1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2025-01-08 13:22:53 +02:00
FFmpeg/libavcodec/nvenc.c
2016-02-14 22:31:47 +01:00

1380 lines
44 KiB
C

/*
* NVIDIA NVENC Support
* Copyright (C) 2015 Luca Barbato
*
* This file is part of Libav.
*
* Libav is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* Libav is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with Libav; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "config.h"
#include <cuda.h>
#include <nvEncodeAPI.h>
#include <string.h>
#define CUDA_LIBNAME "libcuda.so"
#if HAVE_DLFCN_H
#include <dlfcn.h>
#define NVENC_LIBNAME "libnvidia-encode.so"
#elif HAVE_WINDOWS_H
#include <windows.h>
#if ARCH_X86_64
#define NVENC_LIBNAME "nvEncodeAPI64.dll"
#else
#define NVENC_LIBNAME "nvEncodeAPI.dll"
#endif
#define dlopen(filename, flags) LoadLibrary((filename))
#define dlsym(handle, symbol) GetProcAddress(handle, symbol)
#define dlclose(handle) FreeLibrary(handle)
#endif
#include "libavutil/common.h"
#include "libavutil/hwcontext.h"
#include "libavutil/hwcontext_cuda.h"
#include "libavutil/imgutils.h"
#include "libavutil/mem.h"
#include "avcodec.h"
#include "internal.h"
#include "nvenc.h"
#define NVENC_CAP 0x30
#define BITSTREAM_BUFFER_SIZE 1024 * 1024
#define LOAD_LIBRARY(l, path) \
do { \
if (!((l) = dlopen(path, RTLD_LAZY))) { \
av_log(avctx, AV_LOG_ERROR, \
"Cannot load %s\n", \
path); \
return AVERROR_UNKNOWN; \
} \
} while (0)
#define LOAD_SYMBOL(fun, lib, symbol) \
do { \
if (!((fun) = dlsym(lib, symbol))) { \
av_log(avctx, AV_LOG_ERROR, \
"Cannot load %s\n", \
symbol); \
return AVERROR_UNKNOWN; \
} \
} while (0)
const enum AVPixelFormat ff_nvenc_pix_fmts[] = {
AV_PIX_FMT_NV12,
AV_PIX_FMT_YUV420P,
AV_PIX_FMT_YUV444P,
AV_PIX_FMT_CUDA,
AV_PIX_FMT_NONE
};
static const struct {
NVENCSTATUS nverr;
int averr;
const char *desc;
} nvenc_errors[] = {
{ NV_ENC_SUCCESS, 0, "success" },
{ NV_ENC_ERR_NO_ENCODE_DEVICE, AVERROR(ENOENT), "no encode device" },
{ NV_ENC_ERR_UNSUPPORTED_DEVICE, AVERROR(ENOSYS), "unsupported device" },
{ NV_ENC_ERR_INVALID_ENCODERDEVICE, AVERROR(EINVAL), "invalid encoder device" },
{ NV_ENC_ERR_INVALID_DEVICE, AVERROR(EINVAL), "invalid device" },
{ NV_ENC_ERR_DEVICE_NOT_EXIST, AVERROR(EIO), "device does not exist" },
{ NV_ENC_ERR_INVALID_PTR, AVERROR(EFAULT), "invalid ptr" },
{ NV_ENC_ERR_INVALID_EVENT, AVERROR(EINVAL), "invalid event" },
{ NV_ENC_ERR_INVALID_PARAM, AVERROR(EINVAL), "invalid param" },
{ NV_ENC_ERR_INVALID_CALL, AVERROR(EINVAL), "invalid call" },
{ NV_ENC_ERR_OUT_OF_MEMORY, AVERROR(ENOMEM), "out of memory" },
{ NV_ENC_ERR_ENCODER_NOT_INITIALIZED, AVERROR(EINVAL), "encoder not initialized" },
{ NV_ENC_ERR_UNSUPPORTED_PARAM, AVERROR(ENOSYS), "unsupported param" },
{ NV_ENC_ERR_LOCK_BUSY, AVERROR(EAGAIN), "lock busy" },
{ NV_ENC_ERR_NOT_ENOUGH_BUFFER, AVERROR(ENOBUFS), "not enough buffer" },
{ NV_ENC_ERR_INVALID_VERSION, AVERROR(EINVAL), "invalid version" },
{ NV_ENC_ERR_MAP_FAILED, AVERROR(EIO), "map failed" },
{ NV_ENC_ERR_NEED_MORE_INPUT, AVERROR(EAGAIN), "need more input" },
{ NV_ENC_ERR_ENCODER_BUSY, AVERROR(EAGAIN), "encoder busy" },
{ NV_ENC_ERR_EVENT_NOT_REGISTERD, AVERROR(EBADF), "event not registered" },
{ NV_ENC_ERR_GENERIC, AVERROR_UNKNOWN, "generic error" },
{ NV_ENC_ERR_INCOMPATIBLE_CLIENT_KEY, AVERROR(EINVAL), "incompatible client key" },
{ NV_ENC_ERR_UNIMPLEMENTED, AVERROR(ENOSYS), "unimplemented" },
{ NV_ENC_ERR_RESOURCE_REGISTER_FAILED, AVERROR(EIO), "resource register failed" },
{ NV_ENC_ERR_RESOURCE_NOT_REGISTERED, AVERROR(EBADF), "resource not registered" },
{ NV_ENC_ERR_RESOURCE_NOT_MAPPED, AVERROR(EBADF), "resource not mapped" },
};
static int nvenc_map_error(NVENCSTATUS err, const char **desc)
{
int i;
for (i = 0; i < FF_ARRAY_ELEMS(nvenc_errors); i++) {
if (nvenc_errors[i].nverr == err) {
if (desc)
*desc = nvenc_errors[i].desc;
return nvenc_errors[i].averr;
}
}
if (desc)
*desc = "unknown error";
return AVERROR_UNKNOWN;
}
static int nvenc_print_error(void *log_ctx, NVENCSTATUS err,
const char *error_string)
{
const char *desc;
int ret;
ret = nvenc_map_error(err, &desc);
av_log(log_ctx, AV_LOG_ERROR, "%s: %s (%d)\n", error_string, desc, err);
