1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2025-01-19 05:49:09 +02:00
FFmpeg/libavfilter/vf_dedot.c
Andreas Rheinhardt 212077eda4 avfilter/vf_dedot: Fix leak of AVFrame if making it writable fails
Even in this scenario, the frame still contains references to data that
won't be freed if the frame isn't unreferenced. And the AVFrame itself
will leak, too.

Fixes Coverity issue #1441422.

Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@gmail.com>
Reviewed-by: Paul B Mahol <onemda@gmail.com>
Signed-off-by: Michael Niedermayer <michael@niedermayer.cc>
2020-02-11 00:03:44 +01:00

416 lines
17 KiB
C

/*
* Copyright (c) 2018 Paul B Mahol
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "libavutil/imgutils.h"
#include "libavutil/opt.h"
#include "libavutil/pixdesc.h"
#include "avfilter.h"
#include "filters.h"
#include "formats.h"
#include "internal.h"
#include "video.h"
typedef struct DedotContext {
const AVClass *class;
int m;
float lt;
float tl;
float tc;
float ct;
const AVPixFmtDescriptor *desc;
int depth;
int max;
int luma2d;
int lumaT;
int chromaT1;
int chromaT2;
int eof;
int eof_frames;
int nb_planes;
int planewidth[4];
int planeheight[4];
AVFrame *frames[5];
int (*dedotcrawl)(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs);
int (*derainbow)(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs);
} DedotContext;
static int query_formats(AVFilterContext *ctx)
{
static const enum AVPixelFormat pixel_fmts[] = {
AV_PIX_FMT_YUVA444P, AV_PIX_FMT_YUV444P, AV_PIX_FMT_YUV440P,
AV_PIX_FMT_YUVJ444P, AV_PIX_FMT_YUVJ440P,
AV_PIX_FMT_YUVA422P, AV_PIX_FMT_YUV422P, AV_PIX_FMT_YUVA420P, AV_PIX_FMT_YUV420P,
AV_PIX_FMT_YUVJ422P, AV_PIX_FMT_YUVJ420P,
AV_PIX_FMT_YUVJ411P, AV_PIX_FMT_YUV411P, AV_PIX_FMT_YUV410P,
AV_PIX_FMT_YUV420P9, AV_PIX_FMT_YUV422P9, AV_PIX_FMT_YUV444P9,
AV_PIX_FMT_YUV420P10, AV_PIX_FMT_YUV422P10, AV_PIX_FMT_YUV444P10,
AV_PIX_FMT_YUV420P12, AV_PIX_FMT_YUV422P12, AV_PIX_FMT_YUV444P12, AV_PIX_FMT_YUV440P12,
AV_PIX_FMT_YUV420P14, AV_PIX_FMT_YUV422P14, AV_PIX_FMT_YUV444P14,
AV_PIX_FMT_YUV420P16, AV_PIX_FMT_YUV422P16, AV_PIX_FMT_YUV444P16,
AV_PIX_FMT_YUVA420P9, AV_PIX_FMT_YUVA422P9, AV_PIX_FMT_YUVA444P9,
AV_PIX_FMT_YUVA420P10, AV_PIX_FMT_YUVA422P10, AV_PIX_FMT_YUVA444P10,
AV_PIX_FMT_YUVA422P12, AV_PIX_FMT_YUVA444P12,
AV_PIX_FMT_YUVA420P16, AV_PIX_FMT_YUVA422P16, AV_PIX_FMT_YUVA444P16,
AV_PIX_FMT_NONE
};
AVFilterFormats *formats = ff_make_format_list(pixel_fmts);
if (!formats)
return AVERROR(ENOMEM);
return ff_set_common_formats(ctx, formats);
}
#define DEFINE_DEDOTCRAWL(name, type, div) \
static int dedotcrawl##name(AVFilterContext *ctx, void *arg, \
int jobnr, int nb_jobs) \
{ \
DedotContext *s = ctx->priv; \
AVFrame *out = arg; \
int src_linesize = s->frames[2]->linesize[0] / div; \
int dst_linesize = out->linesize[0] / div; \
