr_matrix(avctx, &vtctx->ycbcr_matrix);
get_cv_color_primaries(avctx, &vtctx->color_primaries);
if (avctx->flags & AV_CODEC_FLAG_GLOBAL_HEADER) {
status = vtenc_populate_extradata(avctx,
codec_type,
profile_level,
gamma_level,
enc_info,
pixel_buffer_info);
if (status)
goto init_cleanup;
}
status = vtenc_create_encoder(avctx,
codec_type,
profile_level,
gamma_level,
enc_info,
pixel_buffer_info,
&vtctx->session);
if (status < 0)
goto init_cleanup;
status = VTSessionCopyProperty(vtctx->session,
kVTCompressionPropertyKey_AllowFrameReordering,
kCFAllocatorDefault,
&has_b_frames_cfbool);
if (!status) {
//Some devices don't output B-frames for main profile, even if requested.
vtctx->has_b_frames = CFBooleanGetValue(has_b_frames_cfbool);
CFRelease(has_b_frames_cfbool);
}
avctx->has_b_frames = vtctx->has_b_frames;
init_cleanup:
if (gamma_level)
CFRelease(gamma_level);
if (pixel_buffer_info)
CFRelease(pixel_buffer_info);
CFRelease(enc_info);
return status;
}
static void vtenc_get_frame_info(CMSampleBufferRef buffer, bool *is_key_frame)
{
CFArrayRef attachments;
CFDictionaryRef attachment;
CFBooleanRef not_sync;
CFIndex len;
attachments = CMSampleBufferGetSampleAttachmentsArray(buffer, false);
len = !attachments ? 0 : CFArrayGetCount(attachments);
if (!len) {
*is_key_frame = true;
return;
}
attachment = CFArrayGetValueAtIndex(attachments, 0);
if (CFDictionaryGetValueIfPresent(attachment,
kCMSampleAttachmentKey_NotSync,
(const void **)&not_sync))
{
*is_key_frame = !CFBooleanGetValue(not_sync);
} else {
*is_key_frame = true;
}
}
static int is_post_sei_nal_type(int nal_type){
return nal_type != H264_NAL_SEI &&
nal_type != H264_NAL_SPS &&
nal_type != H264_NAL_PPS &&
nal_type != H264_NAL_AUD;
}
/*
* Finds the sei message start/size of type find_sei_type.
* If more than one of that type exists, the last one is returned.
*/
static int find_sei_end(AVCodecContext *avctx,
uint8_t *nal_data,
size_t nal_size,
uint8_t **sei_end)
{
int nal_type;
size_t sei_payload_size = 0;
int sei_payload_type = 0;
*sei_end = NULL;
uint8_t *nal_start = nal_data;
if (!nal_size)
return 0;
nal_type = *nal_data & 0x1F;
if (nal_type != H264_NAL_SEI)
return 0;
nal_data++;
nal_size--;
if (nal_data[nal_size - 1] == 0x80)
nal_size--;
while (nal_size > 0 && *nal_data > 0) {
do{
sei_payload_type += *nal_data;
nal_data++;
nal_size--;
} while (nal_size > 0 && *nal_data == 0xFF);
if (!nal_size) {
av_log(avctx, AV_LOG_ERROR, "Unexpected end of SEI NAL Unit parsing type.\n");
return AVERROR_INVALIDDATA;
}
do{
sei_payload_size += *nal_data;
nal_data++;
nal_size--;
} while (nal_size > 0 && *nal_data == 0xFF);
if (nal_size < sei_payload_size) {
av_log(avctx, AV_LOG_ERROR, "Unexpected end of SEI NAL Unit parsing size.\n");
return AVERROR_INVALIDDATA;
}
nal_data += sei_payload_size;
nal_size -= sei_payload_size;
}
*sei_end = nal_data;
return nal_data - nal_start + 1;
}
/**
* Copies the data inserting emulation prevention bytes as needed.
* Existing data in the destination can be taken into account by providing
* dst with a dst_offset > 0.
*
* @return The number of bytes copied on success. On failure, the negative of
* the number of bytes needed to copy src is returned.
