1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2025-01-24 13:56:33 +02:00
FFmpeg/libavcodec/aacenc.c
Andreas Rheinhardt f1b08b8a65 avcodec/mips/aaccoder_mips: Remove MIPS-specific aaccoder
ff_aac_coder_init_mips() modifies a static const structure of
function pointers. This will crash if the binary uses relro
and is a data race in any case.

Furthermore it points to a maintainability issue: The
AACCoefficientsEncoder structures have been constified
in commit fd9212f2edfe9b107c3c08ba2df5fd2cba5ab9e3,
a Libav commit merged in 318778de9ebec276cb9dfc65509231ca56590d13.
Libav did not have the MIPS-specific AAC code and so this was
fine for them; yet FFmpeg had them, but this was not recognized.

Commit 75a099fc734a4ee2b1347d0a3d8c53d883b95174 points to another
maintainability issue: Contrary to ordinary DSP code, this code
here is way more complex and needs to be constantly kept in sync
with the ordinary code which it mimicks and replaces. Said commit
is the only commit actually changing aaccoder.c in the last few
years and the same change has not been performed for the MIPS
clone; before that, it even happened several times that the mips
code was broken due to changes of the generic code (see commits
97437bd17a8c5d4135b2f3b1b299bd7bb72ce02c and
de262d018d7d7d9c967af1dfd1b861c4b9eb2a60 or
860dbe0275e57cbf4228f3f653f872ff66ca596b or
933309a6ca0f18bf1d40e917fff455221f57fb4b or
b65ffa316e377213c29736929beba584d0d80d7c). This might even lead
to scenarios where someone changing non-dsp aacenc code would
have to modify mips inline asm in order to keep them in sync.
This is obviously a significant burden (if the AAC encoder were
actively developed).

Finally, the code does not even compile here due to errors like
"Error: float register should be even, was 1".

Reviewed-by: Lynne <dev@lynne.ee>
Reviewed-by: Jean-Baptiste Kempf <jb@videolan.org>
Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
2024-03-18 01:49:38 +01:00

1438 lines
54 KiB
C

/*
* AAC encoder
* Copyright (C) 2008 Konstantin Shishkov
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* AAC encoder
*/
/***********************************
* TODOs:
* add sane pulse detection
***********************************/
#include <float.h>
#include "libavutil/channel_layout.h"
#include "libavutil/libm.h"
#include "libavutil/float_dsp.h"
#include "libavutil/opt.h"
#include "avcodec.h"
#include "codec_internal.h"
#include "encode.h"
#include "put_bits.h"
#include "mpeg4audio.h"
#include "sinewin.h"
#include "profiles.h"
#include "version.h"
#include "aac.h"
#include "aactab.h"
#include "aacenc.h"
#include "aacenctab.h"
#include "aacenc_utils.h"
#include "psymodel.h"
/**
* List of PCE (Program Configuration Element) for the channel layouts listed
* in channel_layout.h
*
* For those wishing in the future to add other layouts:
*
* - num_ele: number of elements in each group of front, side, back, lfe channels
* (an element is of type SCE (single channel), CPE (channel pair) for
* the first 3 groups; and is LFE for LFE group).
*
* - pairing: 0 for an SCE element or 1 for a CPE; does not apply to LFE group
*
* - index: there are three independent indices for SCE, CPE and LFE;
* they are incremented irrespective of the group to which the element belongs;
* they are not reset when going from one group to another
*
* Example: for 7.0 channel layout,
* .pairing = { { 1, 0 }, { 1 }, { 1 }, }, (3 CPE and 1 SCE in front group)
* .index = { { 0, 0 }, { 1 }, { 2 }, },
* (index is 0 for the single SCE but goes from 0 to 2 for the CPEs)
*
* The index order impacts the channel ordering. But is otherwise arbitrary
* (the sequence could have been 2, 0, 1 instead of 0, 1, 2).
*
* Spec allows for discontinuous indices, e.g. if one has a total of two SCE,
* SCE.0 SCE.15 is OK per spec; BUT it won't be decoded by our AAC decoder
* which at this time requires that indices fully cover some range starting
* from 0 (SCE.1 SCE.0 is OK but not SCE.0 SCE.15).
*
* - config_map: total number of elements and their types. Beware, the way the
* types are ordered impacts the final channel ordering.
*
* - reorder_map: reorders the channels.
*
*/
static const AACPCEInfo aac_pce_configs[] = {
{
.layout = AV_CHANNEL_LAYOUT_MONO,
.num_ele = { 1, 0, 0, 0 },
.pairing = { { 0 }, },
.index = { { 0 }, },
.config_map = { 1, TYPE_SCE, },
.reorder_map = { 0 },
},
{
.layout = AV_CHANNEL_LAYOUT_STEREO,
.num_ele = { 1, 0, 0, 0 },
.pairing = { { 1 }, },
.index = { { 0 }, },
.config_map = { 1, TYPE_CPE, },
.reorder_map = { 0, 1 },
},
{
.layout = AV_CHANNEL_LAYOUT_2POINT1,
.num_ele = { 1, 0, 0, 1 },
.pairing = { { 1 }, },
.index = { { 0 },{ 0 },{ 0 },{ 0 } },
.config_map = { 2, TYPE_CPE, TYPE_LFE },
.reorder_map = { 0, 1, 2 },
},
{
.layout = AV_CHANNEL_LAYOUT_2_1,
.num_ele = { 1, 0, 1, 0 },
.pairing = { { 1 },{ 0 },{ 0 } },
.index = { { 0 },{ 0 },{ 0 }, },
.config_map = { 2, TYPE_CPE, TYPE_SCE },
.reorder_map = { 0, 1, 2 },
},
{
.layout = AV_CHANNEL_LAYOUT_SURROUND,
.num_ele = { 2, 0, 0, 0 },
.pairing = { { 1, 0 }, },
.index = { { 0, 0 }, },
.config_map = { 2, TYPE_CPE, TYPE_SCE, },
.reorder_map = { 0, 1, 2 },
},
{
.layout = AV_CHANNEL_LAYOUT_3POINT1,
.num_ele = { 2, 0, 0, 1 },
.pairing = { { 1, 0 }, },
.index = { { 0, 0 }, { 0 }, { 0 }, { 0 }, },
.config_map = { 3, TYPE_CPE, TYPE_SCE, TYPE_LFE },
.reorder_map = { 0, 1, 2, 3 },
},
{
.layout = AV_CHANNEL_LAYOUT_4POINT0,
.num_ele = { 2, 0, 1, 0 },
.pairing = { { 1, 0 }, { 0 }, { 0 }, },
.index = { { 0, 0 }, { 0 }, { 1 } },
