1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2025-01-24 13:56:33 +02:00
FFmpeg/libavcodec/vvc/vvc_intra_utils.c
Andreas Rheinhardt 33a3a23b79 avcodec/vvc/vvc_intra: Move utils out of vvc_intra.c
Otherwise vvc_intra.o gets pulled in by the vvc_mc checkasm
test and it in turn pulls vvc_ctu.o and then the rest of vvcdec
and lavc in. Besides being bad size-wise this also has the downside
that it pulls in avpriv_(cga|vga16)_font from libavutil which are
marked as being imported from another library when building
libavcodec as a DLL and this breaks checkasm because it links
both lavc and lavu statically.

Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
2024-03-02 02:54:12 +01:00

219 lines
7.2 KiB
C

/*
* VVC intra prediction utils
*
* Copyright (C) 2021 Nuo Mi
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <stdint.h>
#include <stdlib.h>
#include "libavutil/avassert.h"
#include "libavutil/macros.h"
#include "libavutil/common.h"
#include "vvc_ctu.h"
#include "vvc_intra.h"
#include "vvc_ps.h"
#include "vvcdec.h"
int ff_vvc_get_mip_size_id(const int w, const int h)
{
if (w == 4 && h == 4)
return 0;
if ((w == 4 || h == 4) || (w == 8 && h == 8))
return 1;
return 2;
}
int ff_vvc_nscale_derive(const int w, const int h, const int mode)
{
int side_size, nscale;
av_assert0(mode < INTRA_LT_CCLM && !(mode > INTRA_HORZ && mode < INTRA_VERT));
if (mode == INTRA_PLANAR || mode == INTRA_DC ||
mode == INTRA_HORZ || mode == INTRA_VERT) {
nscale = (av_log2(w) + av_log2(h) - 2) >> 2;
} else {
const int intra_pred_angle = ff_vvc_intra_pred_angle_derive(mode);
const int inv_angle = ff_vvc_intra_inv_angle_derive(intra_pred_angle);
if (mode >= INTRA_VERT)
side_size = h;
if (mode <= INTRA_HORZ)
side_size = w;
nscale = FFMIN(2, av_log2(side_size) - av_log2(3 * inv_angle - 2) + 8);
}
return nscale;
}
int ff_vvc_need_pdpc(const int w, const int h, const uint8_t bdpcm_flag, const int mode, const int ref_idx)
{
av_assert0(mode < INTRA_LT_CCLM);
if ((w >= 4 && h >= 4) && !ref_idx && !bdpcm_flag) {
int nscale;
if (mode == INTRA_PLANAR || mode == INTRA_DC ||
mode == INTRA_HORZ || mode == INTRA_VERT)
return 1;
if (mode > INTRA_HORZ && mode < INTRA_VERT)
return 0;
nscale = ff_vvc_nscale_derive(w, h, mode);
return nscale >= 0;
}
return 0;
}
static const ReconstructedArea* get_reconstructed_area(const VVCLocalContext *lc, const int x, const int y, const int c_idx)
{
const int ch_type = c_idx > 0;
for (int i = lc->num_ras[ch_type] - 1; i >= 0; i--) {
const ReconstructedArea* a = &lc->ras[ch_type][i];
const int r = (a->x + a->w);
const int b = (a->y + a->h);
if (a->x <= x && x < r && a->y <= y && y < b)
return a;
//it's too far away, no need check it;
if (x >= r && y >= b)
break;
}
return NULL;
}
int ff_vvc_get_top_available(const VVCLocalContext *lc, const int x, const int y, int target_size, const int c_idx)
{
const VVCFrameContext *fc = lc->fc;
const VVCSPS *sps = fc->ps.sps;
const int hs = sps->hshift[c_idx];
const int vs = sps->vshift[c_idx];
const int log2_ctb_size_v = sps->ctb_log2_size_y - vs;
const int end_of_ctb_x = ((lc->cu->x0 >> sps->ctb_log2_size_y) + 1) << sps->ctb_log2_size_y;
const int y0b = av_mod_uintp2(y, log2_ctb_size_v);