return ret;
}
static av_cold int nvenc_load_libraries(AVCodecContext *avctx)
{
NVENCContext *ctx = avctx->priv_data;
NVENCLibraryContext *nvel = &ctx->nvel;
PNVENCODEAPICREATEINSTANCE nvenc_create_instance;
NVENCSTATUS err;
#if CONFIG_CUDA
nvel->cu_init = cuInit;
nvel->cu_device_get_count = cuDeviceGetCount;
nvel->cu_device_get = cuDeviceGet;
nvel->cu_device_get_name = cuDeviceGetName;
nvel->cu_device_compute_capability = cuDeviceComputeCapability;
nvel->cu_ctx_create = cuCtxCreate_v2;
nvel->cu_ctx_pop_current = cuCtxPopCurrent_v2;
nvel->cu_ctx_destroy = cuCtxDestroy_v2;
#else
LOAD_LIBRARY(nvel->cuda, CUDA_LIBNAME);
LOAD_SYMBOL(nvel->cu_init, nvel->cuda, "cuInit");
LOAD_SYMBOL(nvel->cu_device_get_count, nvel->cuda, "cuDeviceGetCount");
LOAD_SYMBOL(nvel->cu_device_get, nvel->cuda, "cuDeviceGet");
LOAD_SYMBOL(nvel->cu_device_get_name, nvel->cuda, "cuDeviceGetName");
LOAD_SYMBOL(nvel->cu_device_compute_capability, nvel->cuda,
"cuDeviceComputeCapability");
LOAD_SYMBOL(nvel->cu_ctx_create, nvel->cuda, "cuCtxCreate_v2");
LOAD_SYMBOL(nvel->cu_ctx_pop_current, nvel->cuda, "cuCtxPopCurrent_v2");
LOAD_SYMBOL(nvel->cu_ctx_destroy, nvel->cuda, "cuCtxDestroy_v2");
#endif
LOAD_LIBRARY(nvel->nvenc, NVENC_LIBNAME);
LOAD_SYMBOL(nvenc_create_instance, nvel->nvenc,
"NvEncodeAPICreateInstance");
nvel->nvenc_funcs.version = NV_ENCODE_API_FUNCTION_LIST_VER;
err = nvenc_create_instance(&nvel->nvenc_funcs);
if (err != NV_ENC_SUCCESS)
return nvenc_print_error(avctx, err, "Cannot create the NVENC instance");
return 0;
}
static int nvenc_open_session(AVCodecContext *avctx)
{
NV_ENC_OPEN_ENCODE_SESSION_EX_PARAMS params = { 0 };
NVENCContext *ctx = avctx->priv_data;
NV_ENCODE_API_FUNCTION_LIST *nv = &ctx->nvel.nvenc_funcs;
int ret;
params.version = NV_ENC_OPEN_ENCODE_SESSION_EX_PARAMS_VER;
params.apiVersion = NVENCAPI_VERSION;
params.device = ctx->cu_context;
params.deviceType = NV_ENC_DEVICE_TYPE_CUDA;
ret = nv->nvEncOpenEncodeSessionEx(&params, &ctx->nvenc_ctx);
if (ret != NV_ENC_SUCCESS) {
ctx->nvenc_ctx = NULL;
return nvenc_print_error(avctx, ret, "Cannot open the NVENC Session");
}
return 0;
}
static int nvenc_check_codec_support(AVCodecContext *avctx)
{
NVENCContext *ctx = avctx->priv_data;
NV_ENCODE_API_FUNCTION_LIST *nv = &ctx->nvel.nvenc_funcs;
int i, ret, count = 0;
GUID *guids = NULL;
ret = nv->nvEncGetEncodeGUIDCount(ctx->nvenc_ctx, &count);
if (ret != NV_ENC_SUCCESS || !count)
return AVERROR(ENOSYS);
guids = av_malloc(count * sizeof(GUID));
if (!guids)
return AVERROR(ENOMEM);
ret = nv->nvEncGetEncodeGUIDs(ctx->nvenc_ctx, guids, count, &count);
if (ret != NV_ENC_SUCCESS) {
ret = AVERROR(ENOSYS);
goto fail;
}
ret = AVERROR(ENOSYS);
for (i = 0; i < count; i++) {
if (!memcmp(&guids[i], &ctx->params.encodeGUID, sizeof(*guids))) {
ret = 0;
break;
}
}
fail:
av_free(guids);
return ret;
}
static int nvenc_check_cap(AVCodecContext *avctx, NV_ENC_CAPS cap)
{
NVENCContext *ctx = avctx->priv_data;
NV_ENCODE_API_FUNCTION_LIST *nv = &ctx->nvel.nvenc_funcs;
NV_ENC_CAPS_PARAM params = { 0 };
int ret, val = 0;
params.version = NV_ENC_CAPS_PARAM_VER;
params.capsToQuery = cap;
ret = nv->nvEncGetEncodeCaps(ctx->nvenc_ctx, ctx->params.encodeGUID, &params, &val);
if (ret == NV_ENC_SUCCESS)
return val;
return 0;
}
static int nvenc_check_capabilities(AVCodecContext *avctx)
{
NVENCContext *ctx = avctx->priv_data;
int ret;
ret = nvenc_check_codec_support(avctx);
if (ret < 0) {
av_log(avctx, AV_LOG_VERBOSE, "Codec not supported\n");
return ret;
}
ret = nvenc_check_cap(avctx, NV_ENC_CAPS_SUPPORT_YUV444_ENCODE);
if (ctx->data_pix_fmt == AV_PIX_FMT_YUV444P && ret <= 0) {
av_log(avctx, AV_LOG_VERBOSE, "YUV444P not supported\n");
return AVERROR(ENOSYS);
}
ret = nvenc_check_cap(avctx, NV_ENC_CAPS_WIDTH_MAX);
if (ret < avctx->width) {
av_log(avctx, AV_LOG_VERBOSE, "Width %d exceeds %d\n",
avctx->width, ret);
return AVERROR(ENOSYS);
}
ret = nvenc_check_cap(avctx, NV_ENC_CAPS_HEIGHT_MAX);
if (ret < avctx->height) {
av_log(avctx, AV_LOG_VERBOSE, "Height %d exceeds %d\n",
avctx->height, ret);
return AVERROR(ENOSYS);
}
ret = nvenc_check_cap(avctx, NV_ENC_CAPS_NUM_MAX_BFRAMES);
if (ret < avctx->max_b_frames) {