.config_map = { 3, TYPE_CPE, TYPE_SCE, TYPE_SCE },
.reorder_map = { 0, 1, 2, 3 },
},
{
.layout = AV_CHANNEL_LAYOUT_4POINT1,
.num_ele = { 2, 1, 1, 0 },
.pairing = { { 1, 0 }, { 0 }, { 0 }, },
.index = { { 0, 0 }, { 1 }, { 2 }, { 0 } },
.config_map = { 4, TYPE_CPE, TYPE_SCE, TYPE_SCE, TYPE_SCE },
.reorder_map = { 0, 1, 2, 3, 4 },
},
{
.layout = AV_CHANNEL_LAYOUT_2_2,
.num_ele = { 1, 1, 0, 0 },
.pairing = { { 1 }, { 1 }, },
.index = { { 0 }, { 1 }, },
.config_map = { 2, TYPE_CPE, TYPE_CPE },
.reorder_map = { 0, 1, 2, 3 },
},
{
.layout = AV_CHANNEL_LAYOUT_QUAD,
.num_ele = { 1, 0, 1, 0 },
.pairing = { { 1 }, { 0 }, { 1 }, },
.index = { { 0 }, { 0 }, { 1 } },
.config_map = { 2, TYPE_CPE, TYPE_CPE },
.reorder_map = { 0, 1, 2, 3 },
},
{
.layout = AV_CHANNEL_LAYOUT_5POINT0,
.num_ele = { 2, 1, 0, 0 },
.pairing = { { 1, 0 }, { 1 }, },
.index = { { 0, 0 }, { 1 } },
.config_map = { 3, TYPE_CPE, TYPE_SCE, TYPE_CPE },
.reorder_map = { 0, 1, 2, 3, 4 },
},
{
.layout = AV_CHANNEL_LAYOUT_5POINT1,
.num_ele = { 2, 1, 1, 0 },
.pairing = { { 1, 0 }, { 0 }, { 1 }, },
.index = { { 0, 0 }, { 1 }, { 1 } },
.config_map = { 4, TYPE_CPE, TYPE_SCE, TYPE_SCE, TYPE_CPE },
.reorder_map = { 0, 1, 2, 3, 4, 5 },
},
{
.layout = AV_CHANNEL_LAYOUT_5POINT0_BACK,
.num_ele = { 2, 0, 1, 0 },
.pairing = { { 1, 0 }, { 0 }, { 1 } },
.index = { { 0, 0 }, { 0 }, { 1 } },
.config_map = { 3, TYPE_CPE, TYPE_SCE, TYPE_CPE },
.reorder_map = { 0, 1, 2, 3, 4 },
},
{
.layout = AV_CHANNEL_LAYOUT_5POINT1_BACK,
.num_ele = { 2, 1, 1, 0 },
.pairing = { { 1, 0 }, { 0 }, { 1 }, },
.index = { { 0, 0 }, { 1 }, { 1 } },
.config_map = { 4, TYPE_CPE, TYPE_SCE, TYPE_SCE, TYPE_CPE },
.reorder_map = { 0, 1, 2, 3, 4, 5 },
},
{
.layout = AV_CHANNEL_LAYOUT_6POINT0,
.num_ele = { 2, 1, 1, 0 },
.pairing = { { 1, 0 }, { 1 }, { 0 }, },
.index = { { 0, 0 }, { 1 }, { 1 } },
.config_map = { 4, TYPE_CPE, TYPE_SCE, TYPE_CPE, TYPE_SCE },
.reorder_map = { 0, 1, 2, 3, 4, 5 },
},
{
.layout = AV_CHANNEL_LAYOUT_6POINT0_FRONT,
.num_ele = { 2, 1, 0, 0 },
.pairing = { { 1, 1 }, { 1 } },
.index = { { 1, 0 }, { 2 }, },
.config_map = { 3, TYPE_CPE, TYPE_CPE, TYPE_CPE, },
.reorder_map = { 0, 1, 2, 3, 4, 5 },
},
{
.layout = AV_CHANNEL_LAYOUT_HEXAGONAL,
.num_ele = { 2, 0, 2, 0 },
.pairing = { { 1, 0 },{ 0 },{ 1, 0 }, },
.index = { { 0, 0 },{ 0 },{ 1, 1 } },
.config_map = { 4, TYPE_CPE, TYPE_SCE, TYPE_CPE, TYPE_SCE, },
.reorder_map = { 0, 1, 2, 3, 4, 5 },
},
{
.layout = AV_CHANNEL_LAYOUT_6POINT1,
.num_ele = { 2, 1, 2, 0 },
.pairing = { { 1, 0 },{ 0 },{ 1, 0 }, },
.index = { { 0, 0 },{ 1 },{ 1, 2 } },
.config_map = { 5, TYPE_CPE, TYPE_SCE, TYPE_SCE, TYPE_CPE, TYPE_SCE },
.reorder_map = { 0, 1, 2, 3, 4, 5, 6 },
},
{
.layout = AV_CHANNEL_LAYOUT_6POINT1_BACK,
.num_ele = { 2, 1, 2, 0 },
.pairing = { { 1, 0 }, { 0 }, { 1, 0 }, },
.index = { { 0, 0 }, { 1 }, { 1, 2 } },
.config_map = { 5, TYPE_CPE, TYPE_SCE, TYPE_SCE, TYPE_CPE, TYPE_SCE },
.reorder_map = { 0, 1, 2, 3, 4, 5, 6 },
},
{
.layout = AV_CHANNEL_LAYOUT_6POINT1_FRONT,
.num_ele = { 2, 1, 2, 0 },
.pairing = { { 1, 0 }, { 0 }, { 1, 0 }, },
.index = { { 0, 0 }, { 1 }, { 1, 2 } },
.config_map = { 5, TYPE_CPE, TYPE_SCE, TYPE_SCE, TYPE_CPE, TYPE_SCE },
.reorder_map = { 0, 1, 2, 3, 4, 5, 6 },
},
{
.layout = AV_CHANNEL_LAYOUT_7POINT0,
.num_ele = { 2, 1, 1, 0 },
.pairing = { { 1, 0 }, { 1 }, { 1 }, },
.index = { { 0, 0 }, { 1 }, { 2 }, },
.config_map = { 4, TYPE_CPE, TYPE_SCE, TYPE_CPE, TYPE_CPE },
.reorder_map = { 0, 1, 2, 3, 4, 5, 6 },
},
{
.layout = AV_CHANNEL_LAYOUT_7POINT0_FRONT,
.num_ele = { 2, 1, 1, 0 },
.pairing = { { 1, 0 }, { 1 }, { 1 }, },
.index = { { 0, 0 }, { 1 }, { 2 }, },
.config_map = { 4, TYPE_CPE, TYPE_SCE, TYPE_CPE, TYPE_CPE },
.reorder_map = { 0, 1, 2, 3, 4, 5, 6 },
},
{
.layout = AV_CHANNEL_LAYOUT_7POINT1,
.num_ele = { 2, 1, 2, 0 },
.pairing = { { 1, 0 }, { 0 }, { 1, 1 }, },
.index = { { 0, 0 }, { 1 }, { 1, 2 }, { 0 } },
.config_map = { 5, TYPE_CPE, TYPE_SCE, TYPE_SCE, TYPE_CPE, TYPE_CPE },
.reorder_map = { 0, 1, 2, 3, 4, 5, 6, 7 },
},
{
.layout = AV_CHANNEL_LAYOUT_7POINT1_WIDE,
.num_ele = { 2, 1, 2, 0 },
.pairing = { { 1, 0 }, { 0 },{ 1, 1 }, },
.index = { { 0, 0 }, { 1 }, { 1, 2 }, { 0 } },
.config_map = { 5, TYPE_CPE, TYPE_SCE, TYPE_SCE, TYPE_CPE, TYPE_CPE },
.reorder_map = { 0, 1, 2, 3, 4, 5, 6, 7 },
},
{
.layout = AV_CHANNEL_LAYOUT_7POINT1_WIDE_BACK,
.num_ele = { 2, 1, 2, 0 },
.pairing = { { 1, 0 }, { 0 }, { 1, 1 }, },
.index = { { 0, 0 }, { 1 }, { 1, 2 }, { 0 } },
.config_map = { 5, TYPE_CPE, TYPE_SCE, TYPE_SCE, TYPE_CPE, TYPE_CPE },
.reorder_map = { 0, 1, 2, 3, 4, 5, 6, 7 },
},
{
.layout = AV_CHANNEL_LAYOUT_OCTAGONAL,
.num_ele = { 2, 1, 2, 0 },
.pairing = { { 1, 0 }, { 1 }, { 1, 0 }, },
.index = { { 0, 0 }, { 1 }, { 2, 1 } },
.config_map = { 5, TYPE_CPE, TYPE_SCE, TYPE_CPE, TYPE_CPE, TYPE_SCE },
.reorder_map = { 0, 1, 2, 3, 4, 5, 6, 7 },
},
{ /* Meant for order 2/mixed ambisonics */
.layout = { .order = AV_CHANNEL_ORDER_NATIVE, .nb_channels = 9,
.u.mask = AV_CH_LAYOUT_OCTAGONAL | AV_CH_TOP_CENTER },
.num_ele = { 2, 2, 2, 0 },
.pairing = { { 1, 0 }, { 1, 0 }, { 1, 0 }, },
.index = { { 0, 0 }, { 1, 1 }, { 2, 2 } },
.config_map = { 6, TYPE_CPE, TYPE_SCE, TYPE_CPE, TYPE_SCE, TYPE_CPE, TYPE_SCE },
.reorder_map = { 0, 1, 2, 3, 4, 5, 6, 7, 8 },
},
{ /* Meant for order 2/mixed ambisonics */
.layout = { .order = AV_CHANNEL_ORDER_NATIVE, .nb_channels = 10,
.u.mask = AV_CH_LAYOUT_6POINT0_FRONT | AV_CH_BACK_CENTER |
AV_CH_BACK_LEFT | AV_CH_BACK_RIGHT | AV_CH_TOP_CENTER },
.num_ele = { 2, 2, 2, 0 },
.pairing = { { 1, 1 }, { 1, 0 }, { 1, 0 }, },
