1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2025-01-13 21:28:01 +02:00
FFmpeg/libavcodec/error_resilience.c
Michael Niedermayer a105f52855 avcodec/error_resilience: avoid accessing previous or next frames tables beyond height
The height of tables can be rounded up for MBAFF but this does not imply that is also true
for the previous frames

Fixes out of array reads
Fixes: c106b36fa36db8ff8f3ed0c82be7bea2/asan_heap-oob_32699f0_6321_467b9a1d7e03d7cfd310b7e65dc53bcc.mov

Found-by: Mateusz "j00ru" Jurczyk and Gynvael Coldwind
Signed-off-by: Michael Niedermayer <michael@niedermayer.cc>
2015-11-14 22:51:30 +01:00

1337 lines
50 KiB
C

/*
* Error resilience / concealment
*
* Copyright (c) 2002-2004 Michael Niedermayer <michaelni@gmx.at>
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* Error resilience / concealment.
*/
#include <limits.h>
#include "libavutil/atomic.h"
#include "libavutil/internal.h"
#include "avcodec.h"
#include "error_resilience.h"
#include "me_cmp.h"
#include "mpegutils.h"
#include "mpegvideo.h"
#include "rectangle.h"
#include "thread.h"
#include "version.h"
/**
* @param stride the number of MVs to get to the next row
* @param mv_step the number of MVs per row or column in a macroblock
*/
static void set_mv_strides(ERContext *s, int *mv_step, int *stride)
{
if (s->avctx->codec_id == AV_CODEC_ID_H264) {
av_assert0(s->quarter_sample);
*mv_step = 4;
*stride = s->mb_width * 4;
} else {
*mv_step = 2;
*stride = s->b8_stride;
}
}
/**
* Replace the current MB with a flat dc-only version.
*/
static void put_dc(ERContext *s, uint8_t *dest_y, uint8_t *dest_cb,
uint8_t *dest_cr, int mb_x, int mb_y)
{
int *linesize = s->cur_pic.f->linesize;
int dc, dcu, dcv, y, i;
for (i = 0; i < 4; i++) {
dc = s->dc_val[0][mb_x * 2 + (i & 1) + (mb_y * 2 + (i >> 1)) * s->b8_stride];
if (dc < 0)
dc = 0;
else if (dc > 2040)
dc = 2040;
for (y = 0; y < 8; y++) {
int x;
for (x = 0; x < 8; x++)
dest_y[x + (i & 1) * 8 + (y + (i >> 1) * 8) * linesize[0]] = dc / 8;
}
}
dcu = s->dc_val[1][mb_x + mb_y * s->mb_stride];
dcv = s->dc_val[2][mb_x + mb_y * s->mb_stride];
if (dcu < 0)
dcu = 0;
else if (dcu > 2040)
dcu = 2040;
if (dcv < 0)
dcv = 0;
else if (dcv > 2040)
dcv = 2040;
if (dest_cr)
for (y = 0; y < 8; y++) {
int x;
for (x = 0; x < 8; x++) {
dest_cb[x + y * linesize[1]] = dcu / 8;
dest_cr[x + y * linesize[2]] = dcv / 8;
}
}
}
static void filter181(int16_t *data, int width, int height, int stride)
{
int x, y;
/* horizontal filter */
for (y = 1; y < height - 1; y++) {
int prev_dc = data[0 + y * stride];
for (x = 1; x < width - 1; x++) {
int dc;
dc = -prev_dc +
data[x + y * stride] * 8 -
data[x + 1 + y * stride];
dc = (dc * 10923 + 32768) >> 16;
prev_dc = data[x + y * stride];
data[x + y * stride] = dc;
}
}
/* vertical filter */
for (x = 1; x < width - 1; x++) {
int prev_dc = data[x];
for (y = 1; y < height - 1; y++) {
int dc;
dc = -prev_dc +
data[x + y * stride] * 8 -
data[x + (y + 1) * stride];
dc = (dc * 10923 + 32768) >> 16;
prev_dc = data[x + y * stride];
data[x + y * stride] = dc;
}
}
}
/**
* guess the dc of blocks which do not have an undamaged dc
* @param w width in 8 pixel blocks
* @param h height in 8 pixel blocks
*/
static void guess_dc(ERContext *s, int16_t *dc, int w,
int h, int stride, int is_luma)
{
int b_x, b_y;
int16_t (*col )[4] = av_malloc_array(stride, h*sizeof( int16_t)*4);
uint32_t (*dist)[4] = av_malloc_array(stride, h*sizeof(uint32_t)*4);
if(!col || !dist) {
av_log(s->avctx, AV_LOG_ERROR, "guess_dc() is out of memory\n");
goto fail;
}
for(b_y=0; b_y<h; b_y++){
int color= 1024;
int distance= -1;
for(b_x=0; b_x<w; b_x++){
int mb_index_j= (b_x>>is_luma) + (b_y>>is_luma)*s->mb_stride;
int error_j= s->error_status_table[mb_index_j];
int intra_j = IS_INTRA(s->cur_pic.mb_type[mb_index_j]);
if(intra_j==0 || !(error_j&ER_DC_ERROR)){
color= dc[b_x + b_y*stride];
distance= b_x;
}
col [b_x + b_y*stride][1]= color;
dist[b_x + b_y*stride][1]= distance >= 0 ? b_x-distance : 9999;
}
color= 1024;
distance= -1;
for(b_x=w-1; b_x>=0; b_x--){
int mb_index_j= (b_x>>is_luma) + (b_y>>is_luma)*s->mb_stride;
int error_j= s->error_status_table[mb_index_j];
int intra_j = IS_INTRA(s->cur_pic.mb_type[mb_index_j]);
if(intra_j==0 || !(error_j&ER_DC_ERROR)){
color= dc[b_x + b_y*stride];
distance= b_x;
}
col [b_x + b_y*stride][0]= color;
dist[b_x + b_y*stride][0]= distance >= 0 ? distance-b_x : 9999;