av_log(avctx, AV_LOG_VERBOSE, "Max b-frames %d exceed %d\n",
avctx->max_b_frames, ret);
return AVERROR(ENOSYS);
}
return 0;
}
static int nvenc_check_device(AVCodecContext *avctx, int idx)
{
NVENCContext *ctx = avctx->priv_data;
NVENCLibraryContext *nvel = &ctx->nvel;
char name[128] = { 0 };
int major, minor, ret;
CUdevice cu_device;
CUcontext dummy;
int loglevel = AV_LOG_VERBOSE;
if (ctx->device == LIST_DEVICES)
loglevel = AV_LOG_INFO;
ret = nvel->cu_device_get(&cu_device, idx);
if (ret != CUDA_SUCCESS) {
av_log(avctx, AV_LOG_ERROR,
"Cannot access the CUDA device %d\n",
idx);
return -1;
}
ret = nvel->cu_device_get_name(name, sizeof(name), cu_device);
if (ret != CUDA_SUCCESS)
return -1;
ret = nvel->cu_device_compute_capability(&major, &minor, cu_device);
if (ret != CUDA_SUCCESS)
return -1;
av_log(avctx, loglevel, "Device %d [%s] ", cu_device, name);
if (((major << 4) | minor) < NVENC_CAP)
goto fail;
ret = nvel->cu_ctx_create(&ctx->cu_context_internal, 0, cu_device);
if (ret != CUDA_SUCCESS)
goto fail;
ctx->cu_context = ctx->cu_context_internal;
ret = nvel->cu_ctx_pop_current(&dummy);
if (ret != CUDA_SUCCESS)
goto fail2;
if ((ret = nvenc_open_session(avctx)) < 0)
goto fail2;
if ((ret = nvenc_check_capabilities(avctx)) < 0)
goto fail3;
av_log(avctx, loglevel, "supports NVENC\n");
if (ctx->device == cu_device || ctx->device == ANY_DEVICE)
return 0;
fail3:
nvel->nvenc_funcs.nvEncDestroyEncoder(ctx->nvenc_ctx);
ctx->nvenc_ctx = NULL;
fail2:
nvel->cu_ctx_destroy(ctx->cu_context_internal);
ctx->cu_context_internal = NULL;
fail:
if (ret != 0)
av_log(avctx, loglevel, "does not support NVENC (major %d minor %d)\n",
major, minor);
return AVERROR(ENOSYS);
}
static int nvenc_setup_device(AVCodecContext *avctx)
{
NVENCContext *ctx = avctx->priv_data;
NVENCLibraryContext *nvel = &ctx->nvel;
switch (avctx->codec->id) {
case AV_CODEC_ID_H264:
ctx->params.encodeGUID = NV_ENC_CODEC_H264_GUID;
break;
case AV_CODEC_ID_HEVC:
ctx->params.encodeGUID = NV_ENC_CODEC_HEVC_GUID;
break;
default:
return AVERROR_BUG;
}
if (avctx->pix_fmt == AV_PIX_FMT_CUDA) {
AVHWFramesContext *frames_ctx;
AVCUDADeviceContext *device_hwctx;
int ret;
if (!avctx->hw_frames_ctx)
return AVERROR(EINVAL);
frames_ctx = (AVHWFramesContext*)avctx->hw_frames_ctx->data;
device_hwctx = frames_ctx->device_ctx->hwctx;
ctx->cu_context = device_hwctx->cuda_ctx;
ret = nvenc_open_session(avctx);
if (ret < 0)
return ret;
ret = nvenc_check_capabilities(avctx);
if (ret < 0)
return ret;
} else {
int i, nb_devices = 0;
if ((nvel->cu_init(0)) != CUDA_SUCCESS) {
av_log(avctx, AV_LOG_ERROR,
"Cannot init CUDA\n");
return AVERROR_UNKNOWN;
}
if ((nvel->cu_device_get_count(&nb_devices)) != CUDA_SUCCESS) {
av_log(avctx, AV_LOG_ERROR,
"Cannot enumerate the CUDA devices\n");
return AVERROR_UNKNOWN;
}
for (i = 0; i < nb_devices; ++i) {
if ((nvenc_check_device(avctx, i)) >= 0 && ctx->device != LIST_DEVICES)
return 0;
}
if (ctx->device == LIST_DEVICES)
return AVERROR_EXIT;
return AVERROR(ENOSYS);
}
return 0;
}
typedef struct GUIDTuple {
const GUID guid;
int flags;
} GUIDTuple;
static int nvec_map_preset(NVENCContext *ctx)
{
GUIDTuple presets[] = {
{ NV_ENC_PRESET_DEFAULT_GUID },
{ NV_ENC_PRESET_HP_GUID },
{ NV_ENC_PRESET_HQ_GUID },
{ NV_ENC_PRESET_BD_GUID },
{ NV_ENC_PRESET_LOW_LATENCY_DEFAULT_GUID, NVENC_LOWLATENCY },
{ NV_ENC_PRESET_LOW_LATENCY_HP_GUID, NVENC_LOWLATENCY },
{ NV_ENC_PRESET_LOW_LATENCY_HQ_GUID, NVENC_LOWLATENCY },
{ NV_ENC_PRESET_LOSSLESS_DEFAULT_GUID, NVENC_LOSSLESS },
{ NV_ENC_PRESET_LOSSLESS_HP_GUID, NVENC_LOSSLESS },
{ { 0 } }
};
GUIDTuple *t = &presets[ctx->preset];
ctx->params.presetGUID = t->guid;
ctx->flags = t->flags;
return AVERROR(EINVAL);
}
static void set_constqp(AVCodecContext *avctx, NV_ENC_RC_PARAMS *rc)
{
rc->rateControlMode = NV_ENC_PARAMS_RC_CONSTQP;
rc->constQP.qpInterB = avctx->global_quality;
rc->constQP.qpInterP = avctx->global_quality;
rc->constQP.qpIntra = avctx->global_quality;
}
static void set_vbr(AVCodecContext *avctx, NV_ENC_RC_PARAMS *rc)
{
if (avctx->qmin >= 0) {
rc->enableMinQP = 1;
rc->minQP.qpInterB = avctx->qmin;
rc->minQP.qpInterP = avctx->qmin;
rc->minQP.qpIntra = avctx->qmin;
}
if (avctx->qmax >= 0) {