.index = { { 0, 1 }, { 2, 0 }, { 3, 1 } },
.config_map = { 6, TYPE_CPE, TYPE_CPE, TYPE_CPE, TYPE_SCE, TYPE_CPE, TYPE_SCE },
.reorder_map = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 },
},
{
.layout = AV_CHANNEL_LAYOUT_HEXADECAGONAL,
.num_ele = { 4, 2, 4, 0 },
.pairing = { { 1, 0, 1, 0 }, { 1, 1 }, { 1, 0, 1, 0 }, },
.index = { { 0, 0, 1, 1 }, { 2, 3 }, { 4, 2, 5, 3 } },
.config_map = { 10, TYPE_CPE, TYPE_SCE, TYPE_CPE, TYPE_SCE, TYPE_CPE, TYPE_CPE, TYPE_CPE, TYPE_SCE, TYPE_CPE, TYPE_SCE },
.reorder_map = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 },
},
};
static void put_pce(PutBitContext *pb, AVCodecContext *avctx)
{
int i, j;
AACEncContext *s = avctx->priv_data;
AACPCEInfo *pce = &s->pce;
const int bitexact = avctx->flags & AV_CODEC_FLAG_BITEXACT;
const char *aux_data = bitexact ? "Lavc" : LIBAVCODEC_IDENT;
put_bits(pb, 4, 0);
put_bits(pb, 2, avctx->profile);
put_bits(pb, 4, s->samplerate_index);
put_bits(pb, 4, pce->num_ele[0]); /* Front */
put_bits(pb, 4, pce->num_ele[1]); /* Side */
put_bits(pb, 4, pce->num_ele[2]); /* Back */
put_bits(pb, 2, pce->num_ele[3]); /* LFE */
put_bits(pb, 3, 0); /* Assoc data */
put_bits(pb, 4, 0); /* CCs */
put_bits(pb, 1, 0); /* Stereo mixdown */
put_bits(pb, 1, 0); /* Mono mixdown */
put_bits(pb, 1, 0); /* Something else */
for (i = 0; i < 4; i++) {
for (j = 0; j < pce->num_ele[i]; j++) {
if (i < 3)
put_bits(pb, 1, pce->pairing[i][j]);
put_bits(pb, 4, pce->index[i][j]);
}
}
align_put_bits(pb);
put_bits(pb, 8, strlen(aux_data));
ff_put_string(pb, aux_data, 0);
}
/**
* Make AAC audio config object.
* @see 1.6.2.1 "Syntax - AudioSpecificConfig"
*/
static int put_audio_specific_config(AVCodecContext *avctx)
{
PutBitContext pb;
AACEncContext *s = avctx->priv_data;
int channels = (!s->needs_pce)*(s->channels - (s->channels == 8 ? 1 : 0));
const int max_size = 32;
avctx->extradata = av_mallocz(max_size);
if (!avctx->extradata)
return AVERROR(ENOMEM);
init_put_bits(&pb, avctx->extradata, max_size);
put_bits(&pb, 5, s->profile+1); //profile
put_bits(&pb, 4, s->samplerate_index); //sample rate index
put_bits(&pb, 4, channels);
//GASpecificConfig
put_bits(&pb, 1, 0); //frame length - 1024 samples
put_bits(&pb, 1, 0); //does not depend on core coder
put_bits(&pb, 1, 0); //is not extension
if (s->needs_pce)
put_pce(&pb, avctx);
//Explicitly Mark SBR absent
put_bits(&pb, 11, 0x2b7); //sync extension
put_bits(&pb, 5, AOT_SBR);
put_bits(&pb, 1, 0);
flush_put_bits(&pb);
avctx->extradata_size = put_bytes_output(&pb);
return 0;
}
void ff_quantize_band_cost_cache_init(struct AACEncContext *s)
{
++s->quantize_band_cost_cache_generation;
if (s->quantize_band_cost_cache_generation == 0) {
memset(s->quantize_band_cost_cache, 0, sizeof(s->quantize_band_cost_cache));
s->quantize_band_cost_cache_generation = 1;
}
}
#define WINDOW_FUNC(type) \
static void apply_ ##type ##_window(AVFloatDSPContext *fdsp, \
SingleChannelElement *sce, \
const float *audio)
WINDOW_FUNC(only_long)
{
const float *lwindow = sce->ics.use_kb_window[0] ? ff_aac_kbd_long_1024 : ff_sine_1024;
const float *pwindow = sce->ics.use_kb_window[1] ? ff_aac_kbd_long_1024 : ff_sine_1024;
float *out = sce->ret_buf;
fdsp->vector_fmul (out, audio, lwindow, 1024);
fdsp->vector_fmul_reverse(out + 1024, audio + 1024, pwindow, 1024);
}
WINDOW_FUNC(long_start)
{
const float *lwindow = sce->ics.use_kb_window[1] ? ff_aac_kbd_long_1024 : ff_sine_1024;
const float *swindow = sce->ics.use_kb_window[0] ? ff_aac_kbd_short_128 : ff_sine_128;
float *out = sce->ret_buf;
fdsp->vector_fmul(out, audio, lwindow, 1024);
memcpy(out + 1024, audio + 1024, sizeof(out[0]) * 448);
fdsp->vector_fmul_reverse(out + 1024 + 448, audio + 1024 + 448, swindow, 128);
memset(out + 1024 + 576, 0, sizeof(out[0]) * 448);
}
WINDOW_FUNC(long_stop)
{
const float *lwindow = sce->ics.use_kb_window[0] ? ff_aac_kbd_long_1024 : ff_sine_1024;
const float *swindow = sce->ics.use_kb_window[1] ? ff_aac_kbd_short_128 : ff_sine_128;
float *out = sce->ret_buf;
memset(out, 0, sizeof(out[0]) * 448);
fdsp->vector_fmul(out + 448, audio + 448, swindow, 128);
memcpy(out + 576, audio + 576, sizeof(out[0]) * 448);
fdsp->vector_fmul_reverse(out + 1024, audio + 1024, lwindow, 1024);
}
WINDOW_FUNC(eight_short)
{
const float *swindow = sce->ics.use_kb_window[0] ? ff_aac_kbd_short_128 : ff_sine_128;
const float *pwindow = sce->ics.use_kb_window[1] ? ff_aac_kbd_short_128 : ff_sine_128;
const float *in = audio + 448;
float *out = sce->ret_buf;
int w;
for (w = 0; w < 8; w++) {
fdsp->vector_fmul (out, in, w ? pwindow : swindow, 128);
out += 128;
in += 128;
fdsp->vector_fmul_reverse(out, in, swindow, 128);
out += 128;
}
}
static void (*const apply_window[4])(AVFloatDSPContext *fdsp,
SingleChannelElement *sce,
const float *audio) = {
[ONLY_LONG_SEQUENCE] = apply_only_long_window,
[LONG_START_SEQUENCE] = apply_long_start_window,
[EIGHT_SHORT_SEQUENCE] = apply_eight_short_window,
[LONG_STOP_SEQUENCE] = apply_long_stop_window
};
static void apply_window_and_mdct(AACEncContext *s, SingleChannelElement *sce,
float *audio)
{
int i;
float *output = sce->ret_buf;
apply_window[sce->ics.window_sequence[0]](s->fdsp, sce, audio);
if (sce->ics.window_sequence[0] != EIGHT_SHORT_SEQUENCE)
s->mdct1024_fn(s->mdct1024, sce->coeffs, output, sizeof(float));
else
for (i = 0; i < 1024; i += 128)
s->mdct128_fn(s->mdct128, &sce->coeffs[i], output + i*2, sizeof(float));
memcpy(audio, audio + 1024, sizeof(audio[0]) * 1024);
memcpy(sce->pcoeffs, sce->coeffs, sizeof(sce->pcoeffs));
}
/**
* Encode ics_info element.