}
}
for(b_x=0; b_x<w; b_x++){
int color= 1024;
int distance= -1;
for(b_y=0; b_y<h; b_y++){
int mb_index_j= (b_x>>is_luma) + (b_y>>is_luma)*s->mb_stride;
int error_j= s->error_status_table[mb_index_j];
int intra_j = IS_INTRA(s->cur_pic.mb_type[mb_index_j]);
if(intra_j==0 || !(error_j&ER_DC_ERROR)){
color= dc[b_x + b_y*stride];
distance= b_y;
}
col [b_x + b_y*stride][3]= color;
dist[b_x + b_y*stride][3]= distance >= 0 ? b_y-distance : 9999;
}
color= 1024;
distance= -1;
for(b_y=h-1; b_y>=0; b_y--){
int mb_index_j= (b_x>>is_luma) + (b_y>>is_luma)*s->mb_stride;
int error_j= s->error_status_table[mb_index_j];
int intra_j = IS_INTRA(s->cur_pic.mb_type[mb_index_j]);
if(intra_j==0 || !(error_j&ER_DC_ERROR)){
color= dc[b_x + b_y*stride];
distance= b_y;
}
col [b_x + b_y*stride][2]= color;
dist[b_x + b_y*stride][2]= distance >= 0 ? distance-b_y : 9999;
}
}
for (b_y = 0; b_y < h; b_y++) {
for (b_x = 0; b_x < w; b_x++) {
int mb_index, error, j;
int64_t guess, weight_sum;
mb_index = (b_x >> is_luma) + (b_y >> is_luma) * s->mb_stride;
error = s->error_status_table[mb_index];
if (IS_INTER(s->cur_pic.mb_type[mb_index]))
continue; // inter
if (!(error & ER_DC_ERROR))
continue; // dc-ok
weight_sum = 0;
guess = 0;
for (j = 0; j < 4; j++) {
int64_t weight = 256 * 256 * 256 * 16 / FFMAX(dist[b_x + b_y*stride][j], 1);
guess += weight*(int64_t)col[b_x + b_y*stride][j];
weight_sum += weight;
}
guess = (guess + weight_sum / 2) / weight_sum;
dc[b_x + b_y * stride] = guess;
}
}
fail:
av_freep(&col);
av_freep(&dist);
}
/**
* simple horizontal deblocking filter used for error resilience
* @param w width in 8 pixel blocks
* @param h height in 8 pixel blocks
*/
static void h_block_filter(ERContext *s, uint8_t *dst, int w,
int h, int stride, int is_luma)
{
int b_x, b_y, mvx_stride, mvy_stride;
const uint8_t *cm = ff_crop_tab + MAX_NEG_CROP;
set_mv_strides(s, &mvx_stride, &mvy_stride);
mvx_stride >>= is_luma;
mvy_stride *= mvx_stride;
for (b_y = 0; b_y < h; b_y++) {
for (b_x = 0; b_x < w - 1; b_x++) {
int y;
int left_status = s->error_status_table[( b_x >> is_luma) + (b_y >> is_luma) * s->mb_stride];
int right_status = s->error_status_table[((b_x + 1) >> is_luma) + (b_y >> is_luma) * s->mb_stride];
int left_intra = IS_INTRA(s->cur_pic.mb_type[( b_x >> is_luma) + (b_y >> is_luma) * s->mb_stride]);
int right_intra = IS_INTRA(s->cur_pic.mb_type[((b_x + 1) >> is_luma) + (b_y >> is_luma) * s->mb_stride]);
int left_damage = left_status & ER_MB_ERROR;
int right_damage = right_status & ER_MB_ERROR;
int offset = b_x * 8 + b_y * stride * 8;
int16_t *left_mv = s->cur_pic.motion_val[0][mvy_stride * b_y + mvx_stride * b_x];
int16_t *right_mv = s->cur_pic.motion_val[0][mvy_stride * b_y + mvx_stride * (b_x + 1)];
if (!(left_damage || right_damage))
continue; // both undamaged
if ((!left_intra) && (!right_intra) &&
FFABS(left_mv[0] - right_mv[0]) +
FFABS(left_mv[1] + right_mv[1]) < 2)
continue;
for (y = 0; y < 8; y++) {
int a, b, c, d;
a = dst[offset + 7 + y * stride] - dst[offset + 6 + y * stride];
b = dst[offset + 8 + y * stride] - dst[offset + 7 + y * stride];
c = dst[offset + 9 + y * stride] - dst[offset + 8 + y * stride];
d = FFABS(b) - ((FFABS(a) + FFABS(c) + 1) >> 1);
d = FFMAX(d, 0);
if (b < 0)
d = -d;
if (d == 0)
continue;
if (!(left_damage && right_damage))
d = d * 16 / 9;
if (left_damage) {
dst[offset + 7 + y * stride] = cm[dst[offset + 7 + y * stride] + ((d * 7) >> 4)];
dst[offset + 6 + y * stride] = cm[dst[offset + 6 + y * stride] + ((d * 5) >> 4)];
dst[offset + 5 + y * stride] = cm[dst[offset + 5 + y * stride] + ((d * 3) >> 4)];
dst[offset + 4 + y * stride] = cm[dst[offset + 4 + y * stride] + ((d * 1) >> 4)];
}
if (right_damage) {
dst[offset + 8 + y * stride] = cm[dst[offset + 8 + y * stride] - ((d * 7) >> 4)];
dst[offset + 9 + y * stride] = cm[dst[offset + 9 + y * stride] - ((d * 5) >> 4)];
dst[offset + 10+ y * stride] = cm[dst[offset + 10 + y * stride] - ((d * 3) >> 4)];
dst[offset + 11+ y * stride] = cm[dst[offset + 11 + y * stride] - ((d * 1) >> 4)];
}
}
}
}
}
/**
* simple vertical deblocking filter used for error resilience
* @param w width in 8 pixel blocks
* @param h height in 8 pixel blocks
*/
static void v_block_filter(ERContext *s, uint8_t *dst, int w, int h,
int stride, int is_luma)
{
int b_x, b_y, mvx_stride, mvy_stride;
const uint8_t *cm = ff_crop_tab + MAX_NEG_CROP;