rc->enableMaxQP = 1;
rc->maxQP.qpInterB = avctx->qmax;
rc->maxQP.qpInterP = avctx->qmax;
rc->maxQP.qpIntra = avctx->qmax;
}
}
static void nvenc_override_rate_control(AVCodecContext *avctx,
NV_ENC_RC_PARAMS *rc)
{
NVENCContext *ctx = avctx->priv_data;
switch (ctx->rc) {
case NV_ENC_PARAMS_RC_CONSTQP:
if (avctx->global_quality < 0) {
av_log(avctx, AV_LOG_WARNING,
"The constant quality rate-control requires "
"the 'global_quality' option set.\n");
return;
}
set_constqp(avctx, rc);
return;
case NV_ENC_PARAMS_RC_2_PASS_VBR:
case NV_ENC_PARAMS_RC_VBR:
if (avctx->qmin < 0 && avctx->qmax < 0) {
av_log(avctx, AV_LOG_WARNING,
"The variable bitrate rate-control requires "
"the 'qmin' and/or 'qmax' option set.\n");
return;
}
case NV_ENC_PARAMS_RC_VBR_MINQP:
if (avctx->qmin < 0) {
av_log(avctx, AV_LOG_WARNING,
"The variable bitrate rate-control requires "
"the 'qmin' option set.\n");
return;
}
set_vbr(avctx, rc);
break;
case NV_ENC_PARAMS_RC_CBR:
break;
case NV_ENC_PARAMS_RC_2_PASS_QUALITY:
case NV_ENC_PARAMS_RC_2_PASS_FRAMESIZE_CAP:
if (!(ctx->flags & NVENC_LOWLATENCY)) {
av_log(avctx, AV_LOG_WARNING,
"The multipass rate-control requires "
"a low-latency preset.\n");
return;
}
}
rc->rateControlMode = ctx->rc;
}
static void nvenc_setup_rate_control(AVCodecContext *avctx)
{
NVENCContext *ctx = avctx->priv_data;
NV_ENC_RC_PARAMS *rc = &ctx->config.rcParams;
if (avctx->bit_rate > 0)
rc->averageBitRate = avctx->bit_rate;
if (avctx->rc_max_rate > 0)
rc->maxBitRate = avctx->rc_max_rate;
if (ctx->rc > 0) {
nvenc_override_rate_control(avctx, rc);
} else if (avctx->global_quality > 0) {
set_constqp(avctx, rc);
} else if (avctx->qmin >= 0 && avctx->qmax >= 0) {
rc->rateControlMode = NV_ENC_PARAMS_RC_VBR;
set_vbr(avctx, rc);
}
if (avctx->rc_buffer_size > 0)
rc->vbvBufferSize = avctx->rc_buffer_size;
if (rc->averageBitRate > 0)
avctx->bit_rate = rc->averageBitRate;
}
static int nvenc_setup_h264_config(AVCodecContext *avctx)
{
NVENCContext *ctx = avctx->priv_data;
NV_ENC_CONFIG *cc = &ctx->config;
NV_ENC_CONFIG_H264 *h264 = &cc->encodeCodecConfig.h264Config;
NV_ENC_CONFIG_H264_VUI_PARAMETERS *vui = &h264->h264VUIParameters;
vui->colourDescriptionPresentFlag = 1;
vui->videoSignalTypePresentFlag = 1;
vui->colourMatrix = avctx->colorspace;
vui->colourPrimaries = avctx->color_primaries;
vui->transferCharacteristics = avctx->color_trc;
vui->videoFullRangeFlag = avctx->color_range == AVCOL_RANGE_JPEG;
h264->disableSPSPPS = (avctx->flags & AV_CODEC_FLAG_GLOBAL_HEADER) ? 1 : 0;
h264->repeatSPSPPS = (avctx->flags & AV_CODEC_FLAG_GLOBAL_HEADER) ? 0 : 1;
h264->maxNumRefFrames = avctx->refs;
h264->idrPeriod = cc->gopLength;
if (ctx->profile)
avctx->profile = ctx->profile;
if (ctx->data_pix_fmt == AV_PIX_FMT_YUV444P)
h264->chromaFormatIDC = 3;
else
h264->chromaFormatIDC = 1;
switch (ctx->profile) {
case NV_ENC_H264_PROFILE_BASELINE:
cc->profileGUID = NV_ENC_H264_PROFILE_BASELINE_GUID;
break;
case NV_ENC_H264_PROFILE_MAIN:
cc->profileGUID = NV_ENC_H264_PROFILE_MAIN_GUID;
break;
case NV_ENC_H264_PROFILE_HIGH:
cc->profileGUID = NV_ENC_H264_PROFILE_HIGH_GUID;
break;
case NV_ENC_H264_PROFILE_HIGH_444:
cc->profileGUID = NV_ENC_H264_PROFILE_HIGH_444_GUID;
break;
case NV_ENC_H264_PROFILE_CONSTRAINED_HIGH:
cc->profileGUID = NV_ENC_H264_PROFILE_CONSTRAINED_HIGH_GUID;
break;
}
h264->level = ctx->level;
return 0;
}
static int nvenc_setup_hevc_config(AVCodecContext *avctx)
{
NVENCContext *ctx = avctx->priv_data;
NV_ENC_CONFIG *cc = &ctx->config;
NV_ENC_CONFIG_HEVC *hevc = &cc->encodeCodecConfig.hevcConfig;
hevc->disableSPSPPS = (avctx->flags & AV_CODEC_FLAG_GLOBAL_HEADER) ? 1 : 0;
hevc->repeatSPSPPS = (avctx->flags & AV_CODEC_FLAG_GLOBAL_HEADER) ? 0 : 1;
hevc->maxNumRefFramesInDPB = avctx->refs;
hevc->idrPeriod = cc->gopLength;
/* No other profile is supported in the current SDK version 5 */
cc->profileGUID = NV_ENC_HEVC_PROFILE_MAIN_GUID;
avctx->profile = FF_PROFILE_HEVC_MAIN;
if (ctx->level) {
hevc->level = ctx->level;
} else {
hevc->level = NV_ENC_LEVEL_AUTOSELECT;
}
if (ctx->tier) {
hevc->tier = ctx->tier;
}
return 0;
}
static int nvenc_setup_codec_config(AVCodecContext *avctx)
{
switch (avctx->codec->id) {