* @see Table 4.6 (syntax of ics_info)
*/
static void put_ics_info(AACEncContext *s, IndividualChannelStream *info)
{
int w;
put_bits(&s->pb, 1, 0); // ics_reserved bit
put_bits(&s->pb, 2, info->window_sequence[0]);
put_bits(&s->pb, 1, info->use_kb_window[0]);
if (info->window_sequence[0] != EIGHT_SHORT_SEQUENCE) {
put_bits(&s->pb, 6, info->max_sfb);
put_bits(&s->pb, 1, !!info->predictor_present);
} else {
put_bits(&s->pb, 4, info->max_sfb);
for (w = 1; w < 8; w++)
put_bits(&s->pb, 1, !info->group_len[w]);
}
}
/**
* Encode MS data.
* @see 4.6.8.1 "Joint Coding - M/S Stereo"
*/
static void encode_ms_info(PutBitContext *pb, ChannelElement *cpe)
{
int i, w;
put_bits(pb, 2, cpe->ms_mode);
if (cpe->ms_mode == 1)
for (w = 0; w < cpe->ch[0].ics.num_windows; w += cpe->ch[0].ics.group_len[w])
for (i = 0; i < cpe->ch[0].ics.max_sfb; i++)
put_bits(pb, 1, cpe->ms_mask[w*16 + i]);
}
/**
* Produce integer coefficients from scalefactors provided by the model.
*/
static void adjust_frame_information(ChannelElement *cpe, int chans)
{
int i, w, w2, g, ch;
int maxsfb, cmaxsfb;
for (ch = 0; ch < chans; ch++) {
IndividualChannelStream *ics = &cpe->ch[ch].ics;
maxsfb = 0;
cpe->ch[ch].pulse.num_pulse = 0;
for (w = 0; w < ics->num_windows; w += ics->group_len[w]) {
for (w2 = 0; w2 < ics->group_len[w]; w2++) {
for (cmaxsfb = ics->num_swb; cmaxsfb > 0 && cpe->ch[ch].zeroes[w*16+cmaxsfb-1]; cmaxsfb--)
;
maxsfb = FFMAX(maxsfb, cmaxsfb);
}
}
ics->max_sfb = maxsfb;
//adjust zero bands for window groups
for (w = 0; w < ics->num_windows; w += ics->group_len[w]) {
for (g = 0; g < ics->max_sfb; g++) {
i = 1;
for (w2 = w; w2 < w + ics->group_len[w]; w2++) {
if (!cpe->ch[ch].zeroes[w2*16 + g]) {
i = 0;
break;
}
}
cpe->ch[ch].zeroes[w*16 + g] = i;
}
}
}
if (chans > 1 && cpe->common_window) {
IndividualChannelStream *ics0 = &cpe->ch[0].ics;
IndividualChannelStream *ics1 = &cpe->ch[1].ics;
int msc = 0;
ics0->max_sfb = FFMAX(ics0->max_sfb, ics1->max_sfb);
ics1->max_sfb = ics0->max_sfb;
for (w = 0; w < ics0->num_windows*16; w += 16)
for (i = 0; i < ics0->max_sfb; i++)
if (cpe->ms_mask[w+i])
msc++;
if (msc == 0 || ics0->max_sfb == 0)
cpe->ms_mode = 0;
else
cpe->ms_mode = msc < ics0->max_sfb * ics0->num_windows ? 1 : 2;
}
}
static void apply_intensity_stereo(ChannelElement *cpe)
{
int w, w2, g, i;
IndividualChannelStream *ics = &cpe->ch[0].ics;
if (!cpe->common_window)
return;
for (w = 0; w < ics->num_windows; w += ics->group_len[w]) {
for (w2 = 0; w2 < ics->group_len[w]; w2++) {
int start = (w+w2) * 128;
for (g = 0; g < ics->num_swb; g++) {
int p = -1 + 2 * (cpe->ch[1].band_type[w*16+g] - 14);
float scale = cpe->ch[0].is_ener[w*16+g];
if (!cpe->is_mask[w*16 + g]) {
start += ics->swb_sizes[g];
continue;
}
if (cpe->ms_mask[w*16 + g])
p *= -1;
for (i = 0; i < ics->swb_sizes[g]; i++) {
float sum = (cpe->ch[0].coeffs[start+i] + p*cpe->ch[1].coeffs[start+i])*scale;
cpe->ch[0].coeffs[start+i] = sum;
cpe->ch[1].coeffs[start+i] = 0.0f;
}
start += ics->swb_sizes[g];
}
}
}
}
static void apply_mid_side_stereo(ChannelElement *cpe)
{
int w, w2, g, i;
IndividualChannelStream *ics = &cpe->ch[0].ics;
if (!cpe->common_window)
return;
for (w = 0; w < ics->num_windows; w += ics->group_len[w]) {
for (w2 = 0; w2 < ics->group_len[w]; w2++) {
int start = (w+w2) * 128;
for (g = 0; g < ics->num_swb; g++) {
/* ms_mask can be used for other purposes in PNS and I/S,
* so must not apply M/S if any band uses either, even if
* ms_mask is set.
*/
if (!cpe->ms_mask[w*16 + g] || cpe->is_mask[w*16 + g]
|| cpe->ch[0].band_type[w*16 + g] >= NOISE_BT
|| cpe->ch[1].band_type[w*16 + g] >= NOISE_BT) {
start += ics->swb_sizes[g];
continue;
}
for (i = 0; i < ics->swb_sizes[g]; i++) {
float L = (cpe->ch[0].coeffs[start+i] + cpe->ch[1].coeffs[start+i]) * 0.5f;
float R = L - cpe->ch[1].coeffs[start+i];
cpe->ch[0].coeffs[start+i] = L;
cpe->ch[1].coeffs[start+i] = R;
}
start += ics->swb_sizes[g];
}
}
}
}
/**
* Encode scalefactor band coding type.
*/
static void encode_band_info(AACEncContext *s, SingleChannelElement *sce)
{
int w;
if (s->coder->set_special_band_scalefactors)
s->coder->set_special_band_scalefactors(s, sce);
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w])
s->coder->encode_window_bands_info(s, sce, w, sce->ics.group_len[w], s->lambda);
}
/**
* Encode scalefactors.
*/
static void encode_scale_factors(AVCodecContext *avctx, AACEncContext *s,
SingleChannelElement *sce)
{
int diff, off_sf = sce->sf_idx[0], off_pns = sce->sf_idx[0] - NOISE_OFFSET;
int off_is = 0, noise_flag = 1;
int i, w;
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
for (i = 0; i < sce->ics.max_sfb; i++) {
if (!sce->zeroes[w*16 + i]) {
if (sce->band_type[w*16 + i] == NOISE_BT) {
diff = sce->sf_idx[w*16 + i] - off_pns;
off_pns = sce->sf_idx[w*16 + i];
if (noise_flag-- > 0) {
put_bits(&s->pb, NOISE_PRE_BITS, diff + NOISE_PRE);
continue;
}
} else if (sce->band_type[w*16 + i] == INTENSITY_BT ||
sce->band_type[w*16 + i] == INTENSITY_BT2) {
diff = sce->sf_idx[w*16 + i] - off_is;
off_is = sce->sf_idx[w*16 + i];
} else {
diff = sce->sf_idx[w*16 + i] - off_sf;
off_sf = sce->sf_idx[w*16 + i];
}
diff += SCALE_DIFF_ZERO;
av_assert0(diff >= 0 && diff <= 120);
put_bits(&s->pb, ff_aac_scalefactor_bits[diff], ff_aac_scalefactor_code[diff]);
}
}
}
}
/**
* Encode pulse data.