set_mv_strides(s, &mvx_stride, &mvy_stride);
mvx_stride >>= is_luma;
mvy_stride *= mvx_stride;
for (b_y = 0; b_y < h - 1; b_y++) {
for (b_x = 0; b_x < w; b_x++) {
int x;
int top_status = s->error_status_table[(b_x >> is_luma) + (b_y >> is_luma) * s->mb_stride];
int bottom_status = s->error_status_table[(b_x >> is_luma) + ((b_y + 1) >> is_luma) * s->mb_stride];
int top_intra = IS_INTRA(s->cur_pic.mb_type[(b_x >> is_luma) + ( b_y >> is_luma) * s->mb_stride]);
int bottom_intra = IS_INTRA(s->cur_pic.mb_type[(b_x >> is_luma) + ((b_y + 1) >> is_luma) * s->mb_stride]);
int top_damage = top_status & ER_MB_ERROR;
int bottom_damage = bottom_status & ER_MB_ERROR;
int offset = b_x * 8 + b_y * stride * 8;
int16_t *top_mv = s->cur_pic.motion_val[0][mvy_stride * b_y + mvx_stride * b_x];
int16_t *bottom_mv = s->cur_pic.motion_val[0][mvy_stride * (b_y + 1) + mvx_stride * b_x];
if (!(top_damage || bottom_damage))
continue; // both undamaged
if ((!top_intra) && (!bottom_intra) &&
FFABS(top_mv[0] - bottom_mv[0]) +
FFABS(top_mv[1] + bottom_mv[1]) < 2)
continue;
for (x = 0; x < 8; x++) {
int a, b, c, d;
a = dst[offset + x + 7 * stride] - dst[offset + x + 6 * stride];
b = dst[offset + x + 8 * stride] - dst[offset + x + 7 * stride];
c = dst[offset + x + 9 * stride] - dst[offset + x + 8 * stride];
d = FFABS(b) - ((FFABS(a) + FFABS(c) + 1) >> 1);
d = FFMAX(d, 0);
if (b < 0)
d = -d;
if (d == 0)
continue;
if (!(top_damage && bottom_damage))
d = d * 16 / 9;
if (top_damage) {
dst[offset + x + 7 * stride] = cm[dst[offset + x + 7 * stride] + ((d * 7) >> 4)];
dst[offset + x + 6 * stride] = cm[dst[offset + x + 6 * stride] + ((d * 5) >> 4)];
dst[offset + x + 5 * stride] = cm[dst[offset + x + 5 * stride] + ((d * 3) >> 4)];
dst[offset + x + 4 * stride] = cm[dst[offset + x + 4 * stride] + ((d * 1) >> 4)];
}
if (bottom_damage) {
dst[offset + x + 8 * stride] = cm[dst[offset + x + 8 * stride] - ((d * 7) >> 4)];
dst[offset + x + 9 * stride] = cm[dst[offset + x + 9 * stride] - ((d * 5) >> 4)];
dst[offset + x + 10 * stride] = cm[dst[offset + x + 10 * stride] - ((d * 3) >> 4)];
dst[offset + x + 11 * stride] = cm[dst[offset + x + 11 * stride] - ((d * 1) >> 4)];
}
}
}
}
}
static void guess_mv(ERContext *s)
{
uint8_t *fixed = s->er_temp_buffer;
#define MV_FROZEN 3
#define MV_CHANGED 2
#define MV_UNCHANGED 1
const int mb_stride = s->mb_stride;
const int mb_width = s->mb_width;
int mb_height = s->mb_height;
int i, depth, num_avail;
int mb_x, mb_y, mot_step, mot_stride;
if (s->last_pic.f && s->last_pic.f->data[0])
mb_height = FFMIN(mb_height, (s->last_pic.f->height+15)>>4);
if (s->next_pic.f && s->next_pic.f->data[0])
mb_height = FFMIN(mb_height, (s->next_pic.f->height+15)>>4);
set_mv_strides(s, &mot_step, &mot_stride);
num_avail = 0;
for (i = 0; i < mb_width * mb_height; i++) {
const int mb_xy = s->mb_index2xy[i];
int f = 0;
int error = s->error_status_table[mb_xy];
if (IS_INTRA(s->cur_pic.mb_type[mb_xy]))
f = MV_FROZEN; // intra // FIXME check
if (!(error & ER_MV_ERROR))
f = MV_FROZEN; // inter with undamaged MV
fixed[mb_xy] = f;
if (f == MV_FROZEN)
num_avail++;
else if(s->last_pic.f->data[0] && s->last_pic.motion_val[0]){
const int mb_y= mb_xy / s->mb_stride;
const int mb_x= mb_xy % s->mb_stride;
const int mot_index= (mb_x + mb_y*mot_stride) * mot_step;
s->cur_pic.motion_val[0][mot_index][0]= s->last_pic.motion_val[0][mot_index][0];
s->cur_pic.motion_val[0][mot_index][1]= s->last_pic.motion_val[0][mot_index][1];
s->cur_pic.ref_index[0][4*mb_xy] = s->last_pic.ref_index[0][4*mb_xy];
}
}
if ((!(s->avctx->error_concealment&FF_EC_GUESS_MVS)) ||
num_avail <= mb_width / 2) {
for (mb_y = 0; mb_y < mb_height; mb_y++) {
for (mb_x = 0; mb_x < s->mb_width; mb_x++) {
const int mb_xy = mb_x + mb_y * s->mb_stride;
int mv_dir = (s->last_pic.f && s->last_pic.f->data[0]) ? MV_DIR_FORWARD : MV_DIR_BACKWARD;
if (IS_INTRA(s->cur_pic.mb_type[mb_xy]))
continue;
if (!(s->error_status_table[mb_xy] & ER_MV_ERROR))
continue;
s->mv[0][0][0] = 0;
s->mv[0][0][1] = 0;
s->decode_mb(s->opaque, 0, mv_dir, MV_TYPE_16X16, &s->mv,
mb_x, mb_y, 0, 0);
}
}
return;
}
for (depth = 0; ; depth++) {
int changed, pass, none_left;
none_left = 1;
changed = 1;
for (pass = 0; (changed || pass < 2) && pass < 10; pass++) {
int mb_x, mb_y;
int score_sum = 0;
changed = 0;
for (mb_y = 0; mb_y < mb_height; mb_y++) {
for (mb_x = 0; mb_x < s->mb_width; mb_x++) {