case AV_CODEC_ID_H264:
return nvenc_setup_h264_config(avctx);
case AV_CODEC_ID_HEVC:
return nvenc_setup_hevc_config(avctx);
}
return 0;
}
static int nvenc_setup_encoder(AVCodecContext *avctx)
{
NVENCContext *ctx = avctx->priv_data;
NV_ENCODE_API_FUNCTION_LIST *nv = &ctx->nvel.nvenc_funcs;
NV_ENC_PRESET_CONFIG preset_cfg = { 0 };
AVCPBProperties *cpb_props;
int ret;
ctx->params.version = NV_ENC_INITIALIZE_PARAMS_VER;
ctx->params.encodeHeight = avctx->height;
ctx->params.encodeWidth = avctx->width;
if (avctx->sample_aspect_ratio.num &&
avctx->sample_aspect_ratio.den &&
(avctx->sample_aspect_ratio.num != 1 ||
avctx->sample_aspect_ratio.den != 1)) {
av_reduce(&ctx->params.darWidth,
&ctx->params.darHeight,
avctx->width * avctx->sample_aspect_ratio.num,
avctx->height * avctx->sample_aspect_ratio.den,
INT_MAX / 8);
} else {
ctx->params.darHeight = avctx->height;
ctx->params.darWidth = avctx->width;
}
ctx->params.frameRateNum = avctx->time_base.den;
ctx->params.frameRateDen = avctx->time_base.num * avctx->ticks_per_frame;
ctx->params.enableEncodeAsync = 0;
ctx->params.enablePTD = 1;
ctx->params.encodeConfig = &ctx->config;
nvec_map_preset(ctx);
preset_cfg.version = NV_ENC_PRESET_CONFIG_VER;
preset_cfg.presetCfg.version = NV_ENC_CONFIG_VER;
ret = nv->nvEncGetEncodePresetConfig(ctx->nvenc_ctx,
ctx->params.encodeGUID,
ctx->params.presetGUID,
&preset_cfg);
if (ret != NV_ENC_SUCCESS)
return nvenc_print_error(avctx, ret, "Cannot get the preset configuration");
memcpy(&ctx->config, &preset_cfg.presetCfg, sizeof(ctx->config));
ctx->config.version = NV_ENC_CONFIG_VER;
if (avctx->gop_size > 0) {
if (avctx->max_b_frames > 0) {
/* 0 is intra-only,
* 1 is I/P only,
* 2 is one B Frame,
* 3 two B frames, and so on. */
ctx->config.frameIntervalP = avctx->max_b_frames + 1;
} else if (avctx->max_b_frames == 0) {
ctx->config.frameIntervalP = 1;
}
ctx->config.gopLength = avctx->gop_size;
} else if (avctx->gop_size == 0) {
ctx->config.frameIntervalP = 0;
ctx->config.gopLength = 1;
}
if (ctx->config.frameIntervalP > 1)
avctx->max_b_frames = ctx->config.frameIntervalP - 1;
ctx->initial_pts[0] = AV_NOPTS_VALUE;
ctx->initial_pts[1] = AV_NOPTS_VALUE;
nvenc_setup_rate_control(avctx);
if (avctx->flags & AV_CODEC_FLAG_INTERLACED_DCT) {
ctx->config.frameFieldMode = NV_ENC_PARAMS_FRAME_FIELD_MODE_FIELD;
} else {
ctx->config.frameFieldMode = NV_ENC_PARAMS_FRAME_FIELD_MODE_FRAME;
}
if ((ret = nvenc_setup_codec_config(avctx)) < 0)
return ret;
ret = nv->nvEncInitializeEncoder(ctx->nvenc_ctx, &ctx->params);
if (ret != NV_ENC_SUCCESS)
return nvenc_print_error(avctx, ret, "Cannot initialize the decoder");
cpb_props = ff_add_cpb_side_data(avctx);
if (!cpb_props)
return AVERROR(ENOMEM);
cpb_props->max_bitrate = avctx->rc_max_rate;
cpb_props->min_bitrate = avctx->rc_min_rate;
cpb_props->avg_bitrate = avctx->bit_rate;
cpb_props->buffer_size = avctx->rc_buffer_size;
return 0;
}
static int nvenc_alloc_surface(AVCodecContext *avctx, int idx)
{
NVENCContext *ctx = avctx->priv_data;
NV_ENCODE_API_FUNCTION_LIST *nv = &ctx->nvel.nvenc_funcs;
int ret;
NV_ENC_CREATE_BITSTREAM_BUFFER out_buffer = { 0 };
switch (ctx->data_pix_fmt) {
case AV_PIX_FMT_YUV420P:
ctx->frames[idx].format = NV_ENC_BUFFER_FORMAT_YV12_PL;
break;
case AV_PIX_FMT_NV12:
ctx->frames[idx].format = NV_ENC_BUFFER_FORMAT_NV12_PL;
break;
case AV_PIX_FMT_YUV444P:
ctx->frames[idx].format = NV_ENC_BUFFER_FORMAT_YUV444_PL;
break;
default:
return AVERROR_BUG;
}
if (avctx->pix_fmt == AV_PIX_FMT_CUDA) {
ctx->frames[idx].in_ref = av_frame_alloc();
if (!ctx->frames[idx].in_ref)
return AVERROR(ENOMEM);
} else {
NV_ENC_CREATE_INPUT_BUFFER in_buffer = { 0 };
in_buffer.version = NV_ENC_CREATE_INPUT_BUFFER_VER;
in_buffer.width = avctx->width;
in_buffer.height = avctx->height;
in_buffer.bufferFmt = ctx->frames[idx].format;
in_buffer.memoryHeap = NV_ENC_MEMORY_HEAP_SYSMEM_UNCACHED;
ret = nv->nvEncCreateInputBuffer(ctx->nvenc_ctx, &in_buffer);
if (ret != NV_ENC_SUCCESS)
return nvenc_print_error(avctx, ret, "CreateInputBuffer failed");
ctx->frames[idx].in = in_buffer.inputBuffer;
}
out_buffer.version = NV_ENC_CREATE_BITSTREAM_BUFFER_VER;
/* 1MB is large enough to hold most output frames.