*/
static void encode_pulses(AACEncContext *s, Pulse *pulse)
{
int i;
put_bits(&s->pb, 1, !!pulse->num_pulse);
if (!pulse->num_pulse)
return;
put_bits(&s->pb, 2, pulse->num_pulse - 1);
put_bits(&s->pb, 6, pulse->start);
for (i = 0; i < pulse->num_pulse; i++) {
put_bits(&s->pb, 5, pulse->pos[i]);
put_bits(&s->pb, 4, pulse->amp[i]);
}
}
/**
* Encode spectral coefficients processed by psychoacoustic model.
*/
static void encode_spectral_coeffs(AACEncContext *s, SingleChannelElement *sce)
{
int start, i, w, w2;
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
start = 0;
for (i = 0; i < sce->ics.max_sfb; i++) {
if (sce->zeroes[w*16 + i]) {
start += sce->ics.swb_sizes[i];
continue;
}
for (w2 = w; w2 < w + sce->ics.group_len[w]; w2++) {
s->coder->quantize_and_encode_band(s, &s->pb,
&sce->coeffs[start + w2*128],
NULL, sce->ics.swb_sizes[i],
sce->sf_idx[w*16 + i],
sce->band_type[w*16 + i],
s->lambda,
sce->ics.window_clipping[w]);
}
start += sce->ics.swb_sizes[i];
}
}
}
/**
* Downscale spectral coefficients for near-clipping windows to avoid artifacts
*/
static void avoid_clipping(AACEncContext *s, SingleChannelElement *sce)
{
int start, i, j, w;
if (sce->ics.clip_avoidance_factor < 1.0f) {
for (w = 0; w < sce->ics.num_windows; w++) {
start = 0;
for (i = 0; i < sce->ics.max_sfb; i++) {
float *swb_coeffs = &sce->coeffs[start + w*128];
for (j = 0; j < sce->ics.swb_sizes[i]; j++)
swb_coeffs[j] *= sce->ics.clip_avoidance_factor;
start += sce->ics.swb_sizes[i];
}
}
}
}
/**
* Encode one channel of audio data.
*/
static int encode_individual_channel(AVCodecContext *avctx, AACEncContext *s,
SingleChannelElement *sce,
int common_window)
{
put_bits(&s->pb, 8, sce->sf_idx[0]);
if (!common_window) {
put_ics_info(s, &sce->ics);
if (s->coder->encode_main_pred)
s->coder->encode_main_pred(s, sce);
if (s->coder->encode_ltp_info)
s->coder->encode_ltp_info(s, sce, 0);
}
encode_band_info(s, sce);
encode_scale_factors(avctx, s, sce);
encode_pulses(s, &sce->pulse);
put_bits(&s->pb, 1, !!sce->tns.present);
if (s->coder->encode_tns_info)
s->coder->encode_tns_info(s, sce);
put_bits(&s->pb, 1, 0); //ssr
encode_spectral_coeffs(s, sce);
return 0;
}
/**
* Write some auxiliary information about the created AAC file.
*/
static void put_bitstream_info(AACEncContext *s, const char *name)
{
int i, namelen, padbits;
namelen = strlen(name) + 2;
put_bits(&s->pb, 3, TYPE_FIL);
put_bits(&s->pb, 4, FFMIN(namelen, 15));
if (namelen >= 15)
put_bits(&s->pb, 8, namelen - 14);
put_bits(&s->pb, 4, 0); //extension type - filler
padbits = -put_bits_count(&s->pb) & 7;
align_put_bits(&s->pb);
for (i = 0; i < namelen - 2; i++)
put_bits(&s->pb, 8, name[i]);
put_bits(&s->pb, 12 - padbits, 0);
}
/*
* Copy input samples.
* Channels are reordered from libavcodec's default order to AAC order.
*/
static void copy_input_samples(AACEncContext *s, const AVFrame *frame)
{
int ch;
int end = 2048 + (frame ? frame->nb_samples : 0);
const uint8_t *channel_map = s->reorder_map;
/* copy and remap input samples */
for (ch = 0; ch < s->channels; ch++) {
/* copy last 1024 samples of previous frame to the start of the current frame */
memcpy(&s->planar_samples[ch][1024], &s->planar_samples[ch][2048], 1024 * sizeof(s->planar_samples[0][0]));
/* copy new samples and zero any remaining samples */
if (frame) {
memcpy(&s->planar_samples[ch][2048],
frame->extended_data[channel_map[ch]],
frame->nb_samples * sizeof(s->planar_samples[0][0]));
}
memset(&s->planar_samples[ch][end], 0,
(3072 - end) * sizeof(s->planar_samples[0][0]));
}
}
static int aac_encode_frame(AVCodecContext *avctx, AVPacket *avpkt,
const AVFrame *frame, int *got_packet_ptr)
{
AACEncContext *s = avctx->priv_data;
float **samples = s->planar_samples, *samples2, *la, *overlap;
ChannelElement *cpe;
SingleChannelElement *sce;
IndividualChannelStream *ics;
int i, its, ch, w, chans, tag, start_ch, ret, frame_bits;
int target_bits, rate_bits, too_many_bits, too_few_bits;
int ms_mode = 0, is_mode = 0, tns_mode = 0, pred_mode = 0;
int chan_el_counter[4];
FFPsyWindowInfo windows[AAC_MAX_CHANNELS];
/* add current frame to queue */
if (frame) {
if ((ret = ff_af_queue_add(&s->afq, frame)) < 0)
return ret;
} else {
if (!s->afq.remaining_samples || (!s->afq.frame_alloc && !s->afq.frame_count))
return 0;
}
copy_input_samples(s, frame);
if (s->psypp)
ff_psy_preprocess(s->psypp, s->planar_samples, s->channels);
if (!avctx->frame_num)
return 0;
start_ch = 0;
for (i = 0; i < s->chan_map[0]; i++) {
FFPsyWindowInfo* wi = windows + start_ch;
tag = s->chan_map[i+1];
chans = tag == TYPE_CPE ? 2 : 1;
cpe = &s->cpe[i];
for (ch = 0; ch < chans; ch++) {
int k;
float clip_avoidance_factor;
sce = &cpe->ch[ch];
ics = &sce->ics;
s->cur_channel = start_ch + ch;
overlap = &samples[s->cur_channel][0];
samples2 = overlap + 1024;
la = samples2 + (448+64);
if (!frame)
la = NULL;
if (tag == TYPE_LFE) {
wi[ch].window_type[0] = wi[ch].window_type[1] = ONLY_LONG_SEQUENCE;
wi[ch].window_shape = 0;
wi[ch].num_windows = 1;
wi[ch].grouping[0] = 1;
wi[ch].clipping[0] = 0;
/* Only the lowest 12 coefficients are used in a LFE channel.
* The expression below results in only the bottom 8 coefficients
* being used for 11.025kHz to 16kHz sample rates.