const int mb_xy = mb_x + mb_y * s->mb_stride;
int mv_predictor[8][2] = { { 0 } };
int ref[8] = { 0 };
int pred_count = 0;
int j;
int best_score = 256 * 256 * 256 * 64;
int best_pred = 0;
const int mot_index = (mb_x + mb_y * mot_stride) * mot_step;
int prev_x = 0, prev_y = 0, prev_ref = 0;
if ((mb_x ^ mb_y ^ pass) & 1)
continue;
if (fixed[mb_xy] == MV_FROZEN)
continue;
av_assert1(!IS_INTRA(s->cur_pic.mb_type[mb_xy]));
av_assert1(s->last_pic.f && s->last_pic.f->data[0]);
j = 0;
if (mb_x > 0 && fixed[mb_xy - 1] == MV_FROZEN)
j = 1;
if (mb_x + 1 < mb_width && fixed[mb_xy + 1] == MV_FROZEN)
j = 1;
if (mb_y > 0 && fixed[mb_xy - mb_stride] == MV_FROZEN)
j = 1;
if (mb_y + 1 < mb_height && fixed[mb_xy + mb_stride] == MV_FROZEN)
j = 1;
if (j == 0)
continue;
j = 0;
if (mb_x > 0 && fixed[mb_xy - 1 ] == MV_CHANGED)
j = 1;
if (mb_x + 1 < mb_width && fixed[mb_xy + 1 ] == MV_CHANGED)
j = 1;
if (mb_y > 0 && fixed[mb_xy - mb_stride] == MV_CHANGED)
j = 1;
if (mb_y + 1 < mb_height && fixed[mb_xy + mb_stride] == MV_CHANGED)
j = 1;
if (j == 0 && pass > 1)
continue;
none_left = 0;
if (mb_x > 0 && fixed[mb_xy - 1]) {
mv_predictor[pred_count][0] =
s->cur_pic.motion_val[0][mot_index - mot_step][0];
mv_predictor[pred_count][1] =
s->cur_pic.motion_val[0][mot_index - mot_step][1];
ref[pred_count] =
s->cur_pic.ref_index[0][4 * (mb_xy - 1)];
pred_count++;
}
if (mb_x + 1 < mb_width && fixed[mb_xy + 1]) {
mv_predictor[pred_count][0] =
s->cur_pic.motion_val[0][mot_index + mot_step][0];
mv_predictor[pred_count][1] =
s->cur_pic.motion_val[0][mot_index + mot_step][1];
ref[pred_count] =
s->cur_pic.ref_index[0][4 * (mb_xy + 1)];
pred_count++;
}
if (mb_y > 0 && fixed[mb_xy - mb_stride]) {
mv_predictor[pred_count][0] =
s->cur_pic.motion_val[0][mot_index - mot_stride * mot_step][0];
mv_predictor[pred_count][1] =
s->cur_pic.motion_val[0][mot_index - mot_stride * mot_step][1];
ref[pred_count] =
s->cur_pic.ref_index[0][4 * (mb_xy - s->mb_stride)];
pred_count++;
}
if (mb_y + 1<mb_height && fixed[mb_xy + mb_stride]) {
mv_predictor[pred_count][0] =
s->cur_pic.motion_val[0][mot_index + mot_stride * mot_step][0];
mv_predictor[pred_count][1] =
s->cur_pic.motion_val[0][mot_index + mot_stride * mot_step][1];
ref[pred_count] =
s->cur_pic.ref_index[0][4 * (mb_xy + s->mb_stride)];
pred_count++;
}
if (pred_count == 0)
continue;
if (pred_count > 1) {
int sum_x = 0, sum_y = 0, sum_r = 0;
int max_x, max_y, min_x, min_y, max_r, min_r;
for (j = 0; j < pred_count; j++) {
sum_x += mv_predictor[j][0];
sum_y += mv_predictor[j][1];
sum_r += ref[j];
if (j && ref[j] != ref[j - 1])
goto skip_mean_and_median;
}
/* mean */
mv_predictor[pred_count][0] = sum_x / j;
mv_predictor[pred_count][1] = sum_y / j;
ref[pred_count] = sum_r / j;
/* median */
if (pred_count >= 3) {
min_y = min_x = min_r = 99999;
max_y = max_x = max_r = -99999;
} else {
min_x = min_y = max_x = max_y = min_r = max_r = 0;
}
for (j = 0; j < pred_count; j++) {
max_x = FFMAX(max_x, mv_predictor[j][0]);
max_y = FFMAX(max_y, mv_predictor[j][1]);
max_r = FFMAX(max_r, ref[j]);
min_x = FFMIN(min_x, mv_predictor[j][0]);
min_y = FFMIN(min_y, mv_predictor[j][1]);
min_r = FFMIN(min_r, ref[j]);
}
mv_predictor[pred_count + 1][0] = sum_x - max_x - min_x;
mv_predictor[pred_count + 1][1] = sum_y - max_y - min_y;
ref[pred_count + 1] = sum_r - max_r - min_r;
if (pred_count == 4) {
mv_predictor[pred_count + 1][0] /= 2;
mv_predictor[pred_count + 1][1] /= 2;
ref[pred_count + 1] /= 2;
}
pred_count += 2;
}
skip_mean_and_median:
/* zero MV */
pred_count++;
if (!fixed[mb_xy] && 0) {
if (s->avctx->codec_id == AV_CODEC_ID_H264) {
// FIXME
} else {
ff_thread_await_progress(s->last_pic.tf,
mb_y, 0);
}
if (!s->last_pic.motion_val[0] ||
!s->last_pic.ref_index[0])
goto skip_last_mv;
prev_x = s->last_pic.motion_val[0][mot_index][0];
prev_y = s->last_pic.motion_val[0][mot_index][1];
prev_ref = s->last_pic.ref_index[0][4 * mb_xy];
} else {
prev_x = s->cur_pic.motion_val[0][mot_index][0];
prev_y = s->cur_pic.motion_val[0][mot_index][1];
prev_ref = s->cur_pic.ref_index[0][4 * mb_xy];
}
/* last MV */
mv_predictor[pred_count][0] = prev_x;
mv_predictor[pred_count][1] = prev_y;
ref[pred_count] = prev_ref;
pred_count++;
skip_last_mv:
for (j = 0; j < pred_count; j++) {
int *linesize = s->cur_pic.f->linesize;
int score = 0;
uint8_t *src = s->cur_pic.f->data[0] +
mb_x * 16 + mb_y * 16 * linesize[0];