* NVENC increases this automaticaly if it's not enough. */
out_buffer.size = BITSTREAM_BUFFER_SIZE;
out_buffer.memoryHeap = NV_ENC_MEMORY_HEAP_SYSMEM_UNCACHED;
ret = nv->nvEncCreateBitstreamBuffer(ctx->nvenc_ctx, &out_buffer);
if (ret != NV_ENC_SUCCESS)
return nvenc_print_error(avctx, ret, "CreateBitstreamBuffer failed");
ctx->frames[idx].out = out_buffer.bitstreamBuffer;
return 0;
}
static int nvenc_setup_surfaces(AVCodecContext *avctx)
{
NVENCContext *ctx = avctx->priv_data;
int i, ret;
ctx->nb_surfaces = FFMAX(4 + avctx->max_b_frames,
ctx->nb_surfaces);
ctx->frames = av_mallocz_array(ctx->nb_surfaces, sizeof(*ctx->frames));
if (!ctx->frames)
return AVERROR(ENOMEM);
ctx->timestamps = av_fifo_alloc(ctx->nb_surfaces * sizeof(int64_t));
if (!ctx->timestamps)
return AVERROR(ENOMEM);
ctx->pending = av_fifo_alloc(ctx->nb_surfaces * sizeof(*ctx->frames));
if (!ctx->pending)
return AVERROR(ENOMEM);
ctx->ready = av_fifo_alloc(ctx->nb_surfaces * sizeof(*ctx->frames));
if (!ctx->ready)
return AVERROR(ENOMEM);
for (i = 0; i < ctx->nb_surfaces; i++) {
if ((ret = nvenc_alloc_surface(avctx, i)) < 0)
return ret;
}
return 0;
}
#define EXTRADATA_SIZE 512
static int nvenc_setup_extradata(AVCodecContext *avctx)
{
NVENCContext *ctx = avctx->priv_data;
NV_ENCODE_API_FUNCTION_LIST *nv = &ctx->nvel.nvenc_funcs;
NV_ENC_SEQUENCE_PARAM_PAYLOAD payload = { 0 };
int ret;
avctx->extradata = av_mallocz(EXTRADATA_SIZE + AV_INPUT_BUFFER_PADDING_SIZE);
if (!avctx->extradata)
return AVERROR(ENOMEM);
payload.version = NV_ENC_SEQUENCE_PARAM_PAYLOAD_VER;
payload.spsppsBuffer = avctx->extradata;
payload.inBufferSize = EXTRADATA_SIZE;
payload.outSPSPPSPayloadSize = &avctx->extradata_size;
ret = nv->nvEncGetSequenceParams(ctx->nvenc_ctx, &payload);
if (ret != NV_ENC_SUCCESS)
return nvenc_print_error(avctx, ret, "Cannot get the extradata");
return 0;
}
av_cold int ff_nvenc_encode_close(AVCodecContext *avctx)
{
NVENCContext *ctx = avctx->priv_data;
NV_ENCODE_API_FUNCTION_LIST *nv = &ctx->nvel.nvenc_funcs;
int i;
/* the encoder has to be flushed before it can be closed */
if (ctx->nvenc_ctx) {
NV_ENC_PIC_PARAMS params = { .version = NV_ENC_PIC_PARAMS_VER,
.encodePicFlags = NV_ENC_PIC_FLAG_EOS };
nv->nvEncEncodePicture(ctx->nvenc_ctx, &params);
}
av_fifo_free(ctx->timestamps);
av_fifo_free(ctx->pending);
av_fifo_free(ctx->ready);
if (ctx->frames) {
for (i = 0; i < ctx->nb_surfaces; ++i) {
if (avctx->pix_fmt != AV_PIX_FMT_CUDA) {
nv->nvEncDestroyInputBuffer(ctx->nvenc_ctx, ctx->frames[i].in);
} else if (ctx->frames[i].in) {
nv->nvEncUnmapInputResource(ctx->nvenc_ctx, ctx->frames[i].in_map.mappedResource);
}
av_frame_free(&ctx->frames[i].in_ref);
nv->nvEncDestroyBitstreamBuffer(ctx->nvenc_ctx, ctx->frames[i].out);
}
}
for (i = 0; i < ctx->nb_registered_frames; i++) {
if (ctx->registered_frames[i].regptr)
nv->nvEncUnregisterResource(ctx->nvenc_ctx, ctx->registered_frames[i].regptr);
}
ctx->nb_registered_frames = 0;
av_freep(&ctx->frames);
if (ctx->nvenc_ctx)
nv->nvEncDestroyEncoder(ctx->nvenc_ctx);
if (ctx->cu_context_internal)
ctx->nvel.cu_ctx_destroy(ctx->cu_context_internal);
if (ctx->nvel.nvenc)
dlclose(ctx->nvel.nvenc);
#if !CONFIG_CUDA
if (ctx->nvel.cuda)
dlclose(ctx->nvel.cuda);
#endif
return 0;
}
av_cold int ff_nvenc_encode_init(AVCodecContext *avctx)
{
NVENCContext *ctx = avctx->priv_data;
int ret;
if (avctx->pix_fmt == AV_PIX_FMT_CUDA) {
AVHWFramesContext *frames_ctx;
if (!avctx->hw_frames_ctx) {
av_log(avctx, AV_LOG_ERROR,
"hw_frames_ctx must be set when using GPU frames as input\n");
return AVERROR(EINVAL);
}
frames_ctx = (AVHWFramesContext*)avctx->hw_frames_ctx->data;
ctx->data_pix_fmt = frames_ctx->sw_format;
} else {
ctx->data_pix_fmt = avctx->pix_fmt;
}
if ((ret = nvenc_load_libraries(avctx)) < 0)
return ret;
if ((ret = nvenc_setup_device(avctx)) < 0)
return ret;
if ((ret = nvenc_setup_encoder(avctx)) < 0)
return ret;
if ((ret = nvenc_setup_surfaces(avctx)) < 0)
return ret;
if (avctx->flags & AV_CODEC_FLAG_GLOBAL_HEADER) {
if ((ret = nvenc_setup_extradata(avctx)) < 0)
return ret;
}
return 0;
}
static NVENCFrame *get_free_frame(NVENCContext *ctx)
{
int i;
for (i = 0; i < ctx->nb_surfaces; i++) {
if (!ctx->frames[i].locked) {
ctx->frames[i].locked = 1;
return &ctx->frames[i];
}
}
return NULL;
}
static int nvenc_copy_frame(NV_ENC_LOCK_INPUT_BUFFER *in, const AVFrame *frame)
{
uint8_t *buf = in->bufferDataPtr;
int off = frame->height * in->pitch;
switch (frame->format) {
case AV_PIX_FMT_YUV420P:
av_image_copy_plane(buf, in->pitch,
frame->data[0], frame->linesize[0],
frame->width, frame->height);
buf += off;
av_image_copy_plane(buf, in->pitch >> 1,
frame->data[2], frame->linesize[2],
frame->width >> 1, frame->height >> 1);
buf += off >> 2;
av_image_copy_plane(buf, in->pitch >> 1,
frame->data[1], frame->linesize[1],
frame->width >> 1, frame->height >> 1);
break;
case AV_PIX_FMT_NV12:
av_image_copy_plane(buf, in->pitch,
frame->data[0], frame->linesize[0],