*/
ics->num_swb = s->samplerate_index >= 8 ? 1 : 3;
} else {
wi[ch] = s->psy.model->window(&s->psy, samples2, la, s->cur_channel,
ics->window_sequence[0]);
}
ics->window_sequence[1] = ics->window_sequence[0];
ics->window_sequence[0] = wi[ch].window_type[0];
ics->use_kb_window[1] = ics->use_kb_window[0];
ics->use_kb_window[0] = wi[ch].window_shape;
ics->num_windows = wi[ch].num_windows;
ics->swb_sizes = s->psy.bands [ics->num_windows == 8];
ics->num_swb = tag == TYPE_LFE ? ics->num_swb : s->psy.num_bands[ics->num_windows == 8];
ics->max_sfb = FFMIN(ics->max_sfb, ics->num_swb);
ics->swb_offset = wi[ch].window_type[0] == EIGHT_SHORT_SEQUENCE ?
ff_swb_offset_128 [s->samplerate_index]:
ff_swb_offset_1024[s->samplerate_index];
ics->tns_max_bands = wi[ch].window_type[0] == EIGHT_SHORT_SEQUENCE ?
ff_tns_max_bands_128 [s->samplerate_index]:
ff_tns_max_bands_1024[s->samplerate_index];
for (w = 0; w < ics->num_windows; w++)
ics->group_len[w] = wi[ch].grouping[w];
/* Calculate input sample maximums and evaluate clipping risk */
clip_avoidance_factor = 0.0f;
for (w = 0; w < ics->num_windows; w++) {
const float *wbuf = overlap + w * 128;
const int wlen = 2048 / ics->num_windows;
float max = 0;
int j;
/* mdct input is 2 * output */
for (j = 0; j < wlen; j++)
max = FFMAX(max, fabsf(wbuf[j]));
wi[ch].clipping[w] = max;
}
for (w = 0; w < ics->num_windows; w++) {
if (wi[ch].clipping[w] > CLIP_AVOIDANCE_FACTOR) {
ics->window_clipping[w] = 1;
clip_avoidance_factor = FFMAX(clip_avoidance_factor, wi[ch].clipping[w]);
} else {
ics->window_clipping[w] = 0;
}
}
if (clip_avoidance_factor > CLIP_AVOIDANCE_FACTOR) {
ics->clip_avoidance_factor = CLIP_AVOIDANCE_FACTOR / clip_avoidance_factor;
} else {
ics->clip_avoidance_factor = 1.0f;
}
apply_window_and_mdct(s, sce, overlap);
if (s->options.ltp && s->coder->update_ltp) {
s->coder->update_ltp(s, sce);
apply_window[sce->ics.window_sequence[0]](s->fdsp, sce, &sce->ltp_state[0]);
s->mdct1024_fn(s->mdct1024, sce->lcoeffs, sce->ret_buf, sizeof(float));
}
for (k = 0; k < 1024; k++) {
if (!(fabs(cpe->ch[ch].coeffs[k]) < 1E16)) { // Ensure headroom for energy calculation
av_log(avctx, AV_LOG_ERROR, "Input contains (near) NaN/+-Inf\n");
return AVERROR(EINVAL);
}
}
avoid_clipping(s, sce);
}
start_ch += chans;
}
if ((ret = ff_alloc_packet(avctx, avpkt, 8192 * s->channels)) < 0)
return ret;
frame_bits = its = 0;
do {
init_put_bits(&s->pb, avpkt->data, avpkt->size);
if ((avctx->frame_num & 0xFF)==1 && !(avctx->flags & AV_CODEC_FLAG_BITEXACT))
put_bitstream_info(s, LIBAVCODEC_IDENT);
start_ch = 0;
target_bits = 0;
memset(chan_el_counter, 0, sizeof(chan_el_counter));
for (i = 0; i < s->chan_map[0]; i++) {
FFPsyWindowInfo* wi = windows + start_ch;
const float *coeffs[2];
tag = s->chan_map[i+1];
chans = tag == TYPE_CPE ? 2 : 1;
cpe = &s->cpe[i];
cpe->common_window = 0;
memset(cpe->is_mask, 0, sizeof(cpe->is_mask));
memset(cpe->ms_mask, 0, sizeof(cpe->ms_mask));
put_bits(&s->pb, 3, tag);
put_bits(&s->pb, 4, chan_el_counter[tag]++);
for (ch = 0; ch < chans; ch++) {
sce = &cpe->ch[ch];
coeffs[ch] = sce->coeffs;
sce->ics.predictor_present = 0;
sce->ics.ltp.present = 0;
memset(sce->ics.ltp.used, 0, sizeof(sce->ics.ltp.used));
memset(sce->ics.prediction_used, 0, sizeof(sce->ics.prediction_used));
memset(&sce->tns, 0, sizeof(TemporalNoiseShaping));
for (w = 0; w < 128; w++)
if (sce->band_type[w] > RESERVED_BT)
sce->band_type[w] = 0;
}
s->psy.bitres.alloc = -1;
s->psy.bitres.bits = s->last_frame_pb_count / s->channels;
s->psy.model->analyze(&s->psy, start_ch, coeffs, wi);
if (s->psy.bitres.alloc > 0) {
/* Lambda unused here on purpose, we need to take psy's unscaled allocation */
target_bits += s->psy.bitres.alloc
* (s->lambda / (avctx->global_quality ? avctx->global_quality : 120));
s->psy.bitres.alloc /= chans;
}
s->cur_type = tag;
for (ch = 0; ch < chans; ch++) {
s->cur_channel = start_ch + ch;
if (s->options.pns && s->coder->mark_pns)
s->coder->mark_pns(s, avctx, &cpe->ch[ch]);
s->coder->search_for_quantizers(avctx, s, &cpe->ch[ch], s->lambda);
}
if (chans > 1
&& wi[0].window_type[0] == wi[1].window_type[0]
&& wi[0].window_shape == wi[1].window_shape) {
cpe->common_window = 1;
for (w = 0; w < wi[0].num_windows; w++) {
if (wi[0].grouping[w] != wi[1].grouping[w]) {
cpe->common_window = 0;
break;
}
}
}
for (ch = 0; ch < chans; ch++) { /* TNS and PNS */
sce = &cpe->ch[ch];
s->cur_channel = start_ch + ch;
if (s->options.tns && s->coder->search_for_tns)
s->coder->search_for_tns(s, sce);
if (s->options.tns && s->coder->apply_tns_filt)
s->coder->apply_tns_filt(s, sce);
if (sce->tns.present)
tns_mode = 1;
if (s->options.pns && s->coder->search_for_pns)
s->coder->search_for_pns(s, avctx, sce);
}
s->cur_channel = start_ch;
if (s->options.intensity_stereo) { /* Intensity Stereo */
if (s->coder->search_for_is)
s->coder->search_for_is(s, avctx, cpe);
if (cpe->is_mode) is_mode = 1;
apply_intensity_stereo(cpe);
}
if (s->options.pred) { /* Prediction */
for (ch = 0; ch < chans; ch++) {
sce = &cpe->ch[ch];
s->cur_channel = start_ch + ch;
if (s->options.pred && s->coder->search_for_pred)
s->coder->search_for_pred(s, sce);
if (cpe->ch[ch].ics.predictor_present) pred_mode = 1;
}
if (s->coder->adjust_common_pred)
s->coder->adjust_common_pred(s, cpe);
for (ch = 0; ch < chans; ch++) {
sce = &cpe->ch[ch];
s->cur_channel = start_ch + ch;
if (s->options.pred && s->coder->apply_main_pred)
s->coder->apply_main_pred(s, sce);
}
s->cur_channel = start_ch;
}
if (s->options.mid_side) { /* Mid/Side stereo */
if (s->options.mid_side == -1 && s->coder->search_for_ms)
s->coder->search_for_ms(s, cpe);
else if (cpe->common_window)
memset(cpe->ms_mask, 1, sizeof(cpe->ms_mask));
apply_mid_side_stereo(cpe);
}
adjust_frame_information(cpe, chans);
if (s->options.ltp) { /* LTP */
for (ch = 0; ch < chans; ch++) {
sce = &cpe->ch[ch];
s->cur_channel = start_ch + ch;
if (s->coder->search_for_ltp)
s->coder->search_for_ltp(s, sce, cpe->common_window);
if (sce->ics.ltp.present) pred_mode = 1;
}
s->cur_channel = start_ch;