s->cur_pic.motion_val[0][mot_index][0] =
s->mv[0][0][0] = mv_predictor[j][0];
s->cur_pic.motion_val[0][mot_index][1] =
s->mv[0][0][1] = mv_predictor[j][1];
// predictor intra or otherwise not available
if (ref[j] < 0)
continue;
s->decode_mb(s->opaque, ref[j], MV_DIR_FORWARD,
MV_TYPE_16X16, &s->mv, mb_x, mb_y, 0, 0);
if (mb_x > 0 && fixed[mb_xy - 1]) {
int k;
for (k = 0; k < 16; k++)
score += FFABS(src[k * linesize[0] - 1] -
src[k * linesize[0]]);
}
if (mb_x + 1 < mb_width && fixed[mb_xy + 1]) {
int k;
for (k = 0; k < 16; k++)
score += FFABS(src[k * linesize[0] + 15] -
src[k * linesize[0] + 16]);
}
if (mb_y > 0 && fixed[mb_xy - mb_stride]) {
int k;
for (k = 0; k < 16; k++)
score += FFABS(src[k - linesize[0]] - src[k]);
}
if (mb_y + 1 < mb_height && fixed[mb_xy + mb_stride]) {
int k;
for (k = 0; k < 16; k++)
score += FFABS(src[k + linesize[0] * 15] -
src[k + linesize[0] * 16]);
}
if (score <= best_score) { // <= will favor the last MV
best_score = score;
best_pred = j;
}
}
score_sum += best_score;
s->mv[0][0][0] = mv_predictor[best_pred][0];
s->mv[0][0][1] = mv_predictor[best_pred][1];
for (i = 0; i < mot_step; i++)
for (j = 0; j < mot_step; j++) {
s->cur_pic.motion_val[0][mot_index + i + j * mot_stride][0] = s->mv[0][0][0];
s->cur_pic.motion_val[0][mot_index + i + j * mot_stride][1] = s->mv[0][0][1];
}
s->decode_mb(s->opaque, ref[best_pred], MV_DIR_FORWARD,
MV_TYPE_16X16, &s->mv, mb_x, mb_y, 0, 0);
if (s->mv[0][0][0] != prev_x || s->mv[0][0][1] != prev_y) {
fixed[mb_xy] = MV_CHANGED;
changed++;
} else
fixed[mb_xy] = MV_UNCHANGED;
}
}
}
if (none_left)
return;
for (i = 0; i < mb_width * mb_height; i++) {
int mb_xy = s->mb_index2xy[i];
if (fixed[mb_xy])
fixed[mb_xy] = MV_FROZEN;
}
}
}
static int is_intra_more_likely(ERContext *s)
{
int is_intra_likely, i, j, undamaged_count, skip_amount, mb_x, mb_y;
if (!s->last_pic.f || !s->last_pic.f->data[0])
return 1; // no previous frame available -> use spatial prediction
if (s->avctx->error_concealment & FF_EC_FAVOR_INTER)
return 0;
undamaged_count = 0;
for (i = 0; i < s->mb_num; i++) {
const int mb_xy = s->mb_index2xy[i];
const int error = s->error_status_table[mb_xy];
if (!((error & ER_DC_ERROR) && (error & ER_MV_ERROR)))
undamaged_count++;
}
if (undamaged_count < 5)
return 0; // almost all MBs damaged -> use temporal prediction
// prevent dsp.sad() check, that requires access to the image
if (CONFIG_XVMC &&
s->avctx->hwaccel && s->avctx->hwaccel->decode_mb &&
s->cur_pic.f->pict_type == AV_PICTURE_TYPE_I)
return 1;
skip_amount = FFMAX(undamaged_count / 50, 1); // check only up to 50 MBs
is_intra_likely = 0;
j = 0;
for (mb_y = 0; mb_y < s->mb_height - 1; mb_y++) {
for (mb_x = 0; mb_x < s->mb_width; mb_x++) {
int error;
const int mb_xy = mb_x + mb_y * s->mb_stride;
error = s->error_status_table[mb_xy];
if ((error & ER_DC_ERROR) && (error & ER_MV_ERROR))
continue; // skip damaged
j++;
// skip a few to speed things up
if ((j % skip_amount) != 0)
continue;
if (s->cur_pic.f->pict_type == AV_PICTURE_TYPE_I) {
int *linesize = s->cur_pic.f->linesize;
uint8_t *mb_ptr = s->cur_pic.f->data[0] +
mb_x * 16 + mb_y * 16 * linesize[0];
uint8_t *last_mb_ptr = s->last_pic.f->data[0] +
mb_x * 16 + mb_y * 16 * linesize[0];
if (s->avctx->codec_id == AV_CODEC_ID_H264) {
// FIXME
} else {
ff_thread_await_progress(s->last_pic.tf, mb_y, 0);
}
is_intra_likely += s->mecc.sad[0](NULL, last_mb_ptr, mb_ptr,
linesize[0], 16);
// FIXME need await_progress() here
is_intra_likely -= s->mecc.sad[0](NULL, last_mb_ptr,
last_mb_ptr + linesize[0] * 16,
linesize[0], 16);
} else {
if (IS_INTRA(s->cur_pic.mb_type[mb_xy]))
is_intra_likely++;
else
is_intra_likely--;
}
}
}
// av_log(NULL, AV_LOG_ERROR, "is_intra_likely: %d type:%d\n", is_intra_likely, s->pict_type);
return is_intra_likely > 0;
}
void ff_er_frame_start(ERContext *s)
{
if (!s->avctx->error_concealment)
return;
if (!s->mecc_inited) {
ff_me_cmp_init(&s->mecc, s->avctx);
s->mecc_inited = 1;
}
memset(s->error_status_table, ER_MB_ERROR | VP_START | ER_MB_END,
s->mb_stride * s->mb_height * sizeof(uint8_t));
s->error_count = 3 * s->mb_num;
s->error_occurred = 0;
}
static int er_supported(ERContext *s)
{
if(s->avctx->hwaccel && s->avctx->hwaccel->decode_slice ||
#if FF_API_CAP_VDPAU
s->avctx->codec->capabilities&AV_CODEC_CAP_HWACCEL_VDPAU ||
#endif
!s->cur_pic.f ||
s->cur_pic.field_picture
)
return 0;
return 1;
}
/**
* Add a slice.