frame->width, frame->height);
buf += off;
av_image_copy_plane(buf, in->pitch,
frame->data[1], frame->linesize[1],
frame->width, frame->height >> 1);
break;
case AV_PIX_FMT_YUV444P:
av_image_copy_plane(buf, in->pitch,
frame->data[0], frame->linesize[0],
frame->width, frame->height);
buf += off;
av_image_copy_plane(buf, in->pitch,
frame->data[1], frame->linesize[1],
frame->width, frame->height);
buf += off;
av_image_copy_plane(buf, in->pitch,
frame->data[2], frame->linesize[2],
frame->width, frame->height);
break;
default:
return AVERROR_BUG;
}
return 0;
}
static int nvenc_find_free_reg_resource(AVCodecContext *avctx)
{
NVENCContext *ctx = avctx->priv_data;
NV_ENCODE_API_FUNCTION_LIST *nv = &ctx->nvel.nvenc_funcs;
int i;
if (ctx->nb_registered_frames == FF_ARRAY_ELEMS(ctx->registered_frames)) {
for (i = 0; i < ctx->nb_registered_frames; i++) {
if (!ctx->registered_frames[i].mapped) {
if (ctx->registered_frames[i].regptr) {
nv->nvEncUnregisterResource(ctx->nvenc_ctx,
ctx->registered_frames[i].regptr);
ctx->registered_frames[i].regptr = NULL;
}
return i;
}
}
} else {
return ctx->nb_registered_frames++;
}
av_log(avctx, AV_LOG_ERROR, "Too many registered CUDA frames\n");
return AVERROR(ENOMEM);
}
static int nvenc_register_frame(AVCodecContext *avctx, const AVFrame *frame)
{
NVENCContext *ctx = avctx->priv_data;
NV_ENCODE_API_FUNCTION_LIST *nv = &ctx->nvel.nvenc_funcs;
AVHWFramesContext *frames_ctx = (AVHWFramesContext*)avctx->hw_frames_ctx->data;
NV_ENC_REGISTER_RESOURCE reg;
int i, idx, ret;
for (i = 0; i < ctx->nb_registered_frames; i++) {
if (ctx->registered_frames[i].ptr == (CUdeviceptr)frame->data[0])
return i;
}
idx = nvenc_find_free_reg_resource(avctx);
if (idx < 0)
return idx;
reg.version = NV_ENC_REGISTER_RESOURCE_VER;
reg.resourceType = NV_ENC_INPUT_RESOURCE_TYPE_CUDADEVICEPTR;
reg.width = frames_ctx->width;
reg.height = frames_ctx->height;
reg.bufferFormat = ctx->frames[0].format;
reg.pitch = frame->linesize[0];
reg.resourceToRegister = frame->data[0];
ret = nv->nvEncRegisterResource(ctx->nvenc_ctx, &reg);
if (ret != NV_ENC_SUCCESS) {
nvenc_print_error(avctx, ret, "Error registering an input resource");
return AVERROR_UNKNOWN;
}
ctx->registered_frames[idx].ptr = (CUdeviceptr)frame->data[0];
ctx->registered_frames[idx].regptr = reg.registeredResource;
return idx;
}
static int nvenc_upload_frame(AVCodecContext *avctx, const AVFrame *frame,
NVENCFrame *nvenc_frame)
{
NVENCContext *ctx = avctx->priv_data;
NV_ENCODE_API_FUNCTION_LIST *nv = &ctx->nvel.nvenc_funcs;
int ret;
if (avctx->pix_fmt == AV_PIX_FMT_CUDA) {
int reg_idx;
ret = nvenc_register_frame(avctx, frame);
if (ret < 0) {
av_log(avctx, AV_LOG_ERROR, "Could not register an input CUDA frame\n");
return ret;
}
reg_idx = ret;
ret = av_frame_ref(nvenc_frame->in_ref, frame);
if (ret < 0)
return ret;
nvenc_frame->in_map.version = NV_ENC_MAP_INPUT_RESOURCE_VER;
nvenc_frame->in_map.registeredResource = ctx->registered_frames[reg_idx].regptr;
ret = nv->nvEncMapInputResource(ctx->nvenc_ctx, &nvenc_frame->in_map);
if (ret != NV_ENC_SUCCESS) {
av_frame_unref(nvenc_frame->in_ref);
return nvenc_print_error(avctx, ret, "Error mapping an input resource");
}
ctx->registered_frames[reg_idx].mapped = 1;
nvenc_frame->reg_idx = reg_idx;
nvenc_frame->in = nvenc_frame->in_map.mappedResource;
} else {
NV_ENC_LOCK_INPUT_BUFFER params = { 0 };
params.version = NV_ENC_LOCK_INPUT_BUFFER_VER;
params.inputBuffer = nvenc_frame->in;
ret = nv->nvEncLockInputBuffer(ctx->nvenc_ctx, &params);
if (ret != NV_ENC_SUCCESS)
return nvenc_print_error(avctx, ret, "Cannot lock the buffer");
ret = nvenc_copy_frame(&params, frame);
if (ret < 0) {
nv->nvEncUnlockInputBuffer(ctx->nvenc_ctx, nvenc_frame->in);
return ret;
}
ret = nv->nvEncUnlockInputBuffer(ctx->nvenc_ctx, nvenc_frame->in);
if (ret != NV_ENC_SUCCESS)
return nvenc_print_error(avctx, ret, "Cannot unlock the buffer");
}
return 0;
}
static void nvenc_codec_specific_pic_params(AVCodecContext *avctx,
NV_ENC_PIC_PARAMS *params)
{
NVENCContext *ctx = avctx->priv_data;
switch (avctx->codec->id) {
case AV_CODEC_ID_H264:
params->codecPicParams.h264PicParams.sliceMode =
ctx->config.encodeCodecConfig.h264Config.sliceMode;
params->codecPicParams.h264PicParams.sliceModeData =
ctx->config.encodeCodecConfig.h264Config.sliceModeData;
break;
case AV_CODEC_ID_HEVC:
params->codecPicParams.hevcPicParams.sliceMode =
ctx->config.encodeCodecConfig.hevcConfig.sliceMode;
params->codecPicParams.hevcPicParams.sliceModeData =
ctx->config.encodeCodecConfig.hevcConfig.sliceModeData;
break;
}
}
static inline int nvenc_enqueue_timestamp(AVFifoBuffer *f, int64_t pts)
{
return av_fifo_generic_write(f, &pts, sizeof(pts), NULL);
}
static inline int nvenc_dequeue_timestamp(AVFifoBuffer *f, int64_t *pts)
{
return av_fifo_generic_read(f, pts, sizeof(*pts), NULL);
}
static int nvenc_set_timestamp(AVCodecContext *avctx,
NV_ENC_LOCK_BITSTREAM *params,
AVPacket *pkt)
{
NVENCContext *ctx = avctx->priv_data;