if (s->coder->adjust_common_ltp)
s->coder->adjust_common_ltp(s, cpe);
}
if (chans == 2) {
put_bits(&s->pb, 1, cpe->common_window);
if (cpe->common_window) {
put_ics_info(s, &cpe->ch[0].ics);
if (s->coder->encode_main_pred)
s->coder->encode_main_pred(s, &cpe->ch[0]);
if (s->coder->encode_ltp_info)
s->coder->encode_ltp_info(s, &cpe->ch[0], 1);
encode_ms_info(&s->pb, cpe);
if (cpe->ms_mode) ms_mode = 1;
}
}
for (ch = 0; ch < chans; ch++) {
s->cur_channel = start_ch + ch;
encode_individual_channel(avctx, s, &cpe->ch[ch], cpe->common_window);
}
start_ch += chans;
}
if (avctx->flags & AV_CODEC_FLAG_QSCALE) {
/* When using a constant Q-scale, don't mess with lambda */
break;
}
/* rate control stuff
* allow between the nominal bitrate, and what psy's bit reservoir says to target
* but drift towards the nominal bitrate always
*/
frame_bits = put_bits_count(&s->pb);
rate_bits = avctx->bit_rate * 1024 / avctx->sample_rate;
rate_bits = FFMIN(rate_bits, 6144 * s->channels - 3);
too_many_bits = FFMAX(target_bits, rate_bits);
too_many_bits = FFMIN(too_many_bits, 6144 * s->channels - 3);
too_few_bits = FFMIN(FFMAX(rate_bits - rate_bits/4, target_bits), too_many_bits);
/* When strict bit-rate control is demanded */
if (avctx->bit_rate_tolerance == 0) {
if (rate_bits < frame_bits) {
float ratio = ((float)rate_bits) / frame_bits;
s->lambda *= FFMIN(0.9f, ratio);
continue;
}
/* reset lambda when solution is found */
s->lambda = avctx->global_quality > 0 ? avctx->global_quality : 120;
break;
}
/* When using ABR, be strict (but only for increasing) */
too_few_bits = too_few_bits - too_few_bits/8;
too_many_bits = too_many_bits + too_many_bits/2;
if ( its == 0 /* for steady-state Q-scale tracking */
|| (its < 5 && (frame_bits < too_few_bits || frame_bits > too_many_bits))
|| frame_bits >= 6144 * s->channels - 3 )
{
float ratio = ((float)rate_bits) / frame_bits;
if (frame_bits >= too_few_bits && frame_bits <= too_many_bits) {
/*
* This path is for steady-state Q-scale tracking
* When frame bits fall within the stable range, we still need to adjust
* lambda to maintain it like so in a stable fashion (large jumps in lambda
* create artifacts and should be avoided), but slowly
*/
ratio = sqrtf(sqrtf(ratio));
ratio = av_clipf(ratio, 0.9f, 1.1f);
} else {
/* Not so fast though */
ratio = sqrtf(ratio);
}
s->lambda = av_clipf(s->lambda * ratio, FLT_EPSILON, 65536.f);
/* Keep iterating if we must reduce and lambda is in the sky */
if (ratio > 0.9f && ratio < 1.1f) {
break;
} else {
if (is_mode || ms_mode || tns_mode || pred_mode) {
for (i = 0; i < s->chan_map[0]; i++) {
// Must restore coeffs
chans = tag == TYPE_CPE ? 2 : 1;
cpe = &s->cpe[i];
for (ch = 0; ch < chans; ch++)
memcpy(cpe->ch[ch].coeffs, cpe->ch[ch].pcoeffs, sizeof(cpe->ch[ch].coeffs));
}
}
its++;
}
} else {
break;
}
} while (1);
if (s->options.ltp && s->coder->ltp_insert_new_frame)
s->coder->ltp_insert_new_frame(s);
put_bits(&s->pb, 3, TYPE_END);
flush_put_bits(&s->pb);
s->last_frame_pb_count = put_bits_count(&s->pb);
avpkt->size = put_bytes_output(&s->pb);
s->lambda_sum += s->lambda;
s->lambda_count++;
ff_af_queue_remove(&s->afq, avctx->frame_size, &avpkt->pts,
&avpkt->duration);
*got_packet_ptr = 1;
return 0;
}
static av_cold int aac_encode_end(AVCodecContext *avctx)
{
AACEncContext *s = avctx->priv_data;
av_log(avctx, AV_LOG_INFO, "Qavg: %.3f\n", s->lambda_count ? s->lambda_sum / s->lambda_count : NAN);
av_tx_uninit(&s->mdct1024);
av_tx_uninit(&s->mdct128);
ff_psy_end(&s->psy);
ff_lpc_end(&s->lpc);
if (s->psypp)
ff_psy_preprocess_end(s->psypp);
av_freep(&s->buffer.samples);
av_freep(&s->cpe);
av_freep(&s->fdsp);
ff_af_queue_close(&s->afq);
return 0;
}
static av_cold int dsp_init(AVCodecContext *avctx, AACEncContext *s)
{
int ret = 0;
float scale = 32768.0f;
s->fdsp = avpriv_float_dsp_alloc(avctx->flags & AV_CODEC_FLAG_BITEXACT);
if (!s->fdsp)
return AVERROR(ENOMEM);
if ((ret = av_tx_init(&s->mdct1024, &s->mdct1024_fn, AV_TX_FLOAT_MDCT, 0,
1024, &scale, 0)) < 0)
return ret;
if ((ret = av_tx_init(&s->mdct128, &s->mdct128_fn, AV_TX_FLOAT_MDCT, 0,
128, &scale, 0)) < 0)
return ret;
return 0;
}
static av_cold int alloc_buffers(AVCodecContext *avctx, AACEncContext *s)
{
int ch;
if (!FF_ALLOCZ_TYPED_ARRAY(s->buffer.samples, s->channels * 3 * 1024) ||
!FF_ALLOCZ_TYPED_ARRAY(s->cpe, s->chan_map[0]))
return AVERROR(ENOMEM);
for(ch = 0; ch < s->channels; ch++)
s->planar_samples[ch] = s->buffer.samples + 3 * 1024 * ch;
return 0;
}
static av_cold int aac_encode_init(AVCodecContext *avctx)
{
AACEncContext *s = avctx->priv_data;
int i, ret = 0;
const uint8_t *sizes[2];
uint8_t grouping[AAC_MAX_CHANNELS];
int lengths[2];
/* Constants */
s->last_frame_pb_count = 0;
avctx->frame_size = 1024;
avctx->initial_padding = 1024;
s->lambda = avctx->global_quality > 0 ? avctx->global_quality : 120;
/* Channel map and unspecified bitrate guessing */
s->channels = avctx->ch_layout.nb_channels;
s->needs_pce = 1;
for (i = 0; i < FF_ARRAY_ELEMS(aac_normal_chan_layouts); i++) {
if (!av_channel_layout_compare(&avctx->ch_layout, &aac_normal_chan_layouts[i])) {
s->needs_pce = s->options.pce;
break;
}
}
if (s->needs_pce) {
char buf[64];
for (i = 0; i < FF_ARRAY_ELEMS(aac_pce_configs); i++)
if (!av_channel_layout_compare(&avctx->ch_layout, &aac_pce_configs[i].layout))
break;
av_channel_layout_describe(&avctx->ch_layout, buf, sizeof(buf));
if (i == FF_ARRAY_ELEMS(aac_pce_configs)) {
av_log(avctx, AV_LOG_ERROR, "Unsupported channel layout \"%s\"\n", buf);
return AVERROR(EINVAL);
}
av_log(avctx, AV_LOG_INFO, "Using a PCE to encode channel layout \"%s\"\n", buf);
s->pce = aac_pce_configs[i];
s->reorder_map = s->pce.reorder_map;
s->chan_map = s->pce.config_map;
} else {
s->reorder_map = aac_chan_maps[s->channels - 1];
s->chan_map = aac_chan_configs[s->channels - 1];
}
if (!avctx->bit_rate) {
for (i = 1; i <= s->chan_map[0]; i++) {
avctx->bit_rate += s->chan_map[i] == TYPE_CPE ? 128000 : /* Pair */
s->chan_map[i] == TYPE_LFE ? 16000 : /* LFE */
69000 ; /* SCE */
}
}