* @param endx x component of the last macroblock, can be -1
* for the last of the previous line
* @param status the status at the end (ER_MV_END, ER_AC_ERROR, ...), it is
* assumed that no earlier end or error of the same type occurred
*/
void ff_er_add_slice(ERContext *s, int startx, int starty,
int endx, int endy, int status)
{
const int start_i = av_clip(startx + starty * s->mb_width, 0, s->mb_num - 1);
const int end_i = av_clip(endx + endy * s->mb_width, 0, s->mb_num);
const int start_xy = s->mb_index2xy[start_i];
const int end_xy = s->mb_index2xy[end_i];
int mask = -1;
if (s->avctx->hwaccel && s->avctx->hwaccel->decode_slice)
return;
if (start_i > end_i || start_xy > end_xy) {
av_log(s->avctx, AV_LOG_ERROR,
"internal error, slice end before start\n");
return;
}
if (!s->avctx->error_concealment)
return;
mask &= ~VP_START;
if (status & (ER_AC_ERROR | ER_AC_END)) {
mask &= ~(ER_AC_ERROR | ER_AC_END);
avpriv_atomic_int_add_and_fetch(&s->error_count, start_i - end_i - 1);
}
if (status & (ER_DC_ERROR | ER_DC_END)) {
mask &= ~(ER_DC_ERROR | ER_DC_END);
avpriv_atomic_int_add_and_fetch(&s->error_count, start_i - end_i - 1);
}
if (status & (ER_MV_ERROR | ER_MV_END)) {
mask &= ~(ER_MV_ERROR | ER_MV_END);
avpriv_atomic_int_add_and_fetch(&s->error_count, start_i - end_i - 1);
}
if (status & ER_MB_ERROR) {
s->error_occurred = 1;
avpriv_atomic_int_set(&s->error_count, INT_MAX);
}
if (mask == ~0x7F) {
memset(&s->error_status_table[start_xy], 0,
(end_xy - start_xy) * sizeof(uint8_t));
} else {
int i;
for (i = start_xy; i < end_xy; i++)
s->error_status_table[i] &= mask;
}
if (end_i == s->mb_num)
avpriv_atomic_int_set(&s->error_count, INT_MAX);
else {
s->error_status_table[end_xy] &= mask;
s->error_status_table[end_xy] |= status;
}
s->error_status_table[start_xy] |= VP_START;
if (start_xy > 0 && !(s->avctx->active_thread_type & FF_THREAD_SLICE) &&
er_supported(s) && s->avctx->skip_top * s->mb_width < start_i) {
int prev_status = s->error_status_table[s->mb_index2xy[start_i - 1]];
prev_status &= ~ VP_START;
if (prev_status != (ER_MV_END | ER_DC_END | ER_AC_END)) {
s->error_occurred = 1;
avpriv_atomic_int_set(&s->error_count, INT_MAX);
}
}
}
void ff_er_frame_end(ERContext *s)
{
int *linesize = NULL;
int i, mb_x, mb_y, error, error_type, dc_error, mv_error, ac_error;
int distance;
int threshold_part[4] = { 100, 100, 100 };
int threshold = 50;
int is_intra_likely;
int size = s->b8_stride * 2 * s->mb_height;
/* We do not support ER of field pictures yet,
* though it should not crash if enabled. */
if (!s->avctx->error_concealment || s->error_count == 0 ||
s->avctx->lowres ||
!er_supported(s) ||
s->error_count == 3 * s->mb_width *
(s->avctx->skip_top + s->avctx->skip_bottom)) {
return;
}
linesize = s->cur_pic.f->linesize;
for (mb_x = 0; mb_x < s->mb_width; mb_x++) {
int status = s->error_status_table[mb_x + (s->mb_height - 1) * s->mb_stride];
if (status != 0x7F)
break;
}
if ( mb_x == s->mb_width
&& s->avctx->codec_id == AV_CODEC_ID_MPEG2VIDEO
&& (s->avctx->height&16)
&& s->error_count == 3 * s->mb_width * (s->avctx->skip_top + s->avctx->skip_bottom + 1)
) {
av_log(s->avctx, AV_LOG_DEBUG, "ignoring last missing slice\n");
return;
}
if (s->last_pic.f) {
if (s->last_pic.f->width != s->cur_pic.f->width ||
s->last_pic.f->height != s->cur_pic.f->height ||
s->last_pic.f->format != s->cur_pic.f->format) {
av_log(s->avctx, AV_LOG_WARNING, "Cannot use previous picture in error concealment\n");
memset(&s->last_pic, 0, sizeof(s->last_pic));
}
}
if (s->next_pic.f) {
if (s->next_pic.f->width != s->cur_pic.f->width ||
s->next_pic.f->height != s->cur_pic.f->height ||
s->next_pic.f->format != s->cur_pic.f->format) {
av_log(s->avctx, AV_LOG_WARNING, "Cannot use next picture in error concealment\n");
memset(&s->next_pic, 0, sizeof(s->next_pic));
}
}
if (!s->cur_pic.motion_val[0] || !s->cur_pic.ref_index[0]) {
av_log(s->avctx, AV_LOG_ERROR, "Warning MVs not available\n");
for (i = 0; i < 2; i++) {
s->ref_index_buf[i] = av_buffer_allocz(s->mb_stride * s->mb_height * 4 * sizeof(uint8_t));
s->motion_val_buf[i] = av_buffer_allocz((size + 4) * 2 * sizeof(uint16_t));
if (!s->ref_index_buf[i] || !s->motion_val_buf[i])
break;
s->cur_pic.ref_index[i] = s->ref_index_buf[i]->data;
s->cur_pic.motion_val[i] = (int16_t (*)[2])s->motion_val_buf[i]->data + 4;
}
if (i < 2) {
for (i = 0; i < 2; i++) {
av_buffer_unref(&s->ref_index_buf[i]);
av_buffer_unref(&s->motion_val_buf[i]);
s->cur_pic.ref_index[i] = NULL;
s->cur_pic.motion_val[i] = NULL;
}
return;
}
}
if (s->avctx->debug & FF_DEBUG_ER) {
for (mb_y = 0; mb_y < s->mb_height; mb_y++) {
for (mb_x = 0; mb_x < s->mb_width; mb_x++) {
int status = s->error_status_table[mb_x + mb_y * s->mb_stride];
av_log(s->avctx, AV_LOG_DEBUG, "%2X ", status);
}
av_log(s->avctx, AV_LOG_DEBUG, "\n");
}
}
#if 1
/* handle overlapping slices */
for (error_type = 1; error_type <= 3; error_type++) {
int end_ok = 0;
for (i = s->mb_num - 1; i >= 0; i--) {
const int mb_xy = s->mb_index2xy[i];
int error = s->error_status_table[mb_xy];
if (error & (1 << error_type))
end_ok = 1;
if (error & (8 << error_type))
end_ok = 1;
if (!end_ok)
s->error_status_table[mb_xy] |= 1 << error_type;
if (error & VP_START)
end_ok = 0;
}
}
#endif
#if 1
/* handle slices with partitions of different length */
if (s->partitioned_frame) {
int end_ok = 0;
for (i = s->mb_num - 1; i >= 0; i--) {
const int mb_xy = s->mb_index2xy[i];
int error = s->error_status_table[mb_xy];
if (error & ER_AC_END)
end_ok = 0;
if ((error & ER_MV_END) ||
(error & ER_DC_END) ||
(error & ER_AC_ERROR))
end_ok = 1;
if (!end_ok)
s->error_status_table[mb_xy]|= ER_AC_ERROR;
if (error & VP_START)
end_ok = 0;
}
}
#endif
/* handle missing slices */
if (s->avctx->err_recognition & AV_EF_EXPLODE) {
int end_ok = 1;
// FIXME + 100 hack
for (i = s->mb_num - 2; i >= s->mb_width + 100; i--) {
const int mb_xy = s->mb_index2xy[i];
int error1 = s->error_status_table[mb_xy];
int error2 = s->error_status_table[s->mb_index2xy[i + 1]];
if (error1 & VP_START)
end_ok = 1;
if (error2 == (VP_START | ER_MB_ERROR | ER_MB_END) &&
error1 != (VP_START | ER_MB_ERROR | ER_MB_END) &&
((error1 & ER_AC_END) || (error1 & ER_DC_END) ||
(error1 & ER_MV_END))) {
// end & uninit
end_ok = 0;
}
if (!end_ok)
s->error_status_table[mb_xy] |= ER_MB_ERROR;
}
}
#if 1
/* backward mark errors */
distance = 9999999;
for (error_type = 1; error_type <= 3; error_type++) {
for (i = s->mb_num - 1; i >= 0; i--) {
const int mb_xy = s->mb_index2xy[i];
int error = s->error_status_table[mb_xy];
if (!s->mbskip_table || !s->mbskip_table[mb_xy]) // FIXME partition specific
distance++;
if (error & (1 << error_type))
distance = 0;
if (s->partitioned_frame) {
if (distance < threshold_part[error_type - 1])
s->error_status_table[mb_xy] |= 1 << error_type;
} else {
if (distance < threshold)
s->error_status_table[mb_xy] |= 1 << error_type;
}
if (error & VP_START)
distance = 9999999;
}
}
#endif
/* forward mark errors */
error = 0;
for (i = 0; i < s->mb_num; i++) {
const int mb_xy = s->mb_index2xy[i];
int old_error = s->error_status_table[mb_xy];
if (old_error & VP_START) {
error = old_error & ER_MB_ERROR;
} else {
error |= old_error & ER_MB_ERROR;
s->error_status_table[mb_xy] |= error;
}
}
#if 1
/* handle not partitioned case */
if (!s->partitioned_frame) {
for (i = 0; i < s->mb_num; i++) {
const int mb_xy = s->mb_index2xy[i];
int error = s->error_status_table[mb_xy];
if (error & ER_MB_ERROR)
error |= ER_MB_ERROR;
s->error_status_table[mb_xy] = error;
}
}
#endif
dc_error = ac_error = mv_error = 0;
for (i = 0; i < s->mb_num; i++) {
const int mb_xy = s->mb_index2xy[i];
int error = s->error_status_table[mb_xy];
if (error & ER_DC_ERROR)
dc_error++;
if (error & ER_AC_ERROR)
ac_error++;
if (error & ER_MV_ERROR)
mv_error++;
}
av_log(s->avctx, AV_LOG_INFO, "concealing %d DC, %d AC, %d MV errors in %c frame\n",
dc_error, ac_error, mv_error, av_get_picture_type_char(s->cur_pic.f->pict_type));
is_intra_likely = is_intra_more_likely(s);
/* set unknown mb-type to most likely */
for (i = 0; i < s->mb_num; i++) {
const int mb_xy = s->mb_index2xy[i];
int error = s->error_status_table[mb_xy];
if (!((error & ER_DC_ERROR) && (error & ER_MV_ERROR)))
continue;
if (is_intra_likely)
s->cur_pic.mb_type[mb_xy] = MB_TYPE_INTRA4x4;
else
s->cur_pic.mb_type[mb_xy] = MB_TYPE_16x16 | MB_TYPE_L0;
}
// change inter to intra blocks if no reference frames are available
if (!(s->last_pic.f && s->last_pic.f->data[0]) &&
!(s->next_pic.f && s->next_pic.f->data[0]))
for (i = 0; i < s->mb_num; i++) {
const int mb_xy = s->mb_index2xy[i];
if (!IS_INTRA(s->cur_pic.mb_type[mb_xy]))
s->cur_pic.mb_type[mb_xy] = MB_TYPE_INTRA4x4;
}
/* handle inter blocks with damaged AC */
for (mb_y = 0; mb_y < s->mb_height; mb_y++) {
for (mb_x = 0; mb_x < s->mb_width; mb_x++) {
const int mb_xy = mb_x + mb_y * s->mb_stride;
const int mb_type = s->cur_pic.mb_type[mb_xy];
const int dir = !(s->last_pic.f && s->last_pic.f->data[0]);
const int mv_dir = dir ? MV_DIR_BACKWARD : MV_DIR_FORWARD;
int mv_type;
int error = s->error_status_table[mb_xy];
if (IS_INTRA(mb_type))
continue; // intra
if (error & ER_MV_ERROR)
continue; // inter with damaged MV
if (!(error & ER_AC_ERROR))
continue; // undamaged inter
if (IS_8X8(mb_type)) {
int mb_index = mb_x * 2 + mb_y * 2 * s->b8_stride;
int j;
mv_type = MV_TYPE_8X8;
for (j = 0; j < 4; j++) {
s->mv[0][j][0] = s->cur_pic.motion_val[dir][mb_index + (j & 1) + (j >> 1) * s->b8_stride][0];
s->mv[0][j][1] = s->cur_pic.motion_val[dir][mb_index + (j & 1) + (j >> 1) * s->b8_stride][1];
}
} else {
mv_type = MV_TYPE_16X16;
s->mv[0][0][0] = s->cur_pic.motion_val[dir][mb_x * 2 + mb_y * 2 * s->b8_stride][0];
s->mv[0][0][1] = s->cur_pic.motion_val[dir][mb_x * 2 + mb_y * 2 * s->b8_stride][1];
}
s->decode_mb(s->opaque, 0 /* FIXME h264 partitioned slices need this set */,
mv_dir, mv_type, &s->mv, mb_x, mb_y, 0, 0);
}
}
/* guess MVs */
if (s->cur_pic.f->pict_type == AV_PICTURE_TYPE_B) {
for (mb_y = 0; mb_y < s->mb_height; mb_y++) {
for (mb_x = 0; mb_x < s->mb_width; mb_x++) {
int xy = mb_x * 2 + mb_y * 2 * s->b8_stride;
const int mb_xy = mb_x + mb_y * s->mb_stride;
const int mb_type = s->cur_pic.mb_type[mb_xy];
int mv_dir = MV_DIR_FORWARD | MV_DIR_BACKWARD;
int error = s->error_status_table[mb_xy];
if (IS_INTRA(mb_type))
continue;
if (!(error & ER_MV_ERROR))
continue; // inter with undamaged MV
if (!(error & ER_AC_ERROR))
continue; // undamaged inter
if (!(s->last_pic.f && s->last_pic.f->data[0]))
mv_dir &= ~MV_DIR_FORWARD;
if (!(s->next_pic.f && s->next_pic.f->data[0]))
mv_dir &= ~MV_DIR_BACKWARD;
if (s->pp_time) {
int time_pp = s->pp_time;
int time_pb = s->pb_time;
av_assert0(s->avctx->codec_id != AV_CODEC_ID_H264);
ff_thread_await_progress(s->next_pic.tf, mb_y, 0);
s->mv[0][0][0] = s->next_pic.motion_val[0][xy][0] * time_pb / time_pp;
s->mv[0][0][1] = s->next_pic.motion_val[0][xy][1] * time_pb / time_pp;
s->mv[1][0][0] = s->next_pic.motion_val[0][xy][0] * (time_pb - time_pp) / time_pp;
s->mv[1][0][1] = s->next_pic.motion_val[0][xy][1] * (time_pb - time_pp) / time_pp;
} else {
s->mv[0][0][0] = 0;
s->mv[0][0][1] = 0;
s->mv[1][0][0] = 0;
s->mv[1][0][1] = 0;
}
s->decode_mb(s->opaque, 0, mv_dir, MV_TYPE_16X16, &s->mv,
mb_x, mb_y, 0, 0);
}
}
} else
guess_mv(s);
/* the filters below manipulate raw image, skip them */
if (CONFIG_XVMC && s->avctx->hwaccel && s->avctx->hwaccel->decode_mb)
goto ec_clean;
/* fill DC for inter blocks */
for (mb_y = 0; mb_y < s->mb_height; mb_y++) {
for (mb_x = 0; mb_x < s->mb_width; mb_x++) {
int dc, dcu, dcv, y, n;
int16_t *dc_ptr;
uint8_t *dest_y, *dest_cb, *dest_cr;
const int mb_xy = mb_x + mb_y * s->mb_stride;
const int mb_type = s->cur_pic.mb_type[mb_xy];
// error = s->error_status_table[mb_xy];
if (IS_INTRA(mb_type) && s->partitioned_frame)
continue;
// if (error & ER_MV_ERROR)
// continue; // inter data damaged FIXME is this good?
dest_y = s->cur_pic.f->data[0] + mb_x * 16 + mb_y * 16 * linesize[0];
dest_cb = s->cur_pic.f->data[1] + mb_x * 8 + mb_y * 8 * linesize[1];
dest_cr = s->cur_pic.f->data[2] + mb_x * 8 + mb_y * 8 * linesize[2];
dc_ptr = &s->dc_val[0][mb_x * 2 + mb_y * 2 * s->b8_stride];
for (n = 0; n < 4; n++) {
dc = 0;
for (y = 0; y < 8; y++) {
int x;
for (x = 0; x < 8; x++)
dc += dest_y[x + (n & 1) * 8 +
(y + (n >> 1) * 8) * linesize[0]];
}
dc_ptr[(n & 1) + (n >> 1) * s->b8_stride] = (dc + 4) >> 3;
}
if (!s->cur_pic.f->data[2])
continue;
dcu = dcv = 0;
for (y = 0; y < 8; y++) {
int x;
for (x = 0; x < 8; x++) {
dcu += dest_cb[x + y * linesize[1]];
dcv += dest_cr[x + y * linesize[2]];
}
}
s->dc_val[1][mb_x + mb_y * s->mb_stride] = (dcu + 4) >> 3;
s->dc_val[2][mb_x + mb_y * s->mb_stride] = (dcv + 4) >> 3;
}
}
#if 1
/* guess DC for damaged blocks */
guess_dc(s, s->dc_val[0], s->mb_width*2, s->mb_height*2, s->b8_stride, 1);
guess_dc(s, s->dc_val[1], s->mb_width , s->mb_height , s->mb_stride, 0);
guess_dc(s, s->dc_val[2], s->mb_width , s->mb_height , s->mb_stride, 0);
#endif
/* filter luma DC */
filter181(s->dc_val[0], s->mb_width * 2, s->mb_height * 2, s->b8_stride);
#if 1
/* render DC only intra */
for (mb_y = 0; mb_y < s->mb_height; mb_y++) {
for (mb_x = 0; mb_x < s->mb_width; mb_x++) {
uint8_t *dest_y, *dest_cb, *dest_cr;
const int mb_xy = mb_x + mb_y * s->mb_stride;
const int mb_type = s->cur_pic.mb_type[mb_xy];
int error = s->error_status_table[mb_xy];
if (IS_INTER(mb_type))
continue;
if (!(error & ER_AC_ERROR))
continue; // undamaged
dest_y = s->cur_pic.f->data[0] + mb_x * 16 + mb_y * 16 * linesize[0];
dest_cb = s->cur_pic.f->data[1] + mb_x * 8 + mb_y * 8 * linesize[1];
dest_cr = s->cur_pic.f->data[2] + mb_x * 8 + mb_y * 8 * linesize[2];
if (!s->cur_pic.f->data[2])
dest_cb = dest_cr = NULL;
put_dc(s, dest_y, dest_cb, dest_cr, mb_x, mb_y);
}
}
#endif
if (s->avctx->error_concealment & FF_EC_DEBLOCK) {
/* filter horizontal block boundaries */
h_block_filter(s, s->cur_pic.f->data[0], s->mb_width * 2,
s->mb_height * 2, linesize[0], 1);
/* filter vertical block boundaries */
v_block_filter(s, s->cur_pic.f->data[0], s->mb_width * 2,
s->mb_height * 2, linesize[0], 1);
if (s->cur_pic.f->data[2]) {
h_block_filter(s, s->cur_pic.f->data[1], s->mb_width,
s->mb_height, linesize[1], 0);
h_block_filter(s, s->cur_pic.f->data[2], s->mb_width,
s->mb_height, linesize[2], 0);
v_block_filter(s, s->cur_pic.f->data[1], s->mb_width,
s->mb_height, linesize[1], 0);
v_block_filter(s, s->cur_pic.f->data[2], s->mb_width,
s->mb_height, linesize[2], 0);
}
}
ec_clean:
/* clean a few tables */
for (i = 0; i < s->mb_num; i++) {
const int mb_xy = s->mb_index2xy[i];
int error = s->error_status_table[mb_xy];
if (s->mbskip_table && s->cur_pic.f->pict_type != AV_PICTURE_TYPE_B &&
(error & (ER_DC_ERROR | ER_MV_ERROR | ER_AC_ERROR))) {
s->mbskip_table[mb_xy] = 0;
}
if (s->mbintra_table)
s->mbintra_table[mb_xy] = 1;
}
for (i = 0; i < 2; i++) {
av_buffer_unref(&s->ref_index_buf[i]);
av_buffer_unref(&s->motion_val_buf[i]);
s->cur_pic.ref_index[i] = NULL;
s->cur_pic.motion_val[i] = NULL;
}
memset(&s->cur_pic, 0, sizeof(ERPicture));
memset(&s->last_pic, 0, sizeof(ERPicture));
memset(&s->next_pic, 0, sizeof(ERPicture));
}