pkt->pts = params->outputTimeStamp;
pkt->duration = params->outputDuration;
/* generate the first dts by linearly extrapolating the
* first two pts values to the past */
if (avctx->max_b_frames > 0 && !ctx->first_packet_output &&
ctx->initial_pts[1] != AV_NOPTS_VALUE) {
int64_t ts0 = ctx->initial_pts[0], ts1 = ctx->initial_pts[1];
int64_t delta;
if ((ts0 < 0 && ts1 > INT64_MAX + ts0) ||
(ts0 > 0 && ts1 < INT64_MIN + ts0))
return AVERROR(ERANGE);
delta = ts1 - ts0;
if ((delta < 0 && ts0 > INT64_MAX + delta) ||
(delta > 0 && ts0 < INT64_MIN + delta))
return AVERROR(ERANGE);
pkt->dts = ts0 - delta;
ctx->first_packet_output = 1;
return 0;
}
return nvenc_dequeue_timestamp(ctx->timestamps, &pkt->dts);
}
static int nvenc_get_output(AVCodecContext *avctx, AVPacket *pkt)
{
NVENCContext *ctx = avctx->priv_data;
NV_ENCODE_API_FUNCTION_LIST *nv = &ctx->nvel.nvenc_funcs;
NV_ENC_LOCK_BITSTREAM params = { 0 };
NVENCFrame *frame;
int ret;
ret = av_fifo_generic_read(ctx->ready, &frame, sizeof(frame), NULL);
if (ret)
return ret;
params.version = NV_ENC_LOCK_BITSTREAM_VER;
params.outputBitstream = frame->out;
ret = nv->nvEncLockBitstream(ctx->nvenc_ctx, &params);
if (ret < 0)
return nvenc_print_error(avctx, ret, "Cannot lock the bitstream");
ret = ff_alloc_packet(pkt, params.bitstreamSizeInBytes);
if (ret < 0)
return ret;
memcpy(pkt->data, params.bitstreamBufferPtr, pkt->size);
ret = nv->nvEncUnlockBitstream(ctx->nvenc_ctx, frame->out);
if (ret < 0)
return nvenc_print_error(avctx, ret, "Cannot unlock the bitstream");
if (avctx->pix_fmt == AV_PIX_FMT_CUDA) {
nv->nvEncUnmapInputResource(ctx->nvenc_ctx, frame->in_map.mappedResource);
av_frame_unref(frame->in_ref);
ctx->registered_frames[frame->reg_idx].mapped = 0;
frame->in = NULL;
}
frame->locked = 0;
ret = nvenc_set_timestamp(avctx, &params, pkt);
if (ret < 0)
return ret;
switch (params.pictureType) {
case NV_ENC_PIC_TYPE_IDR:
pkt->flags |= AV_PKT_FLAG_KEY;
#if FF_API_CODED_FRAME
FF_DISABLE_DEPRECATION_WARNINGS
case NV_ENC_PIC_TYPE_INTRA_REFRESH:
case NV_ENC_PIC_TYPE_I:
avctx->coded_frame->pict_type = AV_PICTURE_TYPE_I;
break;
case NV_ENC_PIC_TYPE_P:
avctx->coded_frame->pict_type = AV_PICTURE_TYPE_P;
break;
case NV_ENC_PIC_TYPE_B:
avctx->coded_frame->pict_type = AV_PICTURE_TYPE_B;
break;
case NV_ENC_PIC_TYPE_BI:
avctx->coded_frame->pict_type = AV_PICTURE_TYPE_BI;
break;
FF_ENABLE_DEPRECATION_WARNINGS
#endif
}
return 0;
}
static int output_ready(AVCodecContext *avctx, int flush)
{
NVENCContext *ctx = avctx->priv_data;
/* when B-frames are enabled, we wait for two initial timestamps to
* calculate the first dts */
if (!flush && avctx->max_b_frames > 0 &&
(ctx->initial_pts[0] == AV_NOPTS_VALUE || ctx->initial_pts[1] == AV_NOPTS_VALUE))
return 0;
return av_fifo_size(ctx->ready) > 0;
}
int ff_nvenc_encode_frame(AVCodecContext *avctx, AVPacket *pkt,
const AVFrame *frame, int *got_packet)
{
NVENCContext *ctx = avctx->priv_data;
NV_ENCODE_API_FUNCTION_LIST *nv = &ctx->nvel.nvenc_funcs;
NV_ENC_PIC_PARAMS params = { 0 };
NVENCFrame *nvenc_frame = NULL;
int enc_ret, ret;
params.version = NV_ENC_PIC_PARAMS_VER;
if (frame) {
nvenc_frame = get_free_frame(ctx);
if (!nvenc_frame) {
av_log(avctx, AV_LOG_ERROR, "No free surfaces\n");
return AVERROR_BUG;
}
ret = nvenc_upload_frame(avctx, frame, nvenc_frame);
if (ret < 0)
return ret;
params.inputBuffer = nvenc_frame->in;
params.bufferFmt = nvenc_frame->format;
params.inputWidth = frame->width;
params.inputHeight = frame->height;
params.outputBitstream = nvenc_frame->out;
params.inputTimeStamp = frame->pts;
if (avctx->flags & AV_CODEC_FLAG_INTERLACED_DCT) {
if (frame->top_field_first)
params.pictureStruct = NV_ENC_PIC_STRUCT_FIELD_TOP_BOTTOM;
else
params.pictureStruct = NV_ENC_PIC_STRUCT_FIELD_BOTTOM_TOP;
} else {
params.pictureStruct = NV_ENC_PIC_STRUCT_FRAME;
}
nvenc_codec_specific_pic_params(avctx, &params);
ret = nvenc_enqueue_timestamp(ctx->timestamps, frame->pts);
if (ret < 0)
return ret;
if (ctx->initial_pts[0] == AV_NOPTS_VALUE)
ctx->initial_pts[0] = frame->pts;
else if (ctx->initial_pts[1] == AV_NOPTS_VALUE)
ctx->initial_pts[1] = frame->pts;
} else {
params.encodePicFlags = NV_ENC_PIC_FLAG_EOS;
}
enc_ret = nv->nvEncEncodePicture(ctx->nvenc_ctx, &params);
if (enc_ret != NV_ENC_SUCCESS &&
enc_ret != NV_ENC_ERR_NEED_MORE_INPUT)
return nvenc_print_error(avctx, enc_ret, "Error encoding the frame");
if (nvenc_frame) {
ret = av_fifo_generic_write(ctx->pending, &nvenc_frame, sizeof(nvenc_frame), NULL);
if (ret < 0)
return ret;
}
/* all the pending buffers are now ready for output */
if (enc_ret == NV_ENC_SUCCESS) {
while (av_fifo_size(ctx->pending) > 0) {
av_fifo_generic_read(ctx->pending, &nvenc_frame, sizeof(nvenc_frame), NULL);
av_fifo_generic_write(ctx->ready, &nvenc_frame, sizeof(nvenc_frame), NULL);
}
}
if (output_ready(avctx, !frame)) {
ret = nvenc_get_output(avctx, pkt);
if (ret < 0)
return ret;
*got_packet = 1;
} else {
*got_packet = 0;
}
return 0;
}