/* Samplerate */
for (i = 0; i < 16; i++)
if (avctx->sample_rate == ff_mpeg4audio_sample_rates[i])
break;
s->samplerate_index = i;
ERROR_IF(s->samplerate_index == 16 ||
s->samplerate_index >= ff_aac_swb_size_1024_len ||
s->samplerate_index >= ff_aac_swb_size_128_len,
"Unsupported sample rate %d\n", avctx->sample_rate);
/* Bitrate limiting */
WARN_IF(1024.0 * avctx->bit_rate / avctx->sample_rate > 6144 * s->channels,
"Too many bits %f > %d per frame requested, clamping to max\n",
1024.0 * avctx->bit_rate / avctx->sample_rate,
6144 * s->channels);
avctx->bit_rate = (int64_t)FFMIN(6144 * s->channels / 1024.0 * avctx->sample_rate,
avctx->bit_rate);
/* Profile and option setting */
avctx->profile = avctx->profile == AV_PROFILE_UNKNOWN ? AV_PROFILE_AAC_LOW :
avctx->profile;
for (i = 0; i < FF_ARRAY_ELEMS(aacenc_profiles); i++)
if (avctx->profile == aacenc_profiles[i])
break;
if (avctx->profile == AV_PROFILE_MPEG2_AAC_LOW) {
avctx->profile = AV_PROFILE_AAC_LOW;
ERROR_IF(s->options.pred,
"Main prediction unavailable in the \"mpeg2_aac_low\" profile\n");
ERROR_IF(s->options.ltp,
"LTP prediction unavailable in the \"mpeg2_aac_low\" profile\n");
WARN_IF(s->options.pns,
"PNS unavailable in the \"mpeg2_aac_low\" profile, turning off\n");
s->options.pns = 0;
} else if (avctx->profile == AV_PROFILE_AAC_LTP) {
s->options.ltp = 1;
ERROR_IF(s->options.pred,
"Main prediction unavailable in the \"aac_ltp\" profile\n");
} else if (avctx->profile == AV_PROFILE_AAC_MAIN) {
s->options.pred = 1;
ERROR_IF(s->options.ltp,
"LTP prediction unavailable in the \"aac_main\" profile\n");
} else if (s->options.ltp) {
avctx->profile = AV_PROFILE_AAC_LTP;
WARN_IF(1,
"Chainging profile to \"aac_ltp\"\n");
ERROR_IF(s->options.pred,
"Main prediction unavailable in the \"aac_ltp\" profile\n");
} else if (s->options.pred) {
avctx->profile = AV_PROFILE_AAC_MAIN;
WARN_IF(1,
"Chainging profile to \"aac_main\"\n");
ERROR_IF(s->options.ltp,
"LTP prediction unavailable in the \"aac_main\" profile\n");
}
s->profile = avctx->profile;
/* Coder limitations */
s->coder = &ff_aac_coders[s->options.coder];
if (s->options.coder == AAC_CODER_ANMR) {
ERROR_IF(avctx->strict_std_compliance > FF_COMPLIANCE_EXPERIMENTAL,
"The ANMR coder is considered experimental, add -strict -2 to enable!\n");
s->options.intensity_stereo = 0;
s->options.pns = 0;
}
ERROR_IF(s->options.ltp && avctx->strict_std_compliance > FF_COMPLIANCE_EXPERIMENTAL,
"The LPT profile requires experimental compliance, add -strict -2 to enable!\n");
/* M/S introduces horrible artifacts with multichannel files, this is temporary */
if (s->channels > 3)
s->options.mid_side = 0;
// Initialize static tables
ff_aac_float_common_init();
if ((ret = dsp_init(avctx, s)) < 0)
return ret;
if ((ret = alloc_buffers(avctx, s)) < 0)
return ret;
if ((ret = put_audio_specific_config(avctx)))
return ret;
sizes[0] = ff_aac_swb_size_1024[s->samplerate_index];
sizes[1] = ff_aac_swb_size_128[s->samplerate_index];
lengths[0] = ff_aac_num_swb_1024[s->samplerate_index];
lengths[1] = ff_aac_num_swb_128[s->samplerate_index];
for (i = 0; i < s->chan_map[0]; i++)
grouping[i] = s->chan_map[i + 1] == TYPE_CPE;
if ((ret = ff_psy_init(&s->psy, avctx, 2, sizes, lengths,
s->chan_map[0], grouping)) < 0)
return ret;
s->psypp = ff_psy_preprocess_init(avctx);
ff_lpc_init(&s->lpc, 2*avctx->frame_size, TNS_MAX_ORDER, FF_LPC_TYPE_LEVINSON);
s->random_state = 0x1f2e3d4c;
ff_aacenc_dsp_init(&s->aacdsp);
ff_af_queue_init(avctx, &s->afq);
return 0;
}
#define AACENC_FLAGS AV_OPT_FLAG_ENCODING_PARAM | AV_OPT_FLAG_AUDIO_PARAM
static const AVOption aacenc_options[] = {
{"aac_coder", "Coding algorithm", offsetof(AACEncContext, options.coder), AV_OPT_TYPE_INT, {.i64 = AAC_CODER_TWOLOOP}, 0, AAC_CODER_NB-1, AACENC_FLAGS, .unit = "coder"},
{"anmr", "ANMR method", 0, AV_OPT_TYPE_CONST, {.i64 = AAC_CODER_ANMR}, INT_MIN, INT_MAX, AACENC_FLAGS, .unit = "coder"},
{"twoloop", "Two loop searching method", 0, AV_OPT_TYPE_CONST, {.i64 = AAC_CODER_TWOLOOP}, INT_MIN, INT_MAX, AACENC_FLAGS, .unit = "coder"},
{"fast", "Default fast search", 0, AV_OPT_TYPE_CONST, {.i64 = AAC_CODER_FAST}, INT_MIN, INT_MAX, AACENC_FLAGS, .unit = "coder"},
{"aac_ms", "Force M/S stereo coding", offsetof(AACEncContext, options.mid_side), AV_OPT_TYPE_BOOL, {.i64 = -1}, -1, 1, AACENC_FLAGS},
{"aac_is", "Intensity stereo coding", offsetof(AACEncContext, options.intensity_stereo), AV_OPT_TYPE_BOOL, {.i64 = 1}, -1, 1, AACENC_FLAGS},
{"aac_pns", "Perceptual noise substitution", offsetof(AACEncContext, options.pns), AV_OPT_TYPE_BOOL, {.i64 = 1}, -1, 1, AACENC_FLAGS},
{"aac_tns", "Temporal noise shaping", offsetof(AACEncContext, options.tns), AV_OPT_TYPE_BOOL, {.i64 = 1}, -1, 1, AACENC_FLAGS},
{"aac_ltp", "Long term prediction", offsetof(AACEncContext, options.ltp), AV_OPT_TYPE_BOOL, {.i64 = 0}, -1, 1, AACENC_FLAGS},
{"aac_pred", "AAC-Main prediction", offsetof(AACEncContext, options.pred), AV_OPT_TYPE_BOOL, {.i64 = 0}, -1, 1, AACENC_FLAGS},
{"aac_pce", "Forces the use of PCEs", offsetof(AACEncContext, options.pce), AV_OPT_TYPE_BOOL, {.i64 = 0}, -1, 1, AACENC_FLAGS},
FF_AAC_PROFILE_OPTS
{NULL}
};
static const AVClass aacenc_class = {
.class_name = "AAC encoder",
.item_name = av_default_item_name,
.option = aacenc_options,
.version = LIBAVUTIL_VERSION_INT,
};
static const FFCodecDefault aac_encode_defaults[] = {
{ "b", "0" },
{ NULL }
};
const FFCodec ff_aac_encoder = {
.p.name = "aac",
CODEC_LONG_NAME("AAC (Advanced Audio Coding)"),
.p.type = AVMEDIA_TYPE_AUDIO,
.p.id = AV_CODEC_ID_AAC,
.p.capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_DELAY |
AV_CODEC_CAP_SMALL_LAST_FRAME,
.priv_data_size = sizeof(AACEncContext),
.init = aac_encode_init,
FF_CODEC_ENCODE_CB(aac_encode_frame),
.close = aac_encode_end,
.defaults = aac_encode_defaults,
.p.supported_samplerates = ff_mpeg4audio_sample_rates,
.caps_internal = FF_CODEC_CAP_INIT_CLEANUP,
.p.sample_fmts = (const enum AVSampleFormat[]){ AV_SAMPLE_FMT_FLTP,
AV_SAMPLE_FMT_NONE },
.p.priv_class = &aacenc_class,
};