1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2024-11-26 19:01:44 +02:00
FFmpeg/libavutil/pca.c
Andreas Rheinhardt 790f793844 avutil/common: Don't auto-include mem.h
There are lots of files that don't need it: The number of object
files that actually need it went down from 2011 to 884 here.

Keep it for external users in order to not cause breakages.

Also improve the other headers a bit while just at it.

Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
2024-03-31 00:08:43 +01:00

175 lines
4.8 KiB
C

/*
* principal component analysis (PCA)
* Copyright (c) 2004 Michael Niedermayer <michaelni@gmx.at>
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* principal component analysis (PCA)
*/
#include "common.h"
#include "mem.h"
#include "pca.h"
typedef struct PCA{
int count;
int n;
double *covariance;
double *mean;
double *z;
}PCA;
PCA *ff_pca_init(int n){
PCA *pca;
if(n<=0)
return NULL;
pca= av_mallocz(sizeof(*pca));
if (!pca)
return NULL;
pca->n= n;
pca->z = av_malloc_array(n, sizeof(*pca->z));
pca->count=0;
pca->covariance= av_calloc(n*n, sizeof(double));
pca->mean= av_calloc(n, sizeof(double));
if (!pca->z || !pca->covariance || !pca->mean) {
ff_pca_free(pca);
return NULL;
}
return pca;
}
void ff_pca_free(PCA *pca){
av_freep(&pca->covariance);
av_freep(&pca->mean);
av_freep(&pca->z);
av_free(pca);
}
void ff_pca_add(PCA *pca, const double *v){
int i, j;
const int n= pca->n;
for(i=0; i<n; i++){
pca->mean[i] += v[i];
for(j=i; j<n; j++)
pca->covariance[j + i*n] += v[i]*v[j];
}
pca->count++;
}
int ff_pca(PCA *pca, double *eigenvector, double *eigenvalue){
int i, j, pass;
int k=0;
const int n= pca->n;
double *z = pca->z;
memset(eigenvector, 0, sizeof(double)*n*n);
for(j=0; j<n; j++){
pca->mean[j] /= pca->count;
eigenvector[j + j*n] = 1.0;
for(i=0; i<=j; i++){
pca->covariance[j + i*n] /= pca->count;
pca->covariance[j + i*n] -= pca->mean[i] * pca->mean[j];
pca->covariance[i + j*n] = pca->covariance[j + i*n];
}
eigenvalue[j]= pca->covariance[j + j*n];
z[j]= 0;
}
for(pass=0; pass < 50; pass++){
double sum=0;
for(i=0; i<n; i++)
for(j=i+1; j<n; j++)
sum += fabs(pca->covariance[j + i*n]);
if(sum == 0){
for(i=0; i<n; i++){
double maxvalue= -1;
for(j=i; j<n; j++){
if(eigenvalue[j] > maxvalue){
maxvalue= eigenvalue[j];
k= j;
}
}
eigenvalue[k]= eigenvalue[i];
eigenvalue[i]= maxvalue;
for(j=0; j<n; j++){
double tmp= eigenvector[k + j*n];
eigenvector[k + j*n]= eigenvector[i + j*n];
eigenvector[i + j*n]= tmp;
}
}
return pass;
}
for(i=0; i<n; i++){
for(j=i+1; j<n; j++){
double covar= pca->covariance[j + i*n];
double t,c,s,tau,theta, h;
if(pass < 3 && fabs(covar) < sum / (5*n*n)) //FIXME why pass < 3
continue;
if(fabs(covar) == 0.0) //FIXME should not be needed
continue;
if(pass >=3 && fabs((eigenvalue[j]+z[j])/covar) > (1LL<<32) && fabs((eigenvalue[i]+z[i])/covar) > (1LL<<32)){
pca->covariance[j + i*n]=0.0;
continue;
}
h= (eigenvalue[j]+z[j]) - (eigenvalue[i]+z[i]);
theta=0.5*h/covar;
t=1.0/(fabs(theta)+sqrt(1.0+theta*theta));
if(theta < 0.0) t = -t;
c=1.0/sqrt(1+t*t);
s=t*c;
tau=s/(1.0+c);
z[i] -= t*covar;
z[j] += t*covar;
#define ROTATE(a,i,j,k,l) {\
double g=a[j + i*n];\
double h=a[l + k*n];\
a[j + i*n]=g-s*(h+g*tau);\
a[l + k*n]=h+s*(g-h*tau); }
for(k=0; k<n; k++) {
if(k!=i && k!=j){
ROTATE(pca->covariance,FFMIN(k,i),FFMAX(k,i),FFMIN(k,j),FFMAX(k,j))
}
ROTATE(eigenvector,k,i,k,j)
}
pca->covariance[j + i*n]=0.0;
}
}
for (i=0; i<n; i++) {
eigenvalue[i] += z[i];
z[i]=0.0;
}
}
return -1;
}