*/
static int copy_emulation_prev(const uint8_t *src,
size_t src_size,
uint8_t *dst,
ssize_t dst_offset,
size_t dst_size)
{
int zeros = 0;
int wrote_bytes;
uint8_t* dst_start;
uint8_t* dst_end = dst + dst_size;
const uint8_t* src_end = src + src_size;
int start_at = dst_offset > 2 ? dst_offset - 2 : 0;
int i;
for (i = start_at; i < dst_offset && i < dst_size; i++) {
if (!dst[i])
zeros++;
else
zeros = 0;
}
dst += dst_offset;
dst_start = dst;
for (; src < src_end; src++, dst++) {
if (zeros == 2) {
int insert_ep3_byte = *src <= 3;
if (insert_ep3_byte) {
if (dst < dst_end)
*dst = 3;
dst++;
}
zeros = 0;
}
if (dst < dst_end)
*dst = *src;
if (!*src)
zeros++;
else
zeros = 0;
}
wrote_bytes = dst - dst_start;
if (dst > dst_end)
return -wrote_bytes;
return wrote_bytes;
}
static int write_sei(const ExtraSEI *sei,
int sei_type,
uint8_t *dst,
size_t dst_size)
{
uint8_t *sei_start = dst;
size_t remaining_sei_size = sei->size;
size_t remaining_dst_size = dst_size;
int header_bytes;
int bytes_written;
ssize_t offset;
if (!remaining_dst_size)
return AVERROR_BUFFER_TOO_SMALL;
while (sei_type && remaining_dst_size != 0) {
int sei_byte = sei_type > 255 ? 255 : sei_type;
*dst = sei_byte;
sei_type -= sei_byte;
dst++;
remaining_dst_size--;
}
if (!dst_size)
return AVERROR_BUFFER_TOO_SMALL;
while (remaining_sei_size && remaining_dst_size != 0) {
int size_byte = remaining_sei_size > 255 ? 255 : remaining_sei_size;
*dst = size_byte;
remaining_sei_size -= size_byte;
dst++;
remaining_dst_size--;
}
if (remaining_dst_size < sei->size)
return AVERROR_BUFFER_TOO_SMALL;
header_bytes = dst - sei_start;
offset = header_bytes;
bytes_written = copy_emulation_prev(sei->data,
sei->size,
sei_start,
offset,
dst_size);
if (bytes_written < 0)
return AVERROR_BUFFER_TOO_SMALL;
bytes_written += header_bytes;
return bytes_written;
}
/**
* Copies NAL units and replaces length codes with
* H.264 Annex B start codes. On failure, the contents of
* dst_data may have been modified.
*
* @param length_code_size Byte length of each length code
* @param sample_buffer NAL units prefixed with length codes.
* @param sei Optional A53 closed captions SEI data.
* @param dst_data Must be zeroed before calling this function.
* Contains the copied NAL units prefixed with
* start codes when the function returns
* successfully.
* @param dst_size Length of dst_data
* @return 0 on success
* AVERROR_INVALIDDATA if length_code_size is invalid
* AVERROR_BUFFER_TOO_SMALL if dst_data is too small
* or if a length_code in src_data specifies data beyond
* the end of its buffer.
*/
static int copy_replace_length_codes(
AVCodecContext *avctx,
size_t length_code_size,
CMSampleBufferRef sample_buffer,
ExtraSEI *sei,
uint8_t *dst_data,
size_t dst_size)
{
size_t src_size = CMSampleBufferGetTotalSampleSize(sample_buffer);
size_t remaining_src_size = src_size;
size_t remaining_dst_size = dst_size;
size_t src_offset = 0;
int wrote_sei = 0;
int status;
uint8_t size_buf[4];
uint8_t nal_type;
CMBlockBufferRef block = CMSampleBufferGetDataBuffer(sample_buffer);
if (length_code_size > 4) {
return AVERROR_INVALIDDATA;
}
while (remaining_src_size > 0) {
size_t curr_src_len;
size_t curr_dst_len;
size_t box_len = 0;
size_t i;
uint8_t *dst_box;
status = CMBlockBufferCopyDataBytes(block,
src_offset,
length_code_size,
size_buf);
if (status) {
av_log(avctx, AV_LOG_ERROR, "Cannot copy length: %d\n", status);
return AVERROR_EXTERNAL;
}
status = CMBlockBufferCopyDataBytes(block,
src_offset + length_code_size,
1,
&nal_type);
if (status) {
av_log(avctx, AV_LOG_ERROR, "Cannot copy type: %d\n", status);
return AVERROR_EXTERNAL;
}
nal_type &= 0x1F;
for (i = 0; i < length_code_size; i++) {
box_len <<= 8;
box_len |= size_buf[i];
}
if (sei && !wrote_sei && is_post_sei_nal_type(nal_type)) {
//No SEI NAL unit - insert.
int wrote_bytes;
memcpy(dst_data, start_code, sizeof(start_code));
dst_data += sizeof(start_code);
remaining_dst_size -= sizeof(start_code);
*dst_data = H264_NAL_SEI;
dst_data++;
remaining_dst_size--;
wrote_bytes = write_sei(sei,
SEI_TYPE_USER_DATA_REGISTERED,
dst_data,
remaining_dst_size);
if (wrote_bytes < 0)
return wrote_bytes;
remaining_dst_size -= wrote_bytes;
dst_data += wrote_bytes;
if (remaining_dst_size <= 0)
return AVERROR_BUFFER_TOO_SMALL;
*dst_data = 0x80;
dst_data++;
remaining_dst_size--;
wrote_sei = 1;
}
curr_src_len = box_len + length_code_size;
curr_dst_len = box_len + sizeof(start_code);
if (remaining_src_size < curr_src_len) {
return AVERROR_BUFFER_TOO_SMALL;
}
if (remaining_dst_size < curr_dst_len) {
return AVERROR_BUFFER_TOO_SMALL;
}
dst_box = dst_data + sizeof(start_code);
memcpy(dst_data, start_code, sizeof(start_code));
status = CMBlockBufferCopyDataBytes(block,
src_offset + length_code_size,
box_len,
dst_box);
if (status) {
av_log(avctx, AV_LOG_ERROR, "Cannot copy data: %d\n", status);
return AVERROR_EXTERNAL;
}
if (sei && !wrote_sei && nal_type == H264_NAL_SEI) {
//Found SEI NAL unit - append.
int wrote_bytes;
int old_sei_length;
int extra_bytes;
uint8_t *new_sei;
old_sei_length = find_sei_end(avctx, dst_box, box_len, &new_sei);
if (old_sei_length < 0)
return status;
wrote_bytes = write_sei(sei,
SEI_TYPE_USER_DATA_REGISTERED,
new_sei,
remaining_dst_size - old_sei_length);
if (wrote_bytes < 0)
return wrote_bytes;
if (new_sei + wrote_bytes >= dst_data + remaining_dst_size)
return AVERROR_BUFFER_TOO_SMALL;
new_sei[wrote_bytes++] = 0x80;
extra_bytes = wrote_bytes - (dst_box + box_len - new_sei);
dst_data += extra_bytes;
remaining_dst_size -= extra_bytes;
wrote_sei = 1;
}
src_offset += curr_src_len;
dst_data += curr_dst_len;
remaining_src_size -= curr_src_len;
remaining_dst_size -= curr_dst_len;
}
return 0;
}
/**
* Returns a sufficient number of bytes to contain the sei data.
* It may be greater than the minimum required.
*/
static int get_sei_msg_bytes(const ExtraSEI* sei, int type){
int copied_size;
if (sei->size == 0)
return 0;
copied_size = -copy_emulation_prev(sei->data,
sei->size,
NULL,
0,
0);
if ((sei->size % 255) == 0) //may result in an extra byte
copied_size++;
return copied_size + sei->size / 255 + 1 + type / 255 + 1;
}
static int vtenc_cm_to_avpacket(
AVCodecContext *avctx,
CMSampleBufferRef sample_buffer,
AVPacket *pkt,
ExtraSEI *sei)
{
VTEncContext *vtctx = avctx->priv_data;
int status;
bool is_key_frame;
bool add_header;
size_t length_code_size;
size_t header_size = 0;
size_t in_buf_size;
size_t out_buf_size;
size_t sei_nalu_size = 0;
int64_t dts_delta;
int64_t time_base_num;
int nalu_count;
CMTime pts;
CMTime dts;
CMVideoFormatDescriptionRef vid_fmt;
vtenc_get_frame_info(sample_buffer, &is_key_frame);
status = get_length_code_size(avctx, sample_buffer, &length_code_size);
if (status) return status;
add_header = is_key_frame && !(avctx->flags & AV_CODEC_FLAG_GLOBAL_HEADER);
if (add_header) {
vid_fmt = CMSampleBufferGetFormatDescription(sample_buffer);
if (!vid_fmt) {
av_log(avctx, AV_LOG_ERROR, "Cannot get format description.\n");
return AVERROR_EXTERNAL;
}
int status = get_params_size(avctx, vid_fmt, &header_size);
if (status) return status;
}
status = count_nalus(length_code_size, sample_buffer, &nalu_count);
if(status)
return status;
if (sei) {
size_t msg_size = get_sei_msg_bytes(sei,
SEI_TYPE_USER_DATA_REGISTERED);
sei_nalu_size = sizeof(start_code) + 1 + msg_size + 1;
}
in_buf_size = CMSampleBufferGetTotalSampleSize(sample_buffer);
out_buf_size = header_size +
in_buf_size +
sei_nalu_size +
nalu_count * ((int)sizeof(start_code) - (int)length_code_size);
status = ff_alloc_packet2(avctx, pkt, out_buf_size, out_buf_size);
if (status < 0)
return status;
if (add_header) {
status = copy_param_sets(avctx, vid_fmt, pkt->data, out_buf_size);
if(status) return status;
}
status = copy_replace_length_codes(
avctx,
length_code_size,
sample_buffer,
sei,
pkt->data + header_size,
pkt->size - header_size
);
if (status) {
av_log(avctx, AV_LOG_ERROR, "Error copying packet data: %d\n", status);
return status;
}
if (is_key_frame) {
pkt->flags |= AV_PKT_FLAG_KEY;
}
pts = CMSampleBufferGetPresentationTimeStamp(sample_buffer);
dts = CMSampleBufferGetDecodeTimeStamp (sample_buffer);
if (CMTIME_IS_INVALID(dts)) {
if (!vtctx->has_b_frames) {
dts = pts;
} else {
av_log(avctx, AV_LOG_ERROR, "DTS is invalid.\n");
return AVERROR_EXTERNAL;
}
}
dts_delta = vtctx->dts_delta >= 0 ? vtctx->dts_delta : 0;
time_base_num = avctx->time_base.num;
pkt->pts = pts.value / time_base_num;
pkt->dts = dts.value / time_base_num - dts_delta;
pkt->size = out_buf_size;
return 0;
}
/*
* contiguous_buf_size is 0 if not contiguous, and the size of the buffer
* containing all planes if so.
*/
static int get_cv_pixel_info(
AVCodecContext *avctx,
const AVFrame *frame,
int *color,
int *plane_count,
size_t *widths,
size_t *heights,
size_t *strides,
size_t *contiguous_buf_size)
{
VTEncContext *vtctx = avctx->priv_data;
int av_format = frame->format;
int av_color_range = av_frame_get_color_range(frame);
int i;
int range_guessed;
int status;
status = get_cv_pixel_format(avctx, av_format, av_color_range, color, &range_guessed);
if (status) {
av_log(avctx,
AV_LOG_ERROR,
"Could not get pixel format for color format '%s' range '%s'.\n",
av_get_pix_fmt_name(av_format),
av_color_range > AVCOL_RANGE_UNSPECIFIED &&
av_color_range < AVCOL_RANGE_NB ?
av_color_range_name(av_color_range) :
"Unknown");
return AVERROR(EINVAL);
}
if (range_guessed) {
if (!vtctx->warned_color_range) {
vtctx->warned_color_range = true;
av_log(avctx,
AV_LOG_WARNING,
"Color range not set for %s. Using MPEG range.\n",
av_get_pix_fmt_name(av_format));
}
av_log(avctx, AV_LOG_WARNING, "");
}
switch (av_format) {
case AV_PIX_FMT_NV12:
*plane_count = 2;
widths [0] = avctx->width;
heights[0] = avctx->height;
strides[0] = frame ? frame->linesize[0] : avctx->width;
widths [1] = (avctx->width + 1) / 2;
heights[1] = (avctx->height + 1) / 2;
strides[1] = frame ? frame->linesize[1] : (avctx->width + 1) & -2;
break;
case AV_PIX_FMT_YUV420P:
*plane_count = 3;
widths [0] = avctx->width;
heights[0] = avctx->height;
strides[0] = frame ? frame->linesize[0] : avctx->width;
widths [1] = (avctx->width + 1) / 2;
heights[1] = (avctx->height + 1) / 2;
strides[1] = frame ? frame->linesize[1] : (avctx->width + 1) / 2;
widths [2] = (avctx->width + 1) / 2;
heights[2] = (avctx->height + 1) / 2;
strides[2] = frame ? frame->linesize[2] : (avctx->width + 1) / 2;
break;
default:
av_log(
avctx,
AV_LOG_ERROR,
"Could not get frame format info for color %d range %d.\n",
av_format,
av_color_range);
return AVERROR(EINVAL);
}
*contiguous_buf_size = 0;
for (i = 0; i < *plane_count; i++) {
if (i < *plane_count - 1 &&
frame->data[i] + strides[i] * heights[i] != frame->data[i + 1]) {
*contiguous_buf_size = 0;
break;
}
*contiguous_buf_size += strides[i] * heights[i];
}
return 0;
}
#if !TARGET_OS_IPHONE
//Not used on iOS - frame is always copied.
static void free_avframe(
void *release_ctx,
const void *data,
size_t size,
size_t plane_count,
const void *plane_addresses[])
{
AVFrame *frame = release_ctx;
av_frame_free(&frame);
}
#else
//Not used on OSX - frame is never copied.
static int copy_avframe_to_pixel_buffer(AVCodecContext *avctx,
const AVFrame *frame,
CVPixelBufferRef cv_img,
const size_t *plane_strides,
const size_t *plane_rows)
{
int i, j;
size_t plane_count;
int status;
int rows;
int src_stride;
int dst_stride;
uint8_t *src_addr;
uint8_t *dst_addr;
size_t copy_bytes;
status = CVPixelBufferLockBaseAddress(cv_img, 0);
if (status) {
av_log(
avctx,
AV_LOG_ERROR,
"Error: Could not lock base address of CVPixelBuffer: %d.\n",
status
);
}
if (CVPixelBufferIsPlanar(cv_img)) {
plane_count = CVPixelBufferGetPlaneCount(cv_img);
for (i = 0; frame->data[i]; i++) {
if (i == plane_count) {
CVPixelBufferUnlockBaseAddress(cv_img, 0);
av_log(avctx,
AV_LOG_ERROR,
"Error: different number of planes in AVFrame and CVPixelBuffer.\n"
);
return AVERROR_EXTERNAL;
}
dst_addr = (uint8_t*)CVPixelBufferGetBaseAddressOfPlane(cv_img, i);
src_addr = (uint8_t*)frame->data[i];
dst_stride = CVPixelBufferGetBytesPerRowOfPlane(cv_img, i);
src_stride = plane_strides[i];
rows = plane_rows[i];
if (dst_stride == src_stride) {
memcpy(dst_addr, src_addr, src_stride * rows);
} else {
copy_bytes = dst_stride < src_stride ? dst_stride : src_stride;
for (j = 0; j < rows; j++) {
memcpy(dst_addr + j * dst_stride, src_addr + j * src_stride, copy_bytes);
}
}
}
} else {
if (frame->data[1]) {
CVPixelBufferUnlockBaseAddress(cv_img, 0);
av_log(avctx,
AV_LOG_ERROR,
"Error: different number of planes in AVFrame and non-planar CVPixelBuffer.\n"
);
return AVERROR_EXTERNAL;
}
dst_addr = (uint8_t*)CVPixelBufferGetBaseAddress(cv_img);
src_addr = (uint8_t*)frame->data[0];
dst_stride = CVPixelBufferGetBytesPerRow(cv_img);
src_stride = plane_strides[0];
rows = plane_rows[0];
if (dst_stride == src_stride) {
memcpy(dst_addr, src_addr, src_stride * rows);
} else {
copy_bytes = dst_stride < src_stride ? dst_stride : src_stride;
for (j = 0; j < rows; j++) {
memcpy(dst_addr + j * dst_stride, src_addr + j * src_stride, copy_bytes);
}
}
}
status = CVPixelBufferUnlockBaseAddress(cv_img, 0);
if (status) {
av_log(avctx, AV_LOG_ERROR, "Error: Could not unlock CVPixelBuffer base address: %d.\n", status);
return AVERROR_EXTERNAL;
}
return 0;
}
#endif //!TARGET_OS_IPHONE
static int create_cv_pixel_buffer(AVCodecContext *avctx,
const AVFrame *frame,
CVPixelBufferRef *cv_img)
{
int plane_count;
int color;
size_t widths [AV_NUM_DATA_POINTERS];
size_t heights[AV_NUM_DATA_POINTERS];
size_t strides[AV_NUM_DATA_POINTERS];
int status;
size_t contiguous_buf_size;
#if TARGET_OS_IPHONE
CVPixelBufferPoolRef pix_buf_pool;
VTEncContext* vtctx = avctx->priv_data;
#else
CFMutableDictionaryRef pix_buf_attachments = CFDictionaryCreateMutable(
kCFAllocatorDefault,
10,
&kCFCopyStringDictionaryKeyCallBacks,
&kCFTypeDictionaryValueCallBacks);
if (!pix_buf_attachments) return AVERROR(ENOMEM);
#endif
if (avctx->pix_fmt == AV_PIX_FMT_VIDEOTOOLBOX) {
av_assert0(frame->format == AV_PIX_FMT_VIDEOTOOLBOX);
*cv_img = (CVPixelBufferRef)frame->data[3];
av_assert0(*cv_img);
CFRetain(*cv_img);
return 0;
}
memset(widths, 0, sizeof(widths));
memset(heights, 0, sizeof(heights));
memset(strides, 0, sizeof(strides));
status = get_cv_pixel_info(
avctx,
frame,
&color,
&plane_count,
widths,
heights,
strides,
&contiguous_buf_size
);
if (status) {
av_log(
avctx,
AV_LOG_ERROR,
"Error: Cannot convert format %d color_range %d: %d\n",
frame->format,
av_frame_get_color_range(frame),
status
);
return AVERROR_EXTERNAL;
}
#if TARGET_OS_IPHONE
pix_buf_pool = VTCompressionSessionGetPixelBufferPool(vtctx->session);
if (!pix_buf_pool) {
av_log(avctx, AV_LOG_ERROR, "Could not get pixel buffer pool.\n");
return AVERROR_EXTERNAL;
}
status = CVPixelBufferPoolCreatePixelBuffer(NULL,
pix_buf_pool,
cv_img);
if (status) {
av_log(avctx, AV_LOG_ERROR, "Could not create pixel buffer from pool: %d.\n", status);
return AVERROR_EXTERNAL;
}
status = copy_avframe_to_pixel_buffer(avctx, frame, *cv_img, strides, heights);
if (status) {
CFRelease(*cv_img);
*cv_img = NULL;
return status;
}
#else
AVFrame *enc_frame = av_frame_alloc();
if (!enc_frame) return AVERROR(ENOMEM);
status = av_frame_ref(enc_frame, frame);
if (status) {
av_frame_free(&enc_frame);
return status;
}
status = CVPixelBufferCreateWithPlanarBytes(
kCFAllocatorDefault,
enc_frame->width,
enc_frame->height,
color,
NULL,
contiguous_buf_size,
plane_count,
(void **)enc_frame->data,
widths,
heights,
strides,
free_avframe,
enc_frame,
NULL,
cv_img
);
add_color_attr(avctx, pix_buf_attachments);
CVBufferSetAttachments(*cv_img, pix_buf_attachments, kCVAttachmentMode_ShouldPropagate);
CFRelease(pix_buf_attachments);
if (status) {
av_log(avctx, AV_LOG_ERROR, "Error: Could not create CVPixelBuffer: %d\n", status);
return AVERROR_EXTERNAL;
}
#endif
return 0;
}
static int create_encoder_dict_h264(const AVFrame *frame,
CFDictionaryRef* dict_out)
{
CFDictionaryRef dict = NULL;
if (frame->pict_type == AV_PICTURE_TYPE_I) {
const void *keys[] = { kVTEncodeFrameOptionKey_ForceKeyFrame };
const void *vals[] = { kCFBooleanTrue };
dict = CFDictionaryCreate(NULL, keys, vals, 1, NULL, NULL);
if(!dict) return AVERROR(ENOMEM);
}
*dict_out = dict;
return 0;
}
static int vtenc_send_frame(AVCodecContext *avctx,
VTEncContext *vtctx,
const AVFrame *frame)
{
CMTime time;
CFDictionaryRef frame_dict;
CVPixelBufferRef cv_img = NULL;
AVFrameSideData *side_data = NULL;
ExtraSEI *sei = NULL;
int status = create_cv_pixel_buffer(avctx, frame, &cv_img);
if (status) return status;
status = create_encoder_dict_h264(frame, &frame_dict);
if (status) {
CFRelease(cv_img);
return status;
}
side_data = av_frame_get_side_data(frame, AV_FRAME_DATA_A53_CC);
if (vtctx->a53_cc && side_data && side_data->size) {
sei = av_mallocz(sizeof(*sei));
if (!sei) {
av_log(avctx, AV_LOG_ERROR, "Not enough memory for closed captions, skipping\n");
} else {
int ret = ff_alloc_a53_sei(frame, 0, &sei->data, &sei->size);
if (ret < 0) {
av_log(avctx, AV_LOG_ERROR, "Not enough memory for closed captions, skipping\n");
av_free(sei);
sei = NULL;
}
}
}
time = CMTimeMake(frame->pts * avctx->time_base.num, avctx->time_base.den);
status = VTCompressionSessionEncodeFrame(
vtctx->session,
cv_img,
time,
kCMTimeInvalid,
frame_dict,
sei,
NULL
);
if (frame_dict) CFRelease(frame_dict);
CFRelease(cv_img);
if (status) {
av_log(avctx, AV_LOG_ERROR, "Error: cannot encode frame: %d\n", status);
return AVERROR_EXTERNAL;
}
return 0;
}
static av_cold int vtenc_frame(
AVCodecContext *avctx,
AVPacket *pkt,
const AVFrame *frame,
int *got_packet)
{
VTEncContext *vtctx = avctx->priv_data;
bool get_frame;
int status;
CMSampleBufferRef buf = NULL;
ExtraSEI *sei = NULL;
if (frame) {
status = vtenc_send_frame(avctx, vtctx, frame);
if (status) {
status = AVERROR_EXTERNAL;
goto end_nopkt;
}
if (vtctx->frame_ct_in == 0) {
vtctx->first_pts = frame->pts;
} else if(vtctx->frame_ct_in == 1 && vtctx->has_b_frames) {
vtctx->dts_delta = frame->pts - vtctx->first_pts;
}
vtctx->frame_ct_in++;
} else if(!vtctx->flushing) {
vtctx->flushing = true;
status = VTCompressionSessionCompleteFrames(vtctx->session,
kCMTimeIndefinite);
if (status) {
av_log(avctx, AV_LOG_ERROR, "Error flushing frames: %d\n", status);
status = AVERROR_EXTERNAL;
goto end_nopkt;
}
}
*got_packet = 0;
get_frame = vtctx->dts_delta >= 0 || !frame;
if (!get_frame) {
status = 0;
goto end_nopkt;
}
status = vtenc_q_pop(vtctx, !frame, &buf, &sei);
if (status) goto end_nopkt;
if (!buf) goto end_nopkt;
status = vtenc_cm_to_avpacket(avctx, buf, pkt, sei);
if (sei) {
if (sei->data) av_free(sei->data);
av_free(sei);
}
CFRelease(buf);
if (status) goto end_nopkt;
*got_packet = 1;
return 0;
end_nopkt:
av_packet_unref(pkt);
return status;
}
static int vtenc_populate_extradata(AVCodecContext *avctx,
CMVideoCodecType codec_type,
CFStringRef profile_level,
CFNumberRef gamma_level,
CFDictionaryRef enc_info,
CFDictionaryRef pixel_buffer_info)
{
VTEncContext *vtctx = avctx->priv_data;
AVFrame *frame = av_frame_alloc();
int y_size = avctx->width * avctx->height;
int chroma_size = (avctx->width / 2) * (avctx->height / 2);
CMSampleBufferRef buf = NULL;
int status;
if (!frame)
return AVERROR(ENOMEM);
frame->buf[0] = av_buffer_alloc(y_size + 2 * chroma_size);
if(!frame->buf[0]){
status = AVERROR(ENOMEM);
goto pe_cleanup;
}
status = vtenc_create_encoder(avctx,
codec_type,
profile_level,
gamma_level,
enc_info,
pixel_buffer_info,
&vtctx->session);
if (status)
goto pe_cleanup;
frame->data[0] = frame->buf[0]->data;
memset(frame->data[0], 0, y_size);
frame->data[1] = frame->buf[0]->data + y_size;
memset(frame->data[1], 128, chroma_size);
if (avctx->pix_fmt == AV_PIX_FMT_YUV420P) {
frame->data[2] = frame->buf[0]->data + y_size + chroma_size;
memset(frame->data[2], 128, chroma_size);
}
frame->linesize[0] = avctx->width;
if (avctx->pix_fmt == AV_PIX_FMT_YUV420P) {
frame->linesize[1] =
frame->linesize[2] = (avctx->width + 1) / 2;
} else {
frame->linesize[1] = (avctx->width + 1) / 2;
}
frame->format = avctx->pix_fmt;
frame->width = avctx->width;
frame->height = avctx->height;
av_frame_set_colorspace(frame, avctx->colorspace);
av_frame_set_color_range(frame, avctx->color_range);
frame->color_trc = avctx->color_trc;
frame->color_primaries = avctx->color_primaries;
frame->pts = 0;
status = vtenc_send_frame(avctx, vtctx, frame);
if (status) {
av_log(avctx, AV_LOG_ERROR, "Error sending frame: %d\n", status);
goto pe_cleanup;
}
//Populates extradata - output frames are flushed and param sets are available.
status = VTCompressionSessionCompleteFrames(vtctx->session,
kCMTimeIndefinite);
if (status)
goto pe_cleanup;
status = vtenc_q_pop(vtctx, 0, &buf, NULL);
if (status) {
av_log(avctx, AV_LOG_ERROR, "popping: %d\n", status);
goto pe_cleanup;
}
CFRelease(buf);
pe_cleanup:
if(vtctx->session)
CFRelease(vtctx->session);
vtctx->session = NULL;
vtctx->frame_ct_out = 0;
av_frame_unref(frame);
av_frame_free(&frame);
av_assert0(status != 0 || (avctx->extradata && avctx->extradata_size > 0));
return status;
}
static av_cold int vtenc_close(AVCodecContext *avctx)
{
VTEncContext *vtctx = avctx->priv_data;
if(!vtctx->session) return 0;
VTCompressionSessionCompleteFrames(vtctx->session,
kCMTimeIndefinite);
clear_frame_queue(vtctx);
pthread_cond_destroy(&vtctx->cv_sample_sent);
pthread_mutex_destroy(&vtctx->lock);
CFRelease(vtctx->session);
vtctx->session = NULL;
if (vtctx->color_primaries) {
CFRelease(vtctx->color_primaries);
vtctx->color_primaries = NULL;
}
if (vtctx->transfer_function) {
CFRelease(vtctx->transfer_function);
vtctx->transfer_function = NULL;
}
if (vtctx->ycbcr_matrix) {
CFRelease(vtctx->ycbcr_matrix);
vtctx->ycbcr_matrix = NULL;
}
return 0;
}
static const enum AVPixelFormat pix_fmts[] = {
AV_PIX_FMT_VIDEOTOOLBOX,
AV_PIX_FMT_NV12,
AV_PIX_FMT_YUV420P,
AV_PIX_FMT_NONE
};
#define OFFSET(x) offsetof(VTEncContext, x)
#define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM
static const AVOption options[] = {
{ "profile", "Profile", OFFSET(profile), AV_OPT_TYPE_INT, { .i64 = H264_PROF_AUTO }, H264_PROF_AUTO, H264_PROF_COUNT, VE, "profile" },
{ "baseline", "Baseline Profile", 0, AV_OPT_TYPE_CONST, { .i64 = H264_PROF_BASELINE }, INT_MIN, INT_MAX, VE, "profile" },
{ "main", "Main Profile", 0, AV_OPT_TYPE_CONST, { .i64 = H264_PROF_MAIN }, INT_MIN, INT_MAX, VE, "profile" },
{ "high", "High Profile", 0, AV_OPT_TYPE_CONST, { .i64 = H264_PROF_HIGH }, INT_MIN, INT_MAX, VE, "profile" },
{ "level", "Level", OFFSET(level), AV_OPT_TYPE_INT, { .i64 = 0 }, 0, 52, VE, "level" },
{ "1.3", "Level 1.3, only available with Baseline Profile", 0, AV_OPT_TYPE_CONST, { .i64 = 13 }, INT_MIN, INT_MAX, VE, "level" },
{ "3.0", "Level 3.0", 0, AV_OPT_TYPE_CONST, { .i64 = 30 }, INT_MIN, INT_MAX, VE, "level" },
{ "3.1", "Level 3.1", 0, AV_OPT_TYPE_CONST, { .i64 = 31 }, INT_MIN, INT_MAX, VE, "level" },
{ "3.2", "Level 3.2", 0, AV_OPT_TYPE_CONST, { .i64 = 32 }, INT_MIN, INT_MAX, VE, "level" },
{ "4.0", "Level 4.0", 0, AV_OPT_TYPE_CONST, { .i64 = 40 }, INT_MIN, INT_MAX, VE, "level" },
{ "4.1", "Level 4.1", 0, AV_OPT_TYPE_CONST, { .i64 = 41 }, INT_MIN, INT_MAX, VE, "level" },
{ "4.2", "Level 4.2", 0, AV_OPT_TYPE_CONST, { .i64 = 42 }, INT_MIN, INT_MAX, VE, "level" },
{ "5.0", "Level 5.0", 0, AV_OPT_TYPE_CONST, { .i64 = 50 }, INT_MIN, INT_MAX, VE, "level" },
{ "5.1", "Level 5.1", 0, AV_OPT_TYPE_CONST, { .i64 = 51 }, INT_MIN, INT_MAX, VE, "level" },
{ "5.2", "Level 5.2", 0, AV_OPT_TYPE_CONST, { .i64 = 52 }, INT_MIN, INT_MAX, VE, "level" },
{ "allow_sw", "Allow software encoding", OFFSET(allow_sw), AV_OPT_TYPE_BOOL,
{ .i64 = 0 }, 0, 1, VE },
{ "coder", "Entropy coding", OFFSET(entropy), AV_OPT_TYPE_INT, { .i64 = VT_ENTROPY_NOT_SET }, VT_ENTROPY_NOT_SET, VT_CABAC, VE, "coder" },
{ "cavlc", "CAVLC entropy coding", 0, AV_OPT_TYPE_CONST, { .i64 = VT_CAVLC }, INT_MIN, INT_MAX, VE, "coder" },
{ "vlc", "CAVLC entropy coding", 0, AV_OPT_TYPE_CONST, { .i64 = VT_CAVLC }, INT_MIN, INT_MAX, VE, "coder" },
{ "cabac", "CABAC entropy coding", 0, AV_OPT_TYPE_CONST, { .i64 = VT_CABAC }, INT_MIN, INT_MAX, VE, "coder" },
{ "ac", "CABAC entropy coding", 0, AV_OPT_TYPE_CONST, { .i64 = VT_CABAC }, INT_MIN, INT_MAX, VE, "coder" },
{ "realtime", "Hint that encoding should happen in real-time if not faster (e.g. capturing from camera).",
OFFSET(realtime), AV_OPT_TYPE_BOOL, { .i64 = 0 }, 0, 1, VE },
{ "frames_before", "Other frames will come before the frames in this session. This helps smooth concatenation issues.",
OFFSET(frames_before), AV_OPT_TYPE_BOOL, { .i64 = 0 }, 0, 1, VE },
{ "frames_after", "Other frames will come after the frames in this session. This helps smooth concatenation issues.",
OFFSET(frames_after), AV_OPT_TYPE_BOOL, { .i64 = 0 }, 0, 1, VE },
{ "a53cc", "Use A53 Closed Captions (if available)", OFFSET(a53_cc), AV_OPT_TYPE_BOOL, {.i64 = 1}, 0, 1, VE },
{ NULL },
};
static const AVClass h264_videotoolbox_class = {
.class_name = "h264_videotoolbox",
.item_name = av_default_item_name,
.option = options,
.version = LIBAVUTIL_VERSION_INT,
};
AVCodec ff_h264_videotoolbox_encoder = {
.name = "h264_videotoolbox",
.long_name = NULL_IF_CONFIG_SMALL("VideoToolbox H.264 Encoder"),
.type = AVMEDIA_TYPE_VIDEO,
.id = AV_CODEC_ID_H264,
.priv_data_size = sizeof(VTEncContext),
.pix_fmts = pix_fmts,
.init = vtenc_init,
.encode2 = vtenc_frame,
.close = vtenc_close,
.capabilities = AV_CODEC_CAP_DELAY,
.priv_class = &h264_videotoolbox_class,
.caps_internal = FF_CODEC_CAP_INIT_THREADSAFE |
FF_CODEC_CAP_INIT_CLEANUP,
};