int p0_linesize = s->frames[0]->linesize[0] / div; \
int p1_linesize = s->frames[1]->linesize[0] / div; \
int p3_linesize = s->frames[3]->linesize[0] / div; \
int p4_linesize = s->frames[4]->linesize[0] / div; \
const int h = s->planeheight[0]; \
int slice_start = (h * jobnr) / nb_jobs; \
int slice_end = (h * (jobnr+1)) / nb_jobs; \
type *p0 = (type *)s->frames[0]->data[0]; \
type *p1 = (type *)s->frames[1]->data[0]; \
type *p3 = (type *)s->frames[3]->data[0]; \
type *p4 = (type *)s->frames[4]->data[0]; \
type *src = (type *)s->frames[2]->data[0]; \
type *dst = (type *)out->data[0]; \
const int luma2d = s->luma2d; \
const int lumaT = s->lumaT; \
\
if (!slice_start) { \
slice_start++; \
} \
p0 += p0_linesize * slice_start; \
p1 += p1_linesize * slice_start; \
p3 += p3_linesize * slice_start; \
p4 += p4_linesize * slice_start; \
src += src_linesize * slice_start; \
dst += dst_linesize * slice_start; \
if (slice_end == h) { \
slice_end--; \
} \
for (int y = slice_start; y < slice_end; y++) { \
for (int x = 1; x < s->planewidth[0] - 1; x++) { \
int above = src[x - src_linesize]; \
int bellow = src[x + src_linesize]; \
int cur = src[x]; \
int left = src[x - 1]; \
int right = src[x + 1]; \
\
if (FFABS(above + bellow - 2 * cur) <= luma2d && \
FFABS(left + right - 2 * cur) <= luma2d) \
continue; \
\
if (FFABS(cur - p0[x]) <= lumaT && \
FFABS(cur - p4[x]) <= lumaT && \
FFABS(p1[x] - p3[x]) <= lumaT) { \
int diff1 = FFABS(cur - p1[x]); \
int diff2 = FFABS(cur - p3[x]); \
\
if (diff1 < diff2) \
dst[x] = (src[x] + p1[x] + 1) >> 1; \
else \
dst[x] = (src[x] + p3[x] + 1) >> 1; \
} \
} \
\
dst += dst_linesize; \
src += src_linesize; \
p0 += p0_linesize; \
p1 += p1_linesize; \
p3 += p3_linesize; \
p4 += p4_linesize; \
} \
return 0; \
}
DEFINE_DEDOTCRAWL(8, uint8_t, 1)
DEFINE_DEDOTCRAWL(16, uint16_t, 2)
typedef struct ThreadData {
AVFrame *out;
int plane;
} ThreadData;
#define DEFINE_DERAINBOW(name, type, div) \
static int derainbow##name(AVFilterContext *ctx, void *arg, \
int jobnr, int nb_jobs) \
{ \
DedotContext *s = ctx->priv; \
ThreadData *td = arg; \
AVFrame *out = td->out; \
const int plane = td->plane; \
const int h = s->planeheight[plane]; \
int slice_start = (h * jobnr) / nb_jobs; \
int slice_end = (h * (jobnr+1)) / nb_jobs; \
int src_linesize = s->frames[2]->linesize[plane] / div; \
int dst_linesize = out->linesize[plane] / div; \
int p0_linesize = s->frames[0]->linesize[plane] / div; \
int p1_linesize = s->frames[1]->linesize[plane] / div; \
int p3_linesize = s->frames[3]->linesize[plane] / div; \
int p4_linesize = s->frames[4]->linesize[plane] / div; \
type *p0 = (type *)s->frames[0]->data[plane]; \
type *p1 = (type *)s->frames[1]->data[plane]; \
type *p3 = (type *)s->frames[3]->data[plane]; \
type *p4 = (type *)s->frames[4]->data[plane]; \
type *src = (type *)s->frames[2]->data[plane]; \
type *dst = (type *)out->data[plane]; \
const int chromaT1 = s->chromaT1; \
const int chromaT2 = s->chromaT2; \
\
p0 += slice_start * p0_linesize; \
p1 += slice_start * p1_linesize; \
p3 += slice_start * p3_linesize; \
p4 += slice_start * p4_linesize; \
src += slice_start * src_linesize; \
dst += slice_start * dst_linesize; \
for (int y = slice_start; y < slice_end; y++) { \
for (int x = 0; x < s->planewidth[plane]; x++) { \
int cur = src[x]; \
\
if (FFABS(cur - p0[x]) <= chromaT1 && \
FFABS(cur - p4[x]) <= chromaT1 && \
FFABS(p1[x] - p3[x]) <= chromaT1 && \
FFABS(cur - p1[x]) > chromaT2 && \
FFABS(cur - p3[x]) > chromaT2) { \
int diff1 = FFABS(cur - p1[x]); \
int diff2 = FFABS(cur - p3[x]); \
\
if (diff1 < diff2) \
dst[x] = (src[x] + p1[x] + 1) >> 1; \
else \
dst[x] = (src[x] + p3[x] + 1) >> 1; \
} \
} \
\
dst += dst_linesize; \
src += src_linesize; \
p0 += p0_linesize; \
p1 += p1_linesize; \
p3 += p3_linesize; \
p4 += p4_linesize; \
} \
return 0; \
}
DEFINE_DERAINBOW(8, uint8_t, 1)
DEFINE_DERAINBOW(16, uint16_t, 2)
static int config_output(AVFilterLink *outlink)
{
AVFilterContext *ctx = outlink->src;
DedotContext *s = ctx->priv;
AVFilterLink *inlink = ctx->inputs[0];
s->desc = av_pix_fmt_desc_get(outlink->format);
if (!s->desc)
return AVERROR_BUG;
s->nb_planes = av_pix_fmt_count_planes(outlink->format);
s->depth = s->desc->comp[0].depth;
s->max = (1 << s->depth) - 1;
s->luma2d = s->lt * s->max;
s->lumaT = s->tl * s->max;
s->chromaT1 = s->tc * s->max;
s->chromaT2 = s->ct * s->max;
s->planewidth[1] = s->planewidth[2] = AV_CEIL_RSHIFT(inlink->w, s->desc->log2_chroma_w);
s->planewidth[0] = s->planewidth[3] = inlink->w;
s->planeheight[1] = s->planeheight[2] = AV_CEIL_RSHIFT(inlink->h, s->desc->log2_chroma_h);
s->planeheight[0] = s->planeheight[3] = inlink->h;
if (s->depth <= 8) {
s->dedotcrawl = dedotcrawl8;
s->derainbow = derainbow8;
} else {
s->dedotcrawl = dedotcrawl16;
s->derainbow = derainbow16;
}
return 0;
}
static int activate(AVFilterContext *ctx)
{
AVFilterLink *inlink = ctx->inputs[0];
AVFilterLink *outlink = ctx->outputs[0];
DedotContext *s = ctx->priv;
AVFrame *frame = NULL;
int64_t pts;
int status;
int ret = 0;
FF_FILTER_FORWARD_STATUS_BACK(outlink, inlink);
if (s->eof == 0) {
ret = ff_inlink_consume_frame(inlink, &frame);
if (ret < 0)
return ret;
}
if (frame || s->eof_frames > 0) {
AVFrame *out = NULL;
if (frame) {
for (int i = 2; i < 5; i++) {
if (!s->frames[i])
s->frames[i] = av_frame_clone(frame);
}
av_frame_free(&frame);
} else if (s->frames[3]) {
s->eof_frames--;
s->frames[4] = av_frame_clone(s->frames[3]);
}
if (s->frames[0] &&
s->frames[1] &&
s->frames[2] &&
s->frames[3] &&
s->frames[4]) {
out = av_frame_clone(s->frames[2]);
if (out && !ctx->is_disabled) {
ret = av_frame_make_writable(out);
if (ret >= 0) {
if (s->m & 1)
ctx->internal->execute(ctx, s->dedotcrawl, out, NULL,
FFMIN(s->planeheight[0],
ff_filter_get_nb_threads(ctx)));
if (s->m & 2) {
ThreadData td;
td.out = out; td.plane = 1;
ctx->internal->execute(ctx, s->derainbow, &td, NULL,
FFMIN(s->planeheight[1],
ff_filter_get_nb_threads(ctx)));
td.plane = 2;
ctx->internal->execute(ctx, s->derainbow, &td, NULL,
FFMIN(s->planeheight[2],
ff_filter_get_nb_threads(ctx)));
}
} else
av_frame_free(&out);
} else if (!out) {
ret = AVERROR(ENOMEM);
}
}
av_frame_free(&s->frames[0]);
s->frames[0] = s->frames[1];
s->frames[1] = s->frames[2];
s->frames[2] = s->frames[3];
s->frames[3] = s->frames[4];
s->frames[4] = NULL;
if (ret < 0)
return ret;
if (out)
return ff_filter_frame(outlink, out);
}
if (s->eof) {
if (s->eof_frames <= 0) {
ff_outlink_set_status(outlink, AVERROR_EOF, s->frames[2]->pts);
} else {
ff_filter_set_ready(ctx, 10);
}
return 0;
}
if (!s->eof && ff_inlink_acknowledge_status(inlink, &status, &pts)) {
if (status == AVERROR_EOF) {
s->eof = 1;
s->eof_frames = !!s->frames[0] + !!s->frames[1];
if (s->eof_frames <= 0) {
ff_outlink_set_status(outlink, AVERROR_EOF, pts);
return 0;
}
ff_filter_set_ready(ctx, 10);
return 0;
}
}
FF_FILTER_FORWARD_WANTED(outlink, inlink);
return FFERROR_NOT_READY;
}
static av_cold void uninit(AVFilterContext *ctx)
{
DedotContext *s = ctx->priv;
for (int i = 0; i < 5; i++)
av_frame_free(&s->frames[i]);
}
#define OFFSET(x) offsetof(DedotContext, x)
#define FLAGS AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_FILTERING_PARAM
static const AVOption dedot_options[] = {
{ "m", "set filtering mode", OFFSET( m), AV_OPT_TYPE_FLAGS, {.i64=3}, 0, 3, FLAGS, "m" },
{ "dotcrawl", 0, 0, AV_OPT_TYPE_CONST, {.i64=1}, 0, 0, FLAGS, "m" },
{ "rainbows", 0, 0, AV_OPT_TYPE_CONST, {.i64=2}, 0, 0, FLAGS, "m" },
{ "lt", "set spatial luma threshold", OFFSET(lt), AV_OPT_TYPE_FLOAT, {.dbl=.079}, 0, 1, FLAGS },
{ "tl", "set tolerance for temporal luma", OFFSET(tl), AV_OPT_TYPE_FLOAT, {.dbl=.079}, 0, 1, FLAGS },
{ "tc", "set tolerance for chroma temporal variation", OFFSET(tc), AV_OPT_TYPE_FLOAT, {.dbl=.058}, 0, 1, FLAGS },
{ "ct", "set temporal chroma threshold", OFFSET(ct), AV_OPT_TYPE_FLOAT, {.dbl=.019}, 0, 1, FLAGS },
{ NULL },
};
static const AVFilterPad inputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_VIDEO,
},
{ NULL }
};
static const AVFilterPad outputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_VIDEO,
.config_props = config_output,
},
{ NULL }
};
AVFILTER_DEFINE_CLASS(dedot);
AVFilter ff_vf_dedot = {
.name = "dedot",
.description = NULL_IF_CONFIG_SMALL("Reduce cross-luminance and cross-color."),
.priv_size = sizeof(DedotContext),
.priv_class = &dedot_class,
.query_formats = query_formats,
.activate = activate,
.uninit = uninit,
.inputs = inputs,
.outputs = outputs,
.flags = AVFILTER_FLAG_SUPPORT_TIMELINE_INTERNAL | AVFILTER_FLAG_SLICE_THREADS,
};