const int max_x = FFMIN(fc->ps.pps->width, end_of_ctb_x) >> hs;
const ReconstructedArea *a;
int px = x;
if (!y0b) {
if (!lc->ctb_up_flag)
return 0;
target_size = FFMIN(target_size, (lc->end_of_tiles_x >> hs) - x);
if (sps->r->sps_entropy_coding_sync_enabled_flag)
target_size = FFMIN(target_size, (end_of_ctb_x >> hs) - x);
return target_size;
}
target_size = FFMAX(0, FFMIN(target_size, max_x - x));
while (target_size > 0 && (a = get_reconstructed_area(lc, px, y - 1, c_idx))) {
const int sz = FFMIN(target_size, a->x + a->w - px);
px += sz;
target_size -= sz;
}
return px - x;
}
int ff_vvc_get_left_available(const VVCLocalContext *lc, const int x, const int y, int target_size, const int c_idx)
{
const VVCFrameContext *fc = lc->fc;
const VVCSPS *sps = fc->ps.sps;
const int hs = sps->hshift[c_idx];
const int vs = sps->vshift[c_idx];
const int log2_ctb_size_h = sps->ctb_log2_size_y - hs;
const int x0b = av_mod_uintp2(x, log2_ctb_size_h);
const int end_of_ctb_y = ((lc->cu->y0 >> sps->ctb_log2_size_y) + 1) << sps->ctb_log2_size_y;
const int max_y = FFMIN(fc->ps.pps->height, end_of_ctb_y) >> vs;
const ReconstructedArea *a;
int py = y;
if (!x0b && !lc->ctb_left_flag)
return 0;
target_size = FFMAX(0, FFMIN(target_size, max_y - y));
if (!x0b)
return target_size;
while (target_size > 0 && (a = get_reconstructed_area(lc, x - 1, py, c_idx))) {
const int sz = FFMIN(target_size, a->y + a->h - py);
py += sz;
target_size -= sz;
}
return py - y;
}
static int less(const void *a, const void *b)
{
return *(const int*)a - *(const int*)b;
}
int ff_vvc_ref_filter_flag_derive(const int mode)
{
static const int modes[] = { -14, -12, -10, -6, INTRA_PLANAR, 2, 34, 66, 72, 76, 78, 80};
return bsearch(&mode, modes, FF_ARRAY_ELEMS(modes), sizeof(int), less) != NULL;
}
int ff_vvc_intra_pred_angle_derive(const int pred_mode)
{
static const int angles[] = {
0, 1, 2, 3, 4, 6, 8, 10, 12, 14, 16, 18, 20, 23, 26, 29,
32, 35, 39, 45, 51, 57, 64, 73, 86, 102, 128, 171, 256, 341, 512
};
int sign = 1, idx, intra_pred_angle;
if (pred_mode > INTRA_DIAG) {
idx = pred_mode - INTRA_VERT;
} else if (pred_mode > 0) {
idx = INTRA_HORZ - pred_mode;
} else {
idx = INTRA_HORZ - 2 - pred_mode;
}
if (idx < 0) {
idx = -idx;
sign = -1;
}
intra_pred_angle = sign * angles[idx];
return intra_pred_angle;
}
#define ROUND(f) (int)(f < 0 ? -(-f + 0.5) : (f + 0.5))
int ff_vvc_intra_inv_angle_derive(const int intra_pred_angle)
{
float inv_angle;
av_assert0(intra_pred_angle);
inv_angle = 32 * 512.0 / intra_pred_angle;
return ROUND(inv_angle);
}
//8.4.5.2.7 Wide angle intra prediction mode mapping proces
int ff_vvc_wide_angle_mode_mapping(const CodingUnit *cu,
const int tb_width, const int tb_height, const int c_idx, int pred_mode_intra)
{
int nw, nh, wh_ratio, min, max;
if (cu->isp_split_type == ISP_NO_SPLIT || c_idx) {
nw = tb_width;
nh = tb_height;
} else {
nw = cu->cb_width;
nh = cu->cb_height;
}
wh_ratio = FFABS(ff_log2(nw) - ff_log2(nh));
max = (wh_ratio > 1) ? (8 + 2 * wh_ratio) : 8;
min = (wh_ratio > 1) ? (60 - 2 * wh_ratio) : 60;
if (nw > nh && pred_mode_intra >=2 && pred_mode_intra < max)
pred_mode_intra += 65;
else if (nh > nw && pred_mode_intra <= 66 && pred_mode_intra > min)
pred_mode_intra -= 67;
return pred_mode_